at v4.3 74 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24 25struct mempolicy; 26struct anon_vma; 27struct anon_vma_chain; 28struct file_ra_state; 29struct user_struct; 30struct writeback_control; 31struct bdi_writeback; 32 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 34extern unsigned long max_mapnr; 35 36static inline void set_max_mapnr(unsigned long limit) 37{ 38 max_mapnr = limit; 39} 40#else 41static inline void set_max_mapnr(unsigned long limit) { } 42#endif 43 44extern unsigned long totalram_pages; 45extern void * high_memory; 46extern int page_cluster; 47 48#ifdef CONFIG_SYSCTL 49extern int sysctl_legacy_va_layout; 50#else 51#define sysctl_legacy_va_layout 0 52#endif 53 54#include <asm/page.h> 55#include <asm/pgtable.h> 56#include <asm/processor.h> 57 58#ifndef __pa_symbol 59#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 60#endif 61 62/* 63 * To prevent common memory management code establishing 64 * a zero page mapping on a read fault. 65 * This macro should be defined within <asm/pgtable.h>. 66 * s390 does this to prevent multiplexing of hardware bits 67 * related to the physical page in case of virtualization. 68 */ 69#ifndef mm_forbids_zeropage 70#define mm_forbids_zeropage(X) (0) 71#endif 72 73extern unsigned long sysctl_user_reserve_kbytes; 74extern unsigned long sysctl_admin_reserve_kbytes; 75 76extern int sysctl_overcommit_memory; 77extern int sysctl_overcommit_ratio; 78extern unsigned long sysctl_overcommit_kbytes; 79 80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 83 size_t *, loff_t *); 84 85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 86 87/* to align the pointer to the (next) page boundary */ 88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 89 90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 91#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 92 93/* 94 * Linux kernel virtual memory manager primitives. 95 * The idea being to have a "virtual" mm in the same way 96 * we have a virtual fs - giving a cleaner interface to the 97 * mm details, and allowing different kinds of memory mappings 98 * (from shared memory to executable loading to arbitrary 99 * mmap() functions). 100 */ 101 102extern struct kmem_cache *vm_area_cachep; 103 104#ifndef CONFIG_MMU 105extern struct rb_root nommu_region_tree; 106extern struct rw_semaphore nommu_region_sem; 107 108extern unsigned int kobjsize(const void *objp); 109#endif 110 111/* 112 * vm_flags in vm_area_struct, see mm_types.h. 113 */ 114#define VM_NONE 0x00000000 115 116#define VM_READ 0x00000001 /* currently active flags */ 117#define VM_WRITE 0x00000002 118#define VM_EXEC 0x00000004 119#define VM_SHARED 0x00000008 120 121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 122#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 123#define VM_MAYWRITE 0x00000020 124#define VM_MAYEXEC 0x00000040 125#define VM_MAYSHARE 0x00000080 126 127#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 128#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 129#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 130#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 131#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 132 133#define VM_LOCKED 0x00002000 134#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 135 136 /* Used by sys_madvise() */ 137#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 138#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 139 140#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 141#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 142#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 143#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 144#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 145#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 146#define VM_ARCH_2 0x02000000 147#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 148 149#ifdef CONFIG_MEM_SOFT_DIRTY 150# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 151#else 152# define VM_SOFTDIRTY 0 153#endif 154 155#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 156#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 157#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 158#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 159 160#if defined(CONFIG_X86) 161# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 162#elif defined(CONFIG_PPC) 163# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 164#elif defined(CONFIG_PARISC) 165# define VM_GROWSUP VM_ARCH_1 166#elif defined(CONFIG_METAG) 167# define VM_GROWSUP VM_ARCH_1 168#elif defined(CONFIG_IA64) 169# define VM_GROWSUP VM_ARCH_1 170#elif !defined(CONFIG_MMU) 171# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 172#endif 173 174#if defined(CONFIG_X86) 175/* MPX specific bounds table or bounds directory */ 176# define VM_MPX VM_ARCH_2 177#endif 178 179#ifndef VM_GROWSUP 180# define VM_GROWSUP VM_NONE 181#endif 182 183/* Bits set in the VMA until the stack is in its final location */ 184#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 185 186#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 187#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 188#endif 189 190#ifdef CONFIG_STACK_GROWSUP 191#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 192#else 193#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 194#endif 195 196/* 197 * Special vmas that are non-mergable, non-mlock()able. 198 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 199 */ 200#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 201 202/* This mask defines which mm->def_flags a process can inherit its parent */ 203#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 204 205/* 206 * mapping from the currently active vm_flags protection bits (the 207 * low four bits) to a page protection mask.. 208 */ 209extern pgprot_t protection_map[16]; 210 211#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 212#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 213#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 214#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 215#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 216#define FAULT_FLAG_TRIED 0x20 /* Second try */ 217#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 218 219/* 220 * vm_fault is filled by the the pagefault handler and passed to the vma's 221 * ->fault function. The vma's ->fault is responsible for returning a bitmask 222 * of VM_FAULT_xxx flags that give details about how the fault was handled. 223 * 224 * pgoff should be used in favour of virtual_address, if possible. 225 */ 226struct vm_fault { 227 unsigned int flags; /* FAULT_FLAG_xxx flags */ 228 pgoff_t pgoff; /* Logical page offset based on vma */ 229 void __user *virtual_address; /* Faulting virtual address */ 230 231 struct page *cow_page; /* Handler may choose to COW */ 232 struct page *page; /* ->fault handlers should return a 233 * page here, unless VM_FAULT_NOPAGE 234 * is set (which is also implied by 235 * VM_FAULT_ERROR). 236 */ 237 /* for ->map_pages() only */ 238 pgoff_t max_pgoff; /* map pages for offset from pgoff till 239 * max_pgoff inclusive */ 240 pte_t *pte; /* pte entry associated with ->pgoff */ 241}; 242 243/* 244 * These are the virtual MM functions - opening of an area, closing and 245 * unmapping it (needed to keep files on disk up-to-date etc), pointer 246 * to the functions called when a no-page or a wp-page exception occurs. 247 */ 248struct vm_operations_struct { 249 void (*open)(struct vm_area_struct * area); 250 void (*close)(struct vm_area_struct * area); 251 int (*mremap)(struct vm_area_struct * area); 252 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 253 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 254 pmd_t *, unsigned int flags); 255 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 256 257 /* notification that a previously read-only page is about to become 258 * writable, if an error is returned it will cause a SIGBUS */ 259 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 260 261 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 262 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 263 264 /* called by access_process_vm when get_user_pages() fails, typically 265 * for use by special VMAs that can switch between memory and hardware 266 */ 267 int (*access)(struct vm_area_struct *vma, unsigned long addr, 268 void *buf, int len, int write); 269 270 /* Called by the /proc/PID/maps code to ask the vma whether it 271 * has a special name. Returning non-NULL will also cause this 272 * vma to be dumped unconditionally. */ 273 const char *(*name)(struct vm_area_struct *vma); 274 275#ifdef CONFIG_NUMA 276 /* 277 * set_policy() op must add a reference to any non-NULL @new mempolicy 278 * to hold the policy upon return. Caller should pass NULL @new to 279 * remove a policy and fall back to surrounding context--i.e. do not 280 * install a MPOL_DEFAULT policy, nor the task or system default 281 * mempolicy. 282 */ 283 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 284 285 /* 286 * get_policy() op must add reference [mpol_get()] to any policy at 287 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 288 * in mm/mempolicy.c will do this automatically. 289 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 290 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 291 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 292 * must return NULL--i.e., do not "fallback" to task or system default 293 * policy. 294 */ 295 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 296 unsigned long addr); 297#endif 298 /* 299 * Called by vm_normal_page() for special PTEs to find the 300 * page for @addr. This is useful if the default behavior 301 * (using pte_page()) would not find the correct page. 302 */ 303 struct page *(*find_special_page)(struct vm_area_struct *vma, 304 unsigned long addr); 305}; 306 307struct mmu_gather; 308struct inode; 309 310#define page_private(page) ((page)->private) 311#define set_page_private(page, v) ((page)->private = (v)) 312 313/* 314 * FIXME: take this include out, include page-flags.h in 315 * files which need it (119 of them) 316 */ 317#include <linux/page-flags.h> 318#include <linux/huge_mm.h> 319 320/* 321 * Methods to modify the page usage count. 322 * 323 * What counts for a page usage: 324 * - cache mapping (page->mapping) 325 * - private data (page->private) 326 * - page mapped in a task's page tables, each mapping 327 * is counted separately 328 * 329 * Also, many kernel routines increase the page count before a critical 330 * routine so they can be sure the page doesn't go away from under them. 331 */ 332 333/* 334 * Drop a ref, return true if the refcount fell to zero (the page has no users) 335 */ 336static inline int put_page_testzero(struct page *page) 337{ 338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 339 return atomic_dec_and_test(&page->_count); 340} 341 342/* 343 * Try to grab a ref unless the page has a refcount of zero, return false if 344 * that is the case. 345 * This can be called when MMU is off so it must not access 346 * any of the virtual mappings. 347 */ 348static inline int get_page_unless_zero(struct page *page) 349{ 350 return atomic_inc_not_zero(&page->_count); 351} 352 353extern int page_is_ram(unsigned long pfn); 354 355enum { 356 REGION_INTERSECTS, 357 REGION_DISJOINT, 358 REGION_MIXED, 359}; 360 361int region_intersects(resource_size_t offset, size_t size, const char *type); 362 363/* Support for virtually mapped pages */ 364struct page *vmalloc_to_page(const void *addr); 365unsigned long vmalloc_to_pfn(const void *addr); 366 367/* 368 * Determine if an address is within the vmalloc range 369 * 370 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 371 * is no special casing required. 372 */ 373static inline int is_vmalloc_addr(const void *x) 374{ 375#ifdef CONFIG_MMU 376 unsigned long addr = (unsigned long)x; 377 378 return addr >= VMALLOC_START && addr < VMALLOC_END; 379#else 380 return 0; 381#endif 382} 383#ifdef CONFIG_MMU 384extern int is_vmalloc_or_module_addr(const void *x); 385#else 386static inline int is_vmalloc_or_module_addr(const void *x) 387{ 388 return 0; 389} 390#endif 391 392extern void kvfree(const void *addr); 393 394static inline void compound_lock(struct page *page) 395{ 396#ifdef CONFIG_TRANSPARENT_HUGEPAGE 397 VM_BUG_ON_PAGE(PageSlab(page), page); 398 bit_spin_lock(PG_compound_lock, &page->flags); 399#endif 400} 401 402static inline void compound_unlock(struct page *page) 403{ 404#ifdef CONFIG_TRANSPARENT_HUGEPAGE 405 VM_BUG_ON_PAGE(PageSlab(page), page); 406 bit_spin_unlock(PG_compound_lock, &page->flags); 407#endif 408} 409 410static inline unsigned long compound_lock_irqsave(struct page *page) 411{ 412 unsigned long uninitialized_var(flags); 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE 414 local_irq_save(flags); 415 compound_lock(page); 416#endif 417 return flags; 418} 419 420static inline void compound_unlock_irqrestore(struct page *page, 421 unsigned long flags) 422{ 423#ifdef CONFIG_TRANSPARENT_HUGEPAGE 424 compound_unlock(page); 425 local_irq_restore(flags); 426#endif 427} 428 429static inline struct page *compound_head_by_tail(struct page *tail) 430{ 431 struct page *head = tail->first_page; 432 433 /* 434 * page->first_page may be a dangling pointer to an old 435 * compound page, so recheck that it is still a tail 436 * page before returning. 437 */ 438 smp_rmb(); 439 if (likely(PageTail(tail))) 440 return head; 441 return tail; 442} 443 444/* 445 * Since either compound page could be dismantled asynchronously in THP 446 * or we access asynchronously arbitrary positioned struct page, there 447 * would be tail flag race. To handle this race, we should call 448 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 449 */ 450static inline struct page *compound_head(struct page *page) 451{ 452 if (unlikely(PageTail(page))) 453 return compound_head_by_tail(page); 454 return page; 455} 456 457/* 458 * If we access compound page synchronously such as access to 459 * allocated page, there is no need to handle tail flag race, so we can 460 * check tail flag directly without any synchronization primitive. 461 */ 462static inline struct page *compound_head_fast(struct page *page) 463{ 464 if (unlikely(PageTail(page))) 465 return page->first_page; 466 return page; 467} 468 469/* 470 * The atomic page->_mapcount, starts from -1: so that transitions 471 * both from it and to it can be tracked, using atomic_inc_and_test 472 * and atomic_add_negative(-1). 473 */ 474static inline void page_mapcount_reset(struct page *page) 475{ 476 atomic_set(&(page)->_mapcount, -1); 477} 478 479static inline int page_mapcount(struct page *page) 480{ 481 VM_BUG_ON_PAGE(PageSlab(page), page); 482 return atomic_read(&page->_mapcount) + 1; 483} 484 485static inline int page_count(struct page *page) 486{ 487 return atomic_read(&compound_head(page)->_count); 488} 489 490static inline bool __compound_tail_refcounted(struct page *page) 491{ 492 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 493} 494 495/* 496 * This takes a head page as parameter and tells if the 497 * tail page reference counting can be skipped. 498 * 499 * For this to be safe, PageSlab and PageHeadHuge must remain true on 500 * any given page where they return true here, until all tail pins 501 * have been released. 502 */ 503static inline bool compound_tail_refcounted(struct page *page) 504{ 505 VM_BUG_ON_PAGE(!PageHead(page), page); 506 return __compound_tail_refcounted(page); 507} 508 509static inline void get_huge_page_tail(struct page *page) 510{ 511 /* 512 * __split_huge_page_refcount() cannot run from under us. 513 */ 514 VM_BUG_ON_PAGE(!PageTail(page), page); 515 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 516 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 517 if (compound_tail_refcounted(page->first_page)) 518 atomic_inc(&page->_mapcount); 519} 520 521extern bool __get_page_tail(struct page *page); 522 523static inline void get_page(struct page *page) 524{ 525 if (unlikely(PageTail(page))) 526 if (likely(__get_page_tail(page))) 527 return; 528 /* 529 * Getting a normal page or the head of a compound page 530 * requires to already have an elevated page->_count. 531 */ 532 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 533 atomic_inc(&page->_count); 534} 535 536static inline struct page *virt_to_head_page(const void *x) 537{ 538 struct page *page = virt_to_page(x); 539 540 /* 541 * We don't need to worry about synchronization of tail flag 542 * when we call virt_to_head_page() since it is only called for 543 * already allocated page and this page won't be freed until 544 * this virt_to_head_page() is finished. So use _fast variant. 545 */ 546 return compound_head_fast(page); 547} 548 549/* 550 * Setup the page count before being freed into the page allocator for 551 * the first time (boot or memory hotplug) 552 */ 553static inline void init_page_count(struct page *page) 554{ 555 atomic_set(&page->_count, 1); 556} 557 558void put_page(struct page *page); 559void put_pages_list(struct list_head *pages); 560 561void split_page(struct page *page, unsigned int order); 562int split_free_page(struct page *page); 563 564/* 565 * Compound pages have a destructor function. Provide a 566 * prototype for that function and accessor functions. 567 * These are _only_ valid on the head of a PG_compound page. 568 */ 569 570static inline void set_compound_page_dtor(struct page *page, 571 compound_page_dtor *dtor) 572{ 573 page[1].compound_dtor = dtor; 574} 575 576static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 577{ 578 return page[1].compound_dtor; 579} 580 581static inline int compound_order(struct page *page) 582{ 583 if (!PageHead(page)) 584 return 0; 585 return page[1].compound_order; 586} 587 588static inline void set_compound_order(struct page *page, unsigned long order) 589{ 590 page[1].compound_order = order; 591} 592 593#ifdef CONFIG_MMU 594/* 595 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 596 * servicing faults for write access. In the normal case, do always want 597 * pte_mkwrite. But get_user_pages can cause write faults for mappings 598 * that do not have writing enabled, when used by access_process_vm. 599 */ 600static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 601{ 602 if (likely(vma->vm_flags & VM_WRITE)) 603 pte = pte_mkwrite(pte); 604 return pte; 605} 606 607void do_set_pte(struct vm_area_struct *vma, unsigned long address, 608 struct page *page, pte_t *pte, bool write, bool anon); 609#endif 610 611/* 612 * Multiple processes may "see" the same page. E.g. for untouched 613 * mappings of /dev/null, all processes see the same page full of 614 * zeroes, and text pages of executables and shared libraries have 615 * only one copy in memory, at most, normally. 616 * 617 * For the non-reserved pages, page_count(page) denotes a reference count. 618 * page_count() == 0 means the page is free. page->lru is then used for 619 * freelist management in the buddy allocator. 620 * page_count() > 0 means the page has been allocated. 621 * 622 * Pages are allocated by the slab allocator in order to provide memory 623 * to kmalloc and kmem_cache_alloc. In this case, the management of the 624 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 625 * unless a particular usage is carefully commented. (the responsibility of 626 * freeing the kmalloc memory is the caller's, of course). 627 * 628 * A page may be used by anyone else who does a __get_free_page(). 629 * In this case, page_count still tracks the references, and should only 630 * be used through the normal accessor functions. The top bits of page->flags 631 * and page->virtual store page management information, but all other fields 632 * are unused and could be used privately, carefully. The management of this 633 * page is the responsibility of the one who allocated it, and those who have 634 * subsequently been given references to it. 635 * 636 * The other pages (we may call them "pagecache pages") are completely 637 * managed by the Linux memory manager: I/O, buffers, swapping etc. 638 * The following discussion applies only to them. 639 * 640 * A pagecache page contains an opaque `private' member, which belongs to the 641 * page's address_space. Usually, this is the address of a circular list of 642 * the page's disk buffers. PG_private must be set to tell the VM to call 643 * into the filesystem to release these pages. 644 * 645 * A page may belong to an inode's memory mapping. In this case, page->mapping 646 * is the pointer to the inode, and page->index is the file offset of the page, 647 * in units of PAGE_CACHE_SIZE. 648 * 649 * If pagecache pages are not associated with an inode, they are said to be 650 * anonymous pages. These may become associated with the swapcache, and in that 651 * case PG_swapcache is set, and page->private is an offset into the swapcache. 652 * 653 * In either case (swapcache or inode backed), the pagecache itself holds one 654 * reference to the page. Setting PG_private should also increment the 655 * refcount. The each user mapping also has a reference to the page. 656 * 657 * The pagecache pages are stored in a per-mapping radix tree, which is 658 * rooted at mapping->page_tree, and indexed by offset. 659 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 660 * lists, we instead now tag pages as dirty/writeback in the radix tree. 661 * 662 * All pagecache pages may be subject to I/O: 663 * - inode pages may need to be read from disk, 664 * - inode pages which have been modified and are MAP_SHARED may need 665 * to be written back to the inode on disk, 666 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 667 * modified may need to be swapped out to swap space and (later) to be read 668 * back into memory. 669 */ 670 671/* 672 * The zone field is never updated after free_area_init_core() 673 * sets it, so none of the operations on it need to be atomic. 674 */ 675 676/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 677#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 678#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 679#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 680#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 681 682/* 683 * Define the bit shifts to access each section. For non-existent 684 * sections we define the shift as 0; that plus a 0 mask ensures 685 * the compiler will optimise away reference to them. 686 */ 687#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 688#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 689#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 690#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 691 692/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 693#ifdef NODE_NOT_IN_PAGE_FLAGS 694#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 695#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 696 SECTIONS_PGOFF : ZONES_PGOFF) 697#else 698#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 699#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 700 NODES_PGOFF : ZONES_PGOFF) 701#endif 702 703#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 704 705#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 706#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 707#endif 708 709#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 710#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 711#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 712#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 713#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 714 715static inline enum zone_type page_zonenum(const struct page *page) 716{ 717 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 718} 719 720#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 721#define SECTION_IN_PAGE_FLAGS 722#endif 723 724/* 725 * The identification function is mainly used by the buddy allocator for 726 * determining if two pages could be buddies. We are not really identifying 727 * the zone since we could be using the section number id if we do not have 728 * node id available in page flags. 729 * We only guarantee that it will return the same value for two combinable 730 * pages in a zone. 731 */ 732static inline int page_zone_id(struct page *page) 733{ 734 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 735} 736 737static inline int zone_to_nid(struct zone *zone) 738{ 739#ifdef CONFIG_NUMA 740 return zone->node; 741#else 742 return 0; 743#endif 744} 745 746#ifdef NODE_NOT_IN_PAGE_FLAGS 747extern int page_to_nid(const struct page *page); 748#else 749static inline int page_to_nid(const struct page *page) 750{ 751 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 752} 753#endif 754 755#ifdef CONFIG_NUMA_BALANCING 756static inline int cpu_pid_to_cpupid(int cpu, int pid) 757{ 758 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 759} 760 761static inline int cpupid_to_pid(int cpupid) 762{ 763 return cpupid & LAST__PID_MASK; 764} 765 766static inline int cpupid_to_cpu(int cpupid) 767{ 768 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 769} 770 771static inline int cpupid_to_nid(int cpupid) 772{ 773 return cpu_to_node(cpupid_to_cpu(cpupid)); 774} 775 776static inline bool cpupid_pid_unset(int cpupid) 777{ 778 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 779} 780 781static inline bool cpupid_cpu_unset(int cpupid) 782{ 783 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 784} 785 786static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 787{ 788 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 789} 790 791#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 792#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 793static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 794{ 795 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 796} 797 798static inline int page_cpupid_last(struct page *page) 799{ 800 return page->_last_cpupid; 801} 802static inline void page_cpupid_reset_last(struct page *page) 803{ 804 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 805} 806#else 807static inline int page_cpupid_last(struct page *page) 808{ 809 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 810} 811 812extern int page_cpupid_xchg_last(struct page *page, int cpupid); 813 814static inline void page_cpupid_reset_last(struct page *page) 815{ 816 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 817 818 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 819 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 820} 821#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 822#else /* !CONFIG_NUMA_BALANCING */ 823static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 824{ 825 return page_to_nid(page); /* XXX */ 826} 827 828static inline int page_cpupid_last(struct page *page) 829{ 830 return page_to_nid(page); /* XXX */ 831} 832 833static inline int cpupid_to_nid(int cpupid) 834{ 835 return -1; 836} 837 838static inline int cpupid_to_pid(int cpupid) 839{ 840 return -1; 841} 842 843static inline int cpupid_to_cpu(int cpupid) 844{ 845 return -1; 846} 847 848static inline int cpu_pid_to_cpupid(int nid, int pid) 849{ 850 return -1; 851} 852 853static inline bool cpupid_pid_unset(int cpupid) 854{ 855 return 1; 856} 857 858static inline void page_cpupid_reset_last(struct page *page) 859{ 860} 861 862static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 863{ 864 return false; 865} 866#endif /* CONFIG_NUMA_BALANCING */ 867 868static inline struct zone *page_zone(const struct page *page) 869{ 870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 871} 872 873#ifdef SECTION_IN_PAGE_FLAGS 874static inline void set_page_section(struct page *page, unsigned long section) 875{ 876 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 877 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 878} 879 880static inline unsigned long page_to_section(const struct page *page) 881{ 882 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 883} 884#endif 885 886static inline void set_page_zone(struct page *page, enum zone_type zone) 887{ 888 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 889 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 890} 891 892static inline void set_page_node(struct page *page, unsigned long node) 893{ 894 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 895 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 896} 897 898static inline void set_page_links(struct page *page, enum zone_type zone, 899 unsigned long node, unsigned long pfn) 900{ 901 set_page_zone(page, zone); 902 set_page_node(page, node); 903#ifdef SECTION_IN_PAGE_FLAGS 904 set_page_section(page, pfn_to_section_nr(pfn)); 905#endif 906} 907 908#ifdef CONFIG_MEMCG 909static inline struct mem_cgroup *page_memcg(struct page *page) 910{ 911 return page->mem_cgroup; 912} 913 914static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 915{ 916 page->mem_cgroup = memcg; 917} 918#else 919static inline struct mem_cgroup *page_memcg(struct page *page) 920{ 921 return NULL; 922} 923 924static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 925{ 926} 927#endif 928 929/* 930 * Some inline functions in vmstat.h depend on page_zone() 931 */ 932#include <linux/vmstat.h> 933 934static __always_inline void *lowmem_page_address(const struct page *page) 935{ 936 return __va(PFN_PHYS(page_to_pfn(page))); 937} 938 939#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 940#define HASHED_PAGE_VIRTUAL 941#endif 942 943#if defined(WANT_PAGE_VIRTUAL) 944static inline void *page_address(const struct page *page) 945{ 946 return page->virtual; 947} 948static inline void set_page_address(struct page *page, void *address) 949{ 950 page->virtual = address; 951} 952#define page_address_init() do { } while(0) 953#endif 954 955#if defined(HASHED_PAGE_VIRTUAL) 956void *page_address(const struct page *page); 957void set_page_address(struct page *page, void *virtual); 958void page_address_init(void); 959#endif 960 961#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 962#define page_address(page) lowmem_page_address(page) 963#define set_page_address(page, address) do { } while(0) 964#define page_address_init() do { } while(0) 965#endif 966 967extern void *page_rmapping(struct page *page); 968extern struct anon_vma *page_anon_vma(struct page *page); 969extern struct address_space *page_mapping(struct page *page); 970 971extern struct address_space *__page_file_mapping(struct page *); 972 973static inline 974struct address_space *page_file_mapping(struct page *page) 975{ 976 if (unlikely(PageSwapCache(page))) 977 return __page_file_mapping(page); 978 979 return page->mapping; 980} 981 982/* 983 * Return the pagecache index of the passed page. Regular pagecache pages 984 * use ->index whereas swapcache pages use ->private 985 */ 986static inline pgoff_t page_index(struct page *page) 987{ 988 if (unlikely(PageSwapCache(page))) 989 return page_private(page); 990 return page->index; 991} 992 993extern pgoff_t __page_file_index(struct page *page); 994 995/* 996 * Return the file index of the page. Regular pagecache pages use ->index 997 * whereas swapcache pages use swp_offset(->private) 998 */ 999static inline pgoff_t page_file_index(struct page *page) 1000{ 1001 if (unlikely(PageSwapCache(page))) 1002 return __page_file_index(page); 1003 1004 return page->index; 1005} 1006 1007/* 1008 * Return true if this page is mapped into pagetables. 1009 */ 1010static inline int page_mapped(struct page *page) 1011{ 1012 return atomic_read(&(page)->_mapcount) >= 0; 1013} 1014 1015/* 1016 * Return true only if the page has been allocated with 1017 * ALLOC_NO_WATERMARKS and the low watermark was not 1018 * met implying that the system is under some pressure. 1019 */ 1020static inline bool page_is_pfmemalloc(struct page *page) 1021{ 1022 /* 1023 * Page index cannot be this large so this must be 1024 * a pfmemalloc page. 1025 */ 1026 return page->index == -1UL; 1027} 1028 1029/* 1030 * Only to be called by the page allocator on a freshly allocated 1031 * page. 1032 */ 1033static inline void set_page_pfmemalloc(struct page *page) 1034{ 1035 page->index = -1UL; 1036} 1037 1038static inline void clear_page_pfmemalloc(struct page *page) 1039{ 1040 page->index = 0; 1041} 1042 1043/* 1044 * Different kinds of faults, as returned by handle_mm_fault(). 1045 * Used to decide whether a process gets delivered SIGBUS or 1046 * just gets major/minor fault counters bumped up. 1047 */ 1048 1049#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1050 1051#define VM_FAULT_OOM 0x0001 1052#define VM_FAULT_SIGBUS 0x0002 1053#define VM_FAULT_MAJOR 0x0004 1054#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1055#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1056#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1057#define VM_FAULT_SIGSEGV 0x0040 1058 1059#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1060#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1061#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1062#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1063 1064#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1065 1066#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1067 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1068 VM_FAULT_FALLBACK) 1069 1070/* Encode hstate index for a hwpoisoned large page */ 1071#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1072#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1073 1074/* 1075 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1076 */ 1077extern void pagefault_out_of_memory(void); 1078 1079#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1080 1081/* 1082 * Flags passed to show_mem() and show_free_areas() to suppress output in 1083 * various contexts. 1084 */ 1085#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1086 1087extern void show_free_areas(unsigned int flags); 1088extern bool skip_free_areas_node(unsigned int flags, int nid); 1089 1090int shmem_zero_setup(struct vm_area_struct *); 1091#ifdef CONFIG_SHMEM 1092bool shmem_mapping(struct address_space *mapping); 1093#else 1094static inline bool shmem_mapping(struct address_space *mapping) 1095{ 1096 return false; 1097} 1098#endif 1099 1100extern int can_do_mlock(void); 1101extern int user_shm_lock(size_t, struct user_struct *); 1102extern void user_shm_unlock(size_t, struct user_struct *); 1103 1104/* 1105 * Parameter block passed down to zap_pte_range in exceptional cases. 1106 */ 1107struct zap_details { 1108 struct address_space *check_mapping; /* Check page->mapping if set */ 1109 pgoff_t first_index; /* Lowest page->index to unmap */ 1110 pgoff_t last_index; /* Highest page->index to unmap */ 1111}; 1112 1113struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1114 pte_t pte); 1115 1116int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1117 unsigned long size); 1118void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1119 unsigned long size, struct zap_details *); 1120void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1121 unsigned long start, unsigned long end); 1122 1123/** 1124 * mm_walk - callbacks for walk_page_range 1125 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1126 * this handler is required to be able to handle 1127 * pmd_trans_huge() pmds. They may simply choose to 1128 * split_huge_page() instead of handling it explicitly. 1129 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1130 * @pte_hole: if set, called for each hole at all levels 1131 * @hugetlb_entry: if set, called for each hugetlb entry 1132 * @test_walk: caller specific callback function to determine whether 1133 * we walk over the current vma or not. A positive returned 1134 * value means "do page table walk over the current vma," 1135 * and a negative one means "abort current page table walk 1136 * right now." 0 means "skip the current vma." 1137 * @mm: mm_struct representing the target process of page table walk 1138 * @vma: vma currently walked (NULL if walking outside vmas) 1139 * @private: private data for callbacks' usage 1140 * 1141 * (see the comment on walk_page_range() for more details) 1142 */ 1143struct mm_walk { 1144 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1145 unsigned long next, struct mm_walk *walk); 1146 int (*pte_entry)(pte_t *pte, unsigned long addr, 1147 unsigned long next, struct mm_walk *walk); 1148 int (*pte_hole)(unsigned long addr, unsigned long next, 1149 struct mm_walk *walk); 1150 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1151 unsigned long addr, unsigned long next, 1152 struct mm_walk *walk); 1153 int (*test_walk)(unsigned long addr, unsigned long next, 1154 struct mm_walk *walk); 1155 struct mm_struct *mm; 1156 struct vm_area_struct *vma; 1157 void *private; 1158}; 1159 1160int walk_page_range(unsigned long addr, unsigned long end, 1161 struct mm_walk *walk); 1162int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1163void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1164 unsigned long end, unsigned long floor, unsigned long ceiling); 1165int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1166 struct vm_area_struct *vma); 1167void unmap_mapping_range(struct address_space *mapping, 1168 loff_t const holebegin, loff_t const holelen, int even_cows); 1169int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1170 unsigned long *pfn); 1171int follow_phys(struct vm_area_struct *vma, unsigned long address, 1172 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1173int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1174 void *buf, int len, int write); 1175 1176static inline void unmap_shared_mapping_range(struct address_space *mapping, 1177 loff_t const holebegin, loff_t const holelen) 1178{ 1179 unmap_mapping_range(mapping, holebegin, holelen, 0); 1180} 1181 1182extern void truncate_pagecache(struct inode *inode, loff_t new); 1183extern void truncate_setsize(struct inode *inode, loff_t newsize); 1184void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1185void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1186int truncate_inode_page(struct address_space *mapping, struct page *page); 1187int generic_error_remove_page(struct address_space *mapping, struct page *page); 1188int invalidate_inode_page(struct page *page); 1189 1190#ifdef CONFIG_MMU 1191extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1192 unsigned long address, unsigned int flags); 1193extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1194 unsigned long address, unsigned int fault_flags); 1195#else 1196static inline int handle_mm_fault(struct mm_struct *mm, 1197 struct vm_area_struct *vma, unsigned long address, 1198 unsigned int flags) 1199{ 1200 /* should never happen if there's no MMU */ 1201 BUG(); 1202 return VM_FAULT_SIGBUS; 1203} 1204static inline int fixup_user_fault(struct task_struct *tsk, 1205 struct mm_struct *mm, unsigned long address, 1206 unsigned int fault_flags) 1207{ 1208 /* should never happen if there's no MMU */ 1209 BUG(); 1210 return -EFAULT; 1211} 1212#endif 1213 1214extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1215extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1216 void *buf, int len, int write); 1217 1218long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1219 unsigned long start, unsigned long nr_pages, 1220 unsigned int foll_flags, struct page **pages, 1221 struct vm_area_struct **vmas, int *nonblocking); 1222long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1223 unsigned long start, unsigned long nr_pages, 1224 int write, int force, struct page **pages, 1225 struct vm_area_struct **vmas); 1226long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1227 unsigned long start, unsigned long nr_pages, 1228 int write, int force, struct page **pages, 1229 int *locked); 1230long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1231 unsigned long start, unsigned long nr_pages, 1232 int write, int force, struct page **pages, 1233 unsigned int gup_flags); 1234long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1235 unsigned long start, unsigned long nr_pages, 1236 int write, int force, struct page **pages); 1237int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1238 struct page **pages); 1239 1240/* Container for pinned pfns / pages */ 1241struct frame_vector { 1242 unsigned int nr_allocated; /* Number of frames we have space for */ 1243 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1244 bool got_ref; /* Did we pin pages by getting page ref? */ 1245 bool is_pfns; /* Does array contain pages or pfns? */ 1246 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1247 * pfns_vector_pages() or pfns_vector_pfns() 1248 * for access */ 1249}; 1250 1251struct frame_vector *frame_vector_create(unsigned int nr_frames); 1252void frame_vector_destroy(struct frame_vector *vec); 1253int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1254 bool write, bool force, struct frame_vector *vec); 1255void put_vaddr_frames(struct frame_vector *vec); 1256int frame_vector_to_pages(struct frame_vector *vec); 1257void frame_vector_to_pfns(struct frame_vector *vec); 1258 1259static inline unsigned int frame_vector_count(struct frame_vector *vec) 1260{ 1261 return vec->nr_frames; 1262} 1263 1264static inline struct page **frame_vector_pages(struct frame_vector *vec) 1265{ 1266 if (vec->is_pfns) { 1267 int err = frame_vector_to_pages(vec); 1268 1269 if (err) 1270 return ERR_PTR(err); 1271 } 1272 return (struct page **)(vec->ptrs); 1273} 1274 1275static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1276{ 1277 if (!vec->is_pfns) 1278 frame_vector_to_pfns(vec); 1279 return (unsigned long *)(vec->ptrs); 1280} 1281 1282struct kvec; 1283int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1284 struct page **pages); 1285int get_kernel_page(unsigned long start, int write, struct page **pages); 1286struct page *get_dump_page(unsigned long addr); 1287 1288extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1289extern void do_invalidatepage(struct page *page, unsigned int offset, 1290 unsigned int length); 1291 1292int __set_page_dirty_nobuffers(struct page *page); 1293int __set_page_dirty_no_writeback(struct page *page); 1294int redirty_page_for_writepage(struct writeback_control *wbc, 1295 struct page *page); 1296void account_page_dirtied(struct page *page, struct address_space *mapping, 1297 struct mem_cgroup *memcg); 1298void account_page_cleaned(struct page *page, struct address_space *mapping, 1299 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1300int set_page_dirty(struct page *page); 1301int set_page_dirty_lock(struct page *page); 1302void cancel_dirty_page(struct page *page); 1303int clear_page_dirty_for_io(struct page *page); 1304 1305int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1306 1307/* Is the vma a continuation of the stack vma above it? */ 1308static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1309{ 1310 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1311} 1312 1313static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1314{ 1315 return !vma->vm_ops; 1316} 1317 1318static inline int stack_guard_page_start(struct vm_area_struct *vma, 1319 unsigned long addr) 1320{ 1321 return (vma->vm_flags & VM_GROWSDOWN) && 1322 (vma->vm_start == addr) && 1323 !vma_growsdown(vma->vm_prev, addr); 1324} 1325 1326/* Is the vma a continuation of the stack vma below it? */ 1327static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1328{ 1329 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1330} 1331 1332static inline int stack_guard_page_end(struct vm_area_struct *vma, 1333 unsigned long addr) 1334{ 1335 return (vma->vm_flags & VM_GROWSUP) && 1336 (vma->vm_end == addr) && 1337 !vma_growsup(vma->vm_next, addr); 1338} 1339 1340extern struct task_struct *task_of_stack(struct task_struct *task, 1341 struct vm_area_struct *vma, bool in_group); 1342 1343extern unsigned long move_page_tables(struct vm_area_struct *vma, 1344 unsigned long old_addr, struct vm_area_struct *new_vma, 1345 unsigned long new_addr, unsigned long len, 1346 bool need_rmap_locks); 1347extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1348 unsigned long end, pgprot_t newprot, 1349 int dirty_accountable, int prot_numa); 1350extern int mprotect_fixup(struct vm_area_struct *vma, 1351 struct vm_area_struct **pprev, unsigned long start, 1352 unsigned long end, unsigned long newflags); 1353 1354/* 1355 * doesn't attempt to fault and will return short. 1356 */ 1357int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1358 struct page **pages); 1359/* 1360 * per-process(per-mm_struct) statistics. 1361 */ 1362static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1363{ 1364 long val = atomic_long_read(&mm->rss_stat.count[member]); 1365 1366#ifdef SPLIT_RSS_COUNTING 1367 /* 1368 * counter is updated in asynchronous manner and may go to minus. 1369 * But it's never be expected number for users. 1370 */ 1371 if (val < 0) 1372 val = 0; 1373#endif 1374 return (unsigned long)val; 1375} 1376 1377static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1378{ 1379 atomic_long_add(value, &mm->rss_stat.count[member]); 1380} 1381 1382static inline void inc_mm_counter(struct mm_struct *mm, int member) 1383{ 1384 atomic_long_inc(&mm->rss_stat.count[member]); 1385} 1386 1387static inline void dec_mm_counter(struct mm_struct *mm, int member) 1388{ 1389 atomic_long_dec(&mm->rss_stat.count[member]); 1390} 1391 1392static inline unsigned long get_mm_rss(struct mm_struct *mm) 1393{ 1394 return get_mm_counter(mm, MM_FILEPAGES) + 1395 get_mm_counter(mm, MM_ANONPAGES); 1396} 1397 1398static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1399{ 1400 return max(mm->hiwater_rss, get_mm_rss(mm)); 1401} 1402 1403static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1404{ 1405 return max(mm->hiwater_vm, mm->total_vm); 1406} 1407 1408static inline void update_hiwater_rss(struct mm_struct *mm) 1409{ 1410 unsigned long _rss = get_mm_rss(mm); 1411 1412 if ((mm)->hiwater_rss < _rss) 1413 (mm)->hiwater_rss = _rss; 1414} 1415 1416static inline void update_hiwater_vm(struct mm_struct *mm) 1417{ 1418 if (mm->hiwater_vm < mm->total_vm) 1419 mm->hiwater_vm = mm->total_vm; 1420} 1421 1422static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1423{ 1424 mm->hiwater_rss = get_mm_rss(mm); 1425} 1426 1427static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1428 struct mm_struct *mm) 1429{ 1430 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1431 1432 if (*maxrss < hiwater_rss) 1433 *maxrss = hiwater_rss; 1434} 1435 1436#if defined(SPLIT_RSS_COUNTING) 1437void sync_mm_rss(struct mm_struct *mm); 1438#else 1439static inline void sync_mm_rss(struct mm_struct *mm) 1440{ 1441} 1442#endif 1443 1444int vma_wants_writenotify(struct vm_area_struct *vma); 1445 1446extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1447 spinlock_t **ptl); 1448static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1449 spinlock_t **ptl) 1450{ 1451 pte_t *ptep; 1452 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1453 return ptep; 1454} 1455 1456#ifdef __PAGETABLE_PUD_FOLDED 1457static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1458 unsigned long address) 1459{ 1460 return 0; 1461} 1462#else 1463int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1464#endif 1465 1466#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1467static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1468 unsigned long address) 1469{ 1470 return 0; 1471} 1472 1473static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1474 1475static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1476{ 1477 return 0; 1478} 1479 1480static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1481static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1482 1483#else 1484int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1485 1486static inline void mm_nr_pmds_init(struct mm_struct *mm) 1487{ 1488 atomic_long_set(&mm->nr_pmds, 0); 1489} 1490 1491static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1492{ 1493 return atomic_long_read(&mm->nr_pmds); 1494} 1495 1496static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1497{ 1498 atomic_long_inc(&mm->nr_pmds); 1499} 1500 1501static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1502{ 1503 atomic_long_dec(&mm->nr_pmds); 1504} 1505#endif 1506 1507int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1508 pmd_t *pmd, unsigned long address); 1509int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1510 1511/* 1512 * The following ifdef needed to get the 4level-fixup.h header to work. 1513 * Remove it when 4level-fixup.h has been removed. 1514 */ 1515#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1516static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1517{ 1518 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1519 NULL: pud_offset(pgd, address); 1520} 1521 1522static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1523{ 1524 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1525 NULL: pmd_offset(pud, address); 1526} 1527#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1528 1529#if USE_SPLIT_PTE_PTLOCKS 1530#if ALLOC_SPLIT_PTLOCKS 1531void __init ptlock_cache_init(void); 1532extern bool ptlock_alloc(struct page *page); 1533extern void ptlock_free(struct page *page); 1534 1535static inline spinlock_t *ptlock_ptr(struct page *page) 1536{ 1537 return page->ptl; 1538} 1539#else /* ALLOC_SPLIT_PTLOCKS */ 1540static inline void ptlock_cache_init(void) 1541{ 1542} 1543 1544static inline bool ptlock_alloc(struct page *page) 1545{ 1546 return true; 1547} 1548 1549static inline void ptlock_free(struct page *page) 1550{ 1551} 1552 1553static inline spinlock_t *ptlock_ptr(struct page *page) 1554{ 1555 return &page->ptl; 1556} 1557#endif /* ALLOC_SPLIT_PTLOCKS */ 1558 1559static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1560{ 1561 return ptlock_ptr(pmd_page(*pmd)); 1562} 1563 1564static inline bool ptlock_init(struct page *page) 1565{ 1566 /* 1567 * prep_new_page() initialize page->private (and therefore page->ptl) 1568 * with 0. Make sure nobody took it in use in between. 1569 * 1570 * It can happen if arch try to use slab for page table allocation: 1571 * slab code uses page->slab_cache and page->first_page (for tail 1572 * pages), which share storage with page->ptl. 1573 */ 1574 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1575 if (!ptlock_alloc(page)) 1576 return false; 1577 spin_lock_init(ptlock_ptr(page)); 1578 return true; 1579} 1580 1581/* Reset page->mapping so free_pages_check won't complain. */ 1582static inline void pte_lock_deinit(struct page *page) 1583{ 1584 page->mapping = NULL; 1585 ptlock_free(page); 1586} 1587 1588#else /* !USE_SPLIT_PTE_PTLOCKS */ 1589/* 1590 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1591 */ 1592static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1593{ 1594 return &mm->page_table_lock; 1595} 1596static inline void ptlock_cache_init(void) {} 1597static inline bool ptlock_init(struct page *page) { return true; } 1598static inline void pte_lock_deinit(struct page *page) {} 1599#endif /* USE_SPLIT_PTE_PTLOCKS */ 1600 1601static inline void pgtable_init(void) 1602{ 1603 ptlock_cache_init(); 1604 pgtable_cache_init(); 1605} 1606 1607static inline bool pgtable_page_ctor(struct page *page) 1608{ 1609 inc_zone_page_state(page, NR_PAGETABLE); 1610 return ptlock_init(page); 1611} 1612 1613static inline void pgtable_page_dtor(struct page *page) 1614{ 1615 pte_lock_deinit(page); 1616 dec_zone_page_state(page, NR_PAGETABLE); 1617} 1618 1619#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1620({ \ 1621 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1622 pte_t *__pte = pte_offset_map(pmd, address); \ 1623 *(ptlp) = __ptl; \ 1624 spin_lock(__ptl); \ 1625 __pte; \ 1626}) 1627 1628#define pte_unmap_unlock(pte, ptl) do { \ 1629 spin_unlock(ptl); \ 1630 pte_unmap(pte); \ 1631} while (0) 1632 1633#define pte_alloc_map(mm, vma, pmd, address) \ 1634 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1635 pmd, address))? \ 1636 NULL: pte_offset_map(pmd, address)) 1637 1638#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1639 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1640 pmd, address))? \ 1641 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1642 1643#define pte_alloc_kernel(pmd, address) \ 1644 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1645 NULL: pte_offset_kernel(pmd, address)) 1646 1647#if USE_SPLIT_PMD_PTLOCKS 1648 1649static struct page *pmd_to_page(pmd_t *pmd) 1650{ 1651 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1652 return virt_to_page((void *)((unsigned long) pmd & mask)); 1653} 1654 1655static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1656{ 1657 return ptlock_ptr(pmd_to_page(pmd)); 1658} 1659 1660static inline bool pgtable_pmd_page_ctor(struct page *page) 1661{ 1662#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1663 page->pmd_huge_pte = NULL; 1664#endif 1665 return ptlock_init(page); 1666} 1667 1668static inline void pgtable_pmd_page_dtor(struct page *page) 1669{ 1670#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1671 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1672#endif 1673 ptlock_free(page); 1674} 1675 1676#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1677 1678#else 1679 1680static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1681{ 1682 return &mm->page_table_lock; 1683} 1684 1685static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1686static inline void pgtable_pmd_page_dtor(struct page *page) {} 1687 1688#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1689 1690#endif 1691 1692static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1693{ 1694 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1695 spin_lock(ptl); 1696 return ptl; 1697} 1698 1699extern void free_area_init(unsigned long * zones_size); 1700extern void free_area_init_node(int nid, unsigned long * zones_size, 1701 unsigned long zone_start_pfn, unsigned long *zholes_size); 1702extern void free_initmem(void); 1703 1704/* 1705 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1706 * into the buddy system. The freed pages will be poisoned with pattern 1707 * "poison" if it's within range [0, UCHAR_MAX]. 1708 * Return pages freed into the buddy system. 1709 */ 1710extern unsigned long free_reserved_area(void *start, void *end, 1711 int poison, char *s); 1712 1713#ifdef CONFIG_HIGHMEM 1714/* 1715 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1716 * and totalram_pages. 1717 */ 1718extern void free_highmem_page(struct page *page); 1719#endif 1720 1721extern void adjust_managed_page_count(struct page *page, long count); 1722extern void mem_init_print_info(const char *str); 1723 1724extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1725 1726/* Free the reserved page into the buddy system, so it gets managed. */ 1727static inline void __free_reserved_page(struct page *page) 1728{ 1729 ClearPageReserved(page); 1730 init_page_count(page); 1731 __free_page(page); 1732} 1733 1734static inline void free_reserved_page(struct page *page) 1735{ 1736 __free_reserved_page(page); 1737 adjust_managed_page_count(page, 1); 1738} 1739 1740static inline void mark_page_reserved(struct page *page) 1741{ 1742 SetPageReserved(page); 1743 adjust_managed_page_count(page, -1); 1744} 1745 1746/* 1747 * Default method to free all the __init memory into the buddy system. 1748 * The freed pages will be poisoned with pattern "poison" if it's within 1749 * range [0, UCHAR_MAX]. 1750 * Return pages freed into the buddy system. 1751 */ 1752static inline unsigned long free_initmem_default(int poison) 1753{ 1754 extern char __init_begin[], __init_end[]; 1755 1756 return free_reserved_area(&__init_begin, &__init_end, 1757 poison, "unused kernel"); 1758} 1759 1760static inline unsigned long get_num_physpages(void) 1761{ 1762 int nid; 1763 unsigned long phys_pages = 0; 1764 1765 for_each_online_node(nid) 1766 phys_pages += node_present_pages(nid); 1767 1768 return phys_pages; 1769} 1770 1771#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1772/* 1773 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1774 * zones, allocate the backing mem_map and account for memory holes in a more 1775 * architecture independent manner. This is a substitute for creating the 1776 * zone_sizes[] and zholes_size[] arrays and passing them to 1777 * free_area_init_node() 1778 * 1779 * An architecture is expected to register range of page frames backed by 1780 * physical memory with memblock_add[_node]() before calling 1781 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1782 * usage, an architecture is expected to do something like 1783 * 1784 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1785 * max_highmem_pfn}; 1786 * for_each_valid_physical_page_range() 1787 * memblock_add_node(base, size, nid) 1788 * free_area_init_nodes(max_zone_pfns); 1789 * 1790 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1791 * registered physical page range. Similarly 1792 * sparse_memory_present_with_active_regions() calls memory_present() for 1793 * each range when SPARSEMEM is enabled. 1794 * 1795 * See mm/page_alloc.c for more information on each function exposed by 1796 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1797 */ 1798extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1799unsigned long node_map_pfn_alignment(void); 1800unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1801 unsigned long end_pfn); 1802extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1803 unsigned long end_pfn); 1804extern void get_pfn_range_for_nid(unsigned int nid, 1805 unsigned long *start_pfn, unsigned long *end_pfn); 1806extern unsigned long find_min_pfn_with_active_regions(void); 1807extern void free_bootmem_with_active_regions(int nid, 1808 unsigned long max_low_pfn); 1809extern void sparse_memory_present_with_active_regions(int nid); 1810 1811#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1812 1813#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1814 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1815static inline int __early_pfn_to_nid(unsigned long pfn, 1816 struct mminit_pfnnid_cache *state) 1817{ 1818 return 0; 1819} 1820#else 1821/* please see mm/page_alloc.c */ 1822extern int __meminit early_pfn_to_nid(unsigned long pfn); 1823/* there is a per-arch backend function. */ 1824extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1825 struct mminit_pfnnid_cache *state); 1826#endif 1827 1828extern void set_dma_reserve(unsigned long new_dma_reserve); 1829extern void memmap_init_zone(unsigned long, int, unsigned long, 1830 unsigned long, enum memmap_context); 1831extern void setup_per_zone_wmarks(void); 1832extern int __meminit init_per_zone_wmark_min(void); 1833extern void mem_init(void); 1834extern void __init mmap_init(void); 1835extern void show_mem(unsigned int flags); 1836extern void si_meminfo(struct sysinfo * val); 1837extern void si_meminfo_node(struct sysinfo *val, int nid); 1838 1839extern __printf(3, 4) 1840void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1841 1842extern void setup_per_cpu_pageset(void); 1843 1844extern void zone_pcp_update(struct zone *zone); 1845extern void zone_pcp_reset(struct zone *zone); 1846 1847/* page_alloc.c */ 1848extern int min_free_kbytes; 1849 1850/* nommu.c */ 1851extern atomic_long_t mmap_pages_allocated; 1852extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1853 1854/* interval_tree.c */ 1855void vma_interval_tree_insert(struct vm_area_struct *node, 1856 struct rb_root *root); 1857void vma_interval_tree_insert_after(struct vm_area_struct *node, 1858 struct vm_area_struct *prev, 1859 struct rb_root *root); 1860void vma_interval_tree_remove(struct vm_area_struct *node, 1861 struct rb_root *root); 1862struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1863 unsigned long start, unsigned long last); 1864struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1865 unsigned long start, unsigned long last); 1866 1867#define vma_interval_tree_foreach(vma, root, start, last) \ 1868 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1869 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1870 1871void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1872 struct rb_root *root); 1873void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1874 struct rb_root *root); 1875struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1876 struct rb_root *root, unsigned long start, unsigned long last); 1877struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1878 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1879#ifdef CONFIG_DEBUG_VM_RB 1880void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1881#endif 1882 1883#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1884 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1885 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1886 1887/* mmap.c */ 1888extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1889extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1890 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1891extern struct vm_area_struct *vma_merge(struct mm_struct *, 1892 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1893 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1894 struct mempolicy *, struct vm_userfaultfd_ctx); 1895extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1896extern int split_vma(struct mm_struct *, 1897 struct vm_area_struct *, unsigned long addr, int new_below); 1898extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1899extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1900 struct rb_node **, struct rb_node *); 1901extern void unlink_file_vma(struct vm_area_struct *); 1902extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1903 unsigned long addr, unsigned long len, pgoff_t pgoff, 1904 bool *need_rmap_locks); 1905extern void exit_mmap(struct mm_struct *); 1906 1907static inline int check_data_rlimit(unsigned long rlim, 1908 unsigned long new, 1909 unsigned long start, 1910 unsigned long end_data, 1911 unsigned long start_data) 1912{ 1913 if (rlim < RLIM_INFINITY) { 1914 if (((new - start) + (end_data - start_data)) > rlim) 1915 return -ENOSPC; 1916 } 1917 1918 return 0; 1919} 1920 1921extern int mm_take_all_locks(struct mm_struct *mm); 1922extern void mm_drop_all_locks(struct mm_struct *mm); 1923 1924extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1925extern struct file *get_mm_exe_file(struct mm_struct *mm); 1926 1927extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1928extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1929 unsigned long addr, unsigned long len, 1930 unsigned long flags, 1931 const struct vm_special_mapping *spec); 1932/* This is an obsolete alternative to _install_special_mapping. */ 1933extern int install_special_mapping(struct mm_struct *mm, 1934 unsigned long addr, unsigned long len, 1935 unsigned long flags, struct page **pages); 1936 1937extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1938 1939extern unsigned long mmap_region(struct file *file, unsigned long addr, 1940 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1941extern unsigned long do_mmap(struct file *file, unsigned long addr, 1942 unsigned long len, unsigned long prot, unsigned long flags, 1943 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1944extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1945 1946static inline unsigned long 1947do_mmap_pgoff(struct file *file, unsigned long addr, 1948 unsigned long len, unsigned long prot, unsigned long flags, 1949 unsigned long pgoff, unsigned long *populate) 1950{ 1951 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1952} 1953 1954#ifdef CONFIG_MMU 1955extern int __mm_populate(unsigned long addr, unsigned long len, 1956 int ignore_errors); 1957static inline void mm_populate(unsigned long addr, unsigned long len) 1958{ 1959 /* Ignore errors */ 1960 (void) __mm_populate(addr, len, 1); 1961} 1962#else 1963static inline void mm_populate(unsigned long addr, unsigned long len) {} 1964#endif 1965 1966/* These take the mm semaphore themselves */ 1967extern unsigned long vm_brk(unsigned long, unsigned long); 1968extern int vm_munmap(unsigned long, size_t); 1969extern unsigned long vm_mmap(struct file *, unsigned long, 1970 unsigned long, unsigned long, 1971 unsigned long, unsigned long); 1972 1973struct vm_unmapped_area_info { 1974#define VM_UNMAPPED_AREA_TOPDOWN 1 1975 unsigned long flags; 1976 unsigned long length; 1977 unsigned long low_limit; 1978 unsigned long high_limit; 1979 unsigned long align_mask; 1980 unsigned long align_offset; 1981}; 1982 1983extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1984extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1985 1986/* 1987 * Search for an unmapped address range. 1988 * 1989 * We are looking for a range that: 1990 * - does not intersect with any VMA; 1991 * - is contained within the [low_limit, high_limit) interval; 1992 * - is at least the desired size. 1993 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1994 */ 1995static inline unsigned long 1996vm_unmapped_area(struct vm_unmapped_area_info *info) 1997{ 1998 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1999 return unmapped_area_topdown(info); 2000 else 2001 return unmapped_area(info); 2002} 2003 2004/* truncate.c */ 2005extern void truncate_inode_pages(struct address_space *, loff_t); 2006extern void truncate_inode_pages_range(struct address_space *, 2007 loff_t lstart, loff_t lend); 2008extern void truncate_inode_pages_final(struct address_space *); 2009 2010/* generic vm_area_ops exported for stackable file systems */ 2011extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2012extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2013extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2014 2015/* mm/page-writeback.c */ 2016int write_one_page(struct page *page, int wait); 2017void task_dirty_inc(struct task_struct *tsk); 2018 2019/* readahead.c */ 2020#define VM_MAX_READAHEAD 128 /* kbytes */ 2021#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2022 2023int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2024 pgoff_t offset, unsigned long nr_to_read); 2025 2026void page_cache_sync_readahead(struct address_space *mapping, 2027 struct file_ra_state *ra, 2028 struct file *filp, 2029 pgoff_t offset, 2030 unsigned long size); 2031 2032void page_cache_async_readahead(struct address_space *mapping, 2033 struct file_ra_state *ra, 2034 struct file *filp, 2035 struct page *pg, 2036 pgoff_t offset, 2037 unsigned long size); 2038 2039unsigned long max_sane_readahead(unsigned long nr); 2040 2041/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2042extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2043 2044/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2045extern int expand_downwards(struct vm_area_struct *vma, 2046 unsigned long address); 2047#if VM_GROWSUP 2048extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2049#else 2050 #define expand_upwards(vma, address) (0) 2051#endif 2052 2053/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2054extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2055extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2056 struct vm_area_struct **pprev); 2057 2058/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2059 NULL if none. Assume start_addr < end_addr. */ 2060static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2061{ 2062 struct vm_area_struct * vma = find_vma(mm,start_addr); 2063 2064 if (vma && end_addr <= vma->vm_start) 2065 vma = NULL; 2066 return vma; 2067} 2068 2069static inline unsigned long vma_pages(struct vm_area_struct *vma) 2070{ 2071 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2072} 2073 2074/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2075static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2076 unsigned long vm_start, unsigned long vm_end) 2077{ 2078 struct vm_area_struct *vma = find_vma(mm, vm_start); 2079 2080 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2081 vma = NULL; 2082 2083 return vma; 2084} 2085 2086#ifdef CONFIG_MMU 2087pgprot_t vm_get_page_prot(unsigned long vm_flags); 2088void vma_set_page_prot(struct vm_area_struct *vma); 2089#else 2090static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2091{ 2092 return __pgprot(0); 2093} 2094static inline void vma_set_page_prot(struct vm_area_struct *vma) 2095{ 2096 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2097} 2098#endif 2099 2100#ifdef CONFIG_NUMA_BALANCING 2101unsigned long change_prot_numa(struct vm_area_struct *vma, 2102 unsigned long start, unsigned long end); 2103#endif 2104 2105struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2106int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2107 unsigned long pfn, unsigned long size, pgprot_t); 2108int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2109int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2110 unsigned long pfn); 2111int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2112 unsigned long pfn); 2113int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2114 2115 2116struct page *follow_page_mask(struct vm_area_struct *vma, 2117 unsigned long address, unsigned int foll_flags, 2118 unsigned int *page_mask); 2119 2120static inline struct page *follow_page(struct vm_area_struct *vma, 2121 unsigned long address, unsigned int foll_flags) 2122{ 2123 unsigned int unused_page_mask; 2124 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2125} 2126 2127#define FOLL_WRITE 0x01 /* check pte is writable */ 2128#define FOLL_TOUCH 0x02 /* mark page accessed */ 2129#define FOLL_GET 0x04 /* do get_page on page */ 2130#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2131#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2132#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2133 * and return without waiting upon it */ 2134#define FOLL_POPULATE 0x40 /* fault in page */ 2135#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2136#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2137#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2138#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2139#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2140 2141typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2142 void *data); 2143extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2144 unsigned long size, pte_fn_t fn, void *data); 2145 2146#ifdef CONFIG_PROC_FS 2147void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2148#else 2149static inline void vm_stat_account(struct mm_struct *mm, 2150 unsigned long flags, struct file *file, long pages) 2151{ 2152 mm->total_vm += pages; 2153} 2154#endif /* CONFIG_PROC_FS */ 2155 2156#ifdef CONFIG_DEBUG_PAGEALLOC 2157extern bool _debug_pagealloc_enabled; 2158extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2159 2160static inline bool debug_pagealloc_enabled(void) 2161{ 2162 return _debug_pagealloc_enabled; 2163} 2164 2165static inline void 2166kernel_map_pages(struct page *page, int numpages, int enable) 2167{ 2168 if (!debug_pagealloc_enabled()) 2169 return; 2170 2171 __kernel_map_pages(page, numpages, enable); 2172} 2173#ifdef CONFIG_HIBERNATION 2174extern bool kernel_page_present(struct page *page); 2175#endif /* CONFIG_HIBERNATION */ 2176#else 2177static inline void 2178kernel_map_pages(struct page *page, int numpages, int enable) {} 2179#ifdef CONFIG_HIBERNATION 2180static inline bool kernel_page_present(struct page *page) { return true; } 2181#endif /* CONFIG_HIBERNATION */ 2182#endif 2183 2184#ifdef __HAVE_ARCH_GATE_AREA 2185extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2186extern int in_gate_area_no_mm(unsigned long addr); 2187extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2188#else 2189static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2190{ 2191 return NULL; 2192} 2193static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2194static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2195{ 2196 return 0; 2197} 2198#endif /* __HAVE_ARCH_GATE_AREA */ 2199 2200#ifdef CONFIG_SYSCTL 2201extern int sysctl_drop_caches; 2202int drop_caches_sysctl_handler(struct ctl_table *, int, 2203 void __user *, size_t *, loff_t *); 2204#endif 2205 2206void drop_slab(void); 2207void drop_slab_node(int nid); 2208 2209#ifndef CONFIG_MMU 2210#define randomize_va_space 0 2211#else 2212extern int randomize_va_space; 2213#endif 2214 2215const char * arch_vma_name(struct vm_area_struct *vma); 2216void print_vma_addr(char *prefix, unsigned long rip); 2217 2218void sparse_mem_maps_populate_node(struct page **map_map, 2219 unsigned long pnum_begin, 2220 unsigned long pnum_end, 2221 unsigned long map_count, 2222 int nodeid); 2223 2224struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2225pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2226pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2227pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2228pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2229void *vmemmap_alloc_block(unsigned long size, int node); 2230void *vmemmap_alloc_block_buf(unsigned long size, int node); 2231void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2232int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2233 int node); 2234int vmemmap_populate(unsigned long start, unsigned long end, int node); 2235void vmemmap_populate_print_last(void); 2236#ifdef CONFIG_MEMORY_HOTPLUG 2237void vmemmap_free(unsigned long start, unsigned long end); 2238#endif 2239void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2240 unsigned long size); 2241 2242enum mf_flags { 2243 MF_COUNT_INCREASED = 1 << 0, 2244 MF_ACTION_REQUIRED = 1 << 1, 2245 MF_MUST_KILL = 1 << 2, 2246 MF_SOFT_OFFLINE = 1 << 3, 2247}; 2248extern int memory_failure(unsigned long pfn, int trapno, int flags); 2249extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2250extern int unpoison_memory(unsigned long pfn); 2251extern int get_hwpoison_page(struct page *page); 2252extern void put_hwpoison_page(struct page *page); 2253extern int sysctl_memory_failure_early_kill; 2254extern int sysctl_memory_failure_recovery; 2255extern void shake_page(struct page *p, int access); 2256extern atomic_long_t num_poisoned_pages; 2257extern int soft_offline_page(struct page *page, int flags); 2258 2259 2260/* 2261 * Error handlers for various types of pages. 2262 */ 2263enum mf_result { 2264 MF_IGNORED, /* Error: cannot be handled */ 2265 MF_FAILED, /* Error: handling failed */ 2266 MF_DELAYED, /* Will be handled later */ 2267 MF_RECOVERED, /* Successfully recovered */ 2268}; 2269 2270enum mf_action_page_type { 2271 MF_MSG_KERNEL, 2272 MF_MSG_KERNEL_HIGH_ORDER, 2273 MF_MSG_SLAB, 2274 MF_MSG_DIFFERENT_COMPOUND, 2275 MF_MSG_POISONED_HUGE, 2276 MF_MSG_HUGE, 2277 MF_MSG_FREE_HUGE, 2278 MF_MSG_UNMAP_FAILED, 2279 MF_MSG_DIRTY_SWAPCACHE, 2280 MF_MSG_CLEAN_SWAPCACHE, 2281 MF_MSG_DIRTY_MLOCKED_LRU, 2282 MF_MSG_CLEAN_MLOCKED_LRU, 2283 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2284 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2285 MF_MSG_DIRTY_LRU, 2286 MF_MSG_CLEAN_LRU, 2287 MF_MSG_TRUNCATED_LRU, 2288 MF_MSG_BUDDY, 2289 MF_MSG_BUDDY_2ND, 2290 MF_MSG_UNKNOWN, 2291}; 2292 2293#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2294extern void clear_huge_page(struct page *page, 2295 unsigned long addr, 2296 unsigned int pages_per_huge_page); 2297extern void copy_user_huge_page(struct page *dst, struct page *src, 2298 unsigned long addr, struct vm_area_struct *vma, 2299 unsigned int pages_per_huge_page); 2300#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2301 2302extern struct page_ext_operations debug_guardpage_ops; 2303extern struct page_ext_operations page_poisoning_ops; 2304 2305#ifdef CONFIG_DEBUG_PAGEALLOC 2306extern unsigned int _debug_guardpage_minorder; 2307extern bool _debug_guardpage_enabled; 2308 2309static inline unsigned int debug_guardpage_minorder(void) 2310{ 2311 return _debug_guardpage_minorder; 2312} 2313 2314static inline bool debug_guardpage_enabled(void) 2315{ 2316 return _debug_guardpage_enabled; 2317} 2318 2319static inline bool page_is_guard(struct page *page) 2320{ 2321 struct page_ext *page_ext; 2322 2323 if (!debug_guardpage_enabled()) 2324 return false; 2325 2326 page_ext = lookup_page_ext(page); 2327 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2328} 2329#else 2330static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2331static inline bool debug_guardpage_enabled(void) { return false; } 2332static inline bool page_is_guard(struct page *page) { return false; } 2333#endif /* CONFIG_DEBUG_PAGEALLOC */ 2334 2335#if MAX_NUMNODES > 1 2336void __init setup_nr_node_ids(void); 2337#else 2338static inline void setup_nr_node_ids(void) {} 2339#endif 2340 2341#endif /* __KERNEL__ */ 2342#endif /* _LINUX_MM_H */