at v4.3 28 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _UAPI_LINUX_PERF_EVENT_H 15#define _UAPI_LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60}; 61 62/* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79}; 80 81enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87}; 88 89enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94}; 95 96/* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 PERF_COUNT_SW_DUMMY = 9, 113 114 PERF_COUNT_SW_MAX, /* non-ABI */ 115}; 116 117/* 118 * Bits that can be set in attr.sample_type to request information 119 * in the overflow packets. 120 */ 121enum perf_event_sample_format { 122 PERF_SAMPLE_IP = 1U << 0, 123 PERF_SAMPLE_TID = 1U << 1, 124 PERF_SAMPLE_TIME = 1U << 2, 125 PERF_SAMPLE_ADDR = 1U << 3, 126 PERF_SAMPLE_READ = 1U << 4, 127 PERF_SAMPLE_CALLCHAIN = 1U << 5, 128 PERF_SAMPLE_ID = 1U << 6, 129 PERF_SAMPLE_CPU = 1U << 7, 130 PERF_SAMPLE_PERIOD = 1U << 8, 131 PERF_SAMPLE_STREAM_ID = 1U << 9, 132 PERF_SAMPLE_RAW = 1U << 10, 133 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 134 PERF_SAMPLE_REGS_USER = 1U << 12, 135 PERF_SAMPLE_STACK_USER = 1U << 13, 136 PERF_SAMPLE_WEIGHT = 1U << 14, 137 PERF_SAMPLE_DATA_SRC = 1U << 15, 138 PERF_SAMPLE_IDENTIFIER = 1U << 16, 139 PERF_SAMPLE_TRANSACTION = 1U << 17, 140 PERF_SAMPLE_REGS_INTR = 1U << 18, 141 142 PERF_SAMPLE_MAX = 1U << 19, /* non-ABI */ 143}; 144 145/* 146 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 147 * 148 * If the user does not pass priv level information via branch_sample_type, 149 * the kernel uses the event's priv level. Branch and event priv levels do 150 * not have to match. Branch priv level is checked for permissions. 151 * 152 * The branch types can be combined, however BRANCH_ANY covers all types 153 * of branches and therefore it supersedes all the other types. 154 */ 155enum perf_branch_sample_type_shift { 156 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ 157 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ 158 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ 159 160 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ 161 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ 162 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ 163 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ 164 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ 165 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ 166 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ 167 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ 168 169 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ 170 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ 171 172 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ 173}; 174 175enum perf_branch_sample_type { 176 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, 177 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, 178 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, 179 180 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, 181 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, 182 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, 183 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, 184 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, 185 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, 186 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, 187 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, 188 189 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, 190 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, 191 192 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, 193}; 194 195#define PERF_SAMPLE_BRANCH_PLM_ALL \ 196 (PERF_SAMPLE_BRANCH_USER|\ 197 PERF_SAMPLE_BRANCH_KERNEL|\ 198 PERF_SAMPLE_BRANCH_HV) 199 200/* 201 * Values to determine ABI of the registers dump. 202 */ 203enum perf_sample_regs_abi { 204 PERF_SAMPLE_REGS_ABI_NONE = 0, 205 PERF_SAMPLE_REGS_ABI_32 = 1, 206 PERF_SAMPLE_REGS_ABI_64 = 2, 207}; 208 209/* 210 * Values for the memory transaction event qualifier, mostly for 211 * abort events. Multiple bits can be set. 212 */ 213enum { 214 PERF_TXN_ELISION = (1 << 0), /* From elision */ 215 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 216 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 217 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 218 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 219 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 220 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 221 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 222 223 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 224 225 /* bits 32..63 are reserved for the abort code */ 226 227 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 228 PERF_TXN_ABORT_SHIFT = 32, 229}; 230 231/* 232 * The format of the data returned by read() on a perf event fd, 233 * as specified by attr.read_format: 234 * 235 * struct read_format { 236 * { u64 value; 237 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 238 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 239 * { u64 id; } && PERF_FORMAT_ID 240 * } && !PERF_FORMAT_GROUP 241 * 242 * { u64 nr; 243 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 244 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 245 * { u64 value; 246 * { u64 id; } && PERF_FORMAT_ID 247 * } cntr[nr]; 248 * } && PERF_FORMAT_GROUP 249 * }; 250 */ 251enum perf_event_read_format { 252 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 253 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 254 PERF_FORMAT_ID = 1U << 2, 255 PERF_FORMAT_GROUP = 1U << 3, 256 257 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 258}; 259 260#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 261#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 262#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 263#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 264 /* add: sample_stack_user */ 265#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ 266#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ 267 268/* 269 * Hardware event_id to monitor via a performance monitoring event: 270 */ 271struct perf_event_attr { 272 273 /* 274 * Major type: hardware/software/tracepoint/etc. 275 */ 276 __u32 type; 277 278 /* 279 * Size of the attr structure, for fwd/bwd compat. 280 */ 281 __u32 size; 282 283 /* 284 * Type specific configuration information. 285 */ 286 __u64 config; 287 288 union { 289 __u64 sample_period; 290 __u64 sample_freq; 291 }; 292 293 __u64 sample_type; 294 __u64 read_format; 295 296 __u64 disabled : 1, /* off by default */ 297 inherit : 1, /* children inherit it */ 298 pinned : 1, /* must always be on PMU */ 299 exclusive : 1, /* only group on PMU */ 300 exclude_user : 1, /* don't count user */ 301 exclude_kernel : 1, /* ditto kernel */ 302 exclude_hv : 1, /* ditto hypervisor */ 303 exclude_idle : 1, /* don't count when idle */ 304 mmap : 1, /* include mmap data */ 305 comm : 1, /* include comm data */ 306 freq : 1, /* use freq, not period */ 307 inherit_stat : 1, /* per task counts */ 308 enable_on_exec : 1, /* next exec enables */ 309 task : 1, /* trace fork/exit */ 310 watermark : 1, /* wakeup_watermark */ 311 /* 312 * precise_ip: 313 * 314 * 0 - SAMPLE_IP can have arbitrary skid 315 * 1 - SAMPLE_IP must have constant skid 316 * 2 - SAMPLE_IP requested to have 0 skid 317 * 3 - SAMPLE_IP must have 0 skid 318 * 319 * See also PERF_RECORD_MISC_EXACT_IP 320 */ 321 precise_ip : 2, /* skid constraint */ 322 mmap_data : 1, /* non-exec mmap data */ 323 sample_id_all : 1, /* sample_type all events */ 324 325 exclude_host : 1, /* don't count in host */ 326 exclude_guest : 1, /* don't count in guest */ 327 328 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 329 exclude_callchain_user : 1, /* exclude user callchains */ 330 mmap2 : 1, /* include mmap with inode data */ 331 comm_exec : 1, /* flag comm events that are due to an exec */ 332 use_clockid : 1, /* use @clockid for time fields */ 333 context_switch : 1, /* context switch data */ 334 __reserved_1 : 37; 335 336 union { 337 __u32 wakeup_events; /* wakeup every n events */ 338 __u32 wakeup_watermark; /* bytes before wakeup */ 339 }; 340 341 __u32 bp_type; 342 union { 343 __u64 bp_addr; 344 __u64 config1; /* extension of config */ 345 }; 346 union { 347 __u64 bp_len; 348 __u64 config2; /* extension of config1 */ 349 }; 350 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 351 352 /* 353 * Defines set of user regs to dump on samples. 354 * See asm/perf_regs.h for details. 355 */ 356 __u64 sample_regs_user; 357 358 /* 359 * Defines size of the user stack to dump on samples. 360 */ 361 __u32 sample_stack_user; 362 363 __s32 clockid; 364 /* 365 * Defines set of regs to dump for each sample 366 * state captured on: 367 * - precise = 0: PMU interrupt 368 * - precise > 0: sampled instruction 369 * 370 * See asm/perf_regs.h for details. 371 */ 372 __u64 sample_regs_intr; 373 374 /* 375 * Wakeup watermark for AUX area 376 */ 377 __u32 aux_watermark; 378 __u32 __reserved_2; /* align to __u64 */ 379}; 380 381#define perf_flags(attr) (*(&(attr)->read_format + 1)) 382 383/* 384 * Ioctls that can be done on a perf event fd: 385 */ 386#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 387#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 388#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 389#define PERF_EVENT_IOC_RESET _IO ('$', 3) 390#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 391#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 392#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 393#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 394#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) 395 396enum perf_event_ioc_flags { 397 PERF_IOC_FLAG_GROUP = 1U << 0, 398}; 399 400/* 401 * Structure of the page that can be mapped via mmap 402 */ 403struct perf_event_mmap_page { 404 __u32 version; /* version number of this structure */ 405 __u32 compat_version; /* lowest version this is compat with */ 406 407 /* 408 * Bits needed to read the hw events in user-space. 409 * 410 * u32 seq, time_mult, time_shift, index, width; 411 * u64 count, enabled, running; 412 * u64 cyc, time_offset; 413 * s64 pmc = 0; 414 * 415 * do { 416 * seq = pc->lock; 417 * barrier() 418 * 419 * enabled = pc->time_enabled; 420 * running = pc->time_running; 421 * 422 * if (pc->cap_usr_time && enabled != running) { 423 * cyc = rdtsc(); 424 * time_offset = pc->time_offset; 425 * time_mult = pc->time_mult; 426 * time_shift = pc->time_shift; 427 * } 428 * 429 * index = pc->index; 430 * count = pc->offset; 431 * if (pc->cap_user_rdpmc && index) { 432 * width = pc->pmc_width; 433 * pmc = rdpmc(index - 1); 434 * } 435 * 436 * barrier(); 437 * } while (pc->lock != seq); 438 * 439 * NOTE: for obvious reason this only works on self-monitoring 440 * processes. 441 */ 442 __u32 lock; /* seqlock for synchronization */ 443 __u32 index; /* hardware event identifier */ 444 __s64 offset; /* add to hardware event value */ 445 __u64 time_enabled; /* time event active */ 446 __u64 time_running; /* time event on cpu */ 447 union { 448 __u64 capabilities; 449 struct { 450 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 451 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 452 453 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ 454 cap_user_time : 1, /* The time_* fields are used */ 455 cap_user_time_zero : 1, /* The time_zero field is used */ 456 cap_____res : 59; 457 }; 458 }; 459 460 /* 461 * If cap_user_rdpmc this field provides the bit-width of the value 462 * read using the rdpmc() or equivalent instruction. This can be used 463 * to sign extend the result like: 464 * 465 * pmc <<= 64 - width; 466 * pmc >>= 64 - width; // signed shift right 467 * count += pmc; 468 */ 469 __u16 pmc_width; 470 471 /* 472 * If cap_usr_time the below fields can be used to compute the time 473 * delta since time_enabled (in ns) using rdtsc or similar. 474 * 475 * u64 quot, rem; 476 * u64 delta; 477 * 478 * quot = (cyc >> time_shift); 479 * rem = cyc & ((1 << time_shift) - 1); 480 * delta = time_offset + quot * time_mult + 481 * ((rem * time_mult) >> time_shift); 482 * 483 * Where time_offset,time_mult,time_shift and cyc are read in the 484 * seqcount loop described above. This delta can then be added to 485 * enabled and possible running (if index), improving the scaling: 486 * 487 * enabled += delta; 488 * if (index) 489 * running += delta; 490 * 491 * quot = count / running; 492 * rem = count % running; 493 * count = quot * enabled + (rem * enabled) / running; 494 */ 495 __u16 time_shift; 496 __u32 time_mult; 497 __u64 time_offset; 498 /* 499 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 500 * from sample timestamps. 501 * 502 * time = timestamp - time_zero; 503 * quot = time / time_mult; 504 * rem = time % time_mult; 505 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 506 * 507 * And vice versa: 508 * 509 * quot = cyc >> time_shift; 510 * rem = cyc & ((1 << time_shift) - 1); 511 * timestamp = time_zero + quot * time_mult + 512 * ((rem * time_mult) >> time_shift); 513 */ 514 __u64 time_zero; 515 __u32 size; /* Header size up to __reserved[] fields. */ 516 517 /* 518 * Hole for extension of the self monitor capabilities 519 */ 520 521 __u8 __reserved[118*8+4]; /* align to 1k. */ 522 523 /* 524 * Control data for the mmap() data buffer. 525 * 526 * User-space reading the @data_head value should issue an smp_rmb(), 527 * after reading this value. 528 * 529 * When the mapping is PROT_WRITE the @data_tail value should be 530 * written by userspace to reflect the last read data, after issueing 531 * an smp_mb() to separate the data read from the ->data_tail store. 532 * In this case the kernel will not over-write unread data. 533 * 534 * See perf_output_put_handle() for the data ordering. 535 * 536 * data_{offset,size} indicate the location and size of the perf record 537 * buffer within the mmapped area. 538 */ 539 __u64 data_head; /* head in the data section */ 540 __u64 data_tail; /* user-space written tail */ 541 __u64 data_offset; /* where the buffer starts */ 542 __u64 data_size; /* data buffer size */ 543 544 /* 545 * AUX area is defined by aux_{offset,size} fields that should be set 546 * by the userspace, so that 547 * 548 * aux_offset >= data_offset + data_size 549 * 550 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. 551 * 552 * Ring buffer pointers aux_{head,tail} have the same semantics as 553 * data_{head,tail} and same ordering rules apply. 554 */ 555 __u64 aux_head; 556 __u64 aux_tail; 557 __u64 aux_offset; 558 __u64 aux_size; 559}; 560 561#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 562#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 563#define PERF_RECORD_MISC_KERNEL (1 << 0) 564#define PERF_RECORD_MISC_USER (2 << 0) 565#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 566#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 567#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 568 569/* 570 * Indicates that /proc/PID/maps parsing are truncated by time out. 571 */ 572#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) 573/* 574 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on 575 * different events so can reuse the same bit position. 576 * Ditto PERF_RECORD_MISC_SWITCH_OUT. 577 */ 578#define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 579#define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 580#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) 581/* 582 * Indicates that the content of PERF_SAMPLE_IP points to 583 * the actual instruction that triggered the event. See also 584 * perf_event_attr::precise_ip. 585 */ 586#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 587/* 588 * Reserve the last bit to indicate some extended misc field 589 */ 590#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 591 592struct perf_event_header { 593 __u32 type; 594 __u16 misc; 595 __u16 size; 596}; 597 598enum perf_event_type { 599 600 /* 601 * If perf_event_attr.sample_id_all is set then all event types will 602 * have the sample_type selected fields related to where/when 603 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 604 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 605 * just after the perf_event_header and the fields already present for 606 * the existing fields, i.e. at the end of the payload. That way a newer 607 * perf.data file will be supported by older perf tools, with these new 608 * optional fields being ignored. 609 * 610 * struct sample_id { 611 * { u32 pid, tid; } && PERF_SAMPLE_TID 612 * { u64 time; } && PERF_SAMPLE_TIME 613 * { u64 id; } && PERF_SAMPLE_ID 614 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 615 * { u32 cpu, res; } && PERF_SAMPLE_CPU 616 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 617 * } && perf_event_attr::sample_id_all 618 * 619 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 620 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 621 * relative to header.size. 622 */ 623 624 /* 625 * The MMAP events record the PROT_EXEC mappings so that we can 626 * correlate userspace IPs to code. They have the following structure: 627 * 628 * struct { 629 * struct perf_event_header header; 630 * 631 * u32 pid, tid; 632 * u64 addr; 633 * u64 len; 634 * u64 pgoff; 635 * char filename[]; 636 * struct sample_id sample_id; 637 * }; 638 */ 639 PERF_RECORD_MMAP = 1, 640 641 /* 642 * struct { 643 * struct perf_event_header header; 644 * u64 id; 645 * u64 lost; 646 * struct sample_id sample_id; 647 * }; 648 */ 649 PERF_RECORD_LOST = 2, 650 651 /* 652 * struct { 653 * struct perf_event_header header; 654 * 655 * u32 pid, tid; 656 * char comm[]; 657 * struct sample_id sample_id; 658 * }; 659 */ 660 PERF_RECORD_COMM = 3, 661 662 /* 663 * struct { 664 * struct perf_event_header header; 665 * u32 pid, ppid; 666 * u32 tid, ptid; 667 * u64 time; 668 * struct sample_id sample_id; 669 * }; 670 */ 671 PERF_RECORD_EXIT = 4, 672 673 /* 674 * struct { 675 * struct perf_event_header header; 676 * u64 time; 677 * u64 id; 678 * u64 stream_id; 679 * struct sample_id sample_id; 680 * }; 681 */ 682 PERF_RECORD_THROTTLE = 5, 683 PERF_RECORD_UNTHROTTLE = 6, 684 685 /* 686 * struct { 687 * struct perf_event_header header; 688 * u32 pid, ppid; 689 * u32 tid, ptid; 690 * u64 time; 691 * struct sample_id sample_id; 692 * }; 693 */ 694 PERF_RECORD_FORK = 7, 695 696 /* 697 * struct { 698 * struct perf_event_header header; 699 * u32 pid, tid; 700 * 701 * struct read_format values; 702 * struct sample_id sample_id; 703 * }; 704 */ 705 PERF_RECORD_READ = 8, 706 707 /* 708 * struct { 709 * struct perf_event_header header; 710 * 711 * # 712 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 713 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 714 * # is fixed relative to header. 715 * # 716 * 717 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 718 * { u64 ip; } && PERF_SAMPLE_IP 719 * { u32 pid, tid; } && PERF_SAMPLE_TID 720 * { u64 time; } && PERF_SAMPLE_TIME 721 * { u64 addr; } && PERF_SAMPLE_ADDR 722 * { u64 id; } && PERF_SAMPLE_ID 723 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 724 * { u32 cpu, res; } && PERF_SAMPLE_CPU 725 * { u64 period; } && PERF_SAMPLE_PERIOD 726 * 727 * { struct read_format values; } && PERF_SAMPLE_READ 728 * 729 * { u64 nr, 730 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 731 * 732 * # 733 * # The RAW record below is opaque data wrt the ABI 734 * # 735 * # That is, the ABI doesn't make any promises wrt to 736 * # the stability of its content, it may vary depending 737 * # on event, hardware, kernel version and phase of 738 * # the moon. 739 * # 740 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 741 * # 742 * 743 * { u32 size; 744 * char data[size];}&& PERF_SAMPLE_RAW 745 * 746 * { u64 nr; 747 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 748 * 749 * { u64 abi; # enum perf_sample_regs_abi 750 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 751 * 752 * { u64 size; 753 * char data[size]; 754 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 755 * 756 * { u64 weight; } && PERF_SAMPLE_WEIGHT 757 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 758 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 759 * { u64 abi; # enum perf_sample_regs_abi 760 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR 761 * }; 762 */ 763 PERF_RECORD_SAMPLE = 9, 764 765 /* 766 * The MMAP2 records are an augmented version of MMAP, they add 767 * maj, min, ino numbers to be used to uniquely identify each mapping 768 * 769 * struct { 770 * struct perf_event_header header; 771 * 772 * u32 pid, tid; 773 * u64 addr; 774 * u64 len; 775 * u64 pgoff; 776 * u32 maj; 777 * u32 min; 778 * u64 ino; 779 * u64 ino_generation; 780 * u32 prot, flags; 781 * char filename[]; 782 * struct sample_id sample_id; 783 * }; 784 */ 785 PERF_RECORD_MMAP2 = 10, 786 787 /* 788 * Records that new data landed in the AUX buffer part. 789 * 790 * struct { 791 * struct perf_event_header header; 792 * 793 * u64 aux_offset; 794 * u64 aux_size; 795 * u64 flags; 796 * struct sample_id sample_id; 797 * }; 798 */ 799 PERF_RECORD_AUX = 11, 800 801 /* 802 * Indicates that instruction trace has started 803 * 804 * struct { 805 * struct perf_event_header header; 806 * u32 pid; 807 * u32 tid; 808 * }; 809 */ 810 PERF_RECORD_ITRACE_START = 12, 811 812 /* 813 * Records the dropped/lost sample number. 814 * 815 * struct { 816 * struct perf_event_header header; 817 * 818 * u64 lost; 819 * struct sample_id sample_id; 820 * }; 821 */ 822 PERF_RECORD_LOST_SAMPLES = 13, 823 824 /* 825 * Records a context switch in or out (flagged by 826 * PERF_RECORD_MISC_SWITCH_OUT). See also 827 * PERF_RECORD_SWITCH_CPU_WIDE. 828 * 829 * struct { 830 * struct perf_event_header header; 831 * struct sample_id sample_id; 832 * }; 833 */ 834 PERF_RECORD_SWITCH = 14, 835 836 /* 837 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 838 * next_prev_tid that are the next (switching out) or previous 839 * (switching in) pid/tid. 840 * 841 * struct { 842 * struct perf_event_header header; 843 * u32 next_prev_pid; 844 * u32 next_prev_tid; 845 * struct sample_id sample_id; 846 * }; 847 */ 848 PERF_RECORD_SWITCH_CPU_WIDE = 15, 849 850 PERF_RECORD_MAX, /* non-ABI */ 851}; 852 853#define PERF_MAX_STACK_DEPTH 127 854 855enum perf_callchain_context { 856 PERF_CONTEXT_HV = (__u64)-32, 857 PERF_CONTEXT_KERNEL = (__u64)-128, 858 PERF_CONTEXT_USER = (__u64)-512, 859 860 PERF_CONTEXT_GUEST = (__u64)-2048, 861 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 862 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 863 864 PERF_CONTEXT_MAX = (__u64)-4095, 865}; 866 867/** 868 * PERF_RECORD_AUX::flags bits 869 */ 870#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 871#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 872 873#define PERF_FLAG_FD_NO_GROUP (1UL << 0) 874#define PERF_FLAG_FD_OUTPUT (1UL << 1) 875#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 876#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 877 878union perf_mem_data_src { 879 __u64 val; 880 struct { 881 __u64 mem_op:5, /* type of opcode */ 882 mem_lvl:14, /* memory hierarchy level */ 883 mem_snoop:5, /* snoop mode */ 884 mem_lock:2, /* lock instr */ 885 mem_dtlb:7, /* tlb access */ 886 mem_rsvd:31; 887 }; 888}; 889 890/* type of opcode (load/store/prefetch,code) */ 891#define PERF_MEM_OP_NA 0x01 /* not available */ 892#define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 893#define PERF_MEM_OP_STORE 0x04 /* store instruction */ 894#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 895#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 896#define PERF_MEM_OP_SHIFT 0 897 898/* memory hierarchy (memory level, hit or miss) */ 899#define PERF_MEM_LVL_NA 0x01 /* not available */ 900#define PERF_MEM_LVL_HIT 0x02 /* hit level */ 901#define PERF_MEM_LVL_MISS 0x04 /* miss level */ 902#define PERF_MEM_LVL_L1 0x08 /* L1 */ 903#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 904#define PERF_MEM_LVL_L2 0x20 /* L2 */ 905#define PERF_MEM_LVL_L3 0x40 /* L3 */ 906#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 907#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 908#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 909#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 910#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 911#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 912#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 913#define PERF_MEM_LVL_SHIFT 5 914 915/* snoop mode */ 916#define PERF_MEM_SNOOP_NA 0x01 /* not available */ 917#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 918#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 919#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 920#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 921#define PERF_MEM_SNOOP_SHIFT 19 922 923/* locked instruction */ 924#define PERF_MEM_LOCK_NA 0x01 /* not available */ 925#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 926#define PERF_MEM_LOCK_SHIFT 24 927 928/* TLB access */ 929#define PERF_MEM_TLB_NA 0x01 /* not available */ 930#define PERF_MEM_TLB_HIT 0x02 /* hit level */ 931#define PERF_MEM_TLB_MISS 0x04 /* miss level */ 932#define PERF_MEM_TLB_L1 0x08 /* L1 */ 933#define PERF_MEM_TLB_L2 0x10 /* L2 */ 934#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 935#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 936#define PERF_MEM_TLB_SHIFT 26 937 938#define PERF_MEM_S(a, s) \ 939 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 940 941/* 942 * single taken branch record layout: 943 * 944 * from: source instruction (may not always be a branch insn) 945 * to: branch target 946 * mispred: branch target was mispredicted 947 * predicted: branch target was predicted 948 * 949 * support for mispred, predicted is optional. In case it 950 * is not supported mispred = predicted = 0. 951 * 952 * in_tx: running in a hardware transaction 953 * abort: aborting a hardware transaction 954 * cycles: cycles from last branch (or 0 if not supported) 955 */ 956struct perf_branch_entry { 957 __u64 from; 958 __u64 to; 959 __u64 mispred:1, /* target mispredicted */ 960 predicted:1,/* target predicted */ 961 in_tx:1, /* in transaction */ 962 abort:1, /* transaction abort */ 963 cycles:16, /* cycle count to last branch */ 964 reserved:44; 965}; 966 967#endif /* _UAPI_LINUX_PERF_EVENT_H */