Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62#endif
63 MIGRATE_TYPES
64};
65
66#ifdef CONFIG_CMA
67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68#else
69# define is_migrate_cma(migratetype) false
70#endif
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76extern int page_group_by_mobility_disabled;
77
78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81#define get_pageblock_migratetype(page) \
82 get_pfnblock_flags_mask(page, page_to_pfn(page), \
83 PB_migrate_end, MIGRATETYPE_MASK)
84
85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86{
87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 MIGRATETYPE_MASK);
90}
91
92struct free_area {
93 struct list_head free_list[MIGRATE_TYPES];
94 unsigned long nr_free;
95};
96
97struct pglist_data;
98
99/*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105#if defined(CONFIG_SMP)
106struct zone_padding {
107 char x[0];
108} ____cacheline_internodealigned_in_smp;
109#define ZONE_PADDING(name) struct zone_padding name;
110#else
111#define ZONE_PADDING(name)
112#endif
113
114enum zone_stat_item {
115 /* First 128 byte cacheline (assuming 64 bit words) */
116 NR_FREE_PAGES,
117 NR_ALLOC_BATCH,
118 NR_LRU_BASE,
119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 NR_ACTIVE_ANON, /* " " " " " */
121 NR_INACTIVE_FILE, /* " " " " " */
122 NR_ACTIVE_FILE, /* " " " " " */
123 NR_UNEVICTABLE, /* " " " " " */
124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
125 NR_ANON_PAGES, /* Mapped anonymous pages */
126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
127 only modified from process context */
128 NR_FILE_PAGES,
129 NR_FILE_DIRTY,
130 NR_WRITEBACK,
131 NR_SLAB_RECLAIMABLE,
132 NR_SLAB_UNRECLAIMABLE,
133 NR_PAGETABLE, /* used for pagetables */
134 NR_KERNEL_STACK,
135 /* Second 128 byte cacheline */
136 NR_UNSTABLE_NFS, /* NFS unstable pages */
137 NR_BOUNCE,
138 NR_VMSCAN_WRITE,
139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
144 NR_DIRTIED, /* page dirtyings since bootup */
145 NR_WRITTEN, /* page writings since bootup */
146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
147#ifdef CONFIG_NUMA
148 NUMA_HIT, /* allocated in intended node */
149 NUMA_MISS, /* allocated in non intended node */
150 NUMA_FOREIGN, /* was intended here, hit elsewhere */
151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
152 NUMA_LOCAL, /* allocation from local node */
153 NUMA_OTHER, /* allocation from other node */
154#endif
155 WORKINGSET_REFAULT,
156 WORKINGSET_ACTIVATE,
157 WORKINGSET_NODERECLAIM,
158 NR_ANON_TRANSPARENT_HUGEPAGES,
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162/*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171#define LRU_BASE 0
172#define LRU_ACTIVE 1
173#define LRU_FILE 2
174
175enum lru_list {
176 LRU_INACTIVE_ANON = LRU_BASE,
177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 LRU_UNEVICTABLE,
181 NR_LRU_LISTS
182};
183
184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188static inline int is_file_lru(enum lru_list lru)
189{
190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191}
192
193static inline int is_active_lru(enum lru_list lru)
194{
195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196}
197
198static inline int is_unevictable_lru(enum lru_list lru)
199{
200 return (lru == LRU_UNEVICTABLE);
201}
202
203struct zone_reclaim_stat {
204 /*
205 * The pageout code in vmscan.c keeps track of how many of the
206 * mem/swap backed and file backed pages are referenced.
207 * The higher the rotated/scanned ratio, the more valuable
208 * that cache is.
209 *
210 * The anon LRU stats live in [0], file LRU stats in [1]
211 */
212 unsigned long recent_rotated[2];
213 unsigned long recent_scanned[2];
214};
215
216struct lruvec {
217 struct list_head lists[NR_LRU_LISTS];
218 struct zone_reclaim_stat reclaim_stat;
219#ifdef CONFIG_MEMCG
220 struct zone *zone;
221#endif
222};
223
224/* Mask used at gathering information at once (see memcontrol.c) */
225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
228
229/* Isolate clean file */
230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
231/* Isolate unmapped file */
232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
233/* Isolate for asynchronous migration */
234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
235/* Isolate unevictable pages */
236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
237
238/* LRU Isolation modes. */
239typedef unsigned __bitwise__ isolate_mode_t;
240
241enum zone_watermarks {
242 WMARK_MIN,
243 WMARK_LOW,
244 WMARK_HIGH,
245 NR_WMARK
246};
247
248#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252struct per_cpu_pages {
253 int count; /* number of pages in the list */
254 int high; /* high watermark, emptying needed */
255 int batch; /* chunk size for buddy add/remove */
256
257 /* Lists of pages, one per migrate type stored on the pcp-lists */
258 struct list_head lists[MIGRATE_PCPTYPES];
259};
260
261struct per_cpu_pageset {
262 struct per_cpu_pages pcp;
263#ifdef CONFIG_NUMA
264 s8 expire;
265#endif
266#ifdef CONFIG_SMP
267 s8 stat_threshold;
268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269#endif
270};
271
272#endif /* !__GENERATING_BOUNDS.H */
273
274enum zone_type {
275#ifdef CONFIG_ZONE_DMA
276 /*
277 * ZONE_DMA is used when there are devices that are not able
278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 * carve out the portion of memory that is needed for these devices.
280 * The range is arch specific.
281 *
282 * Some examples
283 *
284 * Architecture Limit
285 * ---------------------------
286 * parisc, ia64, sparc <4G
287 * s390 <2G
288 * arm Various
289 * alpha Unlimited or 0-16MB.
290 *
291 * i386, x86_64 and multiple other arches
292 * <16M.
293 */
294 ZONE_DMA,
295#endif
296#ifdef CONFIG_ZONE_DMA32
297 /*
298 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 * only able to do DMA to the lower 16M but also 32 bit devices that
300 * can only do DMA areas below 4G.
301 */
302 ZONE_DMA32,
303#endif
304 /*
305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 * performed on pages in ZONE_NORMAL if the DMA devices support
307 * transfers to all addressable memory.
308 */
309 ZONE_NORMAL,
310#ifdef CONFIG_HIGHMEM
311 /*
312 * A memory area that is only addressable by the kernel through
313 * mapping portions into its own address space. This is for example
314 * used by i386 to allow the kernel to address the memory beyond
315 * 900MB. The kernel will set up special mappings (page
316 * table entries on i386) for each page that the kernel needs to
317 * access.
318 */
319 ZONE_HIGHMEM,
320#endif
321 ZONE_MOVABLE,
322#ifdef CONFIG_ZONE_DEVICE
323 ZONE_DEVICE,
324#endif
325 __MAX_NR_ZONES
326
327};
328
329#ifndef __GENERATING_BOUNDS_H
330
331struct zone {
332 /* Read-mostly fields */
333
334 /* zone watermarks, access with *_wmark_pages(zone) macros */
335 unsigned long watermark[NR_WMARK];
336
337 /*
338 * We don't know if the memory that we're going to allocate will be freeable
339 * or/and it will be released eventually, so to avoid totally wasting several
340 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
341 * to run OOM on the lower zones despite there's tons of freeable ram
342 * on the higher zones). This array is recalculated at runtime if the
343 * sysctl_lowmem_reserve_ratio sysctl changes.
344 */
345 long lowmem_reserve[MAX_NR_ZONES];
346
347#ifdef CONFIG_NUMA
348 int node;
349#endif
350
351 /*
352 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
353 * this zone's LRU. Maintained by the pageout code.
354 */
355 unsigned int inactive_ratio;
356
357 struct pglist_data *zone_pgdat;
358 struct per_cpu_pageset __percpu *pageset;
359
360 /*
361 * This is a per-zone reserve of pages that should not be
362 * considered dirtyable memory.
363 */
364 unsigned long dirty_balance_reserve;
365
366#ifndef CONFIG_SPARSEMEM
367 /*
368 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
369 * In SPARSEMEM, this map is stored in struct mem_section
370 */
371 unsigned long *pageblock_flags;
372#endif /* CONFIG_SPARSEMEM */
373
374#ifdef CONFIG_NUMA
375 /*
376 * zone reclaim becomes active if more unmapped pages exist.
377 */
378 unsigned long min_unmapped_pages;
379 unsigned long min_slab_pages;
380#endif /* CONFIG_NUMA */
381
382 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
383 unsigned long zone_start_pfn;
384
385 /*
386 * spanned_pages is the total pages spanned by the zone, including
387 * holes, which is calculated as:
388 * spanned_pages = zone_end_pfn - zone_start_pfn;
389 *
390 * present_pages is physical pages existing within the zone, which
391 * is calculated as:
392 * present_pages = spanned_pages - absent_pages(pages in holes);
393 *
394 * managed_pages is present pages managed by the buddy system, which
395 * is calculated as (reserved_pages includes pages allocated by the
396 * bootmem allocator):
397 * managed_pages = present_pages - reserved_pages;
398 *
399 * So present_pages may be used by memory hotplug or memory power
400 * management logic to figure out unmanaged pages by checking
401 * (present_pages - managed_pages). And managed_pages should be used
402 * by page allocator and vm scanner to calculate all kinds of watermarks
403 * and thresholds.
404 *
405 * Locking rules:
406 *
407 * zone_start_pfn and spanned_pages are protected by span_seqlock.
408 * It is a seqlock because it has to be read outside of zone->lock,
409 * and it is done in the main allocator path. But, it is written
410 * quite infrequently.
411 *
412 * The span_seq lock is declared along with zone->lock because it is
413 * frequently read in proximity to zone->lock. It's good to
414 * give them a chance of being in the same cacheline.
415 *
416 * Write access to present_pages at runtime should be protected by
417 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
418 * present_pages should get_online_mems() to get a stable value.
419 *
420 * Read access to managed_pages should be safe because it's unsigned
421 * long. Write access to zone->managed_pages and totalram_pages are
422 * protected by managed_page_count_lock at runtime. Idealy only
423 * adjust_managed_page_count() should be used instead of directly
424 * touching zone->managed_pages and totalram_pages.
425 */
426 unsigned long managed_pages;
427 unsigned long spanned_pages;
428 unsigned long present_pages;
429
430 const char *name;
431
432 /*
433 * Number of MIGRATE_RESERVE page block. To maintain for just
434 * optimization. Protected by zone->lock.
435 */
436 int nr_migrate_reserve_block;
437
438#ifdef CONFIG_MEMORY_ISOLATION
439 /*
440 * Number of isolated pageblock. It is used to solve incorrect
441 * freepage counting problem due to racy retrieving migratetype
442 * of pageblock. Protected by zone->lock.
443 */
444 unsigned long nr_isolate_pageblock;
445#endif
446
447#ifdef CONFIG_MEMORY_HOTPLUG
448 /* see spanned/present_pages for more description */
449 seqlock_t span_seqlock;
450#endif
451
452 /*
453 * wait_table -- the array holding the hash table
454 * wait_table_hash_nr_entries -- the size of the hash table array
455 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
456 *
457 * The purpose of all these is to keep track of the people
458 * waiting for a page to become available and make them
459 * runnable again when possible. The trouble is that this
460 * consumes a lot of space, especially when so few things
461 * wait on pages at a given time. So instead of using
462 * per-page waitqueues, we use a waitqueue hash table.
463 *
464 * The bucket discipline is to sleep on the same queue when
465 * colliding and wake all in that wait queue when removing.
466 * When something wakes, it must check to be sure its page is
467 * truly available, a la thundering herd. The cost of a
468 * collision is great, but given the expected load of the
469 * table, they should be so rare as to be outweighed by the
470 * benefits from the saved space.
471 *
472 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
473 * primary users of these fields, and in mm/page_alloc.c
474 * free_area_init_core() performs the initialization of them.
475 */
476 wait_queue_head_t *wait_table;
477 unsigned long wait_table_hash_nr_entries;
478 unsigned long wait_table_bits;
479
480 ZONE_PADDING(_pad1_)
481 /* free areas of different sizes */
482 struct free_area free_area[MAX_ORDER];
483
484 /* zone flags, see below */
485 unsigned long flags;
486
487 /* Write-intensive fields used from the page allocator */
488 spinlock_t lock;
489
490 ZONE_PADDING(_pad2_)
491
492 /* Write-intensive fields used by page reclaim */
493
494 /* Fields commonly accessed by the page reclaim scanner */
495 spinlock_t lru_lock;
496 struct lruvec lruvec;
497
498 /* Evictions & activations on the inactive file list */
499 atomic_long_t inactive_age;
500
501 /*
502 * When free pages are below this point, additional steps are taken
503 * when reading the number of free pages to avoid per-cpu counter
504 * drift allowing watermarks to be breached
505 */
506 unsigned long percpu_drift_mark;
507
508#if defined CONFIG_COMPACTION || defined CONFIG_CMA
509 /* pfn where compaction free scanner should start */
510 unsigned long compact_cached_free_pfn;
511 /* pfn where async and sync compaction migration scanner should start */
512 unsigned long compact_cached_migrate_pfn[2];
513#endif
514
515#ifdef CONFIG_COMPACTION
516 /*
517 * On compaction failure, 1<<compact_defer_shift compactions
518 * are skipped before trying again. The number attempted since
519 * last failure is tracked with compact_considered.
520 */
521 unsigned int compact_considered;
522 unsigned int compact_defer_shift;
523 int compact_order_failed;
524#endif
525
526#if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 /* Set to true when the PG_migrate_skip bits should be cleared */
528 bool compact_blockskip_flush;
529#endif
530
531 ZONE_PADDING(_pad3_)
532 /* Zone statistics */
533 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
534} ____cacheline_internodealigned_in_smp;
535
536enum zone_flags {
537 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
538 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
539 ZONE_CONGESTED, /* zone has many dirty pages backed by
540 * a congested BDI
541 */
542 ZONE_DIRTY, /* reclaim scanning has recently found
543 * many dirty file pages at the tail
544 * of the LRU.
545 */
546 ZONE_WRITEBACK, /* reclaim scanning has recently found
547 * many pages under writeback
548 */
549 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
550};
551
552static inline unsigned long zone_end_pfn(const struct zone *zone)
553{
554 return zone->zone_start_pfn + zone->spanned_pages;
555}
556
557static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
558{
559 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
560}
561
562static inline bool zone_is_initialized(struct zone *zone)
563{
564 return !!zone->wait_table;
565}
566
567static inline bool zone_is_empty(struct zone *zone)
568{
569 return zone->spanned_pages == 0;
570}
571
572/*
573 * The "priority" of VM scanning is how much of the queues we will scan in one
574 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
575 * queues ("queue_length >> 12") during an aging round.
576 */
577#define DEF_PRIORITY 12
578
579/* Maximum number of zones on a zonelist */
580#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
581
582#ifdef CONFIG_NUMA
583
584/*
585 * The NUMA zonelists are doubled because we need zonelists that restrict the
586 * allocations to a single node for __GFP_THISNODE.
587 *
588 * [0] : Zonelist with fallback
589 * [1] : No fallback (__GFP_THISNODE)
590 */
591#define MAX_ZONELISTS 2
592
593
594/*
595 * We cache key information from each zonelist for smaller cache
596 * footprint when scanning for free pages in get_page_from_freelist().
597 *
598 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
599 * up short of free memory since the last time (last_fullzone_zap)
600 * we zero'd fullzones.
601 * 2) The array z_to_n[] maps each zone in the zonelist to its node
602 * id, so that we can efficiently evaluate whether that node is
603 * set in the current tasks mems_allowed.
604 *
605 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
606 * indexed by a zones offset in the zonelist zones[] array.
607 *
608 * The get_page_from_freelist() routine does two scans. During the
609 * first scan, we skip zones whose corresponding bit in 'fullzones'
610 * is set or whose corresponding node in current->mems_allowed (which
611 * comes from cpusets) is not set. During the second scan, we bypass
612 * this zonelist_cache, to ensure we look methodically at each zone.
613 *
614 * Once per second, we zero out (zap) fullzones, forcing us to
615 * reconsider nodes that might have regained more free memory.
616 * The field last_full_zap is the time we last zapped fullzones.
617 *
618 * This mechanism reduces the amount of time we waste repeatedly
619 * reexaming zones for free memory when they just came up low on
620 * memory momentarilly ago.
621 *
622 * The zonelist_cache struct members logically belong in struct
623 * zonelist. However, the mempolicy zonelists constructed for
624 * MPOL_BIND are intentionally variable length (and usually much
625 * shorter). A general purpose mechanism for handling structs with
626 * multiple variable length members is more mechanism than we want
627 * here. We resort to some special case hackery instead.
628 *
629 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
630 * part because they are shorter), so we put the fixed length stuff
631 * at the front of the zonelist struct, ending in a variable length
632 * zones[], as is needed by MPOL_BIND.
633 *
634 * Then we put the optional zonelist cache on the end of the zonelist
635 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
636 * the fixed length portion at the front of the struct. This pointer
637 * both enables us to find the zonelist cache, and in the case of
638 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
639 * to know that the zonelist cache is not there.
640 *
641 * The end result is that struct zonelists come in two flavors:
642 * 1) The full, fixed length version, shown below, and
643 * 2) The custom zonelists for MPOL_BIND.
644 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
645 *
646 * Even though there may be multiple CPU cores on a node modifying
647 * fullzones or last_full_zap in the same zonelist_cache at the same
648 * time, we don't lock it. This is just hint data - if it is wrong now
649 * and then, the allocator will still function, perhaps a bit slower.
650 */
651
652
653struct zonelist_cache {
654 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
655 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
656 unsigned long last_full_zap; /* when last zap'd (jiffies) */
657};
658#else
659#define MAX_ZONELISTS 1
660struct zonelist_cache;
661#endif
662
663/*
664 * This struct contains information about a zone in a zonelist. It is stored
665 * here to avoid dereferences into large structures and lookups of tables
666 */
667struct zoneref {
668 struct zone *zone; /* Pointer to actual zone */
669 int zone_idx; /* zone_idx(zoneref->zone) */
670};
671
672/*
673 * One allocation request operates on a zonelist. A zonelist
674 * is a list of zones, the first one is the 'goal' of the
675 * allocation, the other zones are fallback zones, in decreasing
676 * priority.
677 *
678 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
679 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
680 * *
681 * To speed the reading of the zonelist, the zonerefs contain the zone index
682 * of the entry being read. Helper functions to access information given
683 * a struct zoneref are
684 *
685 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
686 * zonelist_zone_idx() - Return the index of the zone for an entry
687 * zonelist_node_idx() - Return the index of the node for an entry
688 */
689struct zonelist {
690 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
691 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
692#ifdef CONFIG_NUMA
693 struct zonelist_cache zlcache; // optional ...
694#endif
695};
696
697#ifndef CONFIG_DISCONTIGMEM
698/* The array of struct pages - for discontigmem use pgdat->lmem_map */
699extern struct page *mem_map;
700#endif
701
702/*
703 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
704 * (mostly NUMA machines?) to denote a higher-level memory zone than the
705 * zone denotes.
706 *
707 * On NUMA machines, each NUMA node would have a pg_data_t to describe
708 * it's memory layout.
709 *
710 * Memory statistics and page replacement data structures are maintained on a
711 * per-zone basis.
712 */
713struct bootmem_data;
714typedef struct pglist_data {
715 struct zone node_zones[MAX_NR_ZONES];
716 struct zonelist node_zonelists[MAX_ZONELISTS];
717 int nr_zones;
718#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
719 struct page *node_mem_map;
720#ifdef CONFIG_PAGE_EXTENSION
721 struct page_ext *node_page_ext;
722#endif
723#endif
724#ifndef CONFIG_NO_BOOTMEM
725 struct bootmem_data *bdata;
726#endif
727#ifdef CONFIG_MEMORY_HOTPLUG
728 /*
729 * Must be held any time you expect node_start_pfn, node_present_pages
730 * or node_spanned_pages stay constant. Holding this will also
731 * guarantee that any pfn_valid() stays that way.
732 *
733 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
734 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
735 *
736 * Nests above zone->lock and zone->span_seqlock
737 */
738 spinlock_t node_size_lock;
739#endif
740 unsigned long node_start_pfn;
741 unsigned long node_present_pages; /* total number of physical pages */
742 unsigned long node_spanned_pages; /* total size of physical page
743 range, including holes */
744 int node_id;
745 wait_queue_head_t kswapd_wait;
746 wait_queue_head_t pfmemalloc_wait;
747 struct task_struct *kswapd; /* Protected by
748 mem_hotplug_begin/end() */
749 int kswapd_max_order;
750 enum zone_type classzone_idx;
751#ifdef CONFIG_NUMA_BALANCING
752 /* Lock serializing the migrate rate limiting window */
753 spinlock_t numabalancing_migrate_lock;
754
755 /* Rate limiting time interval */
756 unsigned long numabalancing_migrate_next_window;
757
758 /* Number of pages migrated during the rate limiting time interval */
759 unsigned long numabalancing_migrate_nr_pages;
760#endif
761
762#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 /*
764 * If memory initialisation on large machines is deferred then this
765 * is the first PFN that needs to be initialised.
766 */
767 unsigned long first_deferred_pfn;
768#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769} pg_data_t;
770
771#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
772#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
773#ifdef CONFIG_FLAT_NODE_MEM_MAP
774#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
775#else
776#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
777#endif
778#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
779
780#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
781#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
782
783static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
784{
785 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
786}
787
788static inline bool pgdat_is_empty(pg_data_t *pgdat)
789{
790 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
791}
792
793static inline int zone_id(const struct zone *zone)
794{
795 struct pglist_data *pgdat = zone->zone_pgdat;
796
797 return zone - pgdat->node_zones;
798}
799
800#ifdef CONFIG_ZONE_DEVICE
801static inline bool is_dev_zone(const struct zone *zone)
802{
803 return zone_id(zone) == ZONE_DEVICE;
804}
805#else
806static inline bool is_dev_zone(const struct zone *zone)
807{
808 return false;
809}
810#endif
811
812#include <linux/memory_hotplug.h>
813
814extern struct mutex zonelists_mutex;
815void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
816void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
817bool zone_watermark_ok(struct zone *z, unsigned int order,
818 unsigned long mark, int classzone_idx, int alloc_flags);
819bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
820 unsigned long mark, int classzone_idx, int alloc_flags);
821enum memmap_context {
822 MEMMAP_EARLY,
823 MEMMAP_HOTPLUG,
824};
825extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
826 unsigned long size,
827 enum memmap_context context);
828
829extern void lruvec_init(struct lruvec *lruvec);
830
831static inline struct zone *lruvec_zone(struct lruvec *lruvec)
832{
833#ifdef CONFIG_MEMCG
834 return lruvec->zone;
835#else
836 return container_of(lruvec, struct zone, lruvec);
837#endif
838}
839
840#ifdef CONFIG_HAVE_MEMORY_PRESENT
841void memory_present(int nid, unsigned long start, unsigned long end);
842#else
843static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
844#endif
845
846#ifdef CONFIG_HAVE_MEMORYLESS_NODES
847int local_memory_node(int node_id);
848#else
849static inline int local_memory_node(int node_id) { return node_id; };
850#endif
851
852#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
853unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
854#endif
855
856/*
857 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
858 */
859#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
860
861static inline int populated_zone(struct zone *zone)
862{
863 return (!!zone->present_pages);
864}
865
866extern int movable_zone;
867
868#ifdef CONFIG_HIGHMEM
869static inline int zone_movable_is_highmem(void)
870{
871#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
872 return movable_zone == ZONE_HIGHMEM;
873#else
874 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
875#endif
876}
877#endif
878
879static inline int is_highmem_idx(enum zone_type idx)
880{
881#ifdef CONFIG_HIGHMEM
882 return (idx == ZONE_HIGHMEM ||
883 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
884#else
885 return 0;
886#endif
887}
888
889/**
890 * is_highmem - helper function to quickly check if a struct zone is a
891 * highmem zone or not. This is an attempt to keep references
892 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
893 * @zone - pointer to struct zone variable
894 */
895static inline int is_highmem(struct zone *zone)
896{
897#ifdef CONFIG_HIGHMEM
898 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
899 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
900 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
901 zone_movable_is_highmem());
902#else
903 return 0;
904#endif
905}
906
907/* These two functions are used to setup the per zone pages min values */
908struct ctl_table;
909int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
910 void __user *, size_t *, loff_t *);
911extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
912int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
913 void __user *, size_t *, loff_t *);
914int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
915 void __user *, size_t *, loff_t *);
916int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
917 void __user *, size_t *, loff_t *);
918int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
919 void __user *, size_t *, loff_t *);
920
921extern int numa_zonelist_order_handler(struct ctl_table *, int,
922 void __user *, size_t *, loff_t *);
923extern char numa_zonelist_order[];
924#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
925
926#ifndef CONFIG_NEED_MULTIPLE_NODES
927
928extern struct pglist_data contig_page_data;
929#define NODE_DATA(nid) (&contig_page_data)
930#define NODE_MEM_MAP(nid) mem_map
931
932#else /* CONFIG_NEED_MULTIPLE_NODES */
933
934#include <asm/mmzone.h>
935
936#endif /* !CONFIG_NEED_MULTIPLE_NODES */
937
938extern struct pglist_data *first_online_pgdat(void);
939extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
940extern struct zone *next_zone(struct zone *zone);
941
942/**
943 * for_each_online_pgdat - helper macro to iterate over all online nodes
944 * @pgdat - pointer to a pg_data_t variable
945 */
946#define for_each_online_pgdat(pgdat) \
947 for (pgdat = first_online_pgdat(); \
948 pgdat; \
949 pgdat = next_online_pgdat(pgdat))
950/**
951 * for_each_zone - helper macro to iterate over all memory zones
952 * @zone - pointer to struct zone variable
953 *
954 * The user only needs to declare the zone variable, for_each_zone
955 * fills it in.
956 */
957#define for_each_zone(zone) \
958 for (zone = (first_online_pgdat())->node_zones; \
959 zone; \
960 zone = next_zone(zone))
961
962#define for_each_populated_zone(zone) \
963 for (zone = (first_online_pgdat())->node_zones; \
964 zone; \
965 zone = next_zone(zone)) \
966 if (!populated_zone(zone)) \
967 ; /* do nothing */ \
968 else
969
970static inline struct zone *zonelist_zone(struct zoneref *zoneref)
971{
972 return zoneref->zone;
973}
974
975static inline int zonelist_zone_idx(struct zoneref *zoneref)
976{
977 return zoneref->zone_idx;
978}
979
980static inline int zonelist_node_idx(struct zoneref *zoneref)
981{
982#ifdef CONFIG_NUMA
983 /* zone_to_nid not available in this context */
984 return zoneref->zone->node;
985#else
986 return 0;
987#endif /* CONFIG_NUMA */
988}
989
990/**
991 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
992 * @z - The cursor used as a starting point for the search
993 * @highest_zoneidx - The zone index of the highest zone to return
994 * @nodes - An optional nodemask to filter the zonelist with
995 *
996 * This function returns the next zone at or below a given zone index that is
997 * within the allowed nodemask using a cursor as the starting point for the
998 * search. The zoneref returned is a cursor that represents the current zone
999 * being examined. It should be advanced by one before calling
1000 * next_zones_zonelist again.
1001 */
1002struct zoneref *next_zones_zonelist(struct zoneref *z,
1003 enum zone_type highest_zoneidx,
1004 nodemask_t *nodes);
1005
1006/**
1007 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1008 * @zonelist - The zonelist to search for a suitable zone
1009 * @highest_zoneidx - The zone index of the highest zone to return
1010 * @nodes - An optional nodemask to filter the zonelist with
1011 * @zone - The first suitable zone found is returned via this parameter
1012 *
1013 * This function returns the first zone at or below a given zone index that is
1014 * within the allowed nodemask. The zoneref returned is a cursor that can be
1015 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1016 * one before calling.
1017 */
1018static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1019 enum zone_type highest_zoneidx,
1020 nodemask_t *nodes,
1021 struct zone **zone)
1022{
1023 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
1024 highest_zoneidx, nodes);
1025 *zone = zonelist_zone(z);
1026 return z;
1027}
1028
1029/**
1030 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1031 * @zone - The current zone in the iterator
1032 * @z - The current pointer within zonelist->zones being iterated
1033 * @zlist - The zonelist being iterated
1034 * @highidx - The zone index of the highest zone to return
1035 * @nodemask - Nodemask allowed by the allocator
1036 *
1037 * This iterator iterates though all zones at or below a given zone index and
1038 * within a given nodemask
1039 */
1040#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1041 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1042 zone; \
1043 z = next_zones_zonelist(++z, highidx, nodemask), \
1044 zone = zonelist_zone(z)) \
1045
1046/**
1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1048 * @zone - The current zone in the iterator
1049 * @z - The current pointer within zonelist->zones being iterated
1050 * @zlist - The zonelist being iterated
1051 * @highidx - The zone index of the highest zone to return
1052 *
1053 * This iterator iterates though all zones at or below a given zone index.
1054 */
1055#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1056 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057
1058#ifdef CONFIG_SPARSEMEM
1059#include <asm/sparsemem.h>
1060#endif
1061
1062#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1063 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1064static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065{
1066 return 0;
1067}
1068#endif
1069
1070#ifdef CONFIG_FLATMEM
1071#define pfn_to_nid(pfn) (0)
1072#endif
1073
1074#ifdef CONFIG_SPARSEMEM
1075
1076/*
1077 * SECTION_SHIFT #bits space required to store a section #
1078 *
1079 * PA_SECTION_SHIFT physical address to/from section number
1080 * PFN_SECTION_SHIFT pfn to/from section number
1081 */
1082#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1083#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1084
1085#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1086
1087#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1088#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1089
1090#define SECTION_BLOCKFLAGS_BITS \
1091 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1092
1093#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1094#error Allocator MAX_ORDER exceeds SECTION_SIZE
1095#endif
1096
1097#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1098#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1099
1100#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1101#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1102
1103struct page;
1104struct page_ext;
1105struct mem_section {
1106 /*
1107 * This is, logically, a pointer to an array of struct
1108 * pages. However, it is stored with some other magic.
1109 * (see sparse.c::sparse_init_one_section())
1110 *
1111 * Additionally during early boot we encode node id of
1112 * the location of the section here to guide allocation.
1113 * (see sparse.c::memory_present())
1114 *
1115 * Making it a UL at least makes someone do a cast
1116 * before using it wrong.
1117 */
1118 unsigned long section_mem_map;
1119
1120 /* See declaration of similar field in struct zone */
1121 unsigned long *pageblock_flags;
1122#ifdef CONFIG_PAGE_EXTENSION
1123 /*
1124 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1125 * section. (see page_ext.h about this.)
1126 */
1127 struct page_ext *page_ext;
1128 unsigned long pad;
1129#endif
1130 /*
1131 * WARNING: mem_section must be a power-of-2 in size for the
1132 * calculation and use of SECTION_ROOT_MASK to make sense.
1133 */
1134};
1135
1136#ifdef CONFIG_SPARSEMEM_EXTREME
1137#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1138#else
1139#define SECTIONS_PER_ROOT 1
1140#endif
1141
1142#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1143#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1144#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1145
1146#ifdef CONFIG_SPARSEMEM_EXTREME
1147extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1148#else
1149extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1150#endif
1151
1152static inline struct mem_section *__nr_to_section(unsigned long nr)
1153{
1154 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1155 return NULL;
1156 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1157}
1158extern int __section_nr(struct mem_section* ms);
1159extern unsigned long usemap_size(void);
1160
1161/*
1162 * We use the lower bits of the mem_map pointer to store
1163 * a little bit of information. There should be at least
1164 * 3 bits here due to 32-bit alignment.
1165 */
1166#define SECTION_MARKED_PRESENT (1UL<<0)
1167#define SECTION_HAS_MEM_MAP (1UL<<1)
1168#define SECTION_MAP_LAST_BIT (1UL<<2)
1169#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1170#define SECTION_NID_SHIFT 2
1171
1172static inline struct page *__section_mem_map_addr(struct mem_section *section)
1173{
1174 unsigned long map = section->section_mem_map;
1175 map &= SECTION_MAP_MASK;
1176 return (struct page *)map;
1177}
1178
1179static inline int present_section(struct mem_section *section)
1180{
1181 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1182}
1183
1184static inline int present_section_nr(unsigned long nr)
1185{
1186 return present_section(__nr_to_section(nr));
1187}
1188
1189static inline int valid_section(struct mem_section *section)
1190{
1191 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1192}
1193
1194static inline int valid_section_nr(unsigned long nr)
1195{
1196 return valid_section(__nr_to_section(nr));
1197}
1198
1199static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1200{
1201 return __nr_to_section(pfn_to_section_nr(pfn));
1202}
1203
1204#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1205static inline int pfn_valid(unsigned long pfn)
1206{
1207 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1208 return 0;
1209 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1210}
1211#endif
1212
1213static inline int pfn_present(unsigned long pfn)
1214{
1215 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1216 return 0;
1217 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1218}
1219
1220/*
1221 * These are _only_ used during initialisation, therefore they
1222 * can use __initdata ... They could have names to indicate
1223 * this restriction.
1224 */
1225#ifdef CONFIG_NUMA
1226#define pfn_to_nid(pfn) \
1227({ \
1228 unsigned long __pfn_to_nid_pfn = (pfn); \
1229 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1230})
1231#else
1232#define pfn_to_nid(pfn) (0)
1233#endif
1234
1235#define early_pfn_valid(pfn) pfn_valid(pfn)
1236void sparse_init(void);
1237#else
1238#define sparse_init() do {} while (0)
1239#define sparse_index_init(_sec, _nid) do {} while (0)
1240#endif /* CONFIG_SPARSEMEM */
1241
1242/*
1243 * During memory init memblocks map pfns to nids. The search is expensive and
1244 * this caches recent lookups. The implementation of __early_pfn_to_nid
1245 * may treat start/end as pfns or sections.
1246 */
1247struct mminit_pfnnid_cache {
1248 unsigned long last_start;
1249 unsigned long last_end;
1250 int last_nid;
1251};
1252
1253#ifndef early_pfn_valid
1254#define early_pfn_valid(pfn) (1)
1255#endif
1256
1257void memory_present(int nid, unsigned long start, unsigned long end);
1258unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1259
1260/*
1261 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1262 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1263 * pfn_valid_within() should be used in this case; we optimise this away
1264 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1265 */
1266#ifdef CONFIG_HOLES_IN_ZONE
1267#define pfn_valid_within(pfn) pfn_valid(pfn)
1268#else
1269#define pfn_valid_within(pfn) (1)
1270#endif
1271
1272#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1273/*
1274 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1275 * associated with it or not. In FLATMEM, it is expected that holes always
1276 * have valid memmap as long as there is valid PFNs either side of the hole.
1277 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1278 * entire section.
1279 *
1280 * However, an ARM, and maybe other embedded architectures in the future
1281 * free memmap backing holes to save memory on the assumption the memmap is
1282 * never used. The page_zone linkages are then broken even though pfn_valid()
1283 * returns true. A walker of the full memmap must then do this additional
1284 * check to ensure the memmap they are looking at is sane by making sure
1285 * the zone and PFN linkages are still valid. This is expensive, but walkers
1286 * of the full memmap are extremely rare.
1287 */
1288int memmap_valid_within(unsigned long pfn,
1289 struct page *page, struct zone *zone);
1290#else
1291static inline int memmap_valid_within(unsigned long pfn,
1292 struct page *page, struct zone *zone)
1293{
1294 return 1;
1295}
1296#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1297
1298#endif /* !__GENERATING_BOUNDS.H */
1299#endif /* !__ASSEMBLY__ */
1300#endif /* _LINUX_MMZONE_H */