at v4.3 47 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <asm/uaccess.h> 33#include "internal.h" 34 35struct bdev_inode { 36 struct block_device bdev; 37 struct inode vfs_inode; 38}; 39 40static const struct address_space_operations def_blk_aops; 41 42static inline struct bdev_inode *BDEV_I(struct inode *inode) 43{ 44 return container_of(inode, struct bdev_inode, vfs_inode); 45} 46 47struct block_device *I_BDEV(struct inode *inode) 48{ 49 return &BDEV_I(inode)->bdev; 50} 51EXPORT_SYMBOL(I_BDEV); 52 53static void bdev_write_inode(struct inode *inode) 54{ 55 spin_lock(&inode->i_lock); 56 while (inode->i_state & I_DIRTY) { 57 spin_unlock(&inode->i_lock); 58 WARN_ON_ONCE(write_inode_now(inode, true)); 59 spin_lock(&inode->i_lock); 60 } 61 spin_unlock(&inode->i_lock); 62} 63 64/* Kill _all_ buffers and pagecache , dirty or not.. */ 65void kill_bdev(struct block_device *bdev) 66{ 67 struct address_space *mapping = bdev->bd_inode->i_mapping; 68 69 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 70 return; 71 72 invalidate_bh_lrus(); 73 truncate_inode_pages(mapping, 0); 74} 75EXPORT_SYMBOL(kill_bdev); 76 77/* Invalidate clean unused buffers and pagecache. */ 78void invalidate_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 87 invalidate_mapping_pages(mapping, 0, -1); 88 /* 99% of the time, we don't need to flush the cleancache on the bdev. 89 * But, for the strange corners, lets be cautious 90 */ 91 cleancache_invalidate_inode(mapping); 92} 93EXPORT_SYMBOL(invalidate_bdev); 94 95int set_blocksize(struct block_device *bdev, int size) 96{ 97 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 98 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 99 return -EINVAL; 100 101 /* Size cannot be smaller than the size supported by the device */ 102 if (size < bdev_logical_block_size(bdev)) 103 return -EINVAL; 104 105 /* Don't change the size if it is same as current */ 106 if (bdev->bd_block_size != size) { 107 sync_blockdev(bdev); 108 bdev->bd_block_size = size; 109 bdev->bd_inode->i_blkbits = blksize_bits(size); 110 kill_bdev(bdev); 111 } 112 return 0; 113} 114 115EXPORT_SYMBOL(set_blocksize); 116 117int sb_set_blocksize(struct super_block *sb, int size) 118{ 119 if (set_blocksize(sb->s_bdev, size)) 120 return 0; 121 /* If we get here, we know size is power of two 122 * and it's value is between 512 and PAGE_SIZE */ 123 sb->s_blocksize = size; 124 sb->s_blocksize_bits = blksize_bits(size); 125 return sb->s_blocksize; 126} 127 128EXPORT_SYMBOL(sb_set_blocksize); 129 130int sb_min_blocksize(struct super_block *sb, int size) 131{ 132 int minsize = bdev_logical_block_size(sb->s_bdev); 133 if (size < minsize) 134 size = minsize; 135 return sb_set_blocksize(sb, size); 136} 137 138EXPORT_SYMBOL(sb_min_blocksize); 139 140static int 141blkdev_get_block(struct inode *inode, sector_t iblock, 142 struct buffer_head *bh, int create) 143{ 144 bh->b_bdev = I_BDEV(inode); 145 bh->b_blocknr = iblock; 146 set_buffer_mapped(bh); 147 return 0; 148} 149 150static ssize_t 151blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset) 152{ 153 struct file *file = iocb->ki_filp; 154 struct inode *inode = file->f_mapping->host; 155 156 if (IS_DAX(inode)) 157 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block, 158 NULL, DIO_SKIP_DIO_COUNT); 159 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset, 160 blkdev_get_block, NULL, NULL, 161 DIO_SKIP_DIO_COUNT); 162} 163 164int __sync_blockdev(struct block_device *bdev, int wait) 165{ 166 if (!bdev) 167 return 0; 168 if (!wait) 169 return filemap_flush(bdev->bd_inode->i_mapping); 170 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 171} 172 173/* 174 * Write out and wait upon all the dirty data associated with a block 175 * device via its mapping. Does not take the superblock lock. 176 */ 177int sync_blockdev(struct block_device *bdev) 178{ 179 return __sync_blockdev(bdev, 1); 180} 181EXPORT_SYMBOL(sync_blockdev); 182 183/* 184 * Write out and wait upon all dirty data associated with this 185 * device. Filesystem data as well as the underlying block 186 * device. Takes the superblock lock. 187 */ 188int fsync_bdev(struct block_device *bdev) 189{ 190 struct super_block *sb = get_super(bdev); 191 if (sb) { 192 int res = sync_filesystem(sb); 193 drop_super(sb); 194 return res; 195 } 196 return sync_blockdev(bdev); 197} 198EXPORT_SYMBOL(fsync_bdev); 199 200/** 201 * freeze_bdev -- lock a filesystem and force it into a consistent state 202 * @bdev: blockdevice to lock 203 * 204 * If a superblock is found on this device, we take the s_umount semaphore 205 * on it to make sure nobody unmounts until the snapshot creation is done. 206 * The reference counter (bd_fsfreeze_count) guarantees that only the last 207 * unfreeze process can unfreeze the frozen filesystem actually when multiple 208 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 209 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 210 * actually. 211 */ 212struct super_block *freeze_bdev(struct block_device *bdev) 213{ 214 struct super_block *sb; 215 int error = 0; 216 217 mutex_lock(&bdev->bd_fsfreeze_mutex); 218 if (++bdev->bd_fsfreeze_count > 1) { 219 /* 220 * We don't even need to grab a reference - the first call 221 * to freeze_bdev grab an active reference and only the last 222 * thaw_bdev drops it. 223 */ 224 sb = get_super(bdev); 225 drop_super(sb); 226 mutex_unlock(&bdev->bd_fsfreeze_mutex); 227 return sb; 228 } 229 230 sb = get_active_super(bdev); 231 if (!sb) 232 goto out; 233 if (sb->s_op->freeze_super) 234 error = sb->s_op->freeze_super(sb); 235 else 236 error = freeze_super(sb); 237 if (error) { 238 deactivate_super(sb); 239 bdev->bd_fsfreeze_count--; 240 mutex_unlock(&bdev->bd_fsfreeze_mutex); 241 return ERR_PTR(error); 242 } 243 deactivate_super(sb); 244 out: 245 sync_blockdev(bdev); 246 mutex_unlock(&bdev->bd_fsfreeze_mutex); 247 return sb; /* thaw_bdev releases s->s_umount */ 248} 249EXPORT_SYMBOL(freeze_bdev); 250 251/** 252 * thaw_bdev -- unlock filesystem 253 * @bdev: blockdevice to unlock 254 * @sb: associated superblock 255 * 256 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 257 */ 258int thaw_bdev(struct block_device *bdev, struct super_block *sb) 259{ 260 int error = -EINVAL; 261 262 mutex_lock(&bdev->bd_fsfreeze_mutex); 263 if (!bdev->bd_fsfreeze_count) 264 goto out; 265 266 error = 0; 267 if (--bdev->bd_fsfreeze_count > 0) 268 goto out; 269 270 if (!sb) 271 goto out; 272 273 if (sb->s_op->thaw_super) 274 error = sb->s_op->thaw_super(sb); 275 else 276 error = thaw_super(sb); 277 if (error) { 278 bdev->bd_fsfreeze_count++; 279 mutex_unlock(&bdev->bd_fsfreeze_mutex); 280 return error; 281 } 282out: 283 mutex_unlock(&bdev->bd_fsfreeze_mutex); 284 return 0; 285} 286EXPORT_SYMBOL(thaw_bdev); 287 288static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 289{ 290 return block_write_full_page(page, blkdev_get_block, wbc); 291} 292 293static int blkdev_readpage(struct file * file, struct page * page) 294{ 295 return block_read_full_page(page, blkdev_get_block); 296} 297 298static int blkdev_readpages(struct file *file, struct address_space *mapping, 299 struct list_head *pages, unsigned nr_pages) 300{ 301 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 302} 303 304static int blkdev_write_begin(struct file *file, struct address_space *mapping, 305 loff_t pos, unsigned len, unsigned flags, 306 struct page **pagep, void **fsdata) 307{ 308 return block_write_begin(mapping, pos, len, flags, pagep, 309 blkdev_get_block); 310} 311 312static int blkdev_write_end(struct file *file, struct address_space *mapping, 313 loff_t pos, unsigned len, unsigned copied, 314 struct page *page, void *fsdata) 315{ 316 int ret; 317 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 318 319 unlock_page(page); 320 page_cache_release(page); 321 322 return ret; 323} 324 325/* 326 * private llseek: 327 * for a block special file file_inode(file)->i_size is zero 328 * so we compute the size by hand (just as in block_read/write above) 329 */ 330static loff_t block_llseek(struct file *file, loff_t offset, int whence) 331{ 332 struct inode *bd_inode = file->f_mapping->host; 333 loff_t retval; 334 335 mutex_lock(&bd_inode->i_mutex); 336 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 337 mutex_unlock(&bd_inode->i_mutex); 338 return retval; 339} 340 341int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 342{ 343 struct inode *bd_inode = filp->f_mapping->host; 344 struct block_device *bdev = I_BDEV(bd_inode); 345 int error; 346 347 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 348 if (error) 349 return error; 350 351 /* 352 * There is no need to serialise calls to blkdev_issue_flush with 353 * i_mutex and doing so causes performance issues with concurrent 354 * O_SYNC writers to a block device. 355 */ 356 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 357 if (error == -EOPNOTSUPP) 358 error = 0; 359 360 return error; 361} 362EXPORT_SYMBOL(blkdev_fsync); 363 364/** 365 * bdev_read_page() - Start reading a page from a block device 366 * @bdev: The device to read the page from 367 * @sector: The offset on the device to read the page to (need not be aligned) 368 * @page: The page to read 369 * 370 * On entry, the page should be locked. It will be unlocked when the page 371 * has been read. If the block driver implements rw_page synchronously, 372 * that will be true on exit from this function, but it need not be. 373 * 374 * Errors returned by this function are usually "soft", eg out of memory, or 375 * queue full; callers should try a different route to read this page rather 376 * than propagate an error back up the stack. 377 * 378 * Return: negative errno if an error occurs, 0 if submission was successful. 379 */ 380int bdev_read_page(struct block_device *bdev, sector_t sector, 381 struct page *page) 382{ 383 const struct block_device_operations *ops = bdev->bd_disk->fops; 384 if (!ops->rw_page || bdev_get_integrity(bdev)) 385 return -EOPNOTSUPP; 386 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 387} 388EXPORT_SYMBOL_GPL(bdev_read_page); 389 390/** 391 * bdev_write_page() - Start writing a page to a block device 392 * @bdev: The device to write the page to 393 * @sector: The offset on the device to write the page to (need not be aligned) 394 * @page: The page to write 395 * @wbc: The writeback_control for the write 396 * 397 * On entry, the page should be locked and not currently under writeback. 398 * On exit, if the write started successfully, the page will be unlocked and 399 * under writeback. If the write failed already (eg the driver failed to 400 * queue the page to the device), the page will still be locked. If the 401 * caller is a ->writepage implementation, it will need to unlock the page. 402 * 403 * Errors returned by this function are usually "soft", eg out of memory, or 404 * queue full; callers should try a different route to write this page rather 405 * than propagate an error back up the stack. 406 * 407 * Return: negative errno if an error occurs, 0 if submission was successful. 408 */ 409int bdev_write_page(struct block_device *bdev, sector_t sector, 410 struct page *page, struct writeback_control *wbc) 411{ 412 int result; 413 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 414 const struct block_device_operations *ops = bdev->bd_disk->fops; 415 if (!ops->rw_page || bdev_get_integrity(bdev)) 416 return -EOPNOTSUPP; 417 set_page_writeback(page); 418 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 419 if (result) 420 end_page_writeback(page); 421 else 422 unlock_page(page); 423 return result; 424} 425EXPORT_SYMBOL_GPL(bdev_write_page); 426 427/** 428 * bdev_direct_access() - Get the address for directly-accessibly memory 429 * @bdev: The device containing the memory 430 * @sector: The offset within the device 431 * @addr: Where to put the address of the memory 432 * @pfn: The Page Frame Number for the memory 433 * @size: The number of bytes requested 434 * 435 * If a block device is made up of directly addressable memory, this function 436 * will tell the caller the PFN and the address of the memory. The address 437 * may be directly dereferenced within the kernel without the need to call 438 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 439 * page tables. 440 * 441 * Return: negative errno if an error occurs, otherwise the number of bytes 442 * accessible at this address. 443 */ 444long bdev_direct_access(struct block_device *bdev, sector_t sector, 445 void __pmem **addr, unsigned long *pfn, long size) 446{ 447 long avail; 448 const struct block_device_operations *ops = bdev->bd_disk->fops; 449 450 /* 451 * The device driver is allowed to sleep, in order to make the 452 * memory directly accessible. 453 */ 454 might_sleep(); 455 456 if (size < 0) 457 return size; 458 if (!ops->direct_access) 459 return -EOPNOTSUPP; 460 if ((sector + DIV_ROUND_UP(size, 512)) > 461 part_nr_sects_read(bdev->bd_part)) 462 return -ERANGE; 463 sector += get_start_sect(bdev); 464 if (sector % (PAGE_SIZE / 512)) 465 return -EINVAL; 466 avail = ops->direct_access(bdev, sector, addr, pfn); 467 if (!avail) 468 return -ERANGE; 469 return min(avail, size); 470} 471EXPORT_SYMBOL_GPL(bdev_direct_access); 472 473/* 474 * pseudo-fs 475 */ 476 477static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 478static struct kmem_cache * bdev_cachep __read_mostly; 479 480static struct inode *bdev_alloc_inode(struct super_block *sb) 481{ 482 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 483 if (!ei) 484 return NULL; 485 return &ei->vfs_inode; 486} 487 488static void bdev_i_callback(struct rcu_head *head) 489{ 490 struct inode *inode = container_of(head, struct inode, i_rcu); 491 struct bdev_inode *bdi = BDEV_I(inode); 492 493 kmem_cache_free(bdev_cachep, bdi); 494} 495 496static void bdev_destroy_inode(struct inode *inode) 497{ 498 call_rcu(&inode->i_rcu, bdev_i_callback); 499} 500 501static void init_once(void *foo) 502{ 503 struct bdev_inode *ei = (struct bdev_inode *) foo; 504 struct block_device *bdev = &ei->bdev; 505 506 memset(bdev, 0, sizeof(*bdev)); 507 mutex_init(&bdev->bd_mutex); 508 INIT_LIST_HEAD(&bdev->bd_inodes); 509 INIT_LIST_HEAD(&bdev->bd_list); 510#ifdef CONFIG_SYSFS 511 INIT_LIST_HEAD(&bdev->bd_holder_disks); 512#endif 513 inode_init_once(&ei->vfs_inode); 514 /* Initialize mutex for freeze. */ 515 mutex_init(&bdev->bd_fsfreeze_mutex); 516} 517 518static inline void __bd_forget(struct inode *inode) 519{ 520 list_del_init(&inode->i_devices); 521 inode->i_bdev = NULL; 522 inode->i_mapping = &inode->i_data; 523} 524 525static void bdev_evict_inode(struct inode *inode) 526{ 527 struct block_device *bdev = &BDEV_I(inode)->bdev; 528 struct list_head *p; 529 truncate_inode_pages_final(&inode->i_data); 530 invalidate_inode_buffers(inode); /* is it needed here? */ 531 clear_inode(inode); 532 spin_lock(&bdev_lock); 533 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 534 __bd_forget(list_entry(p, struct inode, i_devices)); 535 } 536 list_del_init(&bdev->bd_list); 537 spin_unlock(&bdev_lock); 538} 539 540static const struct super_operations bdev_sops = { 541 .statfs = simple_statfs, 542 .alloc_inode = bdev_alloc_inode, 543 .destroy_inode = bdev_destroy_inode, 544 .drop_inode = generic_delete_inode, 545 .evict_inode = bdev_evict_inode, 546}; 547 548static struct dentry *bd_mount(struct file_system_type *fs_type, 549 int flags, const char *dev_name, void *data) 550{ 551 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 552} 553 554static struct file_system_type bd_type = { 555 .name = "bdev", 556 .mount = bd_mount, 557 .kill_sb = kill_anon_super, 558}; 559 560struct super_block *blockdev_superblock __read_mostly; 561EXPORT_SYMBOL_GPL(blockdev_superblock); 562 563void __init bdev_cache_init(void) 564{ 565 int err; 566 static struct vfsmount *bd_mnt; 567 568 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 569 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 570 SLAB_MEM_SPREAD|SLAB_PANIC), 571 init_once); 572 err = register_filesystem(&bd_type); 573 if (err) 574 panic("Cannot register bdev pseudo-fs"); 575 bd_mnt = kern_mount(&bd_type); 576 if (IS_ERR(bd_mnt)) 577 panic("Cannot create bdev pseudo-fs"); 578 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 579} 580 581/* 582 * Most likely _very_ bad one - but then it's hardly critical for small 583 * /dev and can be fixed when somebody will need really large one. 584 * Keep in mind that it will be fed through icache hash function too. 585 */ 586static inline unsigned long hash(dev_t dev) 587{ 588 return MAJOR(dev)+MINOR(dev); 589} 590 591static int bdev_test(struct inode *inode, void *data) 592{ 593 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 594} 595 596static int bdev_set(struct inode *inode, void *data) 597{ 598 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 599 return 0; 600} 601 602static LIST_HEAD(all_bdevs); 603 604struct block_device *bdget(dev_t dev) 605{ 606 struct block_device *bdev; 607 struct inode *inode; 608 609 inode = iget5_locked(blockdev_superblock, hash(dev), 610 bdev_test, bdev_set, &dev); 611 612 if (!inode) 613 return NULL; 614 615 bdev = &BDEV_I(inode)->bdev; 616 617 if (inode->i_state & I_NEW) { 618 bdev->bd_contains = NULL; 619 bdev->bd_super = NULL; 620 bdev->bd_inode = inode; 621 bdev->bd_block_size = (1 << inode->i_blkbits); 622 bdev->bd_part_count = 0; 623 bdev->bd_invalidated = 0; 624 inode->i_mode = S_IFBLK; 625 inode->i_rdev = dev; 626 inode->i_bdev = bdev; 627 inode->i_data.a_ops = &def_blk_aops; 628 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 629 spin_lock(&bdev_lock); 630 list_add(&bdev->bd_list, &all_bdevs); 631 spin_unlock(&bdev_lock); 632 unlock_new_inode(inode); 633 } 634 return bdev; 635} 636 637EXPORT_SYMBOL(bdget); 638 639/** 640 * bdgrab -- Grab a reference to an already referenced block device 641 * @bdev: Block device to grab a reference to. 642 */ 643struct block_device *bdgrab(struct block_device *bdev) 644{ 645 ihold(bdev->bd_inode); 646 return bdev; 647} 648EXPORT_SYMBOL(bdgrab); 649 650long nr_blockdev_pages(void) 651{ 652 struct block_device *bdev; 653 long ret = 0; 654 spin_lock(&bdev_lock); 655 list_for_each_entry(bdev, &all_bdevs, bd_list) { 656 ret += bdev->bd_inode->i_mapping->nrpages; 657 } 658 spin_unlock(&bdev_lock); 659 return ret; 660} 661 662void bdput(struct block_device *bdev) 663{ 664 iput(bdev->bd_inode); 665} 666 667EXPORT_SYMBOL(bdput); 668 669static struct block_device *bd_acquire(struct inode *inode) 670{ 671 struct block_device *bdev; 672 673 spin_lock(&bdev_lock); 674 bdev = inode->i_bdev; 675 if (bdev) { 676 ihold(bdev->bd_inode); 677 spin_unlock(&bdev_lock); 678 return bdev; 679 } 680 spin_unlock(&bdev_lock); 681 682 bdev = bdget(inode->i_rdev); 683 if (bdev) { 684 spin_lock(&bdev_lock); 685 if (!inode->i_bdev) { 686 /* 687 * We take an additional reference to bd_inode, 688 * and it's released in clear_inode() of inode. 689 * So, we can access it via ->i_mapping always 690 * without igrab(). 691 */ 692 ihold(bdev->bd_inode); 693 inode->i_bdev = bdev; 694 inode->i_mapping = bdev->bd_inode->i_mapping; 695 list_add(&inode->i_devices, &bdev->bd_inodes); 696 } 697 spin_unlock(&bdev_lock); 698 } 699 return bdev; 700} 701 702/* Call when you free inode */ 703 704void bd_forget(struct inode *inode) 705{ 706 struct block_device *bdev = NULL; 707 708 spin_lock(&bdev_lock); 709 if (!sb_is_blkdev_sb(inode->i_sb)) 710 bdev = inode->i_bdev; 711 __bd_forget(inode); 712 spin_unlock(&bdev_lock); 713 714 if (bdev) 715 iput(bdev->bd_inode); 716} 717 718/** 719 * bd_may_claim - test whether a block device can be claimed 720 * @bdev: block device of interest 721 * @whole: whole block device containing @bdev, may equal @bdev 722 * @holder: holder trying to claim @bdev 723 * 724 * Test whether @bdev can be claimed by @holder. 725 * 726 * CONTEXT: 727 * spin_lock(&bdev_lock). 728 * 729 * RETURNS: 730 * %true if @bdev can be claimed, %false otherwise. 731 */ 732static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 733 void *holder) 734{ 735 if (bdev->bd_holder == holder) 736 return true; /* already a holder */ 737 else if (bdev->bd_holder != NULL) 738 return false; /* held by someone else */ 739 else if (bdev->bd_contains == bdev) 740 return true; /* is a whole device which isn't held */ 741 742 else if (whole->bd_holder == bd_may_claim) 743 return true; /* is a partition of a device that is being partitioned */ 744 else if (whole->bd_holder != NULL) 745 return false; /* is a partition of a held device */ 746 else 747 return true; /* is a partition of an un-held device */ 748} 749 750/** 751 * bd_prepare_to_claim - prepare to claim a block device 752 * @bdev: block device of interest 753 * @whole: the whole device containing @bdev, may equal @bdev 754 * @holder: holder trying to claim @bdev 755 * 756 * Prepare to claim @bdev. This function fails if @bdev is already 757 * claimed by another holder and waits if another claiming is in 758 * progress. This function doesn't actually claim. On successful 759 * return, the caller has ownership of bd_claiming and bd_holder[s]. 760 * 761 * CONTEXT: 762 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 763 * it multiple times. 764 * 765 * RETURNS: 766 * 0 if @bdev can be claimed, -EBUSY otherwise. 767 */ 768static int bd_prepare_to_claim(struct block_device *bdev, 769 struct block_device *whole, void *holder) 770{ 771retry: 772 /* if someone else claimed, fail */ 773 if (!bd_may_claim(bdev, whole, holder)) 774 return -EBUSY; 775 776 /* if claiming is already in progress, wait for it to finish */ 777 if (whole->bd_claiming) { 778 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 779 DEFINE_WAIT(wait); 780 781 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 782 spin_unlock(&bdev_lock); 783 schedule(); 784 finish_wait(wq, &wait); 785 spin_lock(&bdev_lock); 786 goto retry; 787 } 788 789 /* yay, all mine */ 790 return 0; 791} 792 793/** 794 * bd_start_claiming - start claiming a block device 795 * @bdev: block device of interest 796 * @holder: holder trying to claim @bdev 797 * 798 * @bdev is about to be opened exclusively. Check @bdev can be opened 799 * exclusively and mark that an exclusive open is in progress. Each 800 * successful call to this function must be matched with a call to 801 * either bd_finish_claiming() or bd_abort_claiming() (which do not 802 * fail). 803 * 804 * This function is used to gain exclusive access to the block device 805 * without actually causing other exclusive open attempts to fail. It 806 * should be used when the open sequence itself requires exclusive 807 * access but may subsequently fail. 808 * 809 * CONTEXT: 810 * Might sleep. 811 * 812 * RETURNS: 813 * Pointer to the block device containing @bdev on success, ERR_PTR() 814 * value on failure. 815 */ 816static struct block_device *bd_start_claiming(struct block_device *bdev, 817 void *holder) 818{ 819 struct gendisk *disk; 820 struct block_device *whole; 821 int partno, err; 822 823 might_sleep(); 824 825 /* 826 * @bdev might not have been initialized properly yet, look up 827 * and grab the outer block device the hard way. 828 */ 829 disk = get_gendisk(bdev->bd_dev, &partno); 830 if (!disk) 831 return ERR_PTR(-ENXIO); 832 833 /* 834 * Normally, @bdev should equal what's returned from bdget_disk() 835 * if partno is 0; however, some drivers (floppy) use multiple 836 * bdev's for the same physical device and @bdev may be one of the 837 * aliases. Keep @bdev if partno is 0. This means claimer 838 * tracking is broken for those devices but it has always been that 839 * way. 840 */ 841 if (partno) 842 whole = bdget_disk(disk, 0); 843 else 844 whole = bdgrab(bdev); 845 846 module_put(disk->fops->owner); 847 put_disk(disk); 848 if (!whole) 849 return ERR_PTR(-ENOMEM); 850 851 /* prepare to claim, if successful, mark claiming in progress */ 852 spin_lock(&bdev_lock); 853 854 err = bd_prepare_to_claim(bdev, whole, holder); 855 if (err == 0) { 856 whole->bd_claiming = holder; 857 spin_unlock(&bdev_lock); 858 return whole; 859 } else { 860 spin_unlock(&bdev_lock); 861 bdput(whole); 862 return ERR_PTR(err); 863 } 864} 865 866#ifdef CONFIG_SYSFS 867struct bd_holder_disk { 868 struct list_head list; 869 struct gendisk *disk; 870 int refcnt; 871}; 872 873static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 874 struct gendisk *disk) 875{ 876 struct bd_holder_disk *holder; 877 878 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 879 if (holder->disk == disk) 880 return holder; 881 return NULL; 882} 883 884static int add_symlink(struct kobject *from, struct kobject *to) 885{ 886 return sysfs_create_link(from, to, kobject_name(to)); 887} 888 889static void del_symlink(struct kobject *from, struct kobject *to) 890{ 891 sysfs_remove_link(from, kobject_name(to)); 892} 893 894/** 895 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 896 * @bdev: the claimed slave bdev 897 * @disk: the holding disk 898 * 899 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 900 * 901 * This functions creates the following sysfs symlinks. 902 * 903 * - from "slaves" directory of the holder @disk to the claimed @bdev 904 * - from "holders" directory of the @bdev to the holder @disk 905 * 906 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 907 * passed to bd_link_disk_holder(), then: 908 * 909 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 910 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 911 * 912 * The caller must have claimed @bdev before calling this function and 913 * ensure that both @bdev and @disk are valid during the creation and 914 * lifetime of these symlinks. 915 * 916 * CONTEXT: 917 * Might sleep. 918 * 919 * RETURNS: 920 * 0 on success, -errno on failure. 921 */ 922int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 923{ 924 struct bd_holder_disk *holder; 925 int ret = 0; 926 927 mutex_lock(&bdev->bd_mutex); 928 929 WARN_ON_ONCE(!bdev->bd_holder); 930 931 /* FIXME: remove the following once add_disk() handles errors */ 932 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 933 goto out_unlock; 934 935 holder = bd_find_holder_disk(bdev, disk); 936 if (holder) { 937 holder->refcnt++; 938 goto out_unlock; 939 } 940 941 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 942 if (!holder) { 943 ret = -ENOMEM; 944 goto out_unlock; 945 } 946 947 INIT_LIST_HEAD(&holder->list); 948 holder->disk = disk; 949 holder->refcnt = 1; 950 951 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 952 if (ret) 953 goto out_free; 954 955 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 956 if (ret) 957 goto out_del; 958 /* 959 * bdev could be deleted beneath us which would implicitly destroy 960 * the holder directory. Hold on to it. 961 */ 962 kobject_get(bdev->bd_part->holder_dir); 963 964 list_add(&holder->list, &bdev->bd_holder_disks); 965 goto out_unlock; 966 967out_del: 968 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 969out_free: 970 kfree(holder); 971out_unlock: 972 mutex_unlock(&bdev->bd_mutex); 973 return ret; 974} 975EXPORT_SYMBOL_GPL(bd_link_disk_holder); 976 977/** 978 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 979 * @bdev: the calimed slave bdev 980 * @disk: the holding disk 981 * 982 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 983 * 984 * CONTEXT: 985 * Might sleep. 986 */ 987void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 988{ 989 struct bd_holder_disk *holder; 990 991 mutex_lock(&bdev->bd_mutex); 992 993 holder = bd_find_holder_disk(bdev, disk); 994 995 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 996 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 997 del_symlink(bdev->bd_part->holder_dir, 998 &disk_to_dev(disk)->kobj); 999 kobject_put(bdev->bd_part->holder_dir); 1000 list_del_init(&holder->list); 1001 kfree(holder); 1002 } 1003 1004 mutex_unlock(&bdev->bd_mutex); 1005} 1006EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1007#endif 1008 1009/** 1010 * flush_disk - invalidates all buffer-cache entries on a disk 1011 * 1012 * @bdev: struct block device to be flushed 1013 * @kill_dirty: flag to guide handling of dirty inodes 1014 * 1015 * Invalidates all buffer-cache entries on a disk. It should be called 1016 * when a disk has been changed -- either by a media change or online 1017 * resize. 1018 */ 1019static void flush_disk(struct block_device *bdev, bool kill_dirty) 1020{ 1021 if (__invalidate_device(bdev, kill_dirty)) { 1022 char name[BDEVNAME_SIZE] = ""; 1023 1024 if (bdev->bd_disk) 1025 disk_name(bdev->bd_disk, 0, name); 1026 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1027 "resized disk %s\n", name); 1028 } 1029 1030 if (!bdev->bd_disk) 1031 return; 1032 if (disk_part_scan_enabled(bdev->bd_disk)) 1033 bdev->bd_invalidated = 1; 1034} 1035 1036/** 1037 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1038 * @disk: struct gendisk to check 1039 * @bdev: struct bdev to adjust. 1040 * 1041 * This routine checks to see if the bdev size does not match the disk size 1042 * and adjusts it if it differs. 1043 */ 1044void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1045{ 1046 loff_t disk_size, bdev_size; 1047 1048 disk_size = (loff_t)get_capacity(disk) << 9; 1049 bdev_size = i_size_read(bdev->bd_inode); 1050 if (disk_size != bdev_size) { 1051 char name[BDEVNAME_SIZE]; 1052 1053 disk_name(disk, 0, name); 1054 printk(KERN_INFO 1055 "%s: detected capacity change from %lld to %lld\n", 1056 name, bdev_size, disk_size); 1057 i_size_write(bdev->bd_inode, disk_size); 1058 flush_disk(bdev, false); 1059 } 1060} 1061EXPORT_SYMBOL(check_disk_size_change); 1062 1063/** 1064 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1065 * @disk: struct gendisk to be revalidated 1066 * 1067 * This routine is a wrapper for lower-level driver's revalidate_disk 1068 * call-backs. It is used to do common pre and post operations needed 1069 * for all revalidate_disk operations. 1070 */ 1071int revalidate_disk(struct gendisk *disk) 1072{ 1073 struct block_device *bdev; 1074 int ret = 0; 1075 1076 if (disk->fops->revalidate_disk) 1077 ret = disk->fops->revalidate_disk(disk); 1078 1079 bdev = bdget_disk(disk, 0); 1080 if (!bdev) 1081 return ret; 1082 1083 mutex_lock(&bdev->bd_mutex); 1084 check_disk_size_change(disk, bdev); 1085 bdev->bd_invalidated = 0; 1086 mutex_unlock(&bdev->bd_mutex); 1087 bdput(bdev); 1088 return ret; 1089} 1090EXPORT_SYMBOL(revalidate_disk); 1091 1092/* 1093 * This routine checks whether a removable media has been changed, 1094 * and invalidates all buffer-cache-entries in that case. This 1095 * is a relatively slow routine, so we have to try to minimize using 1096 * it. Thus it is called only upon a 'mount' or 'open'. This 1097 * is the best way of combining speed and utility, I think. 1098 * People changing diskettes in the middle of an operation deserve 1099 * to lose :-) 1100 */ 1101int check_disk_change(struct block_device *bdev) 1102{ 1103 struct gendisk *disk = bdev->bd_disk; 1104 const struct block_device_operations *bdops = disk->fops; 1105 unsigned int events; 1106 1107 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1108 DISK_EVENT_EJECT_REQUEST); 1109 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1110 return 0; 1111 1112 flush_disk(bdev, true); 1113 if (bdops->revalidate_disk) 1114 bdops->revalidate_disk(bdev->bd_disk); 1115 return 1; 1116} 1117 1118EXPORT_SYMBOL(check_disk_change); 1119 1120void bd_set_size(struct block_device *bdev, loff_t size) 1121{ 1122 unsigned bsize = bdev_logical_block_size(bdev); 1123 1124 mutex_lock(&bdev->bd_inode->i_mutex); 1125 i_size_write(bdev->bd_inode, size); 1126 mutex_unlock(&bdev->bd_inode->i_mutex); 1127 while (bsize < PAGE_CACHE_SIZE) { 1128 if (size & bsize) 1129 break; 1130 bsize <<= 1; 1131 } 1132 bdev->bd_block_size = bsize; 1133 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1134} 1135EXPORT_SYMBOL(bd_set_size); 1136 1137static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1138 1139/* 1140 * bd_mutex locking: 1141 * 1142 * mutex_lock(part->bd_mutex) 1143 * mutex_lock_nested(whole->bd_mutex, 1) 1144 */ 1145 1146static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1147{ 1148 struct gendisk *disk; 1149 struct module *owner; 1150 int ret; 1151 int partno; 1152 int perm = 0; 1153 1154 if (mode & FMODE_READ) 1155 perm |= MAY_READ; 1156 if (mode & FMODE_WRITE) 1157 perm |= MAY_WRITE; 1158 /* 1159 * hooks: /n/, see "layering violations". 1160 */ 1161 if (!for_part) { 1162 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1163 if (ret != 0) { 1164 bdput(bdev); 1165 return ret; 1166 } 1167 } 1168 1169 restart: 1170 1171 ret = -ENXIO; 1172 disk = get_gendisk(bdev->bd_dev, &partno); 1173 if (!disk) 1174 goto out; 1175 owner = disk->fops->owner; 1176 1177 disk_block_events(disk); 1178 mutex_lock_nested(&bdev->bd_mutex, for_part); 1179 if (!bdev->bd_openers) { 1180 bdev->bd_disk = disk; 1181 bdev->bd_queue = disk->queue; 1182 bdev->bd_contains = bdev; 1183 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0; 1184 if (!partno) { 1185 ret = -ENXIO; 1186 bdev->bd_part = disk_get_part(disk, partno); 1187 if (!bdev->bd_part) 1188 goto out_clear; 1189 1190 ret = 0; 1191 if (disk->fops->open) { 1192 ret = disk->fops->open(bdev, mode); 1193 if (ret == -ERESTARTSYS) { 1194 /* Lost a race with 'disk' being 1195 * deleted, try again. 1196 * See md.c 1197 */ 1198 disk_put_part(bdev->bd_part); 1199 bdev->bd_part = NULL; 1200 bdev->bd_disk = NULL; 1201 bdev->bd_queue = NULL; 1202 mutex_unlock(&bdev->bd_mutex); 1203 disk_unblock_events(disk); 1204 put_disk(disk); 1205 module_put(owner); 1206 goto restart; 1207 } 1208 } 1209 1210 if (!ret) 1211 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1212 1213 /* 1214 * If the device is invalidated, rescan partition 1215 * if open succeeded or failed with -ENOMEDIUM. 1216 * The latter is necessary to prevent ghost 1217 * partitions on a removed medium. 1218 */ 1219 if (bdev->bd_invalidated) { 1220 if (!ret) 1221 rescan_partitions(disk, bdev); 1222 else if (ret == -ENOMEDIUM) 1223 invalidate_partitions(disk, bdev); 1224 } 1225 if (ret) 1226 goto out_clear; 1227 } else { 1228 struct block_device *whole; 1229 whole = bdget_disk(disk, 0); 1230 ret = -ENOMEM; 1231 if (!whole) 1232 goto out_clear; 1233 BUG_ON(for_part); 1234 ret = __blkdev_get(whole, mode, 1); 1235 if (ret) 1236 goto out_clear; 1237 bdev->bd_contains = whole; 1238 bdev->bd_part = disk_get_part(disk, partno); 1239 if (!(disk->flags & GENHD_FL_UP) || 1240 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1241 ret = -ENXIO; 1242 goto out_clear; 1243 } 1244 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1245 /* 1246 * If the partition is not aligned on a page 1247 * boundary, we can't do dax I/O to it. 1248 */ 1249 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) || 1250 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512))) 1251 bdev->bd_inode->i_flags &= ~S_DAX; 1252 } 1253 } else { 1254 if (bdev->bd_contains == bdev) { 1255 ret = 0; 1256 if (bdev->bd_disk->fops->open) 1257 ret = bdev->bd_disk->fops->open(bdev, mode); 1258 /* the same as first opener case, read comment there */ 1259 if (bdev->bd_invalidated) { 1260 if (!ret) 1261 rescan_partitions(bdev->bd_disk, bdev); 1262 else if (ret == -ENOMEDIUM) 1263 invalidate_partitions(bdev->bd_disk, bdev); 1264 } 1265 if (ret) 1266 goto out_unlock_bdev; 1267 } 1268 /* only one opener holds refs to the module and disk */ 1269 put_disk(disk); 1270 module_put(owner); 1271 } 1272 bdev->bd_openers++; 1273 if (for_part) 1274 bdev->bd_part_count++; 1275 mutex_unlock(&bdev->bd_mutex); 1276 disk_unblock_events(disk); 1277 return 0; 1278 1279 out_clear: 1280 disk_put_part(bdev->bd_part); 1281 bdev->bd_disk = NULL; 1282 bdev->bd_part = NULL; 1283 bdev->bd_queue = NULL; 1284 if (bdev != bdev->bd_contains) 1285 __blkdev_put(bdev->bd_contains, mode, 1); 1286 bdev->bd_contains = NULL; 1287 out_unlock_bdev: 1288 mutex_unlock(&bdev->bd_mutex); 1289 disk_unblock_events(disk); 1290 put_disk(disk); 1291 module_put(owner); 1292 out: 1293 bdput(bdev); 1294 1295 return ret; 1296} 1297 1298/** 1299 * blkdev_get - open a block device 1300 * @bdev: block_device to open 1301 * @mode: FMODE_* mask 1302 * @holder: exclusive holder identifier 1303 * 1304 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1305 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1306 * @holder is invalid. Exclusive opens may nest for the same @holder. 1307 * 1308 * On success, the reference count of @bdev is unchanged. On failure, 1309 * @bdev is put. 1310 * 1311 * CONTEXT: 1312 * Might sleep. 1313 * 1314 * RETURNS: 1315 * 0 on success, -errno on failure. 1316 */ 1317int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1318{ 1319 struct block_device *whole = NULL; 1320 int res; 1321 1322 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1323 1324 if ((mode & FMODE_EXCL) && holder) { 1325 whole = bd_start_claiming(bdev, holder); 1326 if (IS_ERR(whole)) { 1327 bdput(bdev); 1328 return PTR_ERR(whole); 1329 } 1330 } 1331 1332 res = __blkdev_get(bdev, mode, 0); 1333 1334 if (whole) { 1335 struct gendisk *disk = whole->bd_disk; 1336 1337 /* finish claiming */ 1338 mutex_lock(&bdev->bd_mutex); 1339 spin_lock(&bdev_lock); 1340 1341 if (!res) { 1342 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1343 /* 1344 * Note that for a whole device bd_holders 1345 * will be incremented twice, and bd_holder 1346 * will be set to bd_may_claim before being 1347 * set to holder 1348 */ 1349 whole->bd_holders++; 1350 whole->bd_holder = bd_may_claim; 1351 bdev->bd_holders++; 1352 bdev->bd_holder = holder; 1353 } 1354 1355 /* tell others that we're done */ 1356 BUG_ON(whole->bd_claiming != holder); 1357 whole->bd_claiming = NULL; 1358 wake_up_bit(&whole->bd_claiming, 0); 1359 1360 spin_unlock(&bdev_lock); 1361 1362 /* 1363 * Block event polling for write claims if requested. Any 1364 * write holder makes the write_holder state stick until 1365 * all are released. This is good enough and tracking 1366 * individual writeable reference is too fragile given the 1367 * way @mode is used in blkdev_get/put(). 1368 */ 1369 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1370 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1371 bdev->bd_write_holder = true; 1372 disk_block_events(disk); 1373 } 1374 1375 mutex_unlock(&bdev->bd_mutex); 1376 bdput(whole); 1377 } 1378 1379 return res; 1380} 1381EXPORT_SYMBOL(blkdev_get); 1382 1383/** 1384 * blkdev_get_by_path - open a block device by name 1385 * @path: path to the block device to open 1386 * @mode: FMODE_* mask 1387 * @holder: exclusive holder identifier 1388 * 1389 * Open the blockdevice described by the device file at @path. @mode 1390 * and @holder are identical to blkdev_get(). 1391 * 1392 * On success, the returned block_device has reference count of one. 1393 * 1394 * CONTEXT: 1395 * Might sleep. 1396 * 1397 * RETURNS: 1398 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1399 */ 1400struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1401 void *holder) 1402{ 1403 struct block_device *bdev; 1404 int err; 1405 1406 bdev = lookup_bdev(path); 1407 if (IS_ERR(bdev)) 1408 return bdev; 1409 1410 err = blkdev_get(bdev, mode, holder); 1411 if (err) 1412 return ERR_PTR(err); 1413 1414 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1415 blkdev_put(bdev, mode); 1416 return ERR_PTR(-EACCES); 1417 } 1418 1419 return bdev; 1420} 1421EXPORT_SYMBOL(blkdev_get_by_path); 1422 1423/** 1424 * blkdev_get_by_dev - open a block device by device number 1425 * @dev: device number of block device to open 1426 * @mode: FMODE_* mask 1427 * @holder: exclusive holder identifier 1428 * 1429 * Open the blockdevice described by device number @dev. @mode and 1430 * @holder are identical to blkdev_get(). 1431 * 1432 * Use it ONLY if you really do not have anything better - i.e. when 1433 * you are behind a truly sucky interface and all you are given is a 1434 * device number. _Never_ to be used for internal purposes. If you 1435 * ever need it - reconsider your API. 1436 * 1437 * On success, the returned block_device has reference count of one. 1438 * 1439 * CONTEXT: 1440 * Might sleep. 1441 * 1442 * RETURNS: 1443 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1444 */ 1445struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1446{ 1447 struct block_device *bdev; 1448 int err; 1449 1450 bdev = bdget(dev); 1451 if (!bdev) 1452 return ERR_PTR(-ENOMEM); 1453 1454 err = blkdev_get(bdev, mode, holder); 1455 if (err) 1456 return ERR_PTR(err); 1457 1458 return bdev; 1459} 1460EXPORT_SYMBOL(blkdev_get_by_dev); 1461 1462static int blkdev_open(struct inode * inode, struct file * filp) 1463{ 1464 struct block_device *bdev; 1465 1466 /* 1467 * Preserve backwards compatibility and allow large file access 1468 * even if userspace doesn't ask for it explicitly. Some mkfs 1469 * binary needs it. We might want to drop this workaround 1470 * during an unstable branch. 1471 */ 1472 filp->f_flags |= O_LARGEFILE; 1473 1474 if (filp->f_flags & O_NDELAY) 1475 filp->f_mode |= FMODE_NDELAY; 1476 if (filp->f_flags & O_EXCL) 1477 filp->f_mode |= FMODE_EXCL; 1478 if ((filp->f_flags & O_ACCMODE) == 3) 1479 filp->f_mode |= FMODE_WRITE_IOCTL; 1480 1481 bdev = bd_acquire(inode); 1482 if (bdev == NULL) 1483 return -ENOMEM; 1484 1485 filp->f_mapping = bdev->bd_inode->i_mapping; 1486 1487 return blkdev_get(bdev, filp->f_mode, filp); 1488} 1489 1490static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1491{ 1492 struct gendisk *disk = bdev->bd_disk; 1493 struct block_device *victim = NULL; 1494 1495 mutex_lock_nested(&bdev->bd_mutex, for_part); 1496 if (for_part) 1497 bdev->bd_part_count--; 1498 1499 if (!--bdev->bd_openers) { 1500 WARN_ON_ONCE(bdev->bd_holders); 1501 sync_blockdev(bdev); 1502 kill_bdev(bdev); 1503 /* 1504 * ->release can cause the queue to disappear, so flush all 1505 * dirty data before. 1506 */ 1507 bdev_write_inode(bdev->bd_inode); 1508 } 1509 if (bdev->bd_contains == bdev) { 1510 if (disk->fops->release) 1511 disk->fops->release(disk, mode); 1512 } 1513 if (!bdev->bd_openers) { 1514 struct module *owner = disk->fops->owner; 1515 1516 disk_put_part(bdev->bd_part); 1517 bdev->bd_part = NULL; 1518 bdev->bd_disk = NULL; 1519 if (bdev != bdev->bd_contains) 1520 victim = bdev->bd_contains; 1521 bdev->bd_contains = NULL; 1522 1523 put_disk(disk); 1524 module_put(owner); 1525 } 1526 mutex_unlock(&bdev->bd_mutex); 1527 bdput(bdev); 1528 if (victim) 1529 __blkdev_put(victim, mode, 1); 1530} 1531 1532void blkdev_put(struct block_device *bdev, fmode_t mode) 1533{ 1534 mutex_lock(&bdev->bd_mutex); 1535 1536 if (mode & FMODE_EXCL) { 1537 bool bdev_free; 1538 1539 /* 1540 * Release a claim on the device. The holder fields 1541 * are protected with bdev_lock. bd_mutex is to 1542 * synchronize disk_holder unlinking. 1543 */ 1544 spin_lock(&bdev_lock); 1545 1546 WARN_ON_ONCE(--bdev->bd_holders < 0); 1547 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1548 1549 /* bd_contains might point to self, check in a separate step */ 1550 if ((bdev_free = !bdev->bd_holders)) 1551 bdev->bd_holder = NULL; 1552 if (!bdev->bd_contains->bd_holders) 1553 bdev->bd_contains->bd_holder = NULL; 1554 1555 spin_unlock(&bdev_lock); 1556 1557 /* 1558 * If this was the last claim, remove holder link and 1559 * unblock evpoll if it was a write holder. 1560 */ 1561 if (bdev_free && bdev->bd_write_holder) { 1562 disk_unblock_events(bdev->bd_disk); 1563 bdev->bd_write_holder = false; 1564 } 1565 } 1566 1567 /* 1568 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1569 * event. This is to ensure detection of media removal commanded 1570 * from userland - e.g. eject(1). 1571 */ 1572 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1573 1574 mutex_unlock(&bdev->bd_mutex); 1575 1576 __blkdev_put(bdev, mode, 0); 1577} 1578EXPORT_SYMBOL(blkdev_put); 1579 1580static int blkdev_close(struct inode * inode, struct file * filp) 1581{ 1582 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1583 blkdev_put(bdev, filp->f_mode); 1584 return 0; 1585} 1586 1587static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1588{ 1589 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1590 fmode_t mode = file->f_mode; 1591 1592 /* 1593 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1594 * to updated it before every ioctl. 1595 */ 1596 if (file->f_flags & O_NDELAY) 1597 mode |= FMODE_NDELAY; 1598 else 1599 mode &= ~FMODE_NDELAY; 1600 1601 return blkdev_ioctl(bdev, mode, cmd, arg); 1602} 1603 1604/* 1605 * Write data to the block device. Only intended for the block device itself 1606 * and the raw driver which basically is a fake block device. 1607 * 1608 * Does not take i_mutex for the write and thus is not for general purpose 1609 * use. 1610 */ 1611ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1612{ 1613 struct file *file = iocb->ki_filp; 1614 struct inode *bd_inode = file->f_mapping->host; 1615 loff_t size = i_size_read(bd_inode); 1616 struct blk_plug plug; 1617 ssize_t ret; 1618 1619 if (bdev_read_only(I_BDEV(bd_inode))) 1620 return -EPERM; 1621 1622 if (!iov_iter_count(from)) 1623 return 0; 1624 1625 if (iocb->ki_pos >= size) 1626 return -ENOSPC; 1627 1628 iov_iter_truncate(from, size - iocb->ki_pos); 1629 1630 blk_start_plug(&plug); 1631 ret = __generic_file_write_iter(iocb, from); 1632 if (ret > 0) { 1633 ssize_t err; 1634 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1635 if (err < 0) 1636 ret = err; 1637 } 1638 blk_finish_plug(&plug); 1639 return ret; 1640} 1641EXPORT_SYMBOL_GPL(blkdev_write_iter); 1642 1643ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1644{ 1645 struct file *file = iocb->ki_filp; 1646 struct inode *bd_inode = file->f_mapping->host; 1647 loff_t size = i_size_read(bd_inode); 1648 loff_t pos = iocb->ki_pos; 1649 1650 if (pos >= size) 1651 return 0; 1652 1653 size -= pos; 1654 iov_iter_truncate(to, size); 1655 return generic_file_read_iter(iocb, to); 1656} 1657EXPORT_SYMBOL_GPL(blkdev_read_iter); 1658 1659/* 1660 * Try to release a page associated with block device when the system 1661 * is under memory pressure. 1662 */ 1663static int blkdev_releasepage(struct page *page, gfp_t wait) 1664{ 1665 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1666 1667 if (super && super->s_op->bdev_try_to_free_page) 1668 return super->s_op->bdev_try_to_free_page(super, page, wait); 1669 1670 return try_to_free_buffers(page); 1671} 1672 1673static const struct address_space_operations def_blk_aops = { 1674 .readpage = blkdev_readpage, 1675 .readpages = blkdev_readpages, 1676 .writepage = blkdev_writepage, 1677 .write_begin = blkdev_write_begin, 1678 .write_end = blkdev_write_end, 1679 .writepages = generic_writepages, 1680 .releasepage = blkdev_releasepage, 1681 .direct_IO = blkdev_direct_IO, 1682 .is_dirty_writeback = buffer_check_dirty_writeback, 1683}; 1684 1685const struct file_operations def_blk_fops = { 1686 .open = blkdev_open, 1687 .release = blkdev_close, 1688 .llseek = block_llseek, 1689 .read_iter = blkdev_read_iter, 1690 .write_iter = blkdev_write_iter, 1691 .mmap = generic_file_mmap, 1692 .fsync = blkdev_fsync, 1693 .unlocked_ioctl = block_ioctl, 1694#ifdef CONFIG_COMPAT 1695 .compat_ioctl = compat_blkdev_ioctl, 1696#endif 1697 .splice_read = generic_file_splice_read, 1698 .splice_write = iter_file_splice_write, 1699}; 1700 1701int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1702{ 1703 int res; 1704 mm_segment_t old_fs = get_fs(); 1705 set_fs(KERNEL_DS); 1706 res = blkdev_ioctl(bdev, 0, cmd, arg); 1707 set_fs(old_fs); 1708 return res; 1709} 1710 1711EXPORT_SYMBOL(ioctl_by_bdev); 1712 1713/** 1714 * lookup_bdev - lookup a struct block_device by name 1715 * @pathname: special file representing the block device 1716 * 1717 * Get a reference to the blockdevice at @pathname in the current 1718 * namespace if possible and return it. Return ERR_PTR(error) 1719 * otherwise. 1720 */ 1721struct block_device *lookup_bdev(const char *pathname) 1722{ 1723 struct block_device *bdev; 1724 struct inode *inode; 1725 struct path path; 1726 int error; 1727 1728 if (!pathname || !*pathname) 1729 return ERR_PTR(-EINVAL); 1730 1731 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1732 if (error) 1733 return ERR_PTR(error); 1734 1735 inode = d_backing_inode(path.dentry); 1736 error = -ENOTBLK; 1737 if (!S_ISBLK(inode->i_mode)) 1738 goto fail; 1739 error = -EACCES; 1740 if (path.mnt->mnt_flags & MNT_NODEV) 1741 goto fail; 1742 error = -ENOMEM; 1743 bdev = bd_acquire(inode); 1744 if (!bdev) 1745 goto fail; 1746out: 1747 path_put(&path); 1748 return bdev; 1749fail: 1750 bdev = ERR_PTR(error); 1751 goto out; 1752} 1753EXPORT_SYMBOL(lookup_bdev); 1754 1755int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1756{ 1757 struct super_block *sb = get_super(bdev); 1758 int res = 0; 1759 1760 if (sb) { 1761 /* 1762 * no need to lock the super, get_super holds the 1763 * read mutex so the filesystem cannot go away 1764 * under us (->put_super runs with the write lock 1765 * hold). 1766 */ 1767 shrink_dcache_sb(sb); 1768 res = invalidate_inodes(sb, kill_dirty); 1769 drop_super(sb); 1770 } 1771 invalidate_bdev(bdev); 1772 return res; 1773} 1774EXPORT_SYMBOL(__invalidate_device); 1775 1776void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1777{ 1778 struct inode *inode, *old_inode = NULL; 1779 1780 spin_lock(&blockdev_superblock->s_inode_list_lock); 1781 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1782 struct address_space *mapping = inode->i_mapping; 1783 1784 spin_lock(&inode->i_lock); 1785 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1786 mapping->nrpages == 0) { 1787 spin_unlock(&inode->i_lock); 1788 continue; 1789 } 1790 __iget(inode); 1791 spin_unlock(&inode->i_lock); 1792 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1793 /* 1794 * We hold a reference to 'inode' so it couldn't have been 1795 * removed from s_inodes list while we dropped the 1796 * s_inode_list_lock We cannot iput the inode now as we can 1797 * be holding the last reference and we cannot iput it under 1798 * s_inode_list_lock. So we keep the reference and iput it 1799 * later. 1800 */ 1801 iput(old_inode); 1802 old_inode = inode; 1803 1804 func(I_BDEV(inode), arg); 1805 1806 spin_lock(&blockdev_superblock->s_inode_list_lock); 1807 } 1808 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1809 iput(old_inode); 1810}