at v4.3 20 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89#ifdef CONFIG_PAGEFLAGS_EXTENDED 90 PG_head, /* A head page */ 91 PG_tail, /* A tail page */ 92#else 93 PG_compound, /* A compound page */ 94#endif 95 PG_swapcache, /* Swap page: swp_entry_t in private */ 96 PG_mappedtodisk, /* Has blocks allocated on-disk */ 97 PG_reclaim, /* To be reclaimed asap */ 98 PG_swapbacked, /* Page is backed by RAM/swap */ 99 PG_unevictable, /* Page is "unevictable" */ 100#ifdef CONFIG_MMU 101 PG_mlocked, /* Page is vma mlocked */ 102#endif 103#ifdef CONFIG_ARCH_USES_PG_UNCACHED 104 PG_uncached, /* Page has been mapped as uncached */ 105#endif 106#ifdef CONFIG_MEMORY_FAILURE 107 PG_hwpoison, /* hardware poisoned page. Don't touch */ 108#endif 109#ifdef CONFIG_TRANSPARENT_HUGEPAGE 110 PG_compound_lock, 111#endif 112#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 113 PG_young, 114 PG_idle, 115#endif 116 __NR_PAGEFLAGS, 117 118 /* Filesystems */ 119 PG_checked = PG_owner_priv_1, 120 121 /* Two page bits are conscripted by FS-Cache to maintain local caching 122 * state. These bits are set on pages belonging to the netfs's inodes 123 * when those inodes are being locally cached. 124 */ 125 PG_fscache = PG_private_2, /* page backed by cache */ 126 127 /* XEN */ 128 /* Pinned in Xen as a read-only pagetable page. */ 129 PG_pinned = PG_owner_priv_1, 130 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 131 PG_savepinned = PG_dirty, 132 /* Has a grant mapping of another (foreign) domain's page. */ 133 PG_foreign = PG_owner_priv_1, 134 135 /* SLOB */ 136 PG_slob_free = PG_private, 137}; 138 139#ifndef __GENERATING_BOUNDS_H 140 141/* 142 * Macros to create function definitions for page flags 143 */ 144#define TESTPAGEFLAG(uname, lname) \ 145static inline int Page##uname(const struct page *page) \ 146 { return test_bit(PG_##lname, &page->flags); } 147 148#define SETPAGEFLAG(uname, lname) \ 149static inline void SetPage##uname(struct page *page) \ 150 { set_bit(PG_##lname, &page->flags); } 151 152#define CLEARPAGEFLAG(uname, lname) \ 153static inline void ClearPage##uname(struct page *page) \ 154 { clear_bit(PG_##lname, &page->flags); } 155 156#define __SETPAGEFLAG(uname, lname) \ 157static inline void __SetPage##uname(struct page *page) \ 158 { __set_bit(PG_##lname, &page->flags); } 159 160#define __CLEARPAGEFLAG(uname, lname) \ 161static inline void __ClearPage##uname(struct page *page) \ 162 { __clear_bit(PG_##lname, &page->flags); } 163 164#define TESTSETFLAG(uname, lname) \ 165static inline int TestSetPage##uname(struct page *page) \ 166 { return test_and_set_bit(PG_##lname, &page->flags); } 167 168#define TESTCLEARFLAG(uname, lname) \ 169static inline int TestClearPage##uname(struct page *page) \ 170 { return test_and_clear_bit(PG_##lname, &page->flags); } 171 172#define __TESTCLEARFLAG(uname, lname) \ 173static inline int __TestClearPage##uname(struct page *page) \ 174 { return __test_and_clear_bit(PG_##lname, &page->flags); } 175 176#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 177 SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) 178 179#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 180 __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) 181 182#define TESTSCFLAG(uname, lname) \ 183 TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) 184 185#define TESTPAGEFLAG_FALSE(uname) \ 186static inline int Page##uname(const struct page *page) { return 0; } 187 188#define SETPAGEFLAG_NOOP(uname) \ 189static inline void SetPage##uname(struct page *page) { } 190 191#define CLEARPAGEFLAG_NOOP(uname) \ 192static inline void ClearPage##uname(struct page *page) { } 193 194#define __CLEARPAGEFLAG_NOOP(uname) \ 195static inline void __ClearPage##uname(struct page *page) { } 196 197#define TESTSETFLAG_FALSE(uname) \ 198static inline int TestSetPage##uname(struct page *page) { return 0; } 199 200#define TESTCLEARFLAG_FALSE(uname) \ 201static inline int TestClearPage##uname(struct page *page) { return 0; } 202 203#define __TESTCLEARFLAG_FALSE(uname) \ 204static inline int __TestClearPage##uname(struct page *page) { return 0; } 205 206#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 207 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 208 209#define TESTSCFLAG_FALSE(uname) \ 210 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 211 212struct page; /* forward declaration */ 213 214TESTPAGEFLAG(Locked, locked) 215PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) 216PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) 217 __SETPAGEFLAG(Referenced, referenced) 218PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) 219PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) 220PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) 221 TESTCLEARFLAG(Active, active) 222__PAGEFLAG(Slab, slab) 223PAGEFLAG(Checked, checked) /* Used by some filesystems */ 224PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ 225PAGEFLAG(SavePinned, savepinned); /* Xen */ 226PAGEFLAG(Foreign, foreign); /* Xen */ 227PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) 228PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) 229 __SETPAGEFLAG(SwapBacked, swapbacked) 230 231__PAGEFLAG(SlobFree, slob_free) 232 233/* 234 * Private page markings that may be used by the filesystem that owns the page 235 * for its own purposes. 236 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 237 */ 238PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) 239 __CLEARPAGEFLAG(Private, private) 240PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) 241PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) 242 243/* 244 * Only test-and-set exist for PG_writeback. The unconditional operators are 245 * risky: they bypass page accounting. 246 */ 247TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) 248PAGEFLAG(MappedToDisk, mappedtodisk) 249 250/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 251PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) 252PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim) 253 254#ifdef CONFIG_HIGHMEM 255/* 256 * Must use a macro here due to header dependency issues. page_zone() is not 257 * available at this point. 258 */ 259#define PageHighMem(__p) is_highmem(page_zone(__p)) 260#else 261PAGEFLAG_FALSE(HighMem) 262#endif 263 264#ifdef CONFIG_SWAP 265PAGEFLAG(SwapCache, swapcache) 266#else 267PAGEFLAG_FALSE(SwapCache) 268#endif 269 270PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) 271 TESTCLEARFLAG(Unevictable, unevictable) 272 273#ifdef CONFIG_MMU 274PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) 275 TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) 276#else 277PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 278 TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) 279#endif 280 281#ifdef CONFIG_ARCH_USES_PG_UNCACHED 282PAGEFLAG(Uncached, uncached) 283#else 284PAGEFLAG_FALSE(Uncached) 285#endif 286 287#ifdef CONFIG_MEMORY_FAILURE 288PAGEFLAG(HWPoison, hwpoison) 289TESTSCFLAG(HWPoison, hwpoison) 290#define __PG_HWPOISON (1UL << PG_hwpoison) 291#else 292PAGEFLAG_FALSE(HWPoison) 293#define __PG_HWPOISON 0 294#endif 295 296#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 297TESTPAGEFLAG(Young, young) 298SETPAGEFLAG(Young, young) 299TESTCLEARFLAG(Young, young) 300PAGEFLAG(Idle, idle) 301#endif 302 303/* 304 * On an anonymous page mapped into a user virtual memory area, 305 * page->mapping points to its anon_vma, not to a struct address_space; 306 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 307 * 308 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 309 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 310 * and then page->mapping points, not to an anon_vma, but to a private 311 * structure which KSM associates with that merged page. See ksm.h. 312 * 313 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 314 * 315 * Please note that, confusingly, "page_mapping" refers to the inode 316 * address_space which maps the page from disk; whereas "page_mapped" 317 * refers to user virtual address space into which the page is mapped. 318 */ 319#define PAGE_MAPPING_ANON 1 320#define PAGE_MAPPING_KSM 2 321#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 322 323static inline int PageAnon(struct page *page) 324{ 325 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 326} 327 328#ifdef CONFIG_KSM 329/* 330 * A KSM page is one of those write-protected "shared pages" or "merged pages" 331 * which KSM maps into multiple mms, wherever identical anonymous page content 332 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 333 * anon_vma, but to that page's node of the stable tree. 334 */ 335static inline int PageKsm(struct page *page) 336{ 337 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 338 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 339} 340#else 341TESTPAGEFLAG_FALSE(Ksm) 342#endif 343 344u64 stable_page_flags(struct page *page); 345 346static inline int PageUptodate(struct page *page) 347{ 348 int ret = test_bit(PG_uptodate, &(page)->flags); 349 350 /* 351 * Must ensure that the data we read out of the page is loaded 352 * _after_ we've loaded page->flags to check for PageUptodate. 353 * We can skip the barrier if the page is not uptodate, because 354 * we wouldn't be reading anything from it. 355 * 356 * See SetPageUptodate() for the other side of the story. 357 */ 358 if (ret) 359 smp_rmb(); 360 361 return ret; 362} 363 364static inline void __SetPageUptodate(struct page *page) 365{ 366 smp_wmb(); 367 __set_bit(PG_uptodate, &(page)->flags); 368} 369 370static inline void SetPageUptodate(struct page *page) 371{ 372 /* 373 * Memory barrier must be issued before setting the PG_uptodate bit, 374 * so that all previous stores issued in order to bring the page 375 * uptodate are actually visible before PageUptodate becomes true. 376 */ 377 smp_wmb(); 378 set_bit(PG_uptodate, &(page)->flags); 379} 380 381CLEARPAGEFLAG(Uptodate, uptodate) 382 383int test_clear_page_writeback(struct page *page); 384int __test_set_page_writeback(struct page *page, bool keep_write); 385 386#define test_set_page_writeback(page) \ 387 __test_set_page_writeback(page, false) 388#define test_set_page_writeback_keepwrite(page) \ 389 __test_set_page_writeback(page, true) 390 391static inline void set_page_writeback(struct page *page) 392{ 393 test_set_page_writeback(page); 394} 395 396static inline void set_page_writeback_keepwrite(struct page *page) 397{ 398 test_set_page_writeback_keepwrite(page); 399} 400 401#ifdef CONFIG_PAGEFLAGS_EXTENDED 402/* 403 * System with lots of page flags available. This allows separate 404 * flags for PageHead() and PageTail() checks of compound pages so that bit 405 * tests can be used in performance sensitive paths. PageCompound is 406 * generally not used in hot code paths except arch/powerpc/mm/init_64.c 407 * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages 408 * and avoid handling those in real mode. 409 */ 410__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) 411__PAGEFLAG(Tail, tail) 412 413static inline int PageCompound(struct page *page) 414{ 415 return page->flags & ((1L << PG_head) | (1L << PG_tail)); 416 417} 418#ifdef CONFIG_TRANSPARENT_HUGEPAGE 419static inline void ClearPageCompound(struct page *page) 420{ 421 BUG_ON(!PageHead(page)); 422 ClearPageHead(page); 423} 424#endif 425 426#define PG_head_mask ((1L << PG_head)) 427 428#else 429/* 430 * Reduce page flag use as much as possible by overlapping 431 * compound page flags with the flags used for page cache pages. Possible 432 * because PageCompound is always set for compound pages and not for 433 * pages on the LRU and/or pagecache. 434 */ 435TESTPAGEFLAG(Compound, compound) 436__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound) 437 438/* 439 * PG_reclaim is used in combination with PG_compound to mark the 440 * head and tail of a compound page. This saves one page flag 441 * but makes it impossible to use compound pages for the page cache. 442 * The PG_reclaim bit would have to be used for reclaim or readahead 443 * if compound pages enter the page cache. 444 * 445 * PG_compound & PG_reclaim => Tail page 446 * PG_compound & ~PG_reclaim => Head page 447 */ 448#define PG_head_mask ((1L << PG_compound)) 449#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) 450 451static inline int PageHead(struct page *page) 452{ 453 return ((page->flags & PG_head_tail_mask) == PG_head_mask); 454} 455 456static inline int PageTail(struct page *page) 457{ 458 return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); 459} 460 461static inline void __SetPageTail(struct page *page) 462{ 463 page->flags |= PG_head_tail_mask; 464} 465 466static inline void __ClearPageTail(struct page *page) 467{ 468 page->flags &= ~PG_head_tail_mask; 469} 470 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE 472static inline void ClearPageCompound(struct page *page) 473{ 474 BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); 475 clear_bit(PG_compound, &page->flags); 476} 477#endif 478 479#endif /* !PAGEFLAGS_EXTENDED */ 480 481#ifdef CONFIG_HUGETLB_PAGE 482int PageHuge(struct page *page); 483int PageHeadHuge(struct page *page); 484bool page_huge_active(struct page *page); 485#else 486TESTPAGEFLAG_FALSE(Huge) 487TESTPAGEFLAG_FALSE(HeadHuge) 488 489static inline bool page_huge_active(struct page *page) 490{ 491 return 0; 492} 493#endif 494 495 496#ifdef CONFIG_TRANSPARENT_HUGEPAGE 497/* 498 * PageHuge() only returns true for hugetlbfs pages, but not for 499 * normal or transparent huge pages. 500 * 501 * PageTransHuge() returns true for both transparent huge and 502 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 503 * called only in the core VM paths where hugetlbfs pages can't exist. 504 */ 505static inline int PageTransHuge(struct page *page) 506{ 507 VM_BUG_ON_PAGE(PageTail(page), page); 508 return PageHead(page); 509} 510 511/* 512 * PageTransCompound returns true for both transparent huge pages 513 * and hugetlbfs pages, so it should only be called when it's known 514 * that hugetlbfs pages aren't involved. 515 */ 516static inline int PageTransCompound(struct page *page) 517{ 518 return PageCompound(page); 519} 520 521/* 522 * PageTransTail returns true for both transparent huge pages 523 * and hugetlbfs pages, so it should only be called when it's known 524 * that hugetlbfs pages aren't involved. 525 */ 526static inline int PageTransTail(struct page *page) 527{ 528 return PageTail(page); 529} 530 531#else 532 533static inline int PageTransHuge(struct page *page) 534{ 535 return 0; 536} 537 538static inline int PageTransCompound(struct page *page) 539{ 540 return 0; 541} 542 543static inline int PageTransTail(struct page *page) 544{ 545 return 0; 546} 547#endif 548 549/* 550 * PageBuddy() indicate that the page is free and in the buddy system 551 * (see mm/page_alloc.c). 552 * 553 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 554 * -2 so that an underflow of the page_mapcount() won't be mistaken 555 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 556 * efficiently by most CPU architectures. 557 */ 558#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 559 560static inline int PageBuddy(struct page *page) 561{ 562 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 563} 564 565static inline void __SetPageBuddy(struct page *page) 566{ 567 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 568 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 569} 570 571static inline void __ClearPageBuddy(struct page *page) 572{ 573 VM_BUG_ON_PAGE(!PageBuddy(page), page); 574 atomic_set(&page->_mapcount, -1); 575} 576 577#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 578 579static inline int PageBalloon(struct page *page) 580{ 581 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 582} 583 584static inline void __SetPageBalloon(struct page *page) 585{ 586 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 587 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 588} 589 590static inline void __ClearPageBalloon(struct page *page) 591{ 592 VM_BUG_ON_PAGE(!PageBalloon(page), page); 593 atomic_set(&page->_mapcount, -1); 594} 595 596/* 597 * If network-based swap is enabled, sl*b must keep track of whether pages 598 * were allocated from pfmemalloc reserves. 599 */ 600static inline int PageSlabPfmemalloc(struct page *page) 601{ 602 VM_BUG_ON_PAGE(!PageSlab(page), page); 603 return PageActive(page); 604} 605 606static inline void SetPageSlabPfmemalloc(struct page *page) 607{ 608 VM_BUG_ON_PAGE(!PageSlab(page), page); 609 SetPageActive(page); 610} 611 612static inline void __ClearPageSlabPfmemalloc(struct page *page) 613{ 614 VM_BUG_ON_PAGE(!PageSlab(page), page); 615 __ClearPageActive(page); 616} 617 618static inline void ClearPageSlabPfmemalloc(struct page *page) 619{ 620 VM_BUG_ON_PAGE(!PageSlab(page), page); 621 ClearPageActive(page); 622} 623 624#ifdef CONFIG_MMU 625#define __PG_MLOCKED (1 << PG_mlocked) 626#else 627#define __PG_MLOCKED 0 628#endif 629 630#ifdef CONFIG_TRANSPARENT_HUGEPAGE 631#define __PG_COMPOUND_LOCK (1 << PG_compound_lock) 632#else 633#define __PG_COMPOUND_LOCK 0 634#endif 635 636/* 637 * Flags checked when a page is freed. Pages being freed should not have 638 * these flags set. It they are, there is a problem. 639 */ 640#define PAGE_FLAGS_CHECK_AT_FREE \ 641 (1 << PG_lru | 1 << PG_locked | \ 642 1 << PG_private | 1 << PG_private_2 | \ 643 1 << PG_writeback | 1 << PG_reserved | \ 644 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 645 1 << PG_unevictable | __PG_MLOCKED | \ 646 __PG_COMPOUND_LOCK) 647 648/* 649 * Flags checked when a page is prepped for return by the page allocator. 650 * Pages being prepped should not have these flags set. It they are set, 651 * there has been a kernel bug or struct page corruption. 652 * 653 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 654 * alloc-free cycle to prevent from reusing the page. 655 */ 656#define PAGE_FLAGS_CHECK_AT_PREP \ 657 (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 658 659#define PAGE_FLAGS_PRIVATE \ 660 (1 << PG_private | 1 << PG_private_2) 661/** 662 * page_has_private - Determine if page has private stuff 663 * @page: The page to be checked 664 * 665 * Determine if a page has private stuff, indicating that release routines 666 * should be invoked upon it. 667 */ 668static inline int page_has_private(struct page *page) 669{ 670 return !!(page->flags & PAGE_FLAGS_PRIVATE); 671} 672 673#endif /* !__GENERATING_BOUNDS_H */ 674 675#endif /* PAGE_FLAGS_H */