at v4.3 16 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/uprobes.h> 14#include <linux/page-flags-layout.h> 15#include <asm/page.h> 16#include <asm/mmu.h> 17 18#ifndef AT_VECTOR_SIZE_ARCH 19#define AT_VECTOR_SIZE_ARCH 0 20#endif 21#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 22 23struct address_space; 24struct mem_cgroup; 25 26#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27#define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 29#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 30 31typedef void compound_page_dtor(struct page *); 32 33/* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * The objects in struct page are organized in double word blocks in 41 * order to allows us to use atomic double word operations on portions 42 * of struct page. That is currently only used by slub but the arrangement 43 * allows the use of atomic double word operations on the flags/mapping 44 * and lru list pointers also. 45 */ 46struct page { 47 /* First double word block */ 48 unsigned long flags; /* Atomic flags, some possibly 49 * updated asynchronously */ 50 union { 51 struct address_space *mapping; /* If low bit clear, points to 52 * inode address_space, or NULL. 53 * If page mapped as anonymous 54 * memory, low bit is set, and 55 * it points to anon_vma object: 56 * see PAGE_MAPPING_ANON below. 57 */ 58 void *s_mem; /* slab first object */ 59 }; 60 61 /* Second double word */ 62 struct { 63 union { 64 pgoff_t index; /* Our offset within mapping. */ 65 void *freelist; /* sl[aou]b first free object */ 66 }; 67 68 union { 69#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 70 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 71 /* Used for cmpxchg_double in slub */ 72 unsigned long counters; 73#else 74 /* 75 * Keep _count separate from slub cmpxchg_double data. 76 * As the rest of the double word is protected by 77 * slab_lock but _count is not. 78 */ 79 unsigned counters; 80#endif 81 82 struct { 83 84 union { 85 /* 86 * Count of ptes mapped in 87 * mms, to show when page is 88 * mapped & limit reverse map 89 * searches. 90 * 91 * Used also for tail pages 92 * refcounting instead of 93 * _count. Tail pages cannot 94 * be mapped and keeping the 95 * tail page _count zero at 96 * all times guarantees 97 * get_page_unless_zero() will 98 * never succeed on tail 99 * pages. 100 */ 101 atomic_t _mapcount; 102 103 struct { /* SLUB */ 104 unsigned inuse:16; 105 unsigned objects:15; 106 unsigned frozen:1; 107 }; 108 int units; /* SLOB */ 109 }; 110 atomic_t _count; /* Usage count, see below. */ 111 }; 112 unsigned int active; /* SLAB */ 113 }; 114 }; 115 116 /* Third double word block */ 117 union { 118 struct list_head lru; /* Pageout list, eg. active_list 119 * protected by zone->lru_lock ! 120 * Can be used as a generic list 121 * by the page owner. 122 */ 123 struct { /* slub per cpu partial pages */ 124 struct page *next; /* Next partial slab */ 125#ifdef CONFIG_64BIT 126 int pages; /* Nr of partial slabs left */ 127 int pobjects; /* Approximate # of objects */ 128#else 129 short int pages; 130 short int pobjects; 131#endif 132 }; 133 134 struct slab *slab_page; /* slab fields */ 135 struct rcu_head rcu_head; /* Used by SLAB 136 * when destroying via RCU 137 */ 138 /* First tail page of compound page */ 139 struct { 140 compound_page_dtor *compound_dtor; 141 unsigned long compound_order; 142 }; 143 144#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 145 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 146#endif 147 }; 148 149 /* Remainder is not double word aligned */ 150 union { 151 unsigned long private; /* Mapping-private opaque data: 152 * usually used for buffer_heads 153 * if PagePrivate set; used for 154 * swp_entry_t if PageSwapCache; 155 * indicates order in the buddy 156 * system if PG_buddy is set. 157 */ 158#if USE_SPLIT_PTE_PTLOCKS 159#if ALLOC_SPLIT_PTLOCKS 160 spinlock_t *ptl; 161#else 162 spinlock_t ptl; 163#endif 164#endif 165 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 166 struct page *first_page; /* Compound tail pages */ 167 }; 168 169#ifdef CONFIG_MEMCG 170 struct mem_cgroup *mem_cgroup; 171#endif 172 173 /* 174 * On machines where all RAM is mapped into kernel address space, 175 * we can simply calculate the virtual address. On machines with 176 * highmem some memory is mapped into kernel virtual memory 177 * dynamically, so we need a place to store that address. 178 * Note that this field could be 16 bits on x86 ... ;) 179 * 180 * Architectures with slow multiplication can define 181 * WANT_PAGE_VIRTUAL in asm/page.h 182 */ 183#if defined(WANT_PAGE_VIRTUAL) 184 void *virtual; /* Kernel virtual address (NULL if 185 not kmapped, ie. highmem) */ 186#endif /* WANT_PAGE_VIRTUAL */ 187 188#ifdef CONFIG_KMEMCHECK 189 /* 190 * kmemcheck wants to track the status of each byte in a page; this 191 * is a pointer to such a status block. NULL if not tracked. 192 */ 193 void *shadow; 194#endif 195 196#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 197 int _last_cpupid; 198#endif 199} 200/* 201 * The struct page can be forced to be double word aligned so that atomic ops 202 * on double words work. The SLUB allocator can make use of such a feature. 203 */ 204#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 205 __aligned(2 * sizeof(unsigned long)) 206#endif 207; 208 209struct page_frag { 210 struct page *page; 211#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 212 __u32 offset; 213 __u32 size; 214#else 215 __u16 offset; 216 __u16 size; 217#endif 218}; 219 220#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 221#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 222 223struct page_frag_cache { 224 void * va; 225#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 226 __u16 offset; 227 __u16 size; 228#else 229 __u32 offset; 230#endif 231 /* we maintain a pagecount bias, so that we dont dirty cache line 232 * containing page->_count every time we allocate a fragment. 233 */ 234 unsigned int pagecnt_bias; 235 bool pfmemalloc; 236}; 237 238typedef unsigned long vm_flags_t; 239 240/* 241 * A region containing a mapping of a non-memory backed file under NOMMU 242 * conditions. These are held in a global tree and are pinned by the VMAs that 243 * map parts of them. 244 */ 245struct vm_region { 246 struct rb_node vm_rb; /* link in global region tree */ 247 vm_flags_t vm_flags; /* VMA vm_flags */ 248 unsigned long vm_start; /* start address of region */ 249 unsigned long vm_end; /* region initialised to here */ 250 unsigned long vm_top; /* region allocated to here */ 251 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 252 struct file *vm_file; /* the backing file or NULL */ 253 254 int vm_usage; /* region usage count (access under nommu_region_sem) */ 255 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 256 * this region */ 257}; 258 259#ifdef CONFIG_USERFAULTFD 260#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 261struct vm_userfaultfd_ctx { 262 struct userfaultfd_ctx *ctx; 263}; 264#else /* CONFIG_USERFAULTFD */ 265#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 266struct vm_userfaultfd_ctx {}; 267#endif /* CONFIG_USERFAULTFD */ 268 269/* 270 * This struct defines a memory VMM memory area. There is one of these 271 * per VM-area/task. A VM area is any part of the process virtual memory 272 * space that has a special rule for the page-fault handlers (ie a shared 273 * library, the executable area etc). 274 */ 275struct vm_area_struct { 276 /* The first cache line has the info for VMA tree walking. */ 277 278 unsigned long vm_start; /* Our start address within vm_mm. */ 279 unsigned long vm_end; /* The first byte after our end address 280 within vm_mm. */ 281 282 /* linked list of VM areas per task, sorted by address */ 283 struct vm_area_struct *vm_next, *vm_prev; 284 285 struct rb_node vm_rb; 286 287 /* 288 * Largest free memory gap in bytes to the left of this VMA. 289 * Either between this VMA and vma->vm_prev, or between one of the 290 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 291 * get_unmapped_area find a free area of the right size. 292 */ 293 unsigned long rb_subtree_gap; 294 295 /* Second cache line starts here. */ 296 297 struct mm_struct *vm_mm; /* The address space we belong to. */ 298 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 299 unsigned long vm_flags; /* Flags, see mm.h. */ 300 301 /* 302 * For areas with an address space and backing store, 303 * linkage into the address_space->i_mmap interval tree. 304 */ 305 struct { 306 struct rb_node rb; 307 unsigned long rb_subtree_last; 308 } shared; 309 310 /* 311 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 312 * list, after a COW of one of the file pages. A MAP_SHARED vma 313 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 314 * or brk vma (with NULL file) can only be in an anon_vma list. 315 */ 316 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 317 * page_table_lock */ 318 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 319 320 /* Function pointers to deal with this struct. */ 321 const struct vm_operations_struct *vm_ops; 322 323 /* Information about our backing store: */ 324 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 325 units, *not* PAGE_CACHE_SIZE */ 326 struct file * vm_file; /* File we map to (can be NULL). */ 327 void * vm_private_data; /* was vm_pte (shared mem) */ 328 329#ifndef CONFIG_MMU 330 struct vm_region *vm_region; /* NOMMU mapping region */ 331#endif 332#ifdef CONFIG_NUMA 333 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 334#endif 335 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 336}; 337 338struct core_thread { 339 struct task_struct *task; 340 struct core_thread *next; 341}; 342 343struct core_state { 344 atomic_t nr_threads; 345 struct core_thread dumper; 346 struct completion startup; 347}; 348 349enum { 350 MM_FILEPAGES, 351 MM_ANONPAGES, 352 MM_SWAPENTS, 353 NR_MM_COUNTERS 354}; 355 356#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 357#define SPLIT_RSS_COUNTING 358/* per-thread cached information, */ 359struct task_rss_stat { 360 int events; /* for synchronization threshold */ 361 int count[NR_MM_COUNTERS]; 362}; 363#endif /* USE_SPLIT_PTE_PTLOCKS */ 364 365struct mm_rss_stat { 366 atomic_long_t count[NR_MM_COUNTERS]; 367}; 368 369struct kioctx_table; 370struct mm_struct { 371 struct vm_area_struct *mmap; /* list of VMAs */ 372 struct rb_root mm_rb; 373 u32 vmacache_seqnum; /* per-thread vmacache */ 374#ifdef CONFIG_MMU 375 unsigned long (*get_unmapped_area) (struct file *filp, 376 unsigned long addr, unsigned long len, 377 unsigned long pgoff, unsigned long flags); 378#endif 379 unsigned long mmap_base; /* base of mmap area */ 380 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 381 unsigned long task_size; /* size of task vm space */ 382 unsigned long highest_vm_end; /* highest vma end address */ 383 pgd_t * pgd; 384 atomic_t mm_users; /* How many users with user space? */ 385 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 386 atomic_long_t nr_ptes; /* PTE page table pages */ 387#if CONFIG_PGTABLE_LEVELS > 2 388 atomic_long_t nr_pmds; /* PMD page table pages */ 389#endif 390 int map_count; /* number of VMAs */ 391 392 spinlock_t page_table_lock; /* Protects page tables and some counters */ 393 struct rw_semaphore mmap_sem; 394 395 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 396 * together off init_mm.mmlist, and are protected 397 * by mmlist_lock 398 */ 399 400 401 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 402 unsigned long hiwater_vm; /* High-water virtual memory usage */ 403 404 unsigned long total_vm; /* Total pages mapped */ 405 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 406 unsigned long pinned_vm; /* Refcount permanently increased */ 407 unsigned long shared_vm; /* Shared pages (files) */ 408 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 409 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 410 unsigned long def_flags; 411 unsigned long start_code, end_code, start_data, end_data; 412 unsigned long start_brk, brk, start_stack; 413 unsigned long arg_start, arg_end, env_start, env_end; 414 415 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 416 417 /* 418 * Special counters, in some configurations protected by the 419 * page_table_lock, in other configurations by being atomic. 420 */ 421 struct mm_rss_stat rss_stat; 422 423 struct linux_binfmt *binfmt; 424 425 cpumask_var_t cpu_vm_mask_var; 426 427 /* Architecture-specific MM context */ 428 mm_context_t context; 429 430 unsigned long flags; /* Must use atomic bitops to access the bits */ 431 432 struct core_state *core_state; /* coredumping support */ 433#ifdef CONFIG_AIO 434 spinlock_t ioctx_lock; 435 struct kioctx_table __rcu *ioctx_table; 436#endif 437#ifdef CONFIG_MEMCG 438 /* 439 * "owner" points to a task that is regarded as the canonical 440 * user/owner of this mm. All of the following must be true in 441 * order for it to be changed: 442 * 443 * current == mm->owner 444 * current->mm != mm 445 * new_owner->mm == mm 446 * new_owner->alloc_lock is held 447 */ 448 struct task_struct __rcu *owner; 449#endif 450 451 /* store ref to file /proc/<pid>/exe symlink points to */ 452 struct file __rcu *exe_file; 453#ifdef CONFIG_MMU_NOTIFIER 454 struct mmu_notifier_mm *mmu_notifier_mm; 455#endif 456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 457 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 458#endif 459#ifdef CONFIG_CPUMASK_OFFSTACK 460 struct cpumask cpumask_allocation; 461#endif 462#ifdef CONFIG_NUMA_BALANCING 463 /* 464 * numa_next_scan is the next time that the PTEs will be marked 465 * pte_numa. NUMA hinting faults will gather statistics and migrate 466 * pages to new nodes if necessary. 467 */ 468 unsigned long numa_next_scan; 469 470 /* Restart point for scanning and setting pte_numa */ 471 unsigned long numa_scan_offset; 472 473 /* numa_scan_seq prevents two threads setting pte_numa */ 474 int numa_scan_seq; 475#endif 476#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 477 /* 478 * An operation with batched TLB flushing is going on. Anything that 479 * can move process memory needs to flush the TLB when moving a 480 * PROT_NONE or PROT_NUMA mapped page. 481 */ 482 bool tlb_flush_pending; 483#endif 484 struct uprobes_state uprobes_state; 485#ifdef CONFIG_X86_INTEL_MPX 486 /* address of the bounds directory */ 487 void __user *bd_addr; 488#endif 489}; 490 491static inline void mm_init_cpumask(struct mm_struct *mm) 492{ 493#ifdef CONFIG_CPUMASK_OFFSTACK 494 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 495#endif 496 cpumask_clear(mm->cpu_vm_mask_var); 497} 498 499/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 500static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 501{ 502 return mm->cpu_vm_mask_var; 503} 504 505#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 506/* 507 * Memory barriers to keep this state in sync are graciously provided by 508 * the page table locks, outside of which no page table modifications happen. 509 * The barriers below prevent the compiler from re-ordering the instructions 510 * around the memory barriers that are already present in the code. 511 */ 512static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 513{ 514 barrier(); 515 return mm->tlb_flush_pending; 516} 517static inline void set_tlb_flush_pending(struct mm_struct *mm) 518{ 519 mm->tlb_flush_pending = true; 520 521 /* 522 * Guarantee that the tlb_flush_pending store does not leak into the 523 * critical section updating the page tables 524 */ 525 smp_mb__before_spinlock(); 526} 527/* Clearing is done after a TLB flush, which also provides a barrier. */ 528static inline void clear_tlb_flush_pending(struct mm_struct *mm) 529{ 530 barrier(); 531 mm->tlb_flush_pending = false; 532} 533#else 534static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 535{ 536 return false; 537} 538static inline void set_tlb_flush_pending(struct mm_struct *mm) 539{ 540} 541static inline void clear_tlb_flush_pending(struct mm_struct *mm) 542{ 543} 544#endif 545 546struct vm_special_mapping 547{ 548 const char *name; 549 struct page **pages; 550}; 551 552enum tlb_flush_reason { 553 TLB_FLUSH_ON_TASK_SWITCH, 554 TLB_REMOTE_SHOOTDOWN, 555 TLB_LOCAL_SHOOTDOWN, 556 TLB_LOCAL_MM_SHOOTDOWN, 557 TLB_REMOTE_SEND_IPI, 558 NR_TLB_FLUSH_REASONS, 559}; 560 561 /* 562 * A swap entry has to fit into a "unsigned long", as the entry is hidden 563 * in the "index" field of the swapper address space. 564 */ 565typedef struct { 566 unsigned long val; 567} swp_entry_t; 568 569#endif /* _LINUX_MM_TYPES_H */