at v4.3 24 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31 32struct mem_cgroup; 33struct page; 34struct mm_struct; 35struct kmem_cache; 36 37/* 38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 39 * These two lists should keep in accord with each other. 40 */ 41enum mem_cgroup_stat_index { 42 /* 43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 44 */ 45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */ 50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 52 MEM_CGROUP_STAT_NSTATS, 53}; 54 55struct mem_cgroup_reclaim_cookie { 56 struct zone *zone; 57 int priority; 58 unsigned int generation; 59}; 60 61enum mem_cgroup_events_index { 62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 66 MEM_CGROUP_EVENTS_NSTATS, 67 /* default hierarchy events */ 68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS, 69 MEMCG_HIGH, 70 MEMCG_MAX, 71 MEMCG_OOM, 72 MEMCG_NR_EVENTS, 73}; 74 75/* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86}; 87 88/* 89 * Bits in struct cg_proto.flags 90 */ 91enum cg_proto_flags { 92 /* Currently active and new sockets should be assigned to cgroups */ 93 MEMCG_SOCK_ACTIVE, 94 /* It was ever activated; we must disarm static keys on destruction */ 95 MEMCG_SOCK_ACTIVATED, 96}; 97 98struct cg_proto { 99 struct page_counter memory_allocated; /* Current allocated memory. */ 100 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 101 int memory_pressure; 102 long sysctl_mem[3]; 103 unsigned long flags; 104 /* 105 * memcg field is used to find which memcg we belong directly 106 * Each memcg struct can hold more than one cg_proto, so container_of 107 * won't really cut. 108 * 109 * The elegant solution would be having an inverse function to 110 * proto_cgroup in struct proto, but that means polluting the structure 111 * for everybody, instead of just for memcg users. 112 */ 113 struct mem_cgroup *memcg; 114}; 115 116#ifdef CONFIG_MEMCG 117struct mem_cgroup_stat_cpu { 118 long count[MEM_CGROUP_STAT_NSTATS]; 119 unsigned long events[MEMCG_NR_EVENTS]; 120 unsigned long nr_page_events; 121 unsigned long targets[MEM_CGROUP_NTARGETS]; 122}; 123 124struct mem_cgroup_reclaim_iter { 125 struct mem_cgroup *position; 126 /* scan generation, increased every round-trip */ 127 unsigned int generation; 128}; 129 130/* 131 * per-zone information in memory controller. 132 */ 133struct mem_cgroup_per_zone { 134 struct lruvec lruvec; 135 unsigned long lru_size[NR_LRU_LISTS]; 136 137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 138 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 144 /* use container_of */ 145}; 146 147struct mem_cgroup_per_node { 148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 149}; 150 151struct mem_cgroup_threshold { 152 struct eventfd_ctx *eventfd; 153 unsigned long threshold; 154}; 155 156/* For threshold */ 157struct mem_cgroup_threshold_ary { 158 /* An array index points to threshold just below or equal to usage. */ 159 int current_threshold; 160 /* Size of entries[] */ 161 unsigned int size; 162 /* Array of thresholds */ 163 struct mem_cgroup_threshold entries[0]; 164}; 165 166struct mem_cgroup_thresholds { 167 /* Primary thresholds array */ 168 struct mem_cgroup_threshold_ary *primary; 169 /* 170 * Spare threshold array. 171 * This is needed to make mem_cgroup_unregister_event() "never fail". 172 * It must be able to store at least primary->size - 1 entries. 173 */ 174 struct mem_cgroup_threshold_ary *spare; 175}; 176 177/* 178 * The memory controller data structure. The memory controller controls both 179 * page cache and RSS per cgroup. We would eventually like to provide 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 181 * to help the administrator determine what knobs to tune. 182 */ 183struct mem_cgroup { 184 struct cgroup_subsys_state css; 185 186 /* Accounted resources */ 187 struct page_counter memory; 188 struct page_counter memsw; 189 struct page_counter kmem; 190 191 /* Normal memory consumption range */ 192 unsigned long low; 193 unsigned long high; 194 195 unsigned long soft_limit; 196 197 /* vmpressure notifications */ 198 struct vmpressure vmpressure; 199 200 /* css_online() has been completed */ 201 int initialized; 202 203 /* 204 * Should the accounting and control be hierarchical, per subtree? 205 */ 206 bool use_hierarchy; 207 208 /* protected by memcg_oom_lock */ 209 bool oom_lock; 210 int under_oom; 211 212 int swappiness; 213 /* OOM-Killer disable */ 214 int oom_kill_disable; 215 216 /* protect arrays of thresholds */ 217 struct mutex thresholds_lock; 218 219 /* thresholds for memory usage. RCU-protected */ 220 struct mem_cgroup_thresholds thresholds; 221 222 /* thresholds for mem+swap usage. RCU-protected */ 223 struct mem_cgroup_thresholds memsw_thresholds; 224 225 /* For oom notifier event fd */ 226 struct list_head oom_notify; 227 228 /* 229 * Should we move charges of a task when a task is moved into this 230 * mem_cgroup ? And what type of charges should we move ? 231 */ 232 unsigned long move_charge_at_immigrate; 233 /* 234 * set > 0 if pages under this cgroup are moving to other cgroup. 235 */ 236 atomic_t moving_account; 237 /* taken only while moving_account > 0 */ 238 spinlock_t move_lock; 239 struct task_struct *move_lock_task; 240 unsigned long move_lock_flags; 241 /* 242 * percpu counter. 243 */ 244 struct mem_cgroup_stat_cpu __percpu *stat; 245 246#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 247 struct cg_proto tcp_mem; 248#endif 249#if defined(CONFIG_MEMCG_KMEM) 250 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 251 int kmemcg_id; 252 bool kmem_acct_activated; 253 bool kmem_acct_active; 254#endif 255 256 int last_scanned_node; 257#if MAX_NUMNODES > 1 258 nodemask_t scan_nodes; 259 atomic_t numainfo_events; 260 atomic_t numainfo_updating; 261#endif 262 263#ifdef CONFIG_CGROUP_WRITEBACK 264 struct list_head cgwb_list; 265 struct wb_domain cgwb_domain; 266#endif 267 268 /* List of events which userspace want to receive */ 269 struct list_head event_list; 270 spinlock_t event_list_lock; 271 272 struct mem_cgroup_per_node *nodeinfo[0]; 273 /* WARNING: nodeinfo must be the last member here */ 274}; 275extern struct cgroup_subsys_state *mem_cgroup_root_css; 276 277/** 278 * mem_cgroup_events - count memory events against a cgroup 279 * @memcg: the memory cgroup 280 * @idx: the event index 281 * @nr: the number of events to account for 282 */ 283static inline void mem_cgroup_events(struct mem_cgroup *memcg, 284 enum mem_cgroup_events_index idx, 285 unsigned int nr) 286{ 287 this_cpu_add(memcg->stat->events[idx], nr); 288} 289 290bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 291 292int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 293 gfp_t gfp_mask, struct mem_cgroup **memcgp); 294void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 295 bool lrucare); 296void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 297void mem_cgroup_uncharge(struct page *page); 298void mem_cgroup_uncharge_list(struct list_head *page_list); 299 300void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 301 bool lrucare); 302 303struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 304struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 305 306bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 307struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 308struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 309 310static inline 311struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 312 return css ? container_of(css, struct mem_cgroup, css) : NULL; 313} 314 315struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 316 struct mem_cgroup *, 317 struct mem_cgroup_reclaim_cookie *); 318void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 319 320static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 321 struct mem_cgroup *root) 322{ 323 if (root == memcg) 324 return true; 325 if (!root->use_hierarchy) 326 return false; 327 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 328} 329 330static inline bool mm_match_cgroup(struct mm_struct *mm, 331 struct mem_cgroup *memcg) 332{ 333 struct mem_cgroup *task_memcg; 334 bool match = false; 335 336 rcu_read_lock(); 337 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 338 if (task_memcg) 339 match = mem_cgroup_is_descendant(task_memcg, memcg); 340 rcu_read_unlock(); 341 return match; 342} 343 344struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 345ino_t page_cgroup_ino(struct page *page); 346 347static inline bool mem_cgroup_disabled(void) 348{ 349 if (memory_cgrp_subsys.disabled) 350 return true; 351 return false; 352} 353 354/* 355 * For memory reclaim. 356 */ 357int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 358 359void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 360 int nr_pages); 361 362static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 363{ 364 struct mem_cgroup_per_zone *mz; 365 struct mem_cgroup *memcg; 366 367 if (mem_cgroup_disabled()) 368 return true; 369 370 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 371 memcg = mz->memcg; 372 373 return !!(memcg->css.flags & CSS_ONLINE); 374} 375 376static inline 377unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 378{ 379 struct mem_cgroup_per_zone *mz; 380 381 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 382 return mz->lru_size[lru]; 383} 384 385static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 386{ 387 unsigned long inactive_ratio; 388 unsigned long inactive; 389 unsigned long active; 390 unsigned long gb; 391 392 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 393 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 394 395 gb = (inactive + active) >> (30 - PAGE_SHIFT); 396 if (gb) 397 inactive_ratio = int_sqrt(10 * gb); 398 else 399 inactive_ratio = 1; 400 401 return inactive * inactive_ratio < active; 402} 403 404void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 405 struct task_struct *p); 406 407static inline void mem_cgroup_oom_enable(void) 408{ 409 WARN_ON(current->memcg_oom.may_oom); 410 current->memcg_oom.may_oom = 1; 411} 412 413static inline void mem_cgroup_oom_disable(void) 414{ 415 WARN_ON(!current->memcg_oom.may_oom); 416 current->memcg_oom.may_oom = 0; 417} 418 419static inline bool task_in_memcg_oom(struct task_struct *p) 420{ 421 return p->memcg_oom.memcg; 422} 423 424bool mem_cgroup_oom_synchronize(bool wait); 425 426#ifdef CONFIG_MEMCG_SWAP 427extern int do_swap_account; 428#endif 429 430struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page); 431void mem_cgroup_end_page_stat(struct mem_cgroup *memcg); 432 433/** 434 * mem_cgroup_update_page_stat - update page state statistics 435 * @memcg: memcg to account against 436 * @idx: page state item to account 437 * @val: number of pages (positive or negative) 438 * 439 * See mem_cgroup_begin_page_stat() for locking requirements. 440 */ 441static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 442 enum mem_cgroup_stat_index idx, int val) 443{ 444 VM_BUG_ON(!rcu_read_lock_held()); 445 446 if (memcg) 447 this_cpu_add(memcg->stat->count[idx], val); 448} 449 450static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 451 enum mem_cgroup_stat_index idx) 452{ 453 mem_cgroup_update_page_stat(memcg, idx, 1); 454} 455 456static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 457 enum mem_cgroup_stat_index idx) 458{ 459 mem_cgroup_update_page_stat(memcg, idx, -1); 460} 461 462unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 463 gfp_t gfp_mask, 464 unsigned long *total_scanned); 465 466static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 467 enum vm_event_item idx) 468{ 469 struct mem_cgroup *memcg; 470 471 if (mem_cgroup_disabled()) 472 return; 473 474 rcu_read_lock(); 475 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 476 if (unlikely(!memcg)) 477 goto out; 478 479 switch (idx) { 480 case PGFAULT: 481 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 482 break; 483 case PGMAJFAULT: 484 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 485 break; 486 default: 487 BUG(); 488 } 489out: 490 rcu_read_unlock(); 491} 492#ifdef CONFIG_TRANSPARENT_HUGEPAGE 493void mem_cgroup_split_huge_fixup(struct page *head); 494#endif 495 496#else /* CONFIG_MEMCG */ 497struct mem_cgroup; 498 499static inline void mem_cgroup_events(struct mem_cgroup *memcg, 500 enum mem_cgroup_events_index idx, 501 unsigned int nr) 502{ 503} 504 505static inline bool mem_cgroup_low(struct mem_cgroup *root, 506 struct mem_cgroup *memcg) 507{ 508 return false; 509} 510 511static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 512 gfp_t gfp_mask, 513 struct mem_cgroup **memcgp) 514{ 515 *memcgp = NULL; 516 return 0; 517} 518 519static inline void mem_cgroup_commit_charge(struct page *page, 520 struct mem_cgroup *memcg, 521 bool lrucare) 522{ 523} 524 525static inline void mem_cgroup_cancel_charge(struct page *page, 526 struct mem_cgroup *memcg) 527{ 528} 529 530static inline void mem_cgroup_uncharge(struct page *page) 531{ 532} 533 534static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 535{ 536} 537 538static inline void mem_cgroup_migrate(struct page *oldpage, 539 struct page *newpage, 540 bool lrucare) 541{ 542} 543 544static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 545 struct mem_cgroup *memcg) 546{ 547 return &zone->lruvec; 548} 549 550static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 551 struct zone *zone) 552{ 553 return &zone->lruvec; 554} 555 556static inline bool mm_match_cgroup(struct mm_struct *mm, 557 struct mem_cgroup *memcg) 558{ 559 return true; 560} 561 562static inline bool task_in_mem_cgroup(struct task_struct *task, 563 const struct mem_cgroup *memcg) 564{ 565 return true; 566} 567 568static inline struct mem_cgroup * 569mem_cgroup_iter(struct mem_cgroup *root, 570 struct mem_cgroup *prev, 571 struct mem_cgroup_reclaim_cookie *reclaim) 572{ 573 return NULL; 574} 575 576static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 577 struct mem_cgroup *prev) 578{ 579} 580 581static inline bool mem_cgroup_disabled(void) 582{ 583 return true; 584} 585 586static inline int 587mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 588{ 589 return 1; 590} 591 592static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 593{ 594 return true; 595} 596 597static inline unsigned long 598mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 599{ 600 return 0; 601} 602 603static inline void 604mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 605 int increment) 606{ 607} 608 609static inline void 610mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 611{ 612} 613 614static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page) 615{ 616 return NULL; 617} 618 619static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg) 620{ 621} 622 623static inline void mem_cgroup_oom_enable(void) 624{ 625} 626 627static inline void mem_cgroup_oom_disable(void) 628{ 629} 630 631static inline bool task_in_memcg_oom(struct task_struct *p) 632{ 633 return false; 634} 635 636static inline bool mem_cgroup_oom_synchronize(bool wait) 637{ 638 return false; 639} 640 641static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 642 enum mem_cgroup_stat_index idx) 643{ 644} 645 646static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 647 enum mem_cgroup_stat_index idx) 648{ 649} 650 651static inline 652unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 653 gfp_t gfp_mask, 654 unsigned long *total_scanned) 655{ 656 return 0; 657} 658 659static inline void mem_cgroup_split_huge_fixup(struct page *head) 660{ 661} 662 663static inline 664void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 665{ 666} 667#endif /* CONFIG_MEMCG */ 668 669enum { 670 UNDER_LIMIT, 671 SOFT_LIMIT, 672 OVER_LIMIT, 673}; 674 675#ifdef CONFIG_CGROUP_WRITEBACK 676 677struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 678struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 679void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 680 unsigned long *pheadroom, unsigned long *pdirty, 681 unsigned long *pwriteback); 682 683#else /* CONFIG_CGROUP_WRITEBACK */ 684 685static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 686{ 687 return NULL; 688} 689 690static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 691 unsigned long *pfilepages, 692 unsigned long *pheadroom, 693 unsigned long *pdirty, 694 unsigned long *pwriteback) 695{ 696} 697 698#endif /* CONFIG_CGROUP_WRITEBACK */ 699 700struct sock; 701#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 702void sock_update_memcg(struct sock *sk); 703void sock_release_memcg(struct sock *sk); 704#else 705static inline void sock_update_memcg(struct sock *sk) 706{ 707} 708static inline void sock_release_memcg(struct sock *sk) 709{ 710} 711#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 712 713#ifdef CONFIG_MEMCG_KMEM 714extern struct static_key memcg_kmem_enabled_key; 715 716extern int memcg_nr_cache_ids; 717void memcg_get_cache_ids(void); 718void memcg_put_cache_ids(void); 719 720/* 721 * Helper macro to loop through all memcg-specific caches. Callers must still 722 * check if the cache is valid (it is either valid or NULL). 723 * the slab_mutex must be held when looping through those caches 724 */ 725#define for_each_memcg_cache_index(_idx) \ 726 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 727 728static inline bool memcg_kmem_enabled(void) 729{ 730 return static_key_false(&memcg_kmem_enabled_key); 731} 732 733static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg) 734{ 735 return memcg->kmem_acct_active; 736} 737 738/* 739 * In general, we'll do everything in our power to not incur in any overhead 740 * for non-memcg users for the kmem functions. Not even a function call, if we 741 * can avoid it. 742 * 743 * Therefore, we'll inline all those functions so that in the best case, we'll 744 * see that kmemcg is off for everybody and proceed quickly. If it is on, 745 * we'll still do most of the flag checking inline. We check a lot of 746 * conditions, but because they are pretty simple, they are expected to be 747 * fast. 748 */ 749bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 750 int order); 751void __memcg_kmem_commit_charge(struct page *page, 752 struct mem_cgroup *memcg, int order); 753void __memcg_kmem_uncharge_pages(struct page *page, int order); 754 755/* 756 * helper for acessing a memcg's index. It will be used as an index in the 757 * child cache array in kmem_cache, and also to derive its name. This function 758 * will return -1 when this is not a kmem-limited memcg. 759 */ 760static inline int memcg_cache_id(struct mem_cgroup *memcg) 761{ 762 return memcg ? memcg->kmemcg_id : -1; 763} 764 765struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep); 766void __memcg_kmem_put_cache(struct kmem_cache *cachep); 767 768struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr); 769 770int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, 771 unsigned long nr_pages); 772void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages); 773 774/** 775 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 776 * @gfp: the gfp allocation flags. 777 * @memcg: a pointer to the memcg this was charged against. 778 * @order: allocation order. 779 * 780 * returns true if the memcg where the current task belongs can hold this 781 * allocation. 782 * 783 * We return true automatically if this allocation is not to be accounted to 784 * any memcg. 785 */ 786static inline bool 787memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 788{ 789 if (!memcg_kmem_enabled()) 790 return true; 791 792 if (gfp & __GFP_NOACCOUNT) 793 return true; 794 /* 795 * __GFP_NOFAIL allocations will move on even if charging is not 796 * possible. Therefore we don't even try, and have this allocation 797 * unaccounted. We could in theory charge it forcibly, but we hope 798 * those allocations are rare, and won't be worth the trouble. 799 */ 800 if (gfp & __GFP_NOFAIL) 801 return true; 802 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 803 return true; 804 805 /* If the test is dying, just let it go. */ 806 if (unlikely(fatal_signal_pending(current))) 807 return true; 808 809 return __memcg_kmem_newpage_charge(gfp, memcg, order); 810} 811 812/** 813 * memcg_kmem_uncharge_pages: uncharge pages from memcg 814 * @page: pointer to struct page being freed 815 * @order: allocation order. 816 */ 817static inline void 818memcg_kmem_uncharge_pages(struct page *page, int order) 819{ 820 if (memcg_kmem_enabled()) 821 __memcg_kmem_uncharge_pages(page, order); 822} 823 824/** 825 * memcg_kmem_commit_charge: embeds correct memcg in a page 826 * @page: pointer to struct page recently allocated 827 * @memcg: the memcg structure we charged against 828 * @order: allocation order. 829 * 830 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 831 * failure of the allocation. if @page is NULL, this function will revert the 832 * charges. Otherwise, it will commit @page to @memcg. 833 */ 834static inline void 835memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 836{ 837 if (memcg_kmem_enabled() && memcg) 838 __memcg_kmem_commit_charge(page, memcg, order); 839} 840 841/** 842 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 843 * @cachep: the original global kmem cache 844 * @gfp: allocation flags. 845 * 846 * All memory allocated from a per-memcg cache is charged to the owner memcg. 847 */ 848static __always_inline struct kmem_cache * 849memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 850{ 851 if (!memcg_kmem_enabled()) 852 return cachep; 853 if (gfp & __GFP_NOACCOUNT) 854 return cachep; 855 if (gfp & __GFP_NOFAIL) 856 return cachep; 857 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 858 return cachep; 859 if (unlikely(fatal_signal_pending(current))) 860 return cachep; 861 862 return __memcg_kmem_get_cache(cachep); 863} 864 865static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 866{ 867 if (memcg_kmem_enabled()) 868 __memcg_kmem_put_cache(cachep); 869} 870 871static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr) 872{ 873 if (!memcg_kmem_enabled()) 874 return NULL; 875 return __mem_cgroup_from_kmem(ptr); 876} 877#else 878#define for_each_memcg_cache_index(_idx) \ 879 for (; NULL; ) 880 881static inline bool memcg_kmem_enabled(void) 882{ 883 return false; 884} 885 886static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg) 887{ 888 return false; 889} 890 891static inline bool 892memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 893{ 894 return true; 895} 896 897static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 898{ 899} 900 901static inline void 902memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 903{ 904} 905 906static inline int memcg_cache_id(struct mem_cgroup *memcg) 907{ 908 return -1; 909} 910 911static inline void memcg_get_cache_ids(void) 912{ 913} 914 915static inline void memcg_put_cache_ids(void) 916{ 917} 918 919static inline struct kmem_cache * 920memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 921{ 922 return cachep; 923} 924 925static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 926{ 927} 928 929static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr) 930{ 931 return NULL; 932} 933#endif /* CONFIG_MEMCG_KMEM */ 934#endif /* _LINUX_MEMCONTROL_H */ 935