at v4.3 102 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <net/flow_dissector.h> 38#include <linux/splice.h> 39#include <linux/in6.h> 40#include <net/flow.h> 41 42/* A. Checksumming of received packets by device. 43 * 44 * CHECKSUM_NONE: 45 * 46 * Device failed to checksum this packet e.g. due to lack of capabilities. 47 * The packet contains full (though not verified) checksum in packet but 48 * not in skb->csum. Thus, skb->csum is undefined in this case. 49 * 50 * CHECKSUM_UNNECESSARY: 51 * 52 * The hardware you're dealing with doesn't calculate the full checksum 53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 55 * if their checksums are okay. skb->csum is still undefined in this case 56 * though. It is a bad option, but, unfortunately, nowadays most vendors do 57 * this. Apparently with the secret goal to sell you new devices, when you 58 * will add new protocol to your host, f.e. IPv6 8) 59 * 60 * CHECKSUM_UNNECESSARY is applicable to following protocols: 61 * TCP: IPv6 and IPv4. 62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 63 * zero UDP checksum for either IPv4 or IPv6, the networking stack 64 * may perform further validation in this case. 65 * GRE: only if the checksum is present in the header. 66 * SCTP: indicates the CRC in SCTP header has been validated. 67 * 68 * skb->csum_level indicates the number of consecutive checksums found in 69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 71 * and a device is able to verify the checksums for UDP (possibly zero), 72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 73 * two. If the device were only able to verify the UDP checksum and not 74 * GRE, either because it doesn't support GRE checksum of because GRE 75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 76 * not considered in this case). 77 * 78 * CHECKSUM_COMPLETE: 79 * 80 * This is the most generic way. The device supplied checksum of the _whole_ 81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 82 * hardware doesn't need to parse L3/L4 headers to implement this. 83 * 84 * Note: Even if device supports only some protocols, but is able to produce 85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 86 * 87 * CHECKSUM_PARTIAL: 88 * 89 * A checksum is set up to be offloaded to a device as described in the 90 * output description for CHECKSUM_PARTIAL. This may occur on a packet 91 * received directly from another Linux OS, e.g., a virtualized Linux kernel 92 * on the same host, or it may be set in the input path in GRO or remote 93 * checksum offload. For the purposes of checksum verification, the checksum 94 * referred to by skb->csum_start + skb->csum_offset and any preceding 95 * checksums in the packet are considered verified. Any checksums in the 96 * packet that are after the checksum being offloaded are not considered to 97 * be verified. 98 * 99 * B. Checksumming on output. 100 * 101 * CHECKSUM_NONE: 102 * 103 * The skb was already checksummed by the protocol, or a checksum is not 104 * required. 105 * 106 * CHECKSUM_PARTIAL: 107 * 108 * The device is required to checksum the packet as seen by hard_start_xmit() 109 * from skb->csum_start up to the end, and to record/write the checksum at 110 * offset skb->csum_start + skb->csum_offset. 111 * 112 * The device must show its capabilities in dev->features, set up at device 113 * setup time, e.g. netdev_features.h: 114 * 115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 117 * IPv4. Sigh. Vendors like this way for an unknown reason. 118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 120 * NETIF_F_... - Well, you get the picture. 121 * 122 * CHECKSUM_UNNECESSARY: 123 * 124 * Normally, the device will do per protocol specific checksumming. Protocol 125 * implementations that do not want the NIC to perform the checksum 126 * calculation should use this flag in their outgoing skbs. 127 * 128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 129 * offload. Correspondingly, the FCoE protocol driver 130 * stack should use CHECKSUM_UNNECESSARY. 131 * 132 * Any questions? No questions, good. --ANK 133 */ 134 135/* Don't change this without changing skb_csum_unnecessary! */ 136#define CHECKSUM_NONE 0 137#define CHECKSUM_UNNECESSARY 1 138#define CHECKSUM_COMPLETE 2 139#define CHECKSUM_PARTIAL 3 140 141/* Maximum value in skb->csum_level */ 142#define SKB_MAX_CSUM_LEVEL 3 143 144#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 145#define SKB_WITH_OVERHEAD(X) \ 146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 147#define SKB_MAX_ORDER(X, ORDER) \ 148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 149#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 150#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 151 152/* return minimum truesize of one skb containing X bytes of data */ 153#define SKB_TRUESIZE(X) ((X) + \ 154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 156 157struct net_device; 158struct scatterlist; 159struct pipe_inode_info; 160struct iov_iter; 161struct napi_struct; 162 163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 164struct nf_conntrack { 165 atomic_t use; 166}; 167#endif 168 169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 170struct nf_bridge_info { 171 atomic_t use; 172 enum { 173 BRNF_PROTO_UNCHANGED, 174 BRNF_PROTO_8021Q, 175 BRNF_PROTO_PPPOE 176 } orig_proto:8; 177 u8 pkt_otherhost:1; 178 u8 in_prerouting:1; 179 u8 bridged_dnat:1; 180 __u16 frag_max_size; 181 struct net_device *physindev; 182 183 /* always valid & non-NULL from FORWARD on, for physdev match */ 184 struct net_device *physoutdev; 185 union { 186 /* prerouting: detect dnat in orig/reply direction */ 187 __be32 ipv4_daddr; 188 struct in6_addr ipv6_daddr; 189 190 /* after prerouting + nat detected: store original source 191 * mac since neigh resolution overwrites it, only used while 192 * skb is out in neigh layer. 193 */ 194 char neigh_header[8]; 195 }; 196}; 197#endif 198 199struct sk_buff_head { 200 /* These two members must be first. */ 201 struct sk_buff *next; 202 struct sk_buff *prev; 203 204 __u32 qlen; 205 spinlock_t lock; 206}; 207 208struct sk_buff; 209 210/* To allow 64K frame to be packed as single skb without frag_list we 211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 212 * buffers which do not start on a page boundary. 213 * 214 * Since GRO uses frags we allocate at least 16 regardless of page 215 * size. 216 */ 217#if (65536/PAGE_SIZE + 1) < 16 218#define MAX_SKB_FRAGS 16UL 219#else 220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 221#endif 222 223typedef struct skb_frag_struct skb_frag_t; 224 225struct skb_frag_struct { 226 struct { 227 struct page *p; 228 } page; 229#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 230 __u32 page_offset; 231 __u32 size; 232#else 233 __u16 page_offset; 234 __u16 size; 235#endif 236}; 237 238static inline unsigned int skb_frag_size(const skb_frag_t *frag) 239{ 240 return frag->size; 241} 242 243static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 244{ 245 frag->size = size; 246} 247 248static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 249{ 250 frag->size += delta; 251} 252 253static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 254{ 255 frag->size -= delta; 256} 257 258#define HAVE_HW_TIME_STAMP 259 260/** 261 * struct skb_shared_hwtstamps - hardware time stamps 262 * @hwtstamp: hardware time stamp transformed into duration 263 * since arbitrary point in time 264 * 265 * Software time stamps generated by ktime_get_real() are stored in 266 * skb->tstamp. 267 * 268 * hwtstamps can only be compared against other hwtstamps from 269 * the same device. 270 * 271 * This structure is attached to packets as part of the 272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 273 */ 274struct skb_shared_hwtstamps { 275 ktime_t hwtstamp; 276}; 277 278/* Definitions for tx_flags in struct skb_shared_info */ 279enum { 280 /* generate hardware time stamp */ 281 SKBTX_HW_TSTAMP = 1 << 0, 282 283 /* generate software time stamp when queueing packet to NIC */ 284 SKBTX_SW_TSTAMP = 1 << 1, 285 286 /* device driver is going to provide hardware time stamp */ 287 SKBTX_IN_PROGRESS = 1 << 2, 288 289 /* device driver supports TX zero-copy buffers */ 290 SKBTX_DEV_ZEROCOPY = 1 << 3, 291 292 /* generate wifi status information (where possible) */ 293 SKBTX_WIFI_STATUS = 1 << 4, 294 295 /* This indicates at least one fragment might be overwritten 296 * (as in vmsplice(), sendfile() ...) 297 * If we need to compute a TX checksum, we'll need to copy 298 * all frags to avoid possible bad checksum 299 */ 300 SKBTX_SHARED_FRAG = 1 << 5, 301 302 /* generate software time stamp when entering packet scheduling */ 303 SKBTX_SCHED_TSTAMP = 1 << 6, 304 305 /* generate software timestamp on peer data acknowledgment */ 306 SKBTX_ACK_TSTAMP = 1 << 7, 307}; 308 309#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 310 SKBTX_SCHED_TSTAMP | \ 311 SKBTX_ACK_TSTAMP) 312#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 313 314/* 315 * The callback notifies userspace to release buffers when skb DMA is done in 316 * lower device, the skb last reference should be 0 when calling this. 317 * The zerocopy_success argument is true if zero copy transmit occurred, 318 * false on data copy or out of memory error caused by data copy attempt. 319 * The ctx field is used to track device context. 320 * The desc field is used to track userspace buffer index. 321 */ 322struct ubuf_info { 323 void (*callback)(struct ubuf_info *, bool zerocopy_success); 324 void *ctx; 325 unsigned long desc; 326}; 327 328/* This data is invariant across clones and lives at 329 * the end of the header data, ie. at skb->end. 330 */ 331struct skb_shared_info { 332 unsigned char nr_frags; 333 __u8 tx_flags; 334 unsigned short gso_size; 335 /* Warning: this field is not always filled in (UFO)! */ 336 unsigned short gso_segs; 337 unsigned short gso_type; 338 struct sk_buff *frag_list; 339 struct skb_shared_hwtstamps hwtstamps; 340 u32 tskey; 341 __be32 ip6_frag_id; 342 343 /* 344 * Warning : all fields before dataref are cleared in __alloc_skb() 345 */ 346 atomic_t dataref; 347 348 /* Intermediate layers must ensure that destructor_arg 349 * remains valid until skb destructor */ 350 void * destructor_arg; 351 352 /* must be last field, see pskb_expand_head() */ 353 skb_frag_t frags[MAX_SKB_FRAGS]; 354}; 355 356/* We divide dataref into two halves. The higher 16 bits hold references 357 * to the payload part of skb->data. The lower 16 bits hold references to 358 * the entire skb->data. A clone of a headerless skb holds the length of 359 * the header in skb->hdr_len. 360 * 361 * All users must obey the rule that the skb->data reference count must be 362 * greater than or equal to the payload reference count. 363 * 364 * Holding a reference to the payload part means that the user does not 365 * care about modifications to the header part of skb->data. 366 */ 367#define SKB_DATAREF_SHIFT 16 368#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 369 370 371enum { 372 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 373 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 374 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 375}; 376 377enum { 378 SKB_GSO_TCPV4 = 1 << 0, 379 SKB_GSO_UDP = 1 << 1, 380 381 /* This indicates the skb is from an untrusted source. */ 382 SKB_GSO_DODGY = 1 << 2, 383 384 /* This indicates the tcp segment has CWR set. */ 385 SKB_GSO_TCP_ECN = 1 << 3, 386 387 SKB_GSO_TCPV6 = 1 << 4, 388 389 SKB_GSO_FCOE = 1 << 5, 390 391 SKB_GSO_GRE = 1 << 6, 392 393 SKB_GSO_GRE_CSUM = 1 << 7, 394 395 SKB_GSO_IPIP = 1 << 8, 396 397 SKB_GSO_SIT = 1 << 9, 398 399 SKB_GSO_UDP_TUNNEL = 1 << 10, 400 401 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 402 403 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 404}; 405 406#if BITS_PER_LONG > 32 407#define NET_SKBUFF_DATA_USES_OFFSET 1 408#endif 409 410#ifdef NET_SKBUFF_DATA_USES_OFFSET 411typedef unsigned int sk_buff_data_t; 412#else 413typedef unsigned char *sk_buff_data_t; 414#endif 415 416/** 417 * struct skb_mstamp - multi resolution time stamps 418 * @stamp_us: timestamp in us resolution 419 * @stamp_jiffies: timestamp in jiffies 420 */ 421struct skb_mstamp { 422 union { 423 u64 v64; 424 struct { 425 u32 stamp_us; 426 u32 stamp_jiffies; 427 }; 428 }; 429}; 430 431/** 432 * skb_mstamp_get - get current timestamp 433 * @cl: place to store timestamps 434 */ 435static inline void skb_mstamp_get(struct skb_mstamp *cl) 436{ 437 u64 val = local_clock(); 438 439 do_div(val, NSEC_PER_USEC); 440 cl->stamp_us = (u32)val; 441 cl->stamp_jiffies = (u32)jiffies; 442} 443 444/** 445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 446 * @t1: pointer to newest sample 447 * @t0: pointer to oldest sample 448 */ 449static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 450 const struct skb_mstamp *t0) 451{ 452 s32 delta_us = t1->stamp_us - t0->stamp_us; 453 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 454 455 /* If delta_us is negative, this might be because interval is too big, 456 * or local_clock() drift is too big : fallback using jiffies. 457 */ 458 if (delta_us <= 0 || 459 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 460 461 delta_us = jiffies_to_usecs(delta_jiffies); 462 463 return delta_us; 464} 465 466 467/** 468 * struct sk_buff - socket buffer 469 * @next: Next buffer in list 470 * @prev: Previous buffer in list 471 * @tstamp: Time we arrived/left 472 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 473 * @sk: Socket we are owned by 474 * @dev: Device we arrived on/are leaving by 475 * @cb: Control buffer. Free for use by every layer. Put private vars here 476 * @_skb_refdst: destination entry (with norefcount bit) 477 * @sp: the security path, used for xfrm 478 * @len: Length of actual data 479 * @data_len: Data length 480 * @mac_len: Length of link layer header 481 * @hdr_len: writable header length of cloned skb 482 * @csum: Checksum (must include start/offset pair) 483 * @csum_start: Offset from skb->head where checksumming should start 484 * @csum_offset: Offset from csum_start where checksum should be stored 485 * @priority: Packet queueing priority 486 * @ignore_df: allow local fragmentation 487 * @cloned: Head may be cloned (check refcnt to be sure) 488 * @ip_summed: Driver fed us an IP checksum 489 * @nohdr: Payload reference only, must not modify header 490 * @nfctinfo: Relationship of this skb to the connection 491 * @pkt_type: Packet class 492 * @fclone: skbuff clone status 493 * @ipvs_property: skbuff is owned by ipvs 494 * @peeked: this packet has been seen already, so stats have been 495 * done for it, don't do them again 496 * @nf_trace: netfilter packet trace flag 497 * @protocol: Packet protocol from driver 498 * @destructor: Destruct function 499 * @nfct: Associated connection, if any 500 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 501 * @skb_iif: ifindex of device we arrived on 502 * @tc_index: Traffic control index 503 * @tc_verd: traffic control verdict 504 * @hash: the packet hash 505 * @queue_mapping: Queue mapping for multiqueue devices 506 * @xmit_more: More SKBs are pending for this queue 507 * @ndisc_nodetype: router type (from link layer) 508 * @ooo_okay: allow the mapping of a socket to a queue to be changed 509 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 510 * ports. 511 * @sw_hash: indicates hash was computed in software stack 512 * @wifi_acked_valid: wifi_acked was set 513 * @wifi_acked: whether frame was acked on wifi or not 514 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 515 * @napi_id: id of the NAPI struct this skb came from 516 * @secmark: security marking 517 * @offload_fwd_mark: fwding offload mark 518 * @mark: Generic packet mark 519 * @vlan_proto: vlan encapsulation protocol 520 * @vlan_tci: vlan tag control information 521 * @inner_protocol: Protocol (encapsulation) 522 * @inner_transport_header: Inner transport layer header (encapsulation) 523 * @inner_network_header: Network layer header (encapsulation) 524 * @inner_mac_header: Link layer header (encapsulation) 525 * @transport_header: Transport layer header 526 * @network_header: Network layer header 527 * @mac_header: Link layer header 528 * @tail: Tail pointer 529 * @end: End pointer 530 * @head: Head of buffer 531 * @data: Data head pointer 532 * @truesize: Buffer size 533 * @users: User count - see {datagram,tcp}.c 534 */ 535 536struct sk_buff { 537 union { 538 struct { 539 /* These two members must be first. */ 540 struct sk_buff *next; 541 struct sk_buff *prev; 542 543 union { 544 ktime_t tstamp; 545 struct skb_mstamp skb_mstamp; 546 }; 547 }; 548 struct rb_node rbnode; /* used in netem & tcp stack */ 549 }; 550 struct sock *sk; 551 struct net_device *dev; 552 553 /* 554 * This is the control buffer. It is free to use for every 555 * layer. Please put your private variables there. If you 556 * want to keep them across layers you have to do a skb_clone() 557 * first. This is owned by whoever has the skb queued ATM. 558 */ 559 char cb[48] __aligned(8); 560 561 unsigned long _skb_refdst; 562 void (*destructor)(struct sk_buff *skb); 563#ifdef CONFIG_XFRM 564 struct sec_path *sp; 565#endif 566#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 567 struct nf_conntrack *nfct; 568#endif 569#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 570 struct nf_bridge_info *nf_bridge; 571#endif 572 unsigned int len, 573 data_len; 574 __u16 mac_len, 575 hdr_len; 576 577 /* Following fields are _not_ copied in __copy_skb_header() 578 * Note that queue_mapping is here mostly to fill a hole. 579 */ 580 kmemcheck_bitfield_begin(flags1); 581 __u16 queue_mapping; 582 __u8 cloned:1, 583 nohdr:1, 584 fclone:2, 585 peeked:1, 586 head_frag:1, 587 xmit_more:1; 588 /* one bit hole */ 589 kmemcheck_bitfield_end(flags1); 590 591 /* fields enclosed in headers_start/headers_end are copied 592 * using a single memcpy() in __copy_skb_header() 593 */ 594 /* private: */ 595 __u32 headers_start[0]; 596 /* public: */ 597 598/* if you move pkt_type around you also must adapt those constants */ 599#ifdef __BIG_ENDIAN_BITFIELD 600#define PKT_TYPE_MAX (7 << 5) 601#else 602#define PKT_TYPE_MAX 7 603#endif 604#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 605 606 __u8 __pkt_type_offset[0]; 607 __u8 pkt_type:3; 608 __u8 pfmemalloc:1; 609 __u8 ignore_df:1; 610 __u8 nfctinfo:3; 611 612 __u8 nf_trace:1; 613 __u8 ip_summed:2; 614 __u8 ooo_okay:1; 615 __u8 l4_hash:1; 616 __u8 sw_hash:1; 617 __u8 wifi_acked_valid:1; 618 __u8 wifi_acked:1; 619 620 __u8 no_fcs:1; 621 /* Indicates the inner headers are valid in the skbuff. */ 622 __u8 encapsulation:1; 623 __u8 encap_hdr_csum:1; 624 __u8 csum_valid:1; 625 __u8 csum_complete_sw:1; 626 __u8 csum_level:2; 627 __u8 csum_bad:1; 628 629#ifdef CONFIG_IPV6_NDISC_NODETYPE 630 __u8 ndisc_nodetype:2; 631#endif 632 __u8 ipvs_property:1; 633 __u8 inner_protocol_type:1; 634 __u8 remcsum_offload:1; 635 /* 3 or 5 bit hole */ 636 637#ifdef CONFIG_NET_SCHED 638 __u16 tc_index; /* traffic control index */ 639#ifdef CONFIG_NET_CLS_ACT 640 __u16 tc_verd; /* traffic control verdict */ 641#endif 642#endif 643 644 union { 645 __wsum csum; 646 struct { 647 __u16 csum_start; 648 __u16 csum_offset; 649 }; 650 }; 651 __u32 priority; 652 int skb_iif; 653 __u32 hash; 654 __be16 vlan_proto; 655 __u16 vlan_tci; 656#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 657 union { 658 unsigned int napi_id; 659 unsigned int sender_cpu; 660 }; 661#endif 662 union { 663#ifdef CONFIG_NETWORK_SECMARK 664 __u32 secmark; 665#endif 666#ifdef CONFIG_NET_SWITCHDEV 667 __u32 offload_fwd_mark; 668#endif 669 }; 670 671 union { 672 __u32 mark; 673 __u32 reserved_tailroom; 674 }; 675 676 union { 677 __be16 inner_protocol; 678 __u8 inner_ipproto; 679 }; 680 681 __u16 inner_transport_header; 682 __u16 inner_network_header; 683 __u16 inner_mac_header; 684 685 __be16 protocol; 686 __u16 transport_header; 687 __u16 network_header; 688 __u16 mac_header; 689 690 /* private: */ 691 __u32 headers_end[0]; 692 /* public: */ 693 694 /* These elements must be at the end, see alloc_skb() for details. */ 695 sk_buff_data_t tail; 696 sk_buff_data_t end; 697 unsigned char *head, 698 *data; 699 unsigned int truesize; 700 atomic_t users; 701}; 702 703#ifdef __KERNEL__ 704/* 705 * Handling routines are only of interest to the kernel 706 */ 707#include <linux/slab.h> 708 709 710#define SKB_ALLOC_FCLONE 0x01 711#define SKB_ALLOC_RX 0x02 712#define SKB_ALLOC_NAPI 0x04 713 714/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 715static inline bool skb_pfmemalloc(const struct sk_buff *skb) 716{ 717 return unlikely(skb->pfmemalloc); 718} 719 720/* 721 * skb might have a dst pointer attached, refcounted or not. 722 * _skb_refdst low order bit is set if refcount was _not_ taken 723 */ 724#define SKB_DST_NOREF 1UL 725#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 726 727/** 728 * skb_dst - returns skb dst_entry 729 * @skb: buffer 730 * 731 * Returns skb dst_entry, regardless of reference taken or not. 732 */ 733static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 734{ 735 /* If refdst was not refcounted, check we still are in a 736 * rcu_read_lock section 737 */ 738 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 739 !rcu_read_lock_held() && 740 !rcu_read_lock_bh_held()); 741 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 742} 743 744/** 745 * skb_dst_set - sets skb dst 746 * @skb: buffer 747 * @dst: dst entry 748 * 749 * Sets skb dst, assuming a reference was taken on dst and should 750 * be released by skb_dst_drop() 751 */ 752static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 753{ 754 skb->_skb_refdst = (unsigned long)dst; 755} 756 757/** 758 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 759 * @skb: buffer 760 * @dst: dst entry 761 * 762 * Sets skb dst, assuming a reference was not taken on dst. 763 * If dst entry is cached, we do not take reference and dst_release 764 * will be avoided by refdst_drop. If dst entry is not cached, we take 765 * reference, so that last dst_release can destroy the dst immediately. 766 */ 767static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 768{ 769 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 770 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 771} 772 773/** 774 * skb_dst_is_noref - Test if skb dst isn't refcounted 775 * @skb: buffer 776 */ 777static inline bool skb_dst_is_noref(const struct sk_buff *skb) 778{ 779 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 780} 781 782static inline struct rtable *skb_rtable(const struct sk_buff *skb) 783{ 784 return (struct rtable *)skb_dst(skb); 785} 786 787void kfree_skb(struct sk_buff *skb); 788void kfree_skb_list(struct sk_buff *segs); 789void skb_tx_error(struct sk_buff *skb); 790void consume_skb(struct sk_buff *skb); 791void __kfree_skb(struct sk_buff *skb); 792extern struct kmem_cache *skbuff_head_cache; 793 794void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 795bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 796 bool *fragstolen, int *delta_truesize); 797 798struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 799 int node); 800struct sk_buff *__build_skb(void *data, unsigned int frag_size); 801struct sk_buff *build_skb(void *data, unsigned int frag_size); 802static inline struct sk_buff *alloc_skb(unsigned int size, 803 gfp_t priority) 804{ 805 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 806} 807 808struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 809 unsigned long data_len, 810 int max_page_order, 811 int *errcode, 812 gfp_t gfp_mask); 813 814/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 815struct sk_buff_fclones { 816 struct sk_buff skb1; 817 818 struct sk_buff skb2; 819 820 atomic_t fclone_ref; 821}; 822 823/** 824 * skb_fclone_busy - check if fclone is busy 825 * @skb: buffer 826 * 827 * Returns true is skb is a fast clone, and its clone is not freed. 828 * Some drivers call skb_orphan() in their ndo_start_xmit(), 829 * so we also check that this didnt happen. 830 */ 831static inline bool skb_fclone_busy(const struct sock *sk, 832 const struct sk_buff *skb) 833{ 834 const struct sk_buff_fclones *fclones; 835 836 fclones = container_of(skb, struct sk_buff_fclones, skb1); 837 838 return skb->fclone == SKB_FCLONE_ORIG && 839 atomic_read(&fclones->fclone_ref) > 1 && 840 fclones->skb2.sk == sk; 841} 842 843static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 844 gfp_t priority) 845{ 846 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 847} 848 849struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 850static inline struct sk_buff *alloc_skb_head(gfp_t priority) 851{ 852 return __alloc_skb_head(priority, -1); 853} 854 855struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 856int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 857struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 858struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 859struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 860 gfp_t gfp_mask, bool fclone); 861static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 862 gfp_t gfp_mask) 863{ 864 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 865} 866 867int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 868struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 869 unsigned int headroom); 870struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 871 int newtailroom, gfp_t priority); 872int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 873 int offset, int len); 874int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 875 int len); 876int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 877int skb_pad(struct sk_buff *skb, int pad); 878#define dev_kfree_skb(a) consume_skb(a) 879 880int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 881 int getfrag(void *from, char *to, int offset, 882 int len, int odd, struct sk_buff *skb), 883 void *from, int length); 884 885int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 886 int offset, size_t size); 887 888struct skb_seq_state { 889 __u32 lower_offset; 890 __u32 upper_offset; 891 __u32 frag_idx; 892 __u32 stepped_offset; 893 struct sk_buff *root_skb; 894 struct sk_buff *cur_skb; 895 __u8 *frag_data; 896}; 897 898void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 899 unsigned int to, struct skb_seq_state *st); 900unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 901 struct skb_seq_state *st); 902void skb_abort_seq_read(struct skb_seq_state *st); 903 904unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 905 unsigned int to, struct ts_config *config); 906 907/* 908 * Packet hash types specify the type of hash in skb_set_hash. 909 * 910 * Hash types refer to the protocol layer addresses which are used to 911 * construct a packet's hash. The hashes are used to differentiate or identify 912 * flows of the protocol layer for the hash type. Hash types are either 913 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 914 * 915 * Properties of hashes: 916 * 917 * 1) Two packets in different flows have different hash values 918 * 2) Two packets in the same flow should have the same hash value 919 * 920 * A hash at a higher layer is considered to be more specific. A driver should 921 * set the most specific hash possible. 922 * 923 * A driver cannot indicate a more specific hash than the layer at which a hash 924 * was computed. For instance an L3 hash cannot be set as an L4 hash. 925 * 926 * A driver may indicate a hash level which is less specific than the 927 * actual layer the hash was computed on. For instance, a hash computed 928 * at L4 may be considered an L3 hash. This should only be done if the 929 * driver can't unambiguously determine that the HW computed the hash at 930 * the higher layer. Note that the "should" in the second property above 931 * permits this. 932 */ 933enum pkt_hash_types { 934 PKT_HASH_TYPE_NONE, /* Undefined type */ 935 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 936 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 937 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 938}; 939 940static inline void skb_clear_hash(struct sk_buff *skb) 941{ 942 skb->hash = 0; 943 skb->sw_hash = 0; 944 skb->l4_hash = 0; 945} 946 947static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 948{ 949 if (!skb->l4_hash) 950 skb_clear_hash(skb); 951} 952 953static inline void 954__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 955{ 956 skb->l4_hash = is_l4; 957 skb->sw_hash = is_sw; 958 skb->hash = hash; 959} 960 961static inline void 962skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 963{ 964 /* Used by drivers to set hash from HW */ 965 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 966} 967 968static inline void 969__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 970{ 971 __skb_set_hash(skb, hash, true, is_l4); 972} 973 974void __skb_get_hash(struct sk_buff *skb); 975u32 skb_get_poff(const struct sk_buff *skb); 976u32 __skb_get_poff(const struct sk_buff *skb, void *data, 977 const struct flow_keys *keys, int hlen); 978__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 979 void *data, int hlen_proto); 980 981static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 982 int thoff, u8 ip_proto) 983{ 984 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 985} 986 987void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 988 const struct flow_dissector_key *key, 989 unsigned int key_count); 990 991bool __skb_flow_dissect(const struct sk_buff *skb, 992 struct flow_dissector *flow_dissector, 993 void *target_container, 994 void *data, __be16 proto, int nhoff, int hlen, 995 unsigned int flags); 996 997static inline bool skb_flow_dissect(const struct sk_buff *skb, 998 struct flow_dissector *flow_dissector, 999 void *target_container, unsigned int flags) 1000{ 1001 return __skb_flow_dissect(skb, flow_dissector, target_container, 1002 NULL, 0, 0, 0, flags); 1003} 1004 1005static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1006 struct flow_keys *flow, 1007 unsigned int flags) 1008{ 1009 memset(flow, 0, sizeof(*flow)); 1010 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1011 NULL, 0, 0, 0, flags); 1012} 1013 1014static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1015 void *data, __be16 proto, 1016 int nhoff, int hlen, 1017 unsigned int flags) 1018{ 1019 memset(flow, 0, sizeof(*flow)); 1020 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1021 data, proto, nhoff, hlen, flags); 1022} 1023 1024static inline __u32 skb_get_hash(struct sk_buff *skb) 1025{ 1026 if (!skb->l4_hash && !skb->sw_hash) 1027 __skb_get_hash(skb); 1028 1029 return skb->hash; 1030} 1031 1032__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1033 1034static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1035{ 1036 if (!skb->l4_hash && !skb->sw_hash) { 1037 struct flow_keys keys; 1038 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1039 1040 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1041 } 1042 1043 return skb->hash; 1044} 1045 1046__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1047 1048static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1049{ 1050 if (!skb->l4_hash && !skb->sw_hash) { 1051 struct flow_keys keys; 1052 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1053 1054 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1055 } 1056 1057 return skb->hash; 1058} 1059 1060__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1061 1062static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1063{ 1064 return skb->hash; 1065} 1066 1067static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1068{ 1069 to->hash = from->hash; 1070 to->sw_hash = from->sw_hash; 1071 to->l4_hash = from->l4_hash; 1072}; 1073 1074static inline void skb_sender_cpu_clear(struct sk_buff *skb) 1075{ 1076#ifdef CONFIG_XPS 1077 skb->sender_cpu = 0; 1078#endif 1079} 1080 1081#ifdef NET_SKBUFF_DATA_USES_OFFSET 1082static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1083{ 1084 return skb->head + skb->end; 1085} 1086 1087static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1088{ 1089 return skb->end; 1090} 1091#else 1092static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1093{ 1094 return skb->end; 1095} 1096 1097static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1098{ 1099 return skb->end - skb->head; 1100} 1101#endif 1102 1103/* Internal */ 1104#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1105 1106static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1107{ 1108 return &skb_shinfo(skb)->hwtstamps; 1109} 1110 1111/** 1112 * skb_queue_empty - check if a queue is empty 1113 * @list: queue head 1114 * 1115 * Returns true if the queue is empty, false otherwise. 1116 */ 1117static inline int skb_queue_empty(const struct sk_buff_head *list) 1118{ 1119 return list->next == (const struct sk_buff *) list; 1120} 1121 1122/** 1123 * skb_queue_is_last - check if skb is the last entry in the queue 1124 * @list: queue head 1125 * @skb: buffer 1126 * 1127 * Returns true if @skb is the last buffer on the list. 1128 */ 1129static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1130 const struct sk_buff *skb) 1131{ 1132 return skb->next == (const struct sk_buff *) list; 1133} 1134 1135/** 1136 * skb_queue_is_first - check if skb is the first entry in the queue 1137 * @list: queue head 1138 * @skb: buffer 1139 * 1140 * Returns true if @skb is the first buffer on the list. 1141 */ 1142static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1143 const struct sk_buff *skb) 1144{ 1145 return skb->prev == (const struct sk_buff *) list; 1146} 1147 1148/** 1149 * skb_queue_next - return the next packet in the queue 1150 * @list: queue head 1151 * @skb: current buffer 1152 * 1153 * Return the next packet in @list after @skb. It is only valid to 1154 * call this if skb_queue_is_last() evaluates to false. 1155 */ 1156static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1157 const struct sk_buff *skb) 1158{ 1159 /* This BUG_ON may seem severe, but if we just return then we 1160 * are going to dereference garbage. 1161 */ 1162 BUG_ON(skb_queue_is_last(list, skb)); 1163 return skb->next; 1164} 1165 1166/** 1167 * skb_queue_prev - return the prev packet in the queue 1168 * @list: queue head 1169 * @skb: current buffer 1170 * 1171 * Return the prev packet in @list before @skb. It is only valid to 1172 * call this if skb_queue_is_first() evaluates to false. 1173 */ 1174static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1175 const struct sk_buff *skb) 1176{ 1177 /* This BUG_ON may seem severe, but if we just return then we 1178 * are going to dereference garbage. 1179 */ 1180 BUG_ON(skb_queue_is_first(list, skb)); 1181 return skb->prev; 1182} 1183 1184/** 1185 * skb_get - reference buffer 1186 * @skb: buffer to reference 1187 * 1188 * Makes another reference to a socket buffer and returns a pointer 1189 * to the buffer. 1190 */ 1191static inline struct sk_buff *skb_get(struct sk_buff *skb) 1192{ 1193 atomic_inc(&skb->users); 1194 return skb; 1195} 1196 1197/* 1198 * If users == 1, we are the only owner and are can avoid redundant 1199 * atomic change. 1200 */ 1201 1202/** 1203 * skb_cloned - is the buffer a clone 1204 * @skb: buffer to check 1205 * 1206 * Returns true if the buffer was generated with skb_clone() and is 1207 * one of multiple shared copies of the buffer. Cloned buffers are 1208 * shared data so must not be written to under normal circumstances. 1209 */ 1210static inline int skb_cloned(const struct sk_buff *skb) 1211{ 1212 return skb->cloned && 1213 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1214} 1215 1216static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1217{ 1218 might_sleep_if(pri & __GFP_WAIT); 1219 1220 if (skb_cloned(skb)) 1221 return pskb_expand_head(skb, 0, 0, pri); 1222 1223 return 0; 1224} 1225 1226/** 1227 * skb_header_cloned - is the header a clone 1228 * @skb: buffer to check 1229 * 1230 * Returns true if modifying the header part of the buffer requires 1231 * the data to be copied. 1232 */ 1233static inline int skb_header_cloned(const struct sk_buff *skb) 1234{ 1235 int dataref; 1236 1237 if (!skb->cloned) 1238 return 0; 1239 1240 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1241 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1242 return dataref != 1; 1243} 1244 1245/** 1246 * skb_header_release - release reference to header 1247 * @skb: buffer to operate on 1248 * 1249 * Drop a reference to the header part of the buffer. This is done 1250 * by acquiring a payload reference. You must not read from the header 1251 * part of skb->data after this. 1252 * Note : Check if you can use __skb_header_release() instead. 1253 */ 1254static inline void skb_header_release(struct sk_buff *skb) 1255{ 1256 BUG_ON(skb->nohdr); 1257 skb->nohdr = 1; 1258 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1259} 1260 1261/** 1262 * __skb_header_release - release reference to header 1263 * @skb: buffer to operate on 1264 * 1265 * Variant of skb_header_release() assuming skb is private to caller. 1266 * We can avoid one atomic operation. 1267 */ 1268static inline void __skb_header_release(struct sk_buff *skb) 1269{ 1270 skb->nohdr = 1; 1271 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1272} 1273 1274 1275/** 1276 * skb_shared - is the buffer shared 1277 * @skb: buffer to check 1278 * 1279 * Returns true if more than one person has a reference to this 1280 * buffer. 1281 */ 1282static inline int skb_shared(const struct sk_buff *skb) 1283{ 1284 return atomic_read(&skb->users) != 1; 1285} 1286 1287/** 1288 * skb_share_check - check if buffer is shared and if so clone it 1289 * @skb: buffer to check 1290 * @pri: priority for memory allocation 1291 * 1292 * If the buffer is shared the buffer is cloned and the old copy 1293 * drops a reference. A new clone with a single reference is returned. 1294 * If the buffer is not shared the original buffer is returned. When 1295 * being called from interrupt status or with spinlocks held pri must 1296 * be GFP_ATOMIC. 1297 * 1298 * NULL is returned on a memory allocation failure. 1299 */ 1300static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1301{ 1302 might_sleep_if(pri & __GFP_WAIT); 1303 if (skb_shared(skb)) { 1304 struct sk_buff *nskb = skb_clone(skb, pri); 1305 1306 if (likely(nskb)) 1307 consume_skb(skb); 1308 else 1309 kfree_skb(skb); 1310 skb = nskb; 1311 } 1312 return skb; 1313} 1314 1315/* 1316 * Copy shared buffers into a new sk_buff. We effectively do COW on 1317 * packets to handle cases where we have a local reader and forward 1318 * and a couple of other messy ones. The normal one is tcpdumping 1319 * a packet thats being forwarded. 1320 */ 1321 1322/** 1323 * skb_unshare - make a copy of a shared buffer 1324 * @skb: buffer to check 1325 * @pri: priority for memory allocation 1326 * 1327 * If the socket buffer is a clone then this function creates a new 1328 * copy of the data, drops a reference count on the old copy and returns 1329 * the new copy with the reference count at 1. If the buffer is not a clone 1330 * the original buffer is returned. When called with a spinlock held or 1331 * from interrupt state @pri must be %GFP_ATOMIC 1332 * 1333 * %NULL is returned on a memory allocation failure. 1334 */ 1335static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1336 gfp_t pri) 1337{ 1338 might_sleep_if(pri & __GFP_WAIT); 1339 if (skb_cloned(skb)) { 1340 struct sk_buff *nskb = skb_copy(skb, pri); 1341 1342 /* Free our shared copy */ 1343 if (likely(nskb)) 1344 consume_skb(skb); 1345 else 1346 kfree_skb(skb); 1347 skb = nskb; 1348 } 1349 return skb; 1350} 1351 1352/** 1353 * skb_peek - peek at the head of an &sk_buff_head 1354 * @list_: list to peek at 1355 * 1356 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1357 * be careful with this one. A peek leaves the buffer on the 1358 * list and someone else may run off with it. You must hold 1359 * the appropriate locks or have a private queue to do this. 1360 * 1361 * Returns %NULL for an empty list or a pointer to the head element. 1362 * The reference count is not incremented and the reference is therefore 1363 * volatile. Use with caution. 1364 */ 1365static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1366{ 1367 struct sk_buff *skb = list_->next; 1368 1369 if (skb == (struct sk_buff *)list_) 1370 skb = NULL; 1371 return skb; 1372} 1373 1374/** 1375 * skb_peek_next - peek skb following the given one from a queue 1376 * @skb: skb to start from 1377 * @list_: list to peek at 1378 * 1379 * Returns %NULL when the end of the list is met or a pointer to the 1380 * next element. The reference count is not incremented and the 1381 * reference is therefore volatile. Use with caution. 1382 */ 1383static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1384 const struct sk_buff_head *list_) 1385{ 1386 struct sk_buff *next = skb->next; 1387 1388 if (next == (struct sk_buff *)list_) 1389 next = NULL; 1390 return next; 1391} 1392 1393/** 1394 * skb_peek_tail - peek at the tail of an &sk_buff_head 1395 * @list_: list to peek at 1396 * 1397 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1398 * be careful with this one. A peek leaves the buffer on the 1399 * list and someone else may run off with it. You must hold 1400 * the appropriate locks or have a private queue to do this. 1401 * 1402 * Returns %NULL for an empty list or a pointer to the tail element. 1403 * The reference count is not incremented and the reference is therefore 1404 * volatile. Use with caution. 1405 */ 1406static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1407{ 1408 struct sk_buff *skb = list_->prev; 1409 1410 if (skb == (struct sk_buff *)list_) 1411 skb = NULL; 1412 return skb; 1413 1414} 1415 1416/** 1417 * skb_queue_len - get queue length 1418 * @list_: list to measure 1419 * 1420 * Return the length of an &sk_buff queue. 1421 */ 1422static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1423{ 1424 return list_->qlen; 1425} 1426 1427/** 1428 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1429 * @list: queue to initialize 1430 * 1431 * This initializes only the list and queue length aspects of 1432 * an sk_buff_head object. This allows to initialize the list 1433 * aspects of an sk_buff_head without reinitializing things like 1434 * the spinlock. It can also be used for on-stack sk_buff_head 1435 * objects where the spinlock is known to not be used. 1436 */ 1437static inline void __skb_queue_head_init(struct sk_buff_head *list) 1438{ 1439 list->prev = list->next = (struct sk_buff *)list; 1440 list->qlen = 0; 1441} 1442 1443/* 1444 * This function creates a split out lock class for each invocation; 1445 * this is needed for now since a whole lot of users of the skb-queue 1446 * infrastructure in drivers have different locking usage (in hardirq) 1447 * than the networking core (in softirq only). In the long run either the 1448 * network layer or drivers should need annotation to consolidate the 1449 * main types of usage into 3 classes. 1450 */ 1451static inline void skb_queue_head_init(struct sk_buff_head *list) 1452{ 1453 spin_lock_init(&list->lock); 1454 __skb_queue_head_init(list); 1455} 1456 1457static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1458 struct lock_class_key *class) 1459{ 1460 skb_queue_head_init(list); 1461 lockdep_set_class(&list->lock, class); 1462} 1463 1464/* 1465 * Insert an sk_buff on a list. 1466 * 1467 * The "__skb_xxxx()" functions are the non-atomic ones that 1468 * can only be called with interrupts disabled. 1469 */ 1470void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1471 struct sk_buff_head *list); 1472static inline void __skb_insert(struct sk_buff *newsk, 1473 struct sk_buff *prev, struct sk_buff *next, 1474 struct sk_buff_head *list) 1475{ 1476 newsk->next = next; 1477 newsk->prev = prev; 1478 next->prev = prev->next = newsk; 1479 list->qlen++; 1480} 1481 1482static inline void __skb_queue_splice(const struct sk_buff_head *list, 1483 struct sk_buff *prev, 1484 struct sk_buff *next) 1485{ 1486 struct sk_buff *first = list->next; 1487 struct sk_buff *last = list->prev; 1488 1489 first->prev = prev; 1490 prev->next = first; 1491 1492 last->next = next; 1493 next->prev = last; 1494} 1495 1496/** 1497 * skb_queue_splice - join two skb lists, this is designed for stacks 1498 * @list: the new list to add 1499 * @head: the place to add it in the first list 1500 */ 1501static inline void skb_queue_splice(const struct sk_buff_head *list, 1502 struct sk_buff_head *head) 1503{ 1504 if (!skb_queue_empty(list)) { 1505 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1506 head->qlen += list->qlen; 1507 } 1508} 1509 1510/** 1511 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1512 * @list: the new list to add 1513 * @head: the place to add it in the first list 1514 * 1515 * The list at @list is reinitialised 1516 */ 1517static inline void skb_queue_splice_init(struct sk_buff_head *list, 1518 struct sk_buff_head *head) 1519{ 1520 if (!skb_queue_empty(list)) { 1521 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1522 head->qlen += list->qlen; 1523 __skb_queue_head_init(list); 1524 } 1525} 1526 1527/** 1528 * skb_queue_splice_tail - join two skb lists, each list being a queue 1529 * @list: the new list to add 1530 * @head: the place to add it in the first list 1531 */ 1532static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1533 struct sk_buff_head *head) 1534{ 1535 if (!skb_queue_empty(list)) { 1536 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1537 head->qlen += list->qlen; 1538 } 1539} 1540 1541/** 1542 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1543 * @list: the new list to add 1544 * @head: the place to add it in the first list 1545 * 1546 * Each of the lists is a queue. 1547 * The list at @list is reinitialised 1548 */ 1549static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1550 struct sk_buff_head *head) 1551{ 1552 if (!skb_queue_empty(list)) { 1553 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1554 head->qlen += list->qlen; 1555 __skb_queue_head_init(list); 1556 } 1557} 1558 1559/** 1560 * __skb_queue_after - queue a buffer at the list head 1561 * @list: list to use 1562 * @prev: place after this buffer 1563 * @newsk: buffer to queue 1564 * 1565 * Queue a buffer int the middle of a list. This function takes no locks 1566 * and you must therefore hold required locks before calling it. 1567 * 1568 * A buffer cannot be placed on two lists at the same time. 1569 */ 1570static inline void __skb_queue_after(struct sk_buff_head *list, 1571 struct sk_buff *prev, 1572 struct sk_buff *newsk) 1573{ 1574 __skb_insert(newsk, prev, prev->next, list); 1575} 1576 1577void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1578 struct sk_buff_head *list); 1579 1580static inline void __skb_queue_before(struct sk_buff_head *list, 1581 struct sk_buff *next, 1582 struct sk_buff *newsk) 1583{ 1584 __skb_insert(newsk, next->prev, next, list); 1585} 1586 1587/** 1588 * __skb_queue_head - queue a buffer at the list head 1589 * @list: list to use 1590 * @newsk: buffer to queue 1591 * 1592 * Queue a buffer at the start of a list. This function takes no locks 1593 * and you must therefore hold required locks before calling it. 1594 * 1595 * A buffer cannot be placed on two lists at the same time. 1596 */ 1597void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1598static inline void __skb_queue_head(struct sk_buff_head *list, 1599 struct sk_buff *newsk) 1600{ 1601 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1602} 1603 1604/** 1605 * __skb_queue_tail - queue a buffer at the list tail 1606 * @list: list to use 1607 * @newsk: buffer to queue 1608 * 1609 * Queue a buffer at the end of a list. This function takes no locks 1610 * and you must therefore hold required locks before calling it. 1611 * 1612 * A buffer cannot be placed on two lists at the same time. 1613 */ 1614void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1615static inline void __skb_queue_tail(struct sk_buff_head *list, 1616 struct sk_buff *newsk) 1617{ 1618 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1619} 1620 1621/* 1622 * remove sk_buff from list. _Must_ be called atomically, and with 1623 * the list known.. 1624 */ 1625void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1626static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1627{ 1628 struct sk_buff *next, *prev; 1629 1630 list->qlen--; 1631 next = skb->next; 1632 prev = skb->prev; 1633 skb->next = skb->prev = NULL; 1634 next->prev = prev; 1635 prev->next = next; 1636} 1637 1638/** 1639 * __skb_dequeue - remove from the head of the queue 1640 * @list: list to dequeue from 1641 * 1642 * Remove the head of the list. This function does not take any locks 1643 * so must be used with appropriate locks held only. The head item is 1644 * returned or %NULL if the list is empty. 1645 */ 1646struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1647static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1648{ 1649 struct sk_buff *skb = skb_peek(list); 1650 if (skb) 1651 __skb_unlink(skb, list); 1652 return skb; 1653} 1654 1655/** 1656 * __skb_dequeue_tail - remove from the tail of the queue 1657 * @list: list to dequeue from 1658 * 1659 * Remove the tail of the list. This function does not take any locks 1660 * so must be used with appropriate locks held only. The tail item is 1661 * returned or %NULL if the list is empty. 1662 */ 1663struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1664static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1665{ 1666 struct sk_buff *skb = skb_peek_tail(list); 1667 if (skb) 1668 __skb_unlink(skb, list); 1669 return skb; 1670} 1671 1672 1673static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1674{ 1675 return skb->data_len; 1676} 1677 1678static inline unsigned int skb_headlen(const struct sk_buff *skb) 1679{ 1680 return skb->len - skb->data_len; 1681} 1682 1683static inline int skb_pagelen(const struct sk_buff *skb) 1684{ 1685 int i, len = 0; 1686 1687 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1688 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1689 return len + skb_headlen(skb); 1690} 1691 1692/** 1693 * __skb_fill_page_desc - initialise a paged fragment in an skb 1694 * @skb: buffer containing fragment to be initialised 1695 * @i: paged fragment index to initialise 1696 * @page: the page to use for this fragment 1697 * @off: the offset to the data with @page 1698 * @size: the length of the data 1699 * 1700 * Initialises the @i'th fragment of @skb to point to &size bytes at 1701 * offset @off within @page. 1702 * 1703 * Does not take any additional reference on the fragment. 1704 */ 1705static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1706 struct page *page, int off, int size) 1707{ 1708 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1709 1710 /* 1711 * Propagate page pfmemalloc to the skb if we can. The problem is 1712 * that not all callers have unique ownership of the page but rely 1713 * on page_is_pfmemalloc doing the right thing(tm). 1714 */ 1715 frag->page.p = page; 1716 frag->page_offset = off; 1717 skb_frag_size_set(frag, size); 1718 1719 page = compound_head(page); 1720 if (page_is_pfmemalloc(page)) 1721 skb->pfmemalloc = true; 1722} 1723 1724/** 1725 * skb_fill_page_desc - initialise a paged fragment in an skb 1726 * @skb: buffer containing fragment to be initialised 1727 * @i: paged fragment index to initialise 1728 * @page: the page to use for this fragment 1729 * @off: the offset to the data with @page 1730 * @size: the length of the data 1731 * 1732 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1733 * @skb to point to @size bytes at offset @off within @page. In 1734 * addition updates @skb such that @i is the last fragment. 1735 * 1736 * Does not take any additional reference on the fragment. 1737 */ 1738static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1739 struct page *page, int off, int size) 1740{ 1741 __skb_fill_page_desc(skb, i, page, off, size); 1742 skb_shinfo(skb)->nr_frags = i + 1; 1743} 1744 1745void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1746 int size, unsigned int truesize); 1747 1748void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1749 unsigned int truesize); 1750 1751#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1752#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1753#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1754 1755#ifdef NET_SKBUFF_DATA_USES_OFFSET 1756static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1757{ 1758 return skb->head + skb->tail; 1759} 1760 1761static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1762{ 1763 skb->tail = skb->data - skb->head; 1764} 1765 1766static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1767{ 1768 skb_reset_tail_pointer(skb); 1769 skb->tail += offset; 1770} 1771 1772#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1773static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1774{ 1775 return skb->tail; 1776} 1777 1778static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1779{ 1780 skb->tail = skb->data; 1781} 1782 1783static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1784{ 1785 skb->tail = skb->data + offset; 1786} 1787 1788#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1789 1790/* 1791 * Add data to an sk_buff 1792 */ 1793unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1794unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1795static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1796{ 1797 unsigned char *tmp = skb_tail_pointer(skb); 1798 SKB_LINEAR_ASSERT(skb); 1799 skb->tail += len; 1800 skb->len += len; 1801 return tmp; 1802} 1803 1804unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1805static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1806{ 1807 skb->data -= len; 1808 skb->len += len; 1809 return skb->data; 1810} 1811 1812unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1813static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1814{ 1815 skb->len -= len; 1816 BUG_ON(skb->len < skb->data_len); 1817 return skb->data += len; 1818} 1819 1820static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1821{ 1822 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1823} 1824 1825unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1826 1827static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1828{ 1829 if (len > skb_headlen(skb) && 1830 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1831 return NULL; 1832 skb->len -= len; 1833 return skb->data += len; 1834} 1835 1836static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1837{ 1838 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1839} 1840 1841static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1842{ 1843 if (likely(len <= skb_headlen(skb))) 1844 return 1; 1845 if (unlikely(len > skb->len)) 1846 return 0; 1847 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1848} 1849 1850/** 1851 * skb_headroom - bytes at buffer head 1852 * @skb: buffer to check 1853 * 1854 * Return the number of bytes of free space at the head of an &sk_buff. 1855 */ 1856static inline unsigned int skb_headroom(const struct sk_buff *skb) 1857{ 1858 return skb->data - skb->head; 1859} 1860 1861/** 1862 * skb_tailroom - bytes at buffer end 1863 * @skb: buffer to check 1864 * 1865 * Return the number of bytes of free space at the tail of an sk_buff 1866 */ 1867static inline int skb_tailroom(const struct sk_buff *skb) 1868{ 1869 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1870} 1871 1872/** 1873 * skb_availroom - bytes at buffer end 1874 * @skb: buffer to check 1875 * 1876 * Return the number of bytes of free space at the tail of an sk_buff 1877 * allocated by sk_stream_alloc() 1878 */ 1879static inline int skb_availroom(const struct sk_buff *skb) 1880{ 1881 if (skb_is_nonlinear(skb)) 1882 return 0; 1883 1884 return skb->end - skb->tail - skb->reserved_tailroom; 1885} 1886 1887/** 1888 * skb_reserve - adjust headroom 1889 * @skb: buffer to alter 1890 * @len: bytes to move 1891 * 1892 * Increase the headroom of an empty &sk_buff by reducing the tail 1893 * room. This is only allowed for an empty buffer. 1894 */ 1895static inline void skb_reserve(struct sk_buff *skb, int len) 1896{ 1897 skb->data += len; 1898 skb->tail += len; 1899} 1900 1901#define ENCAP_TYPE_ETHER 0 1902#define ENCAP_TYPE_IPPROTO 1 1903 1904static inline void skb_set_inner_protocol(struct sk_buff *skb, 1905 __be16 protocol) 1906{ 1907 skb->inner_protocol = protocol; 1908 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1909} 1910 1911static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1912 __u8 ipproto) 1913{ 1914 skb->inner_ipproto = ipproto; 1915 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1916} 1917 1918static inline void skb_reset_inner_headers(struct sk_buff *skb) 1919{ 1920 skb->inner_mac_header = skb->mac_header; 1921 skb->inner_network_header = skb->network_header; 1922 skb->inner_transport_header = skb->transport_header; 1923} 1924 1925static inline void skb_reset_mac_len(struct sk_buff *skb) 1926{ 1927 skb->mac_len = skb->network_header - skb->mac_header; 1928} 1929 1930static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1931 *skb) 1932{ 1933 return skb->head + skb->inner_transport_header; 1934} 1935 1936static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1937{ 1938 skb->inner_transport_header = skb->data - skb->head; 1939} 1940 1941static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1942 const int offset) 1943{ 1944 skb_reset_inner_transport_header(skb); 1945 skb->inner_transport_header += offset; 1946} 1947 1948static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1949{ 1950 return skb->head + skb->inner_network_header; 1951} 1952 1953static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1954{ 1955 skb->inner_network_header = skb->data - skb->head; 1956} 1957 1958static inline void skb_set_inner_network_header(struct sk_buff *skb, 1959 const int offset) 1960{ 1961 skb_reset_inner_network_header(skb); 1962 skb->inner_network_header += offset; 1963} 1964 1965static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1966{ 1967 return skb->head + skb->inner_mac_header; 1968} 1969 1970static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1971{ 1972 skb->inner_mac_header = skb->data - skb->head; 1973} 1974 1975static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1976 const int offset) 1977{ 1978 skb_reset_inner_mac_header(skb); 1979 skb->inner_mac_header += offset; 1980} 1981static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1982{ 1983 return skb->transport_header != (typeof(skb->transport_header))~0U; 1984} 1985 1986static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1987{ 1988 return skb->head + skb->transport_header; 1989} 1990 1991static inline void skb_reset_transport_header(struct sk_buff *skb) 1992{ 1993 skb->transport_header = skb->data - skb->head; 1994} 1995 1996static inline void skb_set_transport_header(struct sk_buff *skb, 1997 const int offset) 1998{ 1999 skb_reset_transport_header(skb); 2000 skb->transport_header += offset; 2001} 2002 2003static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2004{ 2005 return skb->head + skb->network_header; 2006} 2007 2008static inline void skb_reset_network_header(struct sk_buff *skb) 2009{ 2010 skb->network_header = skb->data - skb->head; 2011} 2012 2013static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2014{ 2015 skb_reset_network_header(skb); 2016 skb->network_header += offset; 2017} 2018 2019static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2020{ 2021 return skb->head + skb->mac_header; 2022} 2023 2024static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2025{ 2026 return skb->mac_header != (typeof(skb->mac_header))~0U; 2027} 2028 2029static inline void skb_reset_mac_header(struct sk_buff *skb) 2030{ 2031 skb->mac_header = skb->data - skb->head; 2032} 2033 2034static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2035{ 2036 skb_reset_mac_header(skb); 2037 skb->mac_header += offset; 2038} 2039 2040static inline void skb_pop_mac_header(struct sk_buff *skb) 2041{ 2042 skb->mac_header = skb->network_header; 2043} 2044 2045static inline void skb_probe_transport_header(struct sk_buff *skb, 2046 const int offset_hint) 2047{ 2048 struct flow_keys keys; 2049 2050 if (skb_transport_header_was_set(skb)) 2051 return; 2052 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2053 skb_set_transport_header(skb, keys.control.thoff); 2054 else 2055 skb_set_transport_header(skb, offset_hint); 2056} 2057 2058static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2059{ 2060 if (skb_mac_header_was_set(skb)) { 2061 const unsigned char *old_mac = skb_mac_header(skb); 2062 2063 skb_set_mac_header(skb, -skb->mac_len); 2064 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2065 } 2066} 2067 2068static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2069{ 2070 return skb->csum_start - skb_headroom(skb); 2071} 2072 2073static inline int skb_transport_offset(const struct sk_buff *skb) 2074{ 2075 return skb_transport_header(skb) - skb->data; 2076} 2077 2078static inline u32 skb_network_header_len(const struct sk_buff *skb) 2079{ 2080 return skb->transport_header - skb->network_header; 2081} 2082 2083static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2084{ 2085 return skb->inner_transport_header - skb->inner_network_header; 2086} 2087 2088static inline int skb_network_offset(const struct sk_buff *skb) 2089{ 2090 return skb_network_header(skb) - skb->data; 2091} 2092 2093static inline int skb_inner_network_offset(const struct sk_buff *skb) 2094{ 2095 return skb_inner_network_header(skb) - skb->data; 2096} 2097 2098static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2099{ 2100 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2101} 2102 2103/* 2104 * CPUs often take a performance hit when accessing unaligned memory 2105 * locations. The actual performance hit varies, it can be small if the 2106 * hardware handles it or large if we have to take an exception and fix it 2107 * in software. 2108 * 2109 * Since an ethernet header is 14 bytes network drivers often end up with 2110 * the IP header at an unaligned offset. The IP header can be aligned by 2111 * shifting the start of the packet by 2 bytes. Drivers should do this 2112 * with: 2113 * 2114 * skb_reserve(skb, NET_IP_ALIGN); 2115 * 2116 * The downside to this alignment of the IP header is that the DMA is now 2117 * unaligned. On some architectures the cost of an unaligned DMA is high 2118 * and this cost outweighs the gains made by aligning the IP header. 2119 * 2120 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2121 * to be overridden. 2122 */ 2123#ifndef NET_IP_ALIGN 2124#define NET_IP_ALIGN 2 2125#endif 2126 2127/* 2128 * The networking layer reserves some headroom in skb data (via 2129 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2130 * the header has to grow. In the default case, if the header has to grow 2131 * 32 bytes or less we avoid the reallocation. 2132 * 2133 * Unfortunately this headroom changes the DMA alignment of the resulting 2134 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2135 * on some architectures. An architecture can override this value, 2136 * perhaps setting it to a cacheline in size (since that will maintain 2137 * cacheline alignment of the DMA). It must be a power of 2. 2138 * 2139 * Various parts of the networking layer expect at least 32 bytes of 2140 * headroom, you should not reduce this. 2141 * 2142 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2143 * to reduce average number of cache lines per packet. 2144 * get_rps_cpus() for example only access one 64 bytes aligned block : 2145 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2146 */ 2147#ifndef NET_SKB_PAD 2148#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2149#endif 2150 2151int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2152 2153static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2154{ 2155 if (unlikely(skb_is_nonlinear(skb))) { 2156 WARN_ON(1); 2157 return; 2158 } 2159 skb->len = len; 2160 skb_set_tail_pointer(skb, len); 2161} 2162 2163void skb_trim(struct sk_buff *skb, unsigned int len); 2164 2165static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2166{ 2167 if (skb->data_len) 2168 return ___pskb_trim(skb, len); 2169 __skb_trim(skb, len); 2170 return 0; 2171} 2172 2173static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2174{ 2175 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2176} 2177 2178/** 2179 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2180 * @skb: buffer to alter 2181 * @len: new length 2182 * 2183 * This is identical to pskb_trim except that the caller knows that 2184 * the skb is not cloned so we should never get an error due to out- 2185 * of-memory. 2186 */ 2187static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2188{ 2189 int err = pskb_trim(skb, len); 2190 BUG_ON(err); 2191} 2192 2193/** 2194 * skb_orphan - orphan a buffer 2195 * @skb: buffer to orphan 2196 * 2197 * If a buffer currently has an owner then we call the owner's 2198 * destructor function and make the @skb unowned. The buffer continues 2199 * to exist but is no longer charged to its former owner. 2200 */ 2201static inline void skb_orphan(struct sk_buff *skb) 2202{ 2203 if (skb->destructor) { 2204 skb->destructor(skb); 2205 skb->destructor = NULL; 2206 skb->sk = NULL; 2207 } else { 2208 BUG_ON(skb->sk); 2209 } 2210} 2211 2212/** 2213 * skb_orphan_frags - orphan the frags contained in a buffer 2214 * @skb: buffer to orphan frags from 2215 * @gfp_mask: allocation mask for replacement pages 2216 * 2217 * For each frag in the SKB which needs a destructor (i.e. has an 2218 * owner) create a copy of that frag and release the original 2219 * page by calling the destructor. 2220 */ 2221static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2222{ 2223 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2224 return 0; 2225 return skb_copy_ubufs(skb, gfp_mask); 2226} 2227 2228/** 2229 * __skb_queue_purge - empty a list 2230 * @list: list to empty 2231 * 2232 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2233 * the list and one reference dropped. This function does not take the 2234 * list lock and the caller must hold the relevant locks to use it. 2235 */ 2236void skb_queue_purge(struct sk_buff_head *list); 2237static inline void __skb_queue_purge(struct sk_buff_head *list) 2238{ 2239 struct sk_buff *skb; 2240 while ((skb = __skb_dequeue(list)) != NULL) 2241 kfree_skb(skb); 2242} 2243 2244void *netdev_alloc_frag(unsigned int fragsz); 2245 2246struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2247 gfp_t gfp_mask); 2248 2249/** 2250 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2251 * @dev: network device to receive on 2252 * @length: length to allocate 2253 * 2254 * Allocate a new &sk_buff and assign it a usage count of one. The 2255 * buffer has unspecified headroom built in. Users should allocate 2256 * the headroom they think they need without accounting for the 2257 * built in space. The built in space is used for optimisations. 2258 * 2259 * %NULL is returned if there is no free memory. Although this function 2260 * allocates memory it can be called from an interrupt. 2261 */ 2262static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2263 unsigned int length) 2264{ 2265 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2266} 2267 2268/* legacy helper around __netdev_alloc_skb() */ 2269static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2270 gfp_t gfp_mask) 2271{ 2272 return __netdev_alloc_skb(NULL, length, gfp_mask); 2273} 2274 2275/* legacy helper around netdev_alloc_skb() */ 2276static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2277{ 2278 return netdev_alloc_skb(NULL, length); 2279} 2280 2281 2282static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2283 unsigned int length, gfp_t gfp) 2284{ 2285 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2286 2287 if (NET_IP_ALIGN && skb) 2288 skb_reserve(skb, NET_IP_ALIGN); 2289 return skb; 2290} 2291 2292static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2293 unsigned int length) 2294{ 2295 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2296} 2297 2298static inline void skb_free_frag(void *addr) 2299{ 2300 __free_page_frag(addr); 2301} 2302 2303void *napi_alloc_frag(unsigned int fragsz); 2304struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2305 unsigned int length, gfp_t gfp_mask); 2306static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2307 unsigned int length) 2308{ 2309 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2310} 2311 2312/** 2313 * __dev_alloc_pages - allocate page for network Rx 2314 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2315 * @order: size of the allocation 2316 * 2317 * Allocate a new page. 2318 * 2319 * %NULL is returned if there is no free memory. 2320*/ 2321static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2322 unsigned int order) 2323{ 2324 /* This piece of code contains several assumptions. 2325 * 1. This is for device Rx, therefor a cold page is preferred. 2326 * 2. The expectation is the user wants a compound page. 2327 * 3. If requesting a order 0 page it will not be compound 2328 * due to the check to see if order has a value in prep_new_page 2329 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2330 * code in gfp_to_alloc_flags that should be enforcing this. 2331 */ 2332 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2333 2334 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2335} 2336 2337static inline struct page *dev_alloc_pages(unsigned int order) 2338{ 2339 return __dev_alloc_pages(GFP_ATOMIC, order); 2340} 2341 2342/** 2343 * __dev_alloc_page - allocate a page for network Rx 2344 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2345 * 2346 * Allocate a new page. 2347 * 2348 * %NULL is returned if there is no free memory. 2349 */ 2350static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2351{ 2352 return __dev_alloc_pages(gfp_mask, 0); 2353} 2354 2355static inline struct page *dev_alloc_page(void) 2356{ 2357 return __dev_alloc_page(GFP_ATOMIC); 2358} 2359 2360/** 2361 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2362 * @page: The page that was allocated from skb_alloc_page 2363 * @skb: The skb that may need pfmemalloc set 2364 */ 2365static inline void skb_propagate_pfmemalloc(struct page *page, 2366 struct sk_buff *skb) 2367{ 2368 if (page_is_pfmemalloc(page)) 2369 skb->pfmemalloc = true; 2370} 2371 2372/** 2373 * skb_frag_page - retrieve the page referred to by a paged fragment 2374 * @frag: the paged fragment 2375 * 2376 * Returns the &struct page associated with @frag. 2377 */ 2378static inline struct page *skb_frag_page(const skb_frag_t *frag) 2379{ 2380 return frag->page.p; 2381} 2382 2383/** 2384 * __skb_frag_ref - take an addition reference on a paged fragment. 2385 * @frag: the paged fragment 2386 * 2387 * Takes an additional reference on the paged fragment @frag. 2388 */ 2389static inline void __skb_frag_ref(skb_frag_t *frag) 2390{ 2391 get_page(skb_frag_page(frag)); 2392} 2393 2394/** 2395 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2396 * @skb: the buffer 2397 * @f: the fragment offset. 2398 * 2399 * Takes an additional reference on the @f'th paged fragment of @skb. 2400 */ 2401static inline void skb_frag_ref(struct sk_buff *skb, int f) 2402{ 2403 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2404} 2405 2406/** 2407 * __skb_frag_unref - release a reference on a paged fragment. 2408 * @frag: the paged fragment 2409 * 2410 * Releases a reference on the paged fragment @frag. 2411 */ 2412static inline void __skb_frag_unref(skb_frag_t *frag) 2413{ 2414 put_page(skb_frag_page(frag)); 2415} 2416 2417/** 2418 * skb_frag_unref - release a reference on a paged fragment of an skb. 2419 * @skb: the buffer 2420 * @f: the fragment offset 2421 * 2422 * Releases a reference on the @f'th paged fragment of @skb. 2423 */ 2424static inline void skb_frag_unref(struct sk_buff *skb, int f) 2425{ 2426 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2427} 2428 2429/** 2430 * skb_frag_address - gets the address of the data contained in a paged fragment 2431 * @frag: the paged fragment buffer 2432 * 2433 * Returns the address of the data within @frag. The page must already 2434 * be mapped. 2435 */ 2436static inline void *skb_frag_address(const skb_frag_t *frag) 2437{ 2438 return page_address(skb_frag_page(frag)) + frag->page_offset; 2439} 2440 2441/** 2442 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2443 * @frag: the paged fragment buffer 2444 * 2445 * Returns the address of the data within @frag. Checks that the page 2446 * is mapped and returns %NULL otherwise. 2447 */ 2448static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2449{ 2450 void *ptr = page_address(skb_frag_page(frag)); 2451 if (unlikely(!ptr)) 2452 return NULL; 2453 2454 return ptr + frag->page_offset; 2455} 2456 2457/** 2458 * __skb_frag_set_page - sets the page contained in a paged fragment 2459 * @frag: the paged fragment 2460 * @page: the page to set 2461 * 2462 * Sets the fragment @frag to contain @page. 2463 */ 2464static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2465{ 2466 frag->page.p = page; 2467} 2468 2469/** 2470 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2471 * @skb: the buffer 2472 * @f: the fragment offset 2473 * @page: the page to set 2474 * 2475 * Sets the @f'th fragment of @skb to contain @page. 2476 */ 2477static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2478 struct page *page) 2479{ 2480 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2481} 2482 2483bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2484 2485/** 2486 * skb_frag_dma_map - maps a paged fragment via the DMA API 2487 * @dev: the device to map the fragment to 2488 * @frag: the paged fragment to map 2489 * @offset: the offset within the fragment (starting at the 2490 * fragment's own offset) 2491 * @size: the number of bytes to map 2492 * @dir: the direction of the mapping (%PCI_DMA_*) 2493 * 2494 * Maps the page associated with @frag to @device. 2495 */ 2496static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2497 const skb_frag_t *frag, 2498 size_t offset, size_t size, 2499 enum dma_data_direction dir) 2500{ 2501 return dma_map_page(dev, skb_frag_page(frag), 2502 frag->page_offset + offset, size, dir); 2503} 2504 2505static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2506 gfp_t gfp_mask) 2507{ 2508 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2509} 2510 2511 2512static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2513 gfp_t gfp_mask) 2514{ 2515 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2516} 2517 2518 2519/** 2520 * skb_clone_writable - is the header of a clone writable 2521 * @skb: buffer to check 2522 * @len: length up to which to write 2523 * 2524 * Returns true if modifying the header part of the cloned buffer 2525 * does not requires the data to be copied. 2526 */ 2527static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2528{ 2529 return !skb_header_cloned(skb) && 2530 skb_headroom(skb) + len <= skb->hdr_len; 2531} 2532 2533static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2534 int cloned) 2535{ 2536 int delta = 0; 2537 2538 if (headroom > skb_headroom(skb)) 2539 delta = headroom - skb_headroom(skb); 2540 2541 if (delta || cloned) 2542 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2543 GFP_ATOMIC); 2544 return 0; 2545} 2546 2547/** 2548 * skb_cow - copy header of skb when it is required 2549 * @skb: buffer to cow 2550 * @headroom: needed headroom 2551 * 2552 * If the skb passed lacks sufficient headroom or its data part 2553 * is shared, data is reallocated. If reallocation fails, an error 2554 * is returned and original skb is not changed. 2555 * 2556 * The result is skb with writable area skb->head...skb->tail 2557 * and at least @headroom of space at head. 2558 */ 2559static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2560{ 2561 return __skb_cow(skb, headroom, skb_cloned(skb)); 2562} 2563 2564/** 2565 * skb_cow_head - skb_cow but only making the head writable 2566 * @skb: buffer to cow 2567 * @headroom: needed headroom 2568 * 2569 * This function is identical to skb_cow except that we replace the 2570 * skb_cloned check by skb_header_cloned. It should be used when 2571 * you only need to push on some header and do not need to modify 2572 * the data. 2573 */ 2574static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2575{ 2576 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2577} 2578 2579/** 2580 * skb_padto - pad an skbuff up to a minimal size 2581 * @skb: buffer to pad 2582 * @len: minimal length 2583 * 2584 * Pads up a buffer to ensure the trailing bytes exist and are 2585 * blanked. If the buffer already contains sufficient data it 2586 * is untouched. Otherwise it is extended. Returns zero on 2587 * success. The skb is freed on error. 2588 */ 2589static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2590{ 2591 unsigned int size = skb->len; 2592 if (likely(size >= len)) 2593 return 0; 2594 return skb_pad(skb, len - size); 2595} 2596 2597/** 2598 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2599 * @skb: buffer to pad 2600 * @len: minimal length 2601 * 2602 * Pads up a buffer to ensure the trailing bytes exist and are 2603 * blanked. If the buffer already contains sufficient data it 2604 * is untouched. Otherwise it is extended. Returns zero on 2605 * success. The skb is freed on error. 2606 */ 2607static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2608{ 2609 unsigned int size = skb->len; 2610 2611 if (unlikely(size < len)) { 2612 len -= size; 2613 if (skb_pad(skb, len)) 2614 return -ENOMEM; 2615 __skb_put(skb, len); 2616 } 2617 return 0; 2618} 2619 2620static inline int skb_add_data(struct sk_buff *skb, 2621 struct iov_iter *from, int copy) 2622{ 2623 const int off = skb->len; 2624 2625 if (skb->ip_summed == CHECKSUM_NONE) { 2626 __wsum csum = 0; 2627 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2628 &csum, from) == copy) { 2629 skb->csum = csum_block_add(skb->csum, csum, off); 2630 return 0; 2631 } 2632 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2633 return 0; 2634 2635 __skb_trim(skb, off); 2636 return -EFAULT; 2637} 2638 2639static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2640 const struct page *page, int off) 2641{ 2642 if (i) { 2643 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2644 2645 return page == skb_frag_page(frag) && 2646 off == frag->page_offset + skb_frag_size(frag); 2647 } 2648 return false; 2649} 2650 2651static inline int __skb_linearize(struct sk_buff *skb) 2652{ 2653 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2654} 2655 2656/** 2657 * skb_linearize - convert paged skb to linear one 2658 * @skb: buffer to linarize 2659 * 2660 * If there is no free memory -ENOMEM is returned, otherwise zero 2661 * is returned and the old skb data released. 2662 */ 2663static inline int skb_linearize(struct sk_buff *skb) 2664{ 2665 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2666} 2667 2668/** 2669 * skb_has_shared_frag - can any frag be overwritten 2670 * @skb: buffer to test 2671 * 2672 * Return true if the skb has at least one frag that might be modified 2673 * by an external entity (as in vmsplice()/sendfile()) 2674 */ 2675static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2676{ 2677 return skb_is_nonlinear(skb) && 2678 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2679} 2680 2681/** 2682 * skb_linearize_cow - make sure skb is linear and writable 2683 * @skb: buffer to process 2684 * 2685 * If there is no free memory -ENOMEM is returned, otherwise zero 2686 * is returned and the old skb data released. 2687 */ 2688static inline int skb_linearize_cow(struct sk_buff *skb) 2689{ 2690 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2691 __skb_linearize(skb) : 0; 2692} 2693 2694/** 2695 * skb_postpull_rcsum - update checksum for received skb after pull 2696 * @skb: buffer to update 2697 * @start: start of data before pull 2698 * @len: length of data pulled 2699 * 2700 * After doing a pull on a received packet, you need to call this to 2701 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2702 * CHECKSUM_NONE so that it can be recomputed from scratch. 2703 */ 2704 2705static inline void skb_postpull_rcsum(struct sk_buff *skb, 2706 const void *start, unsigned int len) 2707{ 2708 if (skb->ip_summed == CHECKSUM_COMPLETE) 2709 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2710 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2711 skb_checksum_start_offset(skb) < 0) 2712 skb->ip_summed = CHECKSUM_NONE; 2713} 2714 2715unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2716 2717/** 2718 * pskb_trim_rcsum - trim received skb and update checksum 2719 * @skb: buffer to trim 2720 * @len: new length 2721 * 2722 * This is exactly the same as pskb_trim except that it ensures the 2723 * checksum of received packets are still valid after the operation. 2724 */ 2725 2726static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2727{ 2728 if (likely(len >= skb->len)) 2729 return 0; 2730 if (skb->ip_summed == CHECKSUM_COMPLETE) 2731 skb->ip_summed = CHECKSUM_NONE; 2732 return __pskb_trim(skb, len); 2733} 2734 2735#define skb_queue_walk(queue, skb) \ 2736 for (skb = (queue)->next; \ 2737 skb != (struct sk_buff *)(queue); \ 2738 skb = skb->next) 2739 2740#define skb_queue_walk_safe(queue, skb, tmp) \ 2741 for (skb = (queue)->next, tmp = skb->next; \ 2742 skb != (struct sk_buff *)(queue); \ 2743 skb = tmp, tmp = skb->next) 2744 2745#define skb_queue_walk_from(queue, skb) \ 2746 for (; skb != (struct sk_buff *)(queue); \ 2747 skb = skb->next) 2748 2749#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2750 for (tmp = skb->next; \ 2751 skb != (struct sk_buff *)(queue); \ 2752 skb = tmp, tmp = skb->next) 2753 2754#define skb_queue_reverse_walk(queue, skb) \ 2755 for (skb = (queue)->prev; \ 2756 skb != (struct sk_buff *)(queue); \ 2757 skb = skb->prev) 2758 2759#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2760 for (skb = (queue)->prev, tmp = skb->prev; \ 2761 skb != (struct sk_buff *)(queue); \ 2762 skb = tmp, tmp = skb->prev) 2763 2764#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2765 for (tmp = skb->prev; \ 2766 skb != (struct sk_buff *)(queue); \ 2767 skb = tmp, tmp = skb->prev) 2768 2769static inline bool skb_has_frag_list(const struct sk_buff *skb) 2770{ 2771 return skb_shinfo(skb)->frag_list != NULL; 2772} 2773 2774static inline void skb_frag_list_init(struct sk_buff *skb) 2775{ 2776 skb_shinfo(skb)->frag_list = NULL; 2777} 2778 2779#define skb_walk_frags(skb, iter) \ 2780 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2781 2782struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2783 int *peeked, int *off, int *err); 2784struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2785 int *err); 2786unsigned int datagram_poll(struct file *file, struct socket *sock, 2787 struct poll_table_struct *wait); 2788int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2789 struct iov_iter *to, int size); 2790static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2791 struct msghdr *msg, int size) 2792{ 2793 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2794} 2795int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2796 struct msghdr *msg); 2797int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2798 struct iov_iter *from, int len); 2799int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2800void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2801void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2802int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2803int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2804int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2805__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2806 int len, __wsum csum); 2807ssize_t skb_socket_splice(struct sock *sk, 2808 struct pipe_inode_info *pipe, 2809 struct splice_pipe_desc *spd); 2810int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2811 struct pipe_inode_info *pipe, unsigned int len, 2812 unsigned int flags, 2813 ssize_t (*splice_cb)(struct sock *, 2814 struct pipe_inode_info *, 2815 struct splice_pipe_desc *)); 2816void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2817unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2818int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2819 int len, int hlen); 2820void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2821int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2822void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2823unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2824struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2825struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2826int skb_ensure_writable(struct sk_buff *skb, int write_len); 2827int skb_vlan_pop(struct sk_buff *skb); 2828int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2829 2830static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2831{ 2832 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2833} 2834 2835static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2836{ 2837 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2838} 2839 2840struct skb_checksum_ops { 2841 __wsum (*update)(const void *mem, int len, __wsum wsum); 2842 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2843}; 2844 2845__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2846 __wsum csum, const struct skb_checksum_ops *ops); 2847__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2848 __wsum csum); 2849 2850static inline void * __must_check 2851__skb_header_pointer(const struct sk_buff *skb, int offset, 2852 int len, void *data, int hlen, void *buffer) 2853{ 2854 if (hlen - offset >= len) 2855 return data + offset; 2856 2857 if (!skb || 2858 skb_copy_bits(skb, offset, buffer, len) < 0) 2859 return NULL; 2860 2861 return buffer; 2862} 2863 2864static inline void * __must_check 2865skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 2866{ 2867 return __skb_header_pointer(skb, offset, len, skb->data, 2868 skb_headlen(skb), buffer); 2869} 2870 2871/** 2872 * skb_needs_linearize - check if we need to linearize a given skb 2873 * depending on the given device features. 2874 * @skb: socket buffer to check 2875 * @features: net device features 2876 * 2877 * Returns true if either: 2878 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2879 * 2. skb is fragmented and the device does not support SG. 2880 */ 2881static inline bool skb_needs_linearize(struct sk_buff *skb, 2882 netdev_features_t features) 2883{ 2884 return skb_is_nonlinear(skb) && 2885 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2886 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2887} 2888 2889static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2890 void *to, 2891 const unsigned int len) 2892{ 2893 memcpy(to, skb->data, len); 2894} 2895 2896static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2897 const int offset, void *to, 2898 const unsigned int len) 2899{ 2900 memcpy(to, skb->data + offset, len); 2901} 2902 2903static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2904 const void *from, 2905 const unsigned int len) 2906{ 2907 memcpy(skb->data, from, len); 2908} 2909 2910static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2911 const int offset, 2912 const void *from, 2913 const unsigned int len) 2914{ 2915 memcpy(skb->data + offset, from, len); 2916} 2917 2918void skb_init(void); 2919 2920static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2921{ 2922 return skb->tstamp; 2923} 2924 2925/** 2926 * skb_get_timestamp - get timestamp from a skb 2927 * @skb: skb to get stamp from 2928 * @stamp: pointer to struct timeval to store stamp in 2929 * 2930 * Timestamps are stored in the skb as offsets to a base timestamp. 2931 * This function converts the offset back to a struct timeval and stores 2932 * it in stamp. 2933 */ 2934static inline void skb_get_timestamp(const struct sk_buff *skb, 2935 struct timeval *stamp) 2936{ 2937 *stamp = ktime_to_timeval(skb->tstamp); 2938} 2939 2940static inline void skb_get_timestampns(const struct sk_buff *skb, 2941 struct timespec *stamp) 2942{ 2943 *stamp = ktime_to_timespec(skb->tstamp); 2944} 2945 2946static inline void __net_timestamp(struct sk_buff *skb) 2947{ 2948 skb->tstamp = ktime_get_real(); 2949} 2950 2951static inline ktime_t net_timedelta(ktime_t t) 2952{ 2953 return ktime_sub(ktime_get_real(), t); 2954} 2955 2956static inline ktime_t net_invalid_timestamp(void) 2957{ 2958 return ktime_set(0, 0); 2959} 2960 2961struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2962 2963#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2964 2965void skb_clone_tx_timestamp(struct sk_buff *skb); 2966bool skb_defer_rx_timestamp(struct sk_buff *skb); 2967 2968#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2969 2970static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2971{ 2972} 2973 2974static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2975{ 2976 return false; 2977} 2978 2979#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2980 2981/** 2982 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2983 * 2984 * PHY drivers may accept clones of transmitted packets for 2985 * timestamping via their phy_driver.txtstamp method. These drivers 2986 * must call this function to return the skb back to the stack with a 2987 * timestamp. 2988 * 2989 * @skb: clone of the the original outgoing packet 2990 * @hwtstamps: hardware time stamps 2991 * 2992 */ 2993void skb_complete_tx_timestamp(struct sk_buff *skb, 2994 struct skb_shared_hwtstamps *hwtstamps); 2995 2996void __skb_tstamp_tx(struct sk_buff *orig_skb, 2997 struct skb_shared_hwtstamps *hwtstamps, 2998 struct sock *sk, int tstype); 2999 3000/** 3001 * skb_tstamp_tx - queue clone of skb with send time stamps 3002 * @orig_skb: the original outgoing packet 3003 * @hwtstamps: hardware time stamps, may be NULL if not available 3004 * 3005 * If the skb has a socket associated, then this function clones the 3006 * skb (thus sharing the actual data and optional structures), stores 3007 * the optional hardware time stamping information (if non NULL) or 3008 * generates a software time stamp (otherwise), then queues the clone 3009 * to the error queue of the socket. Errors are silently ignored. 3010 */ 3011void skb_tstamp_tx(struct sk_buff *orig_skb, 3012 struct skb_shared_hwtstamps *hwtstamps); 3013 3014static inline void sw_tx_timestamp(struct sk_buff *skb) 3015{ 3016 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3017 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3018 skb_tstamp_tx(skb, NULL); 3019} 3020 3021/** 3022 * skb_tx_timestamp() - Driver hook for transmit timestamping 3023 * 3024 * Ethernet MAC Drivers should call this function in their hard_xmit() 3025 * function immediately before giving the sk_buff to the MAC hardware. 3026 * 3027 * Specifically, one should make absolutely sure that this function is 3028 * called before TX completion of this packet can trigger. Otherwise 3029 * the packet could potentially already be freed. 3030 * 3031 * @skb: A socket buffer. 3032 */ 3033static inline void skb_tx_timestamp(struct sk_buff *skb) 3034{ 3035 skb_clone_tx_timestamp(skb); 3036 sw_tx_timestamp(skb); 3037} 3038 3039/** 3040 * skb_complete_wifi_ack - deliver skb with wifi status 3041 * 3042 * @skb: the original outgoing packet 3043 * @acked: ack status 3044 * 3045 */ 3046void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3047 3048__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3049__sum16 __skb_checksum_complete(struct sk_buff *skb); 3050 3051static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3052{ 3053 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3054 skb->csum_valid || 3055 (skb->ip_summed == CHECKSUM_PARTIAL && 3056 skb_checksum_start_offset(skb) >= 0)); 3057} 3058 3059/** 3060 * skb_checksum_complete - Calculate checksum of an entire packet 3061 * @skb: packet to process 3062 * 3063 * This function calculates the checksum over the entire packet plus 3064 * the value of skb->csum. The latter can be used to supply the 3065 * checksum of a pseudo header as used by TCP/UDP. It returns the 3066 * checksum. 3067 * 3068 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3069 * this function can be used to verify that checksum on received 3070 * packets. In that case the function should return zero if the 3071 * checksum is correct. In particular, this function will return zero 3072 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3073 * hardware has already verified the correctness of the checksum. 3074 */ 3075static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3076{ 3077 return skb_csum_unnecessary(skb) ? 3078 0 : __skb_checksum_complete(skb); 3079} 3080 3081static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3082{ 3083 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3084 if (skb->csum_level == 0) 3085 skb->ip_summed = CHECKSUM_NONE; 3086 else 3087 skb->csum_level--; 3088 } 3089} 3090 3091static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3092{ 3093 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3094 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3095 skb->csum_level++; 3096 } else if (skb->ip_summed == CHECKSUM_NONE) { 3097 skb->ip_summed = CHECKSUM_UNNECESSARY; 3098 skb->csum_level = 0; 3099 } 3100} 3101 3102static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3103{ 3104 /* Mark current checksum as bad (typically called from GRO 3105 * path). In the case that ip_summed is CHECKSUM_NONE 3106 * this must be the first checksum encountered in the packet. 3107 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3108 * checksum after the last one validated. For UDP, a zero 3109 * checksum can not be marked as bad. 3110 */ 3111 3112 if (skb->ip_summed == CHECKSUM_NONE || 3113 skb->ip_summed == CHECKSUM_UNNECESSARY) 3114 skb->csum_bad = 1; 3115} 3116 3117/* Check if we need to perform checksum complete validation. 3118 * 3119 * Returns true if checksum complete is needed, false otherwise 3120 * (either checksum is unnecessary or zero checksum is allowed). 3121 */ 3122static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3123 bool zero_okay, 3124 __sum16 check) 3125{ 3126 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3127 skb->csum_valid = 1; 3128 __skb_decr_checksum_unnecessary(skb); 3129 return false; 3130 } 3131 3132 return true; 3133} 3134 3135/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3136 * in checksum_init. 3137 */ 3138#define CHECKSUM_BREAK 76 3139 3140/* Unset checksum-complete 3141 * 3142 * Unset checksum complete can be done when packet is being modified 3143 * (uncompressed for instance) and checksum-complete value is 3144 * invalidated. 3145 */ 3146static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3147{ 3148 if (skb->ip_summed == CHECKSUM_COMPLETE) 3149 skb->ip_summed = CHECKSUM_NONE; 3150} 3151 3152/* Validate (init) checksum based on checksum complete. 3153 * 3154 * Return values: 3155 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3156 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3157 * checksum is stored in skb->csum for use in __skb_checksum_complete 3158 * non-zero: value of invalid checksum 3159 * 3160 */ 3161static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3162 bool complete, 3163 __wsum psum) 3164{ 3165 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3166 if (!csum_fold(csum_add(psum, skb->csum))) { 3167 skb->csum_valid = 1; 3168 return 0; 3169 } 3170 } else if (skb->csum_bad) { 3171 /* ip_summed == CHECKSUM_NONE in this case */ 3172 return (__force __sum16)1; 3173 } 3174 3175 skb->csum = psum; 3176 3177 if (complete || skb->len <= CHECKSUM_BREAK) { 3178 __sum16 csum; 3179 3180 csum = __skb_checksum_complete(skb); 3181 skb->csum_valid = !csum; 3182 return csum; 3183 } 3184 3185 return 0; 3186} 3187 3188static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3189{ 3190 return 0; 3191} 3192 3193/* Perform checksum validate (init). Note that this is a macro since we only 3194 * want to calculate the pseudo header which is an input function if necessary. 3195 * First we try to validate without any computation (checksum unnecessary) and 3196 * then calculate based on checksum complete calling the function to compute 3197 * pseudo header. 3198 * 3199 * Return values: 3200 * 0: checksum is validated or try to in skb_checksum_complete 3201 * non-zero: value of invalid checksum 3202 */ 3203#define __skb_checksum_validate(skb, proto, complete, \ 3204 zero_okay, check, compute_pseudo) \ 3205({ \ 3206 __sum16 __ret = 0; \ 3207 skb->csum_valid = 0; \ 3208 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3209 __ret = __skb_checksum_validate_complete(skb, \ 3210 complete, compute_pseudo(skb, proto)); \ 3211 __ret; \ 3212}) 3213 3214#define skb_checksum_init(skb, proto, compute_pseudo) \ 3215 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3216 3217#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3218 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3219 3220#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3221 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3222 3223#define skb_checksum_validate_zero_check(skb, proto, check, \ 3224 compute_pseudo) \ 3225 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3226 3227#define skb_checksum_simple_validate(skb) \ 3228 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3229 3230static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3231{ 3232 return (skb->ip_summed == CHECKSUM_NONE && 3233 skb->csum_valid && !skb->csum_bad); 3234} 3235 3236static inline void __skb_checksum_convert(struct sk_buff *skb, 3237 __sum16 check, __wsum pseudo) 3238{ 3239 skb->csum = ~pseudo; 3240 skb->ip_summed = CHECKSUM_COMPLETE; 3241} 3242 3243#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3244do { \ 3245 if (__skb_checksum_convert_check(skb)) \ 3246 __skb_checksum_convert(skb, check, \ 3247 compute_pseudo(skb, proto)); \ 3248} while (0) 3249 3250static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3251 u16 start, u16 offset) 3252{ 3253 skb->ip_summed = CHECKSUM_PARTIAL; 3254 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3255 skb->csum_offset = offset - start; 3256} 3257 3258/* Update skbuf and packet to reflect the remote checksum offload operation. 3259 * When called, ptr indicates the starting point for skb->csum when 3260 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3261 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3262 */ 3263static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3264 int start, int offset, bool nopartial) 3265{ 3266 __wsum delta; 3267 3268 if (!nopartial) { 3269 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3270 return; 3271 } 3272 3273 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3274 __skb_checksum_complete(skb); 3275 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3276 } 3277 3278 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3279 3280 /* Adjust skb->csum since we changed the packet */ 3281 skb->csum = csum_add(skb->csum, delta); 3282} 3283 3284#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3285void nf_conntrack_destroy(struct nf_conntrack *nfct); 3286static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3287{ 3288 if (nfct && atomic_dec_and_test(&nfct->use)) 3289 nf_conntrack_destroy(nfct); 3290} 3291static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3292{ 3293 if (nfct) 3294 atomic_inc(&nfct->use); 3295} 3296#endif 3297#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3298static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3299{ 3300 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3301 kfree(nf_bridge); 3302} 3303static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3304{ 3305 if (nf_bridge) 3306 atomic_inc(&nf_bridge->use); 3307} 3308#endif /* CONFIG_BRIDGE_NETFILTER */ 3309static inline void nf_reset(struct sk_buff *skb) 3310{ 3311#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3312 nf_conntrack_put(skb->nfct); 3313 skb->nfct = NULL; 3314#endif 3315#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3316 nf_bridge_put(skb->nf_bridge); 3317 skb->nf_bridge = NULL; 3318#endif 3319} 3320 3321static inline void nf_reset_trace(struct sk_buff *skb) 3322{ 3323#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3324 skb->nf_trace = 0; 3325#endif 3326} 3327 3328/* Note: This doesn't put any conntrack and bridge info in dst. */ 3329static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3330 bool copy) 3331{ 3332#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3333 dst->nfct = src->nfct; 3334 nf_conntrack_get(src->nfct); 3335 if (copy) 3336 dst->nfctinfo = src->nfctinfo; 3337#endif 3338#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3339 dst->nf_bridge = src->nf_bridge; 3340 nf_bridge_get(src->nf_bridge); 3341#endif 3342#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3343 if (copy) 3344 dst->nf_trace = src->nf_trace; 3345#endif 3346} 3347 3348static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3349{ 3350#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3351 nf_conntrack_put(dst->nfct); 3352#endif 3353#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3354 nf_bridge_put(dst->nf_bridge); 3355#endif 3356 __nf_copy(dst, src, true); 3357} 3358 3359#ifdef CONFIG_NETWORK_SECMARK 3360static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3361{ 3362 to->secmark = from->secmark; 3363} 3364 3365static inline void skb_init_secmark(struct sk_buff *skb) 3366{ 3367 skb->secmark = 0; 3368} 3369#else 3370static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3371{ } 3372 3373static inline void skb_init_secmark(struct sk_buff *skb) 3374{ } 3375#endif 3376 3377static inline bool skb_irq_freeable(const struct sk_buff *skb) 3378{ 3379 return !skb->destructor && 3380#if IS_ENABLED(CONFIG_XFRM) 3381 !skb->sp && 3382#endif 3383#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3384 !skb->nfct && 3385#endif 3386 !skb->_skb_refdst && 3387 !skb_has_frag_list(skb); 3388} 3389 3390static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3391{ 3392 skb->queue_mapping = queue_mapping; 3393} 3394 3395static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3396{ 3397 return skb->queue_mapping; 3398} 3399 3400static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3401{ 3402 to->queue_mapping = from->queue_mapping; 3403} 3404 3405static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3406{ 3407 skb->queue_mapping = rx_queue + 1; 3408} 3409 3410static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3411{ 3412 return skb->queue_mapping - 1; 3413} 3414 3415static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3416{ 3417 return skb->queue_mapping != 0; 3418} 3419 3420static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3421{ 3422#ifdef CONFIG_XFRM 3423 return skb->sp; 3424#else 3425 return NULL; 3426#endif 3427} 3428 3429/* Keeps track of mac header offset relative to skb->head. 3430 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3431 * For non-tunnel skb it points to skb_mac_header() and for 3432 * tunnel skb it points to outer mac header. 3433 * Keeps track of level of encapsulation of network headers. 3434 */ 3435struct skb_gso_cb { 3436 int mac_offset; 3437 int encap_level; 3438 __u16 csum_start; 3439}; 3440#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3441 3442static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3443{ 3444 return (skb_mac_header(inner_skb) - inner_skb->head) - 3445 SKB_GSO_CB(inner_skb)->mac_offset; 3446} 3447 3448static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3449{ 3450 int new_headroom, headroom; 3451 int ret; 3452 3453 headroom = skb_headroom(skb); 3454 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3455 if (ret) 3456 return ret; 3457 3458 new_headroom = skb_headroom(skb); 3459 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3460 return 0; 3461} 3462 3463/* Compute the checksum for a gso segment. First compute the checksum value 3464 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3465 * then add in skb->csum (checksum from csum_start to end of packet). 3466 * skb->csum and csum_start are then updated to reflect the checksum of the 3467 * resultant packet starting from the transport header-- the resultant checksum 3468 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3469 * header. 3470 */ 3471static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3472{ 3473 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3474 skb_transport_offset(skb); 3475 __wsum partial; 3476 3477 partial = csum_partial(skb_transport_header(skb), plen, skb->csum); 3478 skb->csum = res; 3479 SKB_GSO_CB(skb)->csum_start -= plen; 3480 3481 return csum_fold(partial); 3482} 3483 3484static inline bool skb_is_gso(const struct sk_buff *skb) 3485{ 3486 return skb_shinfo(skb)->gso_size; 3487} 3488 3489/* Note: Should be called only if skb_is_gso(skb) is true */ 3490static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3491{ 3492 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3493} 3494 3495void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3496 3497static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3498{ 3499 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3500 * wanted then gso_type will be set. */ 3501 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3502 3503 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3504 unlikely(shinfo->gso_type == 0)) { 3505 __skb_warn_lro_forwarding(skb); 3506 return true; 3507 } 3508 return false; 3509} 3510 3511static inline void skb_forward_csum(struct sk_buff *skb) 3512{ 3513 /* Unfortunately we don't support this one. Any brave souls? */ 3514 if (skb->ip_summed == CHECKSUM_COMPLETE) 3515 skb->ip_summed = CHECKSUM_NONE; 3516} 3517 3518/** 3519 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3520 * @skb: skb to check 3521 * 3522 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3523 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3524 * use this helper, to document places where we make this assertion. 3525 */ 3526static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3527{ 3528#ifdef DEBUG 3529 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3530#endif 3531} 3532 3533bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3534 3535int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3536struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3537 unsigned int transport_len, 3538 __sum16(*skb_chkf)(struct sk_buff *skb)); 3539 3540/** 3541 * skb_head_is_locked - Determine if the skb->head is locked down 3542 * @skb: skb to check 3543 * 3544 * The head on skbs build around a head frag can be removed if they are 3545 * not cloned. This function returns true if the skb head is locked down 3546 * due to either being allocated via kmalloc, or by being a clone with 3547 * multiple references to the head. 3548 */ 3549static inline bool skb_head_is_locked(const struct sk_buff *skb) 3550{ 3551 return !skb->head_frag || skb_cloned(skb); 3552} 3553 3554/** 3555 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3556 * 3557 * @skb: GSO skb 3558 * 3559 * skb_gso_network_seglen is used to determine the real size of the 3560 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3561 * 3562 * The MAC/L2 header is not accounted for. 3563 */ 3564static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3565{ 3566 unsigned int hdr_len = skb_transport_header(skb) - 3567 skb_network_header(skb); 3568 return hdr_len + skb_gso_transport_seglen(skb); 3569} 3570 3571#endif /* __KERNEL__ */ 3572#endif /* _LINUX_SKBUFF_H */