at v4.3 3.1 kB view raw
1#ifndef _TOOLS_LINUX_COMPILER_H_ 2#define _TOOLS_LINUX_COMPILER_H_ 3 4/* Optimization barrier */ 5/* The "volatile" is due to gcc bugs */ 6#define barrier() __asm__ __volatile__("": : :"memory") 7 8#ifndef __always_inline 9# define __always_inline inline __attribute__((always_inline)) 10#endif 11 12#define __user 13 14#ifndef __attribute_const__ 15# define __attribute_const__ 16#endif 17 18#ifndef __maybe_unused 19# define __maybe_unused __attribute__((unused)) 20#endif 21 22#ifndef __packed 23# define __packed __attribute__((__packed__)) 24#endif 25 26#ifndef __force 27# define __force 28#endif 29 30#ifndef __weak 31# define __weak __attribute__((weak)) 32#endif 33 34#ifndef likely 35# define likely(x) __builtin_expect(!!(x), 1) 36#endif 37 38#ifndef unlikely 39# define unlikely(x) __builtin_expect(!!(x), 0) 40#endif 41 42#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x)) 43 44#include <linux/types.h> 45 46static __always_inline void __read_once_size(const volatile void *p, void *res, int size) 47{ 48 switch (size) { 49 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; 50 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; 51 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; 52 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; 53 default: 54 barrier(); 55 __builtin_memcpy((void *)res, (const void *)p, size); 56 barrier(); 57 } 58} 59 60static __always_inline void __write_once_size(volatile void *p, void *res, int size) 61{ 62 switch (size) { 63 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 64 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 65 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 66 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 67 default: 68 barrier(); 69 __builtin_memcpy((void *)p, (const void *)res, size); 70 barrier(); 71 } 72} 73 74/* 75 * Prevent the compiler from merging or refetching reads or writes. The 76 * compiler is also forbidden from reordering successive instances of 77 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the 78 * compiler is aware of some particular ordering. One way to make the 79 * compiler aware of ordering is to put the two invocations of READ_ONCE, 80 * WRITE_ONCE or ACCESS_ONCE() in different C statements. 81 * 82 * In contrast to ACCESS_ONCE these two macros will also work on aggregate 83 * data types like structs or unions. If the size of the accessed data 84 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) 85 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a 86 * compile-time warning. 87 * 88 * Their two major use cases are: (1) Mediating communication between 89 * process-level code and irq/NMI handlers, all running on the same CPU, 90 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 91 * mutilate accesses that either do not require ordering or that interact 92 * with an explicit memory barrier or atomic instruction that provides the 93 * required ordering. 94 */ 95 96#define READ_ONCE(x) \ 97 ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; }) 98 99#define WRITE_ONCE(x, val) \ 100 ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; }) 101 102#endif /* _TOOLS_LINUX_COMPILER_H */