Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24
25struct mempolicy;
26struct anon_vma;
27struct anon_vma_chain;
28struct file_ra_state;
29struct user_struct;
30struct writeback_control;
31struct bdi_writeback;
32
33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34extern unsigned long max_mapnr;
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
42#endif
43
44extern unsigned long totalram_pages;
45extern void * high_memory;
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
54#include <asm/page.h>
55#include <asm/pgtable.h>
56#include <asm/processor.h>
57
58#ifndef __pa_symbol
59#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60#endif
61
62/*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69#ifndef mm_forbids_zeropage
70#define mm_forbids_zeropage(X) (0)
71#endif
72
73extern unsigned long sysctl_user_reserve_kbytes;
74extern unsigned long sysctl_admin_reserve_kbytes;
75
76extern int sysctl_overcommit_memory;
77extern int sysctl_overcommit_ratio;
78extern unsigned long sysctl_overcommit_kbytes;
79
80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
87/* to align the pointer to the (next) page boundary */
88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
93/*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
102extern struct kmem_cache *vm_area_cachep;
103
104#ifndef CONFIG_MMU
105extern struct rb_root nommu_region_tree;
106extern struct rw_semaphore nommu_region_sem;
107
108extern unsigned int kobjsize(const void *objp);
109#endif
110
111/*
112 * vm_flags in vm_area_struct, see mm_types.h.
113 */
114#define VM_NONE 0x00000000
115
116#define VM_READ 0x00000001 /* currently active flags */
117#define VM_WRITE 0x00000002
118#define VM_EXEC 0x00000004
119#define VM_SHARED 0x00000008
120
121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123#define VM_MAYWRITE 0x00000020
124#define VM_MAYEXEC 0x00000040
125#define VM_MAYSHARE 0x00000080
126
127#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
128#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
129#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
130#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
131#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
132
133#define VM_LOCKED 0x00002000
134#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
142#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
143#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
144#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
145#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
146#define VM_ARCH_2 0x02000000
147#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
148
149#ifdef CONFIG_MEM_SOFT_DIRTY
150# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
151#else
152# define VM_SOFTDIRTY 0
153#endif
154
155#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
156#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
157#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
158#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
159
160#if defined(CONFIG_X86)
161# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
162#elif defined(CONFIG_PPC)
163# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
164#elif defined(CONFIG_PARISC)
165# define VM_GROWSUP VM_ARCH_1
166#elif defined(CONFIG_METAG)
167# define VM_GROWSUP VM_ARCH_1
168#elif defined(CONFIG_IA64)
169# define VM_GROWSUP VM_ARCH_1
170#elif !defined(CONFIG_MMU)
171# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
172#endif
173
174#if defined(CONFIG_X86)
175/* MPX specific bounds table or bounds directory */
176# define VM_MPX VM_ARCH_2
177#endif
178
179#ifndef VM_GROWSUP
180# define VM_GROWSUP VM_NONE
181#endif
182
183/* Bits set in the VMA until the stack is in its final location */
184#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
185
186#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
187#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
188#endif
189
190#ifdef CONFIG_STACK_GROWSUP
191#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
192#else
193#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
194#endif
195
196/*
197 * Special vmas that are non-mergable, non-mlock()able.
198 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
199 */
200#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
201
202/* This mask defines which mm->def_flags a process can inherit its parent */
203#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
204
205/*
206 * mapping from the currently active vm_flags protection bits (the
207 * low four bits) to a page protection mask..
208 */
209extern pgprot_t protection_map[16];
210
211#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
212#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
213#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
214#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
215#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
216#define FAULT_FLAG_TRIED 0x20 /* Second try */
217#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
218
219/*
220 * vm_fault is filled by the the pagefault handler and passed to the vma's
221 * ->fault function. The vma's ->fault is responsible for returning a bitmask
222 * of VM_FAULT_xxx flags that give details about how the fault was handled.
223 *
224 * pgoff should be used in favour of virtual_address, if possible.
225 */
226struct vm_fault {
227 unsigned int flags; /* FAULT_FLAG_xxx flags */
228 pgoff_t pgoff; /* Logical page offset based on vma */
229 void __user *virtual_address; /* Faulting virtual address */
230
231 struct page *cow_page; /* Handler may choose to COW */
232 struct page *page; /* ->fault handlers should return a
233 * page here, unless VM_FAULT_NOPAGE
234 * is set (which is also implied by
235 * VM_FAULT_ERROR).
236 */
237 /* for ->map_pages() only */
238 pgoff_t max_pgoff; /* map pages for offset from pgoff till
239 * max_pgoff inclusive */
240 pte_t *pte; /* pte entry associated with ->pgoff */
241};
242
243/*
244 * These are the virtual MM functions - opening of an area, closing and
245 * unmapping it (needed to keep files on disk up-to-date etc), pointer
246 * to the functions called when a no-page or a wp-page exception occurs.
247 */
248struct vm_operations_struct {
249 void (*open)(struct vm_area_struct * area);
250 void (*close)(struct vm_area_struct * area);
251 int (*mremap)(struct vm_area_struct * area);
252 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
253 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
254 pmd_t *, unsigned int flags);
255 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
256
257 /* notification that a previously read-only page is about to become
258 * writable, if an error is returned it will cause a SIGBUS */
259 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
262 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
263
264 /* called by access_process_vm when get_user_pages() fails, typically
265 * for use by special VMAs that can switch between memory and hardware
266 */
267 int (*access)(struct vm_area_struct *vma, unsigned long addr,
268 void *buf, int len, int write);
269
270 /* Called by the /proc/PID/maps code to ask the vma whether it
271 * has a special name. Returning non-NULL will also cause this
272 * vma to be dumped unconditionally. */
273 const char *(*name)(struct vm_area_struct *vma);
274
275#ifdef CONFIG_NUMA
276 /*
277 * set_policy() op must add a reference to any non-NULL @new mempolicy
278 * to hold the policy upon return. Caller should pass NULL @new to
279 * remove a policy and fall back to surrounding context--i.e. do not
280 * install a MPOL_DEFAULT policy, nor the task or system default
281 * mempolicy.
282 */
283 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
284
285 /*
286 * get_policy() op must add reference [mpol_get()] to any policy at
287 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
288 * in mm/mempolicy.c will do this automatically.
289 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
290 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
291 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
292 * must return NULL--i.e., do not "fallback" to task or system default
293 * policy.
294 */
295 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
296 unsigned long addr);
297#endif
298 /*
299 * Called by vm_normal_page() for special PTEs to find the
300 * page for @addr. This is useful if the default behavior
301 * (using pte_page()) would not find the correct page.
302 */
303 struct page *(*find_special_page)(struct vm_area_struct *vma,
304 unsigned long addr);
305};
306
307struct mmu_gather;
308struct inode;
309
310#define page_private(page) ((page)->private)
311#define set_page_private(page, v) ((page)->private = (v))
312
313/*
314 * FIXME: take this include out, include page-flags.h in
315 * files which need it (119 of them)
316 */
317#include <linux/page-flags.h>
318#include <linux/huge_mm.h>
319
320/*
321 * Methods to modify the page usage count.
322 *
323 * What counts for a page usage:
324 * - cache mapping (page->mapping)
325 * - private data (page->private)
326 * - page mapped in a task's page tables, each mapping
327 * is counted separately
328 *
329 * Also, many kernel routines increase the page count before a critical
330 * routine so they can be sure the page doesn't go away from under them.
331 */
332
333/*
334 * Drop a ref, return true if the refcount fell to zero (the page has no users)
335 */
336static inline int put_page_testzero(struct page *page)
337{
338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
339 return atomic_dec_and_test(&page->_count);
340}
341
342/*
343 * Try to grab a ref unless the page has a refcount of zero, return false if
344 * that is the case.
345 * This can be called when MMU is off so it must not access
346 * any of the virtual mappings.
347 */
348static inline int get_page_unless_zero(struct page *page)
349{
350 return atomic_inc_not_zero(&page->_count);
351}
352
353extern int page_is_ram(unsigned long pfn);
354
355enum {
356 REGION_INTERSECTS,
357 REGION_DISJOINT,
358 REGION_MIXED,
359};
360
361int region_intersects(resource_size_t offset, size_t size, const char *type);
362
363/* Support for virtually mapped pages */
364struct page *vmalloc_to_page(const void *addr);
365unsigned long vmalloc_to_pfn(const void *addr);
366
367/*
368 * Determine if an address is within the vmalloc range
369 *
370 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
371 * is no special casing required.
372 */
373static inline int is_vmalloc_addr(const void *x)
374{
375#ifdef CONFIG_MMU
376 unsigned long addr = (unsigned long)x;
377
378 return addr >= VMALLOC_START && addr < VMALLOC_END;
379#else
380 return 0;
381#endif
382}
383#ifdef CONFIG_MMU
384extern int is_vmalloc_or_module_addr(const void *x);
385#else
386static inline int is_vmalloc_or_module_addr(const void *x)
387{
388 return 0;
389}
390#endif
391
392extern void kvfree(const void *addr);
393
394static inline void compound_lock(struct page *page)
395{
396#ifdef CONFIG_TRANSPARENT_HUGEPAGE
397 VM_BUG_ON_PAGE(PageSlab(page), page);
398 bit_spin_lock(PG_compound_lock, &page->flags);
399#endif
400}
401
402static inline void compound_unlock(struct page *page)
403{
404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 VM_BUG_ON_PAGE(PageSlab(page), page);
406 bit_spin_unlock(PG_compound_lock, &page->flags);
407#endif
408}
409
410static inline unsigned long compound_lock_irqsave(struct page *page)
411{
412 unsigned long uninitialized_var(flags);
413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 local_irq_save(flags);
415 compound_lock(page);
416#endif
417 return flags;
418}
419
420static inline void compound_unlock_irqrestore(struct page *page,
421 unsigned long flags)
422{
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 compound_unlock(page);
425 local_irq_restore(flags);
426#endif
427}
428
429static inline struct page *compound_head_by_tail(struct page *tail)
430{
431 struct page *head = tail->first_page;
432
433 /*
434 * page->first_page may be a dangling pointer to an old
435 * compound page, so recheck that it is still a tail
436 * page before returning.
437 */
438 smp_rmb();
439 if (likely(PageTail(tail)))
440 return head;
441 return tail;
442}
443
444/*
445 * Since either compound page could be dismantled asynchronously in THP
446 * or we access asynchronously arbitrary positioned struct page, there
447 * would be tail flag race. To handle this race, we should call
448 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
449 */
450static inline struct page *compound_head(struct page *page)
451{
452 if (unlikely(PageTail(page)))
453 return compound_head_by_tail(page);
454 return page;
455}
456
457/*
458 * If we access compound page synchronously such as access to
459 * allocated page, there is no need to handle tail flag race, so we can
460 * check tail flag directly without any synchronization primitive.
461 */
462static inline struct page *compound_head_fast(struct page *page)
463{
464 if (unlikely(PageTail(page)))
465 return page->first_page;
466 return page;
467}
468
469/*
470 * The atomic page->_mapcount, starts from -1: so that transitions
471 * both from it and to it can be tracked, using atomic_inc_and_test
472 * and atomic_add_negative(-1).
473 */
474static inline void page_mapcount_reset(struct page *page)
475{
476 atomic_set(&(page)->_mapcount, -1);
477}
478
479static inline int page_mapcount(struct page *page)
480{
481 VM_BUG_ON_PAGE(PageSlab(page), page);
482 return atomic_read(&page->_mapcount) + 1;
483}
484
485static inline int page_count(struct page *page)
486{
487 return atomic_read(&compound_head(page)->_count);
488}
489
490static inline bool __compound_tail_refcounted(struct page *page)
491{
492 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
493}
494
495/*
496 * This takes a head page as parameter and tells if the
497 * tail page reference counting can be skipped.
498 *
499 * For this to be safe, PageSlab and PageHeadHuge must remain true on
500 * any given page where they return true here, until all tail pins
501 * have been released.
502 */
503static inline bool compound_tail_refcounted(struct page *page)
504{
505 VM_BUG_ON_PAGE(!PageHead(page), page);
506 return __compound_tail_refcounted(page);
507}
508
509static inline void get_huge_page_tail(struct page *page)
510{
511 /*
512 * __split_huge_page_refcount() cannot run from under us.
513 */
514 VM_BUG_ON_PAGE(!PageTail(page), page);
515 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
516 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
517 if (compound_tail_refcounted(page->first_page))
518 atomic_inc(&page->_mapcount);
519}
520
521extern bool __get_page_tail(struct page *page);
522
523static inline void get_page(struct page *page)
524{
525 if (unlikely(PageTail(page)))
526 if (likely(__get_page_tail(page)))
527 return;
528 /*
529 * Getting a normal page or the head of a compound page
530 * requires to already have an elevated page->_count.
531 */
532 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
533 atomic_inc(&page->_count);
534}
535
536static inline struct page *virt_to_head_page(const void *x)
537{
538 struct page *page = virt_to_page(x);
539
540 /*
541 * We don't need to worry about synchronization of tail flag
542 * when we call virt_to_head_page() since it is only called for
543 * already allocated page and this page won't be freed until
544 * this virt_to_head_page() is finished. So use _fast variant.
545 */
546 return compound_head_fast(page);
547}
548
549/*
550 * Setup the page count before being freed into the page allocator for
551 * the first time (boot or memory hotplug)
552 */
553static inline void init_page_count(struct page *page)
554{
555 atomic_set(&page->_count, 1);
556}
557
558void put_page(struct page *page);
559void put_pages_list(struct list_head *pages);
560
561void split_page(struct page *page, unsigned int order);
562int split_free_page(struct page *page);
563
564/*
565 * Compound pages have a destructor function. Provide a
566 * prototype for that function and accessor functions.
567 * These are _only_ valid on the head of a PG_compound page.
568 */
569
570static inline void set_compound_page_dtor(struct page *page,
571 compound_page_dtor *dtor)
572{
573 page[1].compound_dtor = dtor;
574}
575
576static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
577{
578 return page[1].compound_dtor;
579}
580
581static inline int compound_order(struct page *page)
582{
583 if (!PageHead(page))
584 return 0;
585 return page[1].compound_order;
586}
587
588static inline void set_compound_order(struct page *page, unsigned long order)
589{
590 page[1].compound_order = order;
591}
592
593#ifdef CONFIG_MMU
594/*
595 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
596 * servicing faults for write access. In the normal case, do always want
597 * pte_mkwrite. But get_user_pages can cause write faults for mappings
598 * that do not have writing enabled, when used by access_process_vm.
599 */
600static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
601{
602 if (likely(vma->vm_flags & VM_WRITE))
603 pte = pte_mkwrite(pte);
604 return pte;
605}
606
607void do_set_pte(struct vm_area_struct *vma, unsigned long address,
608 struct page *page, pte_t *pte, bool write, bool anon);
609#endif
610
611/*
612 * Multiple processes may "see" the same page. E.g. for untouched
613 * mappings of /dev/null, all processes see the same page full of
614 * zeroes, and text pages of executables and shared libraries have
615 * only one copy in memory, at most, normally.
616 *
617 * For the non-reserved pages, page_count(page) denotes a reference count.
618 * page_count() == 0 means the page is free. page->lru is then used for
619 * freelist management in the buddy allocator.
620 * page_count() > 0 means the page has been allocated.
621 *
622 * Pages are allocated by the slab allocator in order to provide memory
623 * to kmalloc and kmem_cache_alloc. In this case, the management of the
624 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
625 * unless a particular usage is carefully commented. (the responsibility of
626 * freeing the kmalloc memory is the caller's, of course).
627 *
628 * A page may be used by anyone else who does a __get_free_page().
629 * In this case, page_count still tracks the references, and should only
630 * be used through the normal accessor functions. The top bits of page->flags
631 * and page->virtual store page management information, but all other fields
632 * are unused and could be used privately, carefully. The management of this
633 * page is the responsibility of the one who allocated it, and those who have
634 * subsequently been given references to it.
635 *
636 * The other pages (we may call them "pagecache pages") are completely
637 * managed by the Linux memory manager: I/O, buffers, swapping etc.
638 * The following discussion applies only to them.
639 *
640 * A pagecache page contains an opaque `private' member, which belongs to the
641 * page's address_space. Usually, this is the address of a circular list of
642 * the page's disk buffers. PG_private must be set to tell the VM to call
643 * into the filesystem to release these pages.
644 *
645 * A page may belong to an inode's memory mapping. In this case, page->mapping
646 * is the pointer to the inode, and page->index is the file offset of the page,
647 * in units of PAGE_CACHE_SIZE.
648 *
649 * If pagecache pages are not associated with an inode, they are said to be
650 * anonymous pages. These may become associated with the swapcache, and in that
651 * case PG_swapcache is set, and page->private is an offset into the swapcache.
652 *
653 * In either case (swapcache or inode backed), the pagecache itself holds one
654 * reference to the page. Setting PG_private should also increment the
655 * refcount. The each user mapping also has a reference to the page.
656 *
657 * The pagecache pages are stored in a per-mapping radix tree, which is
658 * rooted at mapping->page_tree, and indexed by offset.
659 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
660 * lists, we instead now tag pages as dirty/writeback in the radix tree.
661 *
662 * All pagecache pages may be subject to I/O:
663 * - inode pages may need to be read from disk,
664 * - inode pages which have been modified and are MAP_SHARED may need
665 * to be written back to the inode on disk,
666 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
667 * modified may need to be swapped out to swap space and (later) to be read
668 * back into memory.
669 */
670
671/*
672 * The zone field is never updated after free_area_init_core()
673 * sets it, so none of the operations on it need to be atomic.
674 */
675
676/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
677#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
678#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
679#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
680#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
681
682/*
683 * Define the bit shifts to access each section. For non-existent
684 * sections we define the shift as 0; that plus a 0 mask ensures
685 * the compiler will optimise away reference to them.
686 */
687#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
688#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
689#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
690#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
691
692/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
693#ifdef NODE_NOT_IN_PAGE_FLAGS
694#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
695#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
696 SECTIONS_PGOFF : ZONES_PGOFF)
697#else
698#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
699#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
700 NODES_PGOFF : ZONES_PGOFF)
701#endif
702
703#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
704
705#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
706#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
707#endif
708
709#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
710#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
711#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
712#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
713#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
714
715static inline enum zone_type page_zonenum(const struct page *page)
716{
717 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
718}
719
720#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
721#define SECTION_IN_PAGE_FLAGS
722#endif
723
724/*
725 * The identification function is mainly used by the buddy allocator for
726 * determining if two pages could be buddies. We are not really identifying
727 * the zone since we could be using the section number id if we do not have
728 * node id available in page flags.
729 * We only guarantee that it will return the same value for two combinable
730 * pages in a zone.
731 */
732static inline int page_zone_id(struct page *page)
733{
734 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
735}
736
737static inline int zone_to_nid(struct zone *zone)
738{
739#ifdef CONFIG_NUMA
740 return zone->node;
741#else
742 return 0;
743#endif
744}
745
746#ifdef NODE_NOT_IN_PAGE_FLAGS
747extern int page_to_nid(const struct page *page);
748#else
749static inline int page_to_nid(const struct page *page)
750{
751 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
752}
753#endif
754
755#ifdef CONFIG_NUMA_BALANCING
756static inline int cpu_pid_to_cpupid(int cpu, int pid)
757{
758 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
759}
760
761static inline int cpupid_to_pid(int cpupid)
762{
763 return cpupid & LAST__PID_MASK;
764}
765
766static inline int cpupid_to_cpu(int cpupid)
767{
768 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
769}
770
771static inline int cpupid_to_nid(int cpupid)
772{
773 return cpu_to_node(cpupid_to_cpu(cpupid));
774}
775
776static inline bool cpupid_pid_unset(int cpupid)
777{
778 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
779}
780
781static inline bool cpupid_cpu_unset(int cpupid)
782{
783 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
784}
785
786static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
787{
788 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
789}
790
791#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
792#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
793static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
794{
795 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
796}
797
798static inline int page_cpupid_last(struct page *page)
799{
800 return page->_last_cpupid;
801}
802static inline void page_cpupid_reset_last(struct page *page)
803{
804 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
805}
806#else
807static inline int page_cpupid_last(struct page *page)
808{
809 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
810}
811
812extern int page_cpupid_xchg_last(struct page *page, int cpupid);
813
814static inline void page_cpupid_reset_last(struct page *page)
815{
816 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
817
818 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
819 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
820}
821#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
822#else /* !CONFIG_NUMA_BALANCING */
823static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
824{
825 return page_to_nid(page); /* XXX */
826}
827
828static inline int page_cpupid_last(struct page *page)
829{
830 return page_to_nid(page); /* XXX */
831}
832
833static inline int cpupid_to_nid(int cpupid)
834{
835 return -1;
836}
837
838static inline int cpupid_to_pid(int cpupid)
839{
840 return -1;
841}
842
843static inline int cpupid_to_cpu(int cpupid)
844{
845 return -1;
846}
847
848static inline int cpu_pid_to_cpupid(int nid, int pid)
849{
850 return -1;
851}
852
853static inline bool cpupid_pid_unset(int cpupid)
854{
855 return 1;
856}
857
858static inline void page_cpupid_reset_last(struct page *page)
859{
860}
861
862static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
863{
864 return false;
865}
866#endif /* CONFIG_NUMA_BALANCING */
867
868static inline struct zone *page_zone(const struct page *page)
869{
870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
871}
872
873#ifdef SECTION_IN_PAGE_FLAGS
874static inline void set_page_section(struct page *page, unsigned long section)
875{
876 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
877 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
878}
879
880static inline unsigned long page_to_section(const struct page *page)
881{
882 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
883}
884#endif
885
886static inline void set_page_zone(struct page *page, enum zone_type zone)
887{
888 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
889 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
890}
891
892static inline void set_page_node(struct page *page, unsigned long node)
893{
894 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
895 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
896}
897
898static inline void set_page_links(struct page *page, enum zone_type zone,
899 unsigned long node, unsigned long pfn)
900{
901 set_page_zone(page, zone);
902 set_page_node(page, node);
903#ifdef SECTION_IN_PAGE_FLAGS
904 set_page_section(page, pfn_to_section_nr(pfn));
905#endif
906}
907
908#ifdef CONFIG_MEMCG
909static inline struct mem_cgroup *page_memcg(struct page *page)
910{
911 return page->mem_cgroup;
912}
913
914static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
915{
916 page->mem_cgroup = memcg;
917}
918#else
919static inline struct mem_cgroup *page_memcg(struct page *page)
920{
921 return NULL;
922}
923
924static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
925{
926}
927#endif
928
929/*
930 * Some inline functions in vmstat.h depend on page_zone()
931 */
932#include <linux/vmstat.h>
933
934static __always_inline void *lowmem_page_address(const struct page *page)
935{
936 return __va(PFN_PHYS(page_to_pfn(page)));
937}
938
939#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
940#define HASHED_PAGE_VIRTUAL
941#endif
942
943#if defined(WANT_PAGE_VIRTUAL)
944static inline void *page_address(const struct page *page)
945{
946 return page->virtual;
947}
948static inline void set_page_address(struct page *page, void *address)
949{
950 page->virtual = address;
951}
952#define page_address_init() do { } while(0)
953#endif
954
955#if defined(HASHED_PAGE_VIRTUAL)
956void *page_address(const struct page *page);
957void set_page_address(struct page *page, void *virtual);
958void page_address_init(void);
959#endif
960
961#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
962#define page_address(page) lowmem_page_address(page)
963#define set_page_address(page, address) do { } while(0)
964#define page_address_init() do { } while(0)
965#endif
966
967extern void *page_rmapping(struct page *page);
968extern struct anon_vma *page_anon_vma(struct page *page);
969extern struct address_space *page_mapping(struct page *page);
970
971extern struct address_space *__page_file_mapping(struct page *);
972
973static inline
974struct address_space *page_file_mapping(struct page *page)
975{
976 if (unlikely(PageSwapCache(page)))
977 return __page_file_mapping(page);
978
979 return page->mapping;
980}
981
982/*
983 * Return the pagecache index of the passed page. Regular pagecache pages
984 * use ->index whereas swapcache pages use ->private
985 */
986static inline pgoff_t page_index(struct page *page)
987{
988 if (unlikely(PageSwapCache(page)))
989 return page_private(page);
990 return page->index;
991}
992
993extern pgoff_t __page_file_index(struct page *page);
994
995/*
996 * Return the file index of the page. Regular pagecache pages use ->index
997 * whereas swapcache pages use swp_offset(->private)
998 */
999static inline pgoff_t page_file_index(struct page *page)
1000{
1001 if (unlikely(PageSwapCache(page)))
1002 return __page_file_index(page);
1003
1004 return page->index;
1005}
1006
1007/*
1008 * Return true if this page is mapped into pagetables.
1009 */
1010static inline int page_mapped(struct page *page)
1011{
1012 return atomic_read(&(page)->_mapcount) >= 0;
1013}
1014
1015/*
1016 * Return true only if the page has been allocated with
1017 * ALLOC_NO_WATERMARKS and the low watermark was not
1018 * met implying that the system is under some pressure.
1019 */
1020static inline bool page_is_pfmemalloc(struct page *page)
1021{
1022 /*
1023 * Page index cannot be this large so this must be
1024 * a pfmemalloc page.
1025 */
1026 return page->index == -1UL;
1027}
1028
1029/*
1030 * Only to be called by the page allocator on a freshly allocated
1031 * page.
1032 */
1033static inline void set_page_pfmemalloc(struct page *page)
1034{
1035 page->index = -1UL;
1036}
1037
1038static inline void clear_page_pfmemalloc(struct page *page)
1039{
1040 page->index = 0;
1041}
1042
1043/*
1044 * Different kinds of faults, as returned by handle_mm_fault().
1045 * Used to decide whether a process gets delivered SIGBUS or
1046 * just gets major/minor fault counters bumped up.
1047 */
1048
1049#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1050
1051#define VM_FAULT_OOM 0x0001
1052#define VM_FAULT_SIGBUS 0x0002
1053#define VM_FAULT_MAJOR 0x0004
1054#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1055#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1056#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1057#define VM_FAULT_SIGSEGV 0x0040
1058
1059#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1060#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1061#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1062#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1063
1064#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1065
1066#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1067 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1068 VM_FAULT_FALLBACK)
1069
1070/* Encode hstate index for a hwpoisoned large page */
1071#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1072#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1073
1074/*
1075 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1076 */
1077extern void pagefault_out_of_memory(void);
1078
1079#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1080
1081/*
1082 * Flags passed to show_mem() and show_free_areas() to suppress output in
1083 * various contexts.
1084 */
1085#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1086
1087extern void show_free_areas(unsigned int flags);
1088extern bool skip_free_areas_node(unsigned int flags, int nid);
1089
1090int shmem_zero_setup(struct vm_area_struct *);
1091#ifdef CONFIG_SHMEM
1092bool shmem_mapping(struct address_space *mapping);
1093#else
1094static inline bool shmem_mapping(struct address_space *mapping)
1095{
1096 return false;
1097}
1098#endif
1099
1100extern int can_do_mlock(void);
1101extern int user_shm_lock(size_t, struct user_struct *);
1102extern void user_shm_unlock(size_t, struct user_struct *);
1103
1104/*
1105 * Parameter block passed down to zap_pte_range in exceptional cases.
1106 */
1107struct zap_details {
1108 struct address_space *check_mapping; /* Check page->mapping if set */
1109 pgoff_t first_index; /* Lowest page->index to unmap */
1110 pgoff_t last_index; /* Highest page->index to unmap */
1111};
1112
1113struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1114 pte_t pte);
1115
1116int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1117 unsigned long size);
1118void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1119 unsigned long size, struct zap_details *);
1120void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1121 unsigned long start, unsigned long end);
1122
1123/**
1124 * mm_walk - callbacks for walk_page_range
1125 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1126 * this handler is required to be able to handle
1127 * pmd_trans_huge() pmds. They may simply choose to
1128 * split_huge_page() instead of handling it explicitly.
1129 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1130 * @pte_hole: if set, called for each hole at all levels
1131 * @hugetlb_entry: if set, called for each hugetlb entry
1132 * @test_walk: caller specific callback function to determine whether
1133 * we walk over the current vma or not. A positive returned
1134 * value means "do page table walk over the current vma,"
1135 * and a negative one means "abort current page table walk
1136 * right now." 0 means "skip the current vma."
1137 * @mm: mm_struct representing the target process of page table walk
1138 * @vma: vma currently walked (NULL if walking outside vmas)
1139 * @private: private data for callbacks' usage
1140 *
1141 * (see the comment on walk_page_range() for more details)
1142 */
1143struct mm_walk {
1144 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1145 unsigned long next, struct mm_walk *walk);
1146 int (*pte_entry)(pte_t *pte, unsigned long addr,
1147 unsigned long next, struct mm_walk *walk);
1148 int (*pte_hole)(unsigned long addr, unsigned long next,
1149 struct mm_walk *walk);
1150 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1151 unsigned long addr, unsigned long next,
1152 struct mm_walk *walk);
1153 int (*test_walk)(unsigned long addr, unsigned long next,
1154 struct mm_walk *walk);
1155 struct mm_struct *mm;
1156 struct vm_area_struct *vma;
1157 void *private;
1158};
1159
1160int walk_page_range(unsigned long addr, unsigned long end,
1161 struct mm_walk *walk);
1162int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1163void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1164 unsigned long end, unsigned long floor, unsigned long ceiling);
1165int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1166 struct vm_area_struct *vma);
1167void unmap_mapping_range(struct address_space *mapping,
1168 loff_t const holebegin, loff_t const holelen, int even_cows);
1169int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1170 unsigned long *pfn);
1171int follow_phys(struct vm_area_struct *vma, unsigned long address,
1172 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1173int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1174 void *buf, int len, int write);
1175
1176static inline void unmap_shared_mapping_range(struct address_space *mapping,
1177 loff_t const holebegin, loff_t const holelen)
1178{
1179 unmap_mapping_range(mapping, holebegin, holelen, 0);
1180}
1181
1182extern void truncate_pagecache(struct inode *inode, loff_t new);
1183extern void truncate_setsize(struct inode *inode, loff_t newsize);
1184void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1185void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1186int truncate_inode_page(struct address_space *mapping, struct page *page);
1187int generic_error_remove_page(struct address_space *mapping, struct page *page);
1188int invalidate_inode_page(struct page *page);
1189
1190#ifdef CONFIG_MMU
1191extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1192 unsigned long address, unsigned int flags);
1193extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1194 unsigned long address, unsigned int fault_flags);
1195#else
1196static inline int handle_mm_fault(struct mm_struct *mm,
1197 struct vm_area_struct *vma, unsigned long address,
1198 unsigned int flags)
1199{
1200 /* should never happen if there's no MMU */
1201 BUG();
1202 return VM_FAULT_SIGBUS;
1203}
1204static inline int fixup_user_fault(struct task_struct *tsk,
1205 struct mm_struct *mm, unsigned long address,
1206 unsigned int fault_flags)
1207{
1208 /* should never happen if there's no MMU */
1209 BUG();
1210 return -EFAULT;
1211}
1212#endif
1213
1214extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1215extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1216 void *buf, int len, int write);
1217
1218long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long start, unsigned long nr_pages,
1220 unsigned int foll_flags, struct page **pages,
1221 struct vm_area_struct **vmas, int *nonblocking);
1222long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 int write, int force, struct page **pages,
1225 struct vm_area_struct **vmas);
1226long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 int *locked);
1230long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages,
1233 unsigned int gup_flags);
1234long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, unsigned long nr_pages,
1236 int write, int force, struct page **pages);
1237int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1238 struct page **pages);
1239
1240/* Container for pinned pfns / pages */
1241struct frame_vector {
1242 unsigned int nr_allocated; /* Number of frames we have space for */
1243 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1244 bool got_ref; /* Did we pin pages by getting page ref? */
1245 bool is_pfns; /* Does array contain pages or pfns? */
1246 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1247 * pfns_vector_pages() or pfns_vector_pfns()
1248 * for access */
1249};
1250
1251struct frame_vector *frame_vector_create(unsigned int nr_frames);
1252void frame_vector_destroy(struct frame_vector *vec);
1253int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1254 bool write, bool force, struct frame_vector *vec);
1255void put_vaddr_frames(struct frame_vector *vec);
1256int frame_vector_to_pages(struct frame_vector *vec);
1257void frame_vector_to_pfns(struct frame_vector *vec);
1258
1259static inline unsigned int frame_vector_count(struct frame_vector *vec)
1260{
1261 return vec->nr_frames;
1262}
1263
1264static inline struct page **frame_vector_pages(struct frame_vector *vec)
1265{
1266 if (vec->is_pfns) {
1267 int err = frame_vector_to_pages(vec);
1268
1269 if (err)
1270 return ERR_PTR(err);
1271 }
1272 return (struct page **)(vec->ptrs);
1273}
1274
1275static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1276{
1277 if (!vec->is_pfns)
1278 frame_vector_to_pfns(vec);
1279 return (unsigned long *)(vec->ptrs);
1280}
1281
1282struct kvec;
1283int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1284 struct page **pages);
1285int get_kernel_page(unsigned long start, int write, struct page **pages);
1286struct page *get_dump_page(unsigned long addr);
1287
1288extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1289extern void do_invalidatepage(struct page *page, unsigned int offset,
1290 unsigned int length);
1291
1292int __set_page_dirty_nobuffers(struct page *page);
1293int __set_page_dirty_no_writeback(struct page *page);
1294int redirty_page_for_writepage(struct writeback_control *wbc,
1295 struct page *page);
1296void account_page_dirtied(struct page *page, struct address_space *mapping,
1297 struct mem_cgroup *memcg);
1298void account_page_cleaned(struct page *page, struct address_space *mapping,
1299 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1300int set_page_dirty(struct page *page);
1301int set_page_dirty_lock(struct page *page);
1302void cancel_dirty_page(struct page *page);
1303int clear_page_dirty_for_io(struct page *page);
1304
1305int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1306
1307/* Is the vma a continuation of the stack vma above it? */
1308static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1309{
1310 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1311}
1312
1313static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1314{
1315 return !vma->vm_ops;
1316}
1317
1318static inline int stack_guard_page_start(struct vm_area_struct *vma,
1319 unsigned long addr)
1320{
1321 return (vma->vm_flags & VM_GROWSDOWN) &&
1322 (vma->vm_start == addr) &&
1323 !vma_growsdown(vma->vm_prev, addr);
1324}
1325
1326/* Is the vma a continuation of the stack vma below it? */
1327static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1328{
1329 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1330}
1331
1332static inline int stack_guard_page_end(struct vm_area_struct *vma,
1333 unsigned long addr)
1334{
1335 return (vma->vm_flags & VM_GROWSUP) &&
1336 (vma->vm_end == addr) &&
1337 !vma_growsup(vma->vm_next, addr);
1338}
1339
1340extern struct task_struct *task_of_stack(struct task_struct *task,
1341 struct vm_area_struct *vma, bool in_group);
1342
1343extern unsigned long move_page_tables(struct vm_area_struct *vma,
1344 unsigned long old_addr, struct vm_area_struct *new_vma,
1345 unsigned long new_addr, unsigned long len,
1346 bool need_rmap_locks);
1347extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1348 unsigned long end, pgprot_t newprot,
1349 int dirty_accountable, int prot_numa);
1350extern int mprotect_fixup(struct vm_area_struct *vma,
1351 struct vm_area_struct **pprev, unsigned long start,
1352 unsigned long end, unsigned long newflags);
1353
1354/*
1355 * doesn't attempt to fault and will return short.
1356 */
1357int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1358 struct page **pages);
1359/*
1360 * per-process(per-mm_struct) statistics.
1361 */
1362static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1363{
1364 long val = atomic_long_read(&mm->rss_stat.count[member]);
1365
1366#ifdef SPLIT_RSS_COUNTING
1367 /*
1368 * counter is updated in asynchronous manner and may go to minus.
1369 * But it's never be expected number for users.
1370 */
1371 if (val < 0)
1372 val = 0;
1373#endif
1374 return (unsigned long)val;
1375}
1376
1377static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1378{
1379 atomic_long_add(value, &mm->rss_stat.count[member]);
1380}
1381
1382static inline void inc_mm_counter(struct mm_struct *mm, int member)
1383{
1384 atomic_long_inc(&mm->rss_stat.count[member]);
1385}
1386
1387static inline void dec_mm_counter(struct mm_struct *mm, int member)
1388{
1389 atomic_long_dec(&mm->rss_stat.count[member]);
1390}
1391
1392static inline unsigned long get_mm_rss(struct mm_struct *mm)
1393{
1394 return get_mm_counter(mm, MM_FILEPAGES) +
1395 get_mm_counter(mm, MM_ANONPAGES);
1396}
1397
1398static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1399{
1400 return max(mm->hiwater_rss, get_mm_rss(mm));
1401}
1402
1403static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1404{
1405 return max(mm->hiwater_vm, mm->total_vm);
1406}
1407
1408static inline void update_hiwater_rss(struct mm_struct *mm)
1409{
1410 unsigned long _rss = get_mm_rss(mm);
1411
1412 if ((mm)->hiwater_rss < _rss)
1413 (mm)->hiwater_rss = _rss;
1414}
1415
1416static inline void update_hiwater_vm(struct mm_struct *mm)
1417{
1418 if (mm->hiwater_vm < mm->total_vm)
1419 mm->hiwater_vm = mm->total_vm;
1420}
1421
1422static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1423{
1424 mm->hiwater_rss = get_mm_rss(mm);
1425}
1426
1427static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1428 struct mm_struct *mm)
1429{
1430 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1431
1432 if (*maxrss < hiwater_rss)
1433 *maxrss = hiwater_rss;
1434}
1435
1436#if defined(SPLIT_RSS_COUNTING)
1437void sync_mm_rss(struct mm_struct *mm);
1438#else
1439static inline void sync_mm_rss(struct mm_struct *mm)
1440{
1441}
1442#endif
1443
1444int vma_wants_writenotify(struct vm_area_struct *vma);
1445
1446extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1447 spinlock_t **ptl);
1448static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1449 spinlock_t **ptl)
1450{
1451 pte_t *ptep;
1452 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1453 return ptep;
1454}
1455
1456#ifdef __PAGETABLE_PUD_FOLDED
1457static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1458 unsigned long address)
1459{
1460 return 0;
1461}
1462#else
1463int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1464#endif
1465
1466#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1467static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1468 unsigned long address)
1469{
1470 return 0;
1471}
1472
1473static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1474
1475static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1476{
1477 return 0;
1478}
1479
1480static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1481static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1482
1483#else
1484int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1485
1486static inline void mm_nr_pmds_init(struct mm_struct *mm)
1487{
1488 atomic_long_set(&mm->nr_pmds, 0);
1489}
1490
1491static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1492{
1493 return atomic_long_read(&mm->nr_pmds);
1494}
1495
1496static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1497{
1498 atomic_long_inc(&mm->nr_pmds);
1499}
1500
1501static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1502{
1503 atomic_long_dec(&mm->nr_pmds);
1504}
1505#endif
1506
1507int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1508 pmd_t *pmd, unsigned long address);
1509int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1510
1511/*
1512 * The following ifdef needed to get the 4level-fixup.h header to work.
1513 * Remove it when 4level-fixup.h has been removed.
1514 */
1515#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1516static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1517{
1518 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1519 NULL: pud_offset(pgd, address);
1520}
1521
1522static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1523{
1524 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1525 NULL: pmd_offset(pud, address);
1526}
1527#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1528
1529#if USE_SPLIT_PTE_PTLOCKS
1530#if ALLOC_SPLIT_PTLOCKS
1531void __init ptlock_cache_init(void);
1532extern bool ptlock_alloc(struct page *page);
1533extern void ptlock_free(struct page *page);
1534
1535static inline spinlock_t *ptlock_ptr(struct page *page)
1536{
1537 return page->ptl;
1538}
1539#else /* ALLOC_SPLIT_PTLOCKS */
1540static inline void ptlock_cache_init(void)
1541{
1542}
1543
1544static inline bool ptlock_alloc(struct page *page)
1545{
1546 return true;
1547}
1548
1549static inline void ptlock_free(struct page *page)
1550{
1551}
1552
1553static inline spinlock_t *ptlock_ptr(struct page *page)
1554{
1555 return &page->ptl;
1556}
1557#endif /* ALLOC_SPLIT_PTLOCKS */
1558
1559static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1560{
1561 return ptlock_ptr(pmd_page(*pmd));
1562}
1563
1564static inline bool ptlock_init(struct page *page)
1565{
1566 /*
1567 * prep_new_page() initialize page->private (and therefore page->ptl)
1568 * with 0. Make sure nobody took it in use in between.
1569 *
1570 * It can happen if arch try to use slab for page table allocation:
1571 * slab code uses page->slab_cache and page->first_page (for tail
1572 * pages), which share storage with page->ptl.
1573 */
1574 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1575 if (!ptlock_alloc(page))
1576 return false;
1577 spin_lock_init(ptlock_ptr(page));
1578 return true;
1579}
1580
1581/* Reset page->mapping so free_pages_check won't complain. */
1582static inline void pte_lock_deinit(struct page *page)
1583{
1584 page->mapping = NULL;
1585 ptlock_free(page);
1586}
1587
1588#else /* !USE_SPLIT_PTE_PTLOCKS */
1589/*
1590 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1591 */
1592static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1593{
1594 return &mm->page_table_lock;
1595}
1596static inline void ptlock_cache_init(void) {}
1597static inline bool ptlock_init(struct page *page) { return true; }
1598static inline void pte_lock_deinit(struct page *page) {}
1599#endif /* USE_SPLIT_PTE_PTLOCKS */
1600
1601static inline void pgtable_init(void)
1602{
1603 ptlock_cache_init();
1604 pgtable_cache_init();
1605}
1606
1607static inline bool pgtable_page_ctor(struct page *page)
1608{
1609 inc_zone_page_state(page, NR_PAGETABLE);
1610 return ptlock_init(page);
1611}
1612
1613static inline void pgtable_page_dtor(struct page *page)
1614{
1615 pte_lock_deinit(page);
1616 dec_zone_page_state(page, NR_PAGETABLE);
1617}
1618
1619#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1620({ \
1621 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1622 pte_t *__pte = pte_offset_map(pmd, address); \
1623 *(ptlp) = __ptl; \
1624 spin_lock(__ptl); \
1625 __pte; \
1626})
1627
1628#define pte_unmap_unlock(pte, ptl) do { \
1629 spin_unlock(ptl); \
1630 pte_unmap(pte); \
1631} while (0)
1632
1633#define pte_alloc_map(mm, vma, pmd, address) \
1634 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1635 pmd, address))? \
1636 NULL: pte_offset_map(pmd, address))
1637
1638#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1639 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1640 pmd, address))? \
1641 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1642
1643#define pte_alloc_kernel(pmd, address) \
1644 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1645 NULL: pte_offset_kernel(pmd, address))
1646
1647#if USE_SPLIT_PMD_PTLOCKS
1648
1649static struct page *pmd_to_page(pmd_t *pmd)
1650{
1651 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1652 return virt_to_page((void *)((unsigned long) pmd & mask));
1653}
1654
1655static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656{
1657 return ptlock_ptr(pmd_to_page(pmd));
1658}
1659
1660static inline bool pgtable_pmd_page_ctor(struct page *page)
1661{
1662#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1663 page->pmd_huge_pte = NULL;
1664#endif
1665 return ptlock_init(page);
1666}
1667
1668static inline void pgtable_pmd_page_dtor(struct page *page)
1669{
1670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1671 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1672#endif
1673 ptlock_free(page);
1674}
1675
1676#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1677
1678#else
1679
1680static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1681{
1682 return &mm->page_table_lock;
1683}
1684
1685static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1686static inline void pgtable_pmd_page_dtor(struct page *page) {}
1687
1688#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1689
1690#endif
1691
1692static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1693{
1694 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1695 spin_lock(ptl);
1696 return ptl;
1697}
1698
1699extern void free_area_init(unsigned long * zones_size);
1700extern void free_area_init_node(int nid, unsigned long * zones_size,
1701 unsigned long zone_start_pfn, unsigned long *zholes_size);
1702extern void free_initmem(void);
1703
1704/*
1705 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1706 * into the buddy system. The freed pages will be poisoned with pattern
1707 * "poison" if it's within range [0, UCHAR_MAX].
1708 * Return pages freed into the buddy system.
1709 */
1710extern unsigned long free_reserved_area(void *start, void *end,
1711 int poison, char *s);
1712
1713#ifdef CONFIG_HIGHMEM
1714/*
1715 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1716 * and totalram_pages.
1717 */
1718extern void free_highmem_page(struct page *page);
1719#endif
1720
1721extern void adjust_managed_page_count(struct page *page, long count);
1722extern void mem_init_print_info(const char *str);
1723
1724extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1725
1726/* Free the reserved page into the buddy system, so it gets managed. */
1727static inline void __free_reserved_page(struct page *page)
1728{
1729 ClearPageReserved(page);
1730 init_page_count(page);
1731 __free_page(page);
1732}
1733
1734static inline void free_reserved_page(struct page *page)
1735{
1736 __free_reserved_page(page);
1737 adjust_managed_page_count(page, 1);
1738}
1739
1740static inline void mark_page_reserved(struct page *page)
1741{
1742 SetPageReserved(page);
1743 adjust_managed_page_count(page, -1);
1744}
1745
1746/*
1747 * Default method to free all the __init memory into the buddy system.
1748 * The freed pages will be poisoned with pattern "poison" if it's within
1749 * range [0, UCHAR_MAX].
1750 * Return pages freed into the buddy system.
1751 */
1752static inline unsigned long free_initmem_default(int poison)
1753{
1754 extern char __init_begin[], __init_end[];
1755
1756 return free_reserved_area(&__init_begin, &__init_end,
1757 poison, "unused kernel");
1758}
1759
1760static inline unsigned long get_num_physpages(void)
1761{
1762 int nid;
1763 unsigned long phys_pages = 0;
1764
1765 for_each_online_node(nid)
1766 phys_pages += node_present_pages(nid);
1767
1768 return phys_pages;
1769}
1770
1771#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1772/*
1773 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1774 * zones, allocate the backing mem_map and account for memory holes in a more
1775 * architecture independent manner. This is a substitute for creating the
1776 * zone_sizes[] and zholes_size[] arrays and passing them to
1777 * free_area_init_node()
1778 *
1779 * An architecture is expected to register range of page frames backed by
1780 * physical memory with memblock_add[_node]() before calling
1781 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1782 * usage, an architecture is expected to do something like
1783 *
1784 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1785 * max_highmem_pfn};
1786 * for_each_valid_physical_page_range()
1787 * memblock_add_node(base, size, nid)
1788 * free_area_init_nodes(max_zone_pfns);
1789 *
1790 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1791 * registered physical page range. Similarly
1792 * sparse_memory_present_with_active_regions() calls memory_present() for
1793 * each range when SPARSEMEM is enabled.
1794 *
1795 * See mm/page_alloc.c for more information on each function exposed by
1796 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1797 */
1798extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1799unsigned long node_map_pfn_alignment(void);
1800unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1801 unsigned long end_pfn);
1802extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1803 unsigned long end_pfn);
1804extern void get_pfn_range_for_nid(unsigned int nid,
1805 unsigned long *start_pfn, unsigned long *end_pfn);
1806extern unsigned long find_min_pfn_with_active_regions(void);
1807extern void free_bootmem_with_active_regions(int nid,
1808 unsigned long max_low_pfn);
1809extern void sparse_memory_present_with_active_regions(int nid);
1810
1811#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1812
1813#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1814 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1815static inline int __early_pfn_to_nid(unsigned long pfn,
1816 struct mminit_pfnnid_cache *state)
1817{
1818 return 0;
1819}
1820#else
1821/* please see mm/page_alloc.c */
1822extern int __meminit early_pfn_to_nid(unsigned long pfn);
1823/* there is a per-arch backend function. */
1824extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1825 struct mminit_pfnnid_cache *state);
1826#endif
1827
1828extern void set_dma_reserve(unsigned long new_dma_reserve);
1829extern void memmap_init_zone(unsigned long, int, unsigned long,
1830 unsigned long, enum memmap_context);
1831extern void setup_per_zone_wmarks(void);
1832extern int __meminit init_per_zone_wmark_min(void);
1833extern void mem_init(void);
1834extern void __init mmap_init(void);
1835extern void show_mem(unsigned int flags);
1836extern void si_meminfo(struct sysinfo * val);
1837extern void si_meminfo_node(struct sysinfo *val, int nid);
1838
1839extern __printf(3, 4)
1840void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1841
1842extern void setup_per_cpu_pageset(void);
1843
1844extern void zone_pcp_update(struct zone *zone);
1845extern void zone_pcp_reset(struct zone *zone);
1846
1847/* page_alloc.c */
1848extern int min_free_kbytes;
1849
1850/* nommu.c */
1851extern atomic_long_t mmap_pages_allocated;
1852extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1853
1854/* interval_tree.c */
1855void vma_interval_tree_insert(struct vm_area_struct *node,
1856 struct rb_root *root);
1857void vma_interval_tree_insert_after(struct vm_area_struct *node,
1858 struct vm_area_struct *prev,
1859 struct rb_root *root);
1860void vma_interval_tree_remove(struct vm_area_struct *node,
1861 struct rb_root *root);
1862struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1863 unsigned long start, unsigned long last);
1864struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1865 unsigned long start, unsigned long last);
1866
1867#define vma_interval_tree_foreach(vma, root, start, last) \
1868 for (vma = vma_interval_tree_iter_first(root, start, last); \
1869 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1870
1871void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1872 struct rb_root *root);
1873void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1874 struct rb_root *root);
1875struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1876 struct rb_root *root, unsigned long start, unsigned long last);
1877struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1878 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1879#ifdef CONFIG_DEBUG_VM_RB
1880void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1881#endif
1882
1883#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1884 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1885 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1886
1887/* mmap.c */
1888extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1889extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1890 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1891extern struct vm_area_struct *vma_merge(struct mm_struct *,
1892 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1893 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1894 struct mempolicy *, struct vm_userfaultfd_ctx);
1895extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1896extern int split_vma(struct mm_struct *,
1897 struct vm_area_struct *, unsigned long addr, int new_below);
1898extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1899extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1900 struct rb_node **, struct rb_node *);
1901extern void unlink_file_vma(struct vm_area_struct *);
1902extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1903 unsigned long addr, unsigned long len, pgoff_t pgoff,
1904 bool *need_rmap_locks);
1905extern void exit_mmap(struct mm_struct *);
1906
1907static inline int check_data_rlimit(unsigned long rlim,
1908 unsigned long new,
1909 unsigned long start,
1910 unsigned long end_data,
1911 unsigned long start_data)
1912{
1913 if (rlim < RLIM_INFINITY) {
1914 if (((new - start) + (end_data - start_data)) > rlim)
1915 return -ENOSPC;
1916 }
1917
1918 return 0;
1919}
1920
1921extern int mm_take_all_locks(struct mm_struct *mm);
1922extern void mm_drop_all_locks(struct mm_struct *mm);
1923
1924extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1925extern struct file *get_mm_exe_file(struct mm_struct *mm);
1926
1927extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1928extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1929 unsigned long addr, unsigned long len,
1930 unsigned long flags,
1931 const struct vm_special_mapping *spec);
1932/* This is an obsolete alternative to _install_special_mapping. */
1933extern int install_special_mapping(struct mm_struct *mm,
1934 unsigned long addr, unsigned long len,
1935 unsigned long flags, struct page **pages);
1936
1937extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1938
1939extern unsigned long mmap_region(struct file *file, unsigned long addr,
1940 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1941extern unsigned long do_mmap(struct file *file, unsigned long addr,
1942 unsigned long len, unsigned long prot, unsigned long flags,
1943 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1944extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1945
1946static inline unsigned long
1947do_mmap_pgoff(struct file *file, unsigned long addr,
1948 unsigned long len, unsigned long prot, unsigned long flags,
1949 unsigned long pgoff, unsigned long *populate)
1950{
1951 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1952}
1953
1954#ifdef CONFIG_MMU
1955extern int __mm_populate(unsigned long addr, unsigned long len,
1956 int ignore_errors);
1957static inline void mm_populate(unsigned long addr, unsigned long len)
1958{
1959 /* Ignore errors */
1960 (void) __mm_populate(addr, len, 1);
1961}
1962#else
1963static inline void mm_populate(unsigned long addr, unsigned long len) {}
1964#endif
1965
1966/* These take the mm semaphore themselves */
1967extern unsigned long vm_brk(unsigned long, unsigned long);
1968extern int vm_munmap(unsigned long, size_t);
1969extern unsigned long vm_mmap(struct file *, unsigned long,
1970 unsigned long, unsigned long,
1971 unsigned long, unsigned long);
1972
1973struct vm_unmapped_area_info {
1974#define VM_UNMAPPED_AREA_TOPDOWN 1
1975 unsigned long flags;
1976 unsigned long length;
1977 unsigned long low_limit;
1978 unsigned long high_limit;
1979 unsigned long align_mask;
1980 unsigned long align_offset;
1981};
1982
1983extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1984extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1985
1986/*
1987 * Search for an unmapped address range.
1988 *
1989 * We are looking for a range that:
1990 * - does not intersect with any VMA;
1991 * - is contained within the [low_limit, high_limit) interval;
1992 * - is at least the desired size.
1993 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1994 */
1995static inline unsigned long
1996vm_unmapped_area(struct vm_unmapped_area_info *info)
1997{
1998 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1999 return unmapped_area_topdown(info);
2000 else
2001 return unmapped_area(info);
2002}
2003
2004/* truncate.c */
2005extern void truncate_inode_pages(struct address_space *, loff_t);
2006extern void truncate_inode_pages_range(struct address_space *,
2007 loff_t lstart, loff_t lend);
2008extern void truncate_inode_pages_final(struct address_space *);
2009
2010/* generic vm_area_ops exported for stackable file systems */
2011extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2012extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2013extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2014
2015/* mm/page-writeback.c */
2016int write_one_page(struct page *page, int wait);
2017void task_dirty_inc(struct task_struct *tsk);
2018
2019/* readahead.c */
2020#define VM_MAX_READAHEAD 128 /* kbytes */
2021#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2022
2023int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2024 pgoff_t offset, unsigned long nr_to_read);
2025
2026void page_cache_sync_readahead(struct address_space *mapping,
2027 struct file_ra_state *ra,
2028 struct file *filp,
2029 pgoff_t offset,
2030 unsigned long size);
2031
2032void page_cache_async_readahead(struct address_space *mapping,
2033 struct file_ra_state *ra,
2034 struct file *filp,
2035 struct page *pg,
2036 pgoff_t offset,
2037 unsigned long size);
2038
2039unsigned long max_sane_readahead(unsigned long nr);
2040
2041/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2042extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2043
2044/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2045extern int expand_downwards(struct vm_area_struct *vma,
2046 unsigned long address);
2047#if VM_GROWSUP
2048extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2049#else
2050 #define expand_upwards(vma, address) (0)
2051#endif
2052
2053/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2054extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2055extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2056 struct vm_area_struct **pprev);
2057
2058/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2059 NULL if none. Assume start_addr < end_addr. */
2060static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2061{
2062 struct vm_area_struct * vma = find_vma(mm,start_addr);
2063
2064 if (vma && end_addr <= vma->vm_start)
2065 vma = NULL;
2066 return vma;
2067}
2068
2069static inline unsigned long vma_pages(struct vm_area_struct *vma)
2070{
2071 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2072}
2073
2074/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2075static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2076 unsigned long vm_start, unsigned long vm_end)
2077{
2078 struct vm_area_struct *vma = find_vma(mm, vm_start);
2079
2080 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2081 vma = NULL;
2082
2083 return vma;
2084}
2085
2086#ifdef CONFIG_MMU
2087pgprot_t vm_get_page_prot(unsigned long vm_flags);
2088void vma_set_page_prot(struct vm_area_struct *vma);
2089#else
2090static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2091{
2092 return __pgprot(0);
2093}
2094static inline void vma_set_page_prot(struct vm_area_struct *vma)
2095{
2096 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2097}
2098#endif
2099
2100#ifdef CONFIG_NUMA_BALANCING
2101unsigned long change_prot_numa(struct vm_area_struct *vma,
2102 unsigned long start, unsigned long end);
2103#endif
2104
2105struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2106int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2107 unsigned long pfn, unsigned long size, pgprot_t);
2108int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2109int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2110 unsigned long pfn);
2111int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2112 unsigned long pfn);
2113int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2114
2115
2116struct page *follow_page_mask(struct vm_area_struct *vma,
2117 unsigned long address, unsigned int foll_flags,
2118 unsigned int *page_mask);
2119
2120static inline struct page *follow_page(struct vm_area_struct *vma,
2121 unsigned long address, unsigned int foll_flags)
2122{
2123 unsigned int unused_page_mask;
2124 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2125}
2126
2127#define FOLL_WRITE 0x01 /* check pte is writable */
2128#define FOLL_TOUCH 0x02 /* mark page accessed */
2129#define FOLL_GET 0x04 /* do get_page on page */
2130#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2131#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2132#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2133 * and return without waiting upon it */
2134#define FOLL_POPULATE 0x40 /* fault in page */
2135#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2136#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2137#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2138#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2139#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2140
2141typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2142 void *data);
2143extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2144 unsigned long size, pte_fn_t fn, void *data);
2145
2146#ifdef CONFIG_PROC_FS
2147void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2148#else
2149static inline void vm_stat_account(struct mm_struct *mm,
2150 unsigned long flags, struct file *file, long pages)
2151{
2152 mm->total_vm += pages;
2153}
2154#endif /* CONFIG_PROC_FS */
2155
2156#ifdef CONFIG_DEBUG_PAGEALLOC
2157extern bool _debug_pagealloc_enabled;
2158extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2159
2160static inline bool debug_pagealloc_enabled(void)
2161{
2162 return _debug_pagealloc_enabled;
2163}
2164
2165static inline void
2166kernel_map_pages(struct page *page, int numpages, int enable)
2167{
2168 if (!debug_pagealloc_enabled())
2169 return;
2170
2171 __kernel_map_pages(page, numpages, enable);
2172}
2173#ifdef CONFIG_HIBERNATION
2174extern bool kernel_page_present(struct page *page);
2175#endif /* CONFIG_HIBERNATION */
2176#else
2177static inline void
2178kernel_map_pages(struct page *page, int numpages, int enable) {}
2179#ifdef CONFIG_HIBERNATION
2180static inline bool kernel_page_present(struct page *page) { return true; }
2181#endif /* CONFIG_HIBERNATION */
2182#endif
2183
2184#ifdef __HAVE_ARCH_GATE_AREA
2185extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2186extern int in_gate_area_no_mm(unsigned long addr);
2187extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2188#else
2189static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2190{
2191 return NULL;
2192}
2193static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2194static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2195{
2196 return 0;
2197}
2198#endif /* __HAVE_ARCH_GATE_AREA */
2199
2200#ifdef CONFIG_SYSCTL
2201extern int sysctl_drop_caches;
2202int drop_caches_sysctl_handler(struct ctl_table *, int,
2203 void __user *, size_t *, loff_t *);
2204#endif
2205
2206void drop_slab(void);
2207void drop_slab_node(int nid);
2208
2209#ifndef CONFIG_MMU
2210#define randomize_va_space 0
2211#else
2212extern int randomize_va_space;
2213#endif
2214
2215const char * arch_vma_name(struct vm_area_struct *vma);
2216void print_vma_addr(char *prefix, unsigned long rip);
2217
2218void sparse_mem_maps_populate_node(struct page **map_map,
2219 unsigned long pnum_begin,
2220 unsigned long pnum_end,
2221 unsigned long map_count,
2222 int nodeid);
2223
2224struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2225pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2226pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2227pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2228pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2229void *vmemmap_alloc_block(unsigned long size, int node);
2230void *vmemmap_alloc_block_buf(unsigned long size, int node);
2231void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2232int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2233 int node);
2234int vmemmap_populate(unsigned long start, unsigned long end, int node);
2235void vmemmap_populate_print_last(void);
2236#ifdef CONFIG_MEMORY_HOTPLUG
2237void vmemmap_free(unsigned long start, unsigned long end);
2238#endif
2239void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2240 unsigned long size);
2241
2242enum mf_flags {
2243 MF_COUNT_INCREASED = 1 << 0,
2244 MF_ACTION_REQUIRED = 1 << 1,
2245 MF_MUST_KILL = 1 << 2,
2246 MF_SOFT_OFFLINE = 1 << 3,
2247};
2248extern int memory_failure(unsigned long pfn, int trapno, int flags);
2249extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2250extern int unpoison_memory(unsigned long pfn);
2251extern int get_hwpoison_page(struct page *page);
2252extern void put_hwpoison_page(struct page *page);
2253extern int sysctl_memory_failure_early_kill;
2254extern int sysctl_memory_failure_recovery;
2255extern void shake_page(struct page *p, int access);
2256extern atomic_long_t num_poisoned_pages;
2257extern int soft_offline_page(struct page *page, int flags);
2258
2259
2260/*
2261 * Error handlers for various types of pages.
2262 */
2263enum mf_result {
2264 MF_IGNORED, /* Error: cannot be handled */
2265 MF_FAILED, /* Error: handling failed */
2266 MF_DELAYED, /* Will be handled later */
2267 MF_RECOVERED, /* Successfully recovered */
2268};
2269
2270enum mf_action_page_type {
2271 MF_MSG_KERNEL,
2272 MF_MSG_KERNEL_HIGH_ORDER,
2273 MF_MSG_SLAB,
2274 MF_MSG_DIFFERENT_COMPOUND,
2275 MF_MSG_POISONED_HUGE,
2276 MF_MSG_HUGE,
2277 MF_MSG_FREE_HUGE,
2278 MF_MSG_UNMAP_FAILED,
2279 MF_MSG_DIRTY_SWAPCACHE,
2280 MF_MSG_CLEAN_SWAPCACHE,
2281 MF_MSG_DIRTY_MLOCKED_LRU,
2282 MF_MSG_CLEAN_MLOCKED_LRU,
2283 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2284 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2285 MF_MSG_DIRTY_LRU,
2286 MF_MSG_CLEAN_LRU,
2287 MF_MSG_TRUNCATED_LRU,
2288 MF_MSG_BUDDY,
2289 MF_MSG_BUDDY_2ND,
2290 MF_MSG_UNKNOWN,
2291};
2292
2293#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2294extern void clear_huge_page(struct page *page,
2295 unsigned long addr,
2296 unsigned int pages_per_huge_page);
2297extern void copy_user_huge_page(struct page *dst, struct page *src,
2298 unsigned long addr, struct vm_area_struct *vma,
2299 unsigned int pages_per_huge_page);
2300#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2301
2302extern struct page_ext_operations debug_guardpage_ops;
2303extern struct page_ext_operations page_poisoning_ops;
2304
2305#ifdef CONFIG_DEBUG_PAGEALLOC
2306extern unsigned int _debug_guardpage_minorder;
2307extern bool _debug_guardpage_enabled;
2308
2309static inline unsigned int debug_guardpage_minorder(void)
2310{
2311 return _debug_guardpage_minorder;
2312}
2313
2314static inline bool debug_guardpage_enabled(void)
2315{
2316 return _debug_guardpage_enabled;
2317}
2318
2319static inline bool page_is_guard(struct page *page)
2320{
2321 struct page_ext *page_ext;
2322
2323 if (!debug_guardpage_enabled())
2324 return false;
2325
2326 page_ext = lookup_page_ext(page);
2327 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2328}
2329#else
2330static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2331static inline bool debug_guardpage_enabled(void) { return false; }
2332static inline bool page_is_guard(struct page *page) { return false; }
2333#endif /* CONFIG_DEBUG_PAGEALLOC */
2334
2335#if MAX_NUMNODES > 1
2336void __init setup_nr_node_ids(void);
2337#else
2338static inline void setup_nr_node_ids(void) {}
2339#endif
2340
2341#endif /* __KERNEL__ */
2342#endif /* _LINUX_MM_H */