Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/timer.h>
29#include <linux/bug.h>
30#include <linux/delay.h>
31#include <linux/atomic.h>
32#include <linux/prefetch.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53#include <uapi/linux/if_bonding.h>
54
55struct netpoll_info;
56struct device;
57struct phy_device;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63
64void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67/* Backlog congestion levels */
68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69#define NET_RX_DROP 1 /* packet dropped */
70
71/*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88/* qdisc ->enqueue() return codes. */
89#define NET_XMIT_SUCCESS 0x00
90#define NET_XMIT_DROP 0x01 /* skb dropped */
91#define NET_XMIT_CN 0x02 /* congestion notification */
92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101/* Driver transmit return codes */
102#define NETDEV_TX_MASK 0xf0
103
104enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109};
110typedef enum netdev_tx netdev_tx_t;
111
112/*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116static inline bool dev_xmit_complete(int rc)
117{
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128}
129
130/*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136# if defined(CONFIG_MAC80211_MESH)
137# define LL_MAX_HEADER 128
138# else
139# define LL_MAX_HEADER 96
140# endif
141#else
142# define LL_MAX_HEADER 32
143#endif
144
145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147#define MAX_HEADER LL_MAX_HEADER
148#else
149#define MAX_HEADER (LL_MAX_HEADER + 48)
150#endif
151
152/*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181};
182
183
184#include <linux/cache.h>
185#include <linux/skbuff.h>
186
187#ifdef CONFIG_RPS
188#include <linux/static_key.h>
189extern struct static_key rps_needed;
190#endif
191
192struct neighbour;
193struct neigh_parms;
194struct sk_buff;
195
196struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200#define NETDEV_HW_ADDR_T_LAN 1
201#define NETDEV_HW_ADDR_T_SAN 2
202#define NETDEV_HW_ADDR_T_SLAVE 3
203#define NETDEV_HW_ADDR_T_UNICAST 4
204#define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210};
211
212struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215};
216
217#define netdev_hw_addr_list_count(l) ((l)->count)
218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219#define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224#define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229#define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238#define HH_DATA_MOD 16
239#define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241#define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244};
245
246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254#define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268};
269
270/* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281};
282
283
284/*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291};
292#define NETDEV_BOOT_SETUP_MAX 8
293
294int __init netdev_boot_setup(char *str);
295
296/*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312#ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315#endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323};
324
325enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330};
331
332enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338};
339typedef enum gro_result gro_result_t;
340
341/*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387};
388typedef enum rx_handler_result rx_handler_result_t;
389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391void __napi_schedule(struct napi_struct *n);
392void __napi_schedule_irqoff(struct napi_struct *n);
393
394static inline bool napi_disable_pending(struct napi_struct *n)
395{
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397}
398
399/**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408static inline bool napi_schedule_prep(struct napi_struct *n)
409{
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412}
413
414/**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421static inline void napi_schedule(struct napi_struct *n)
422{
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425}
426
427/**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433static inline void napi_schedule_irqoff(struct napi_struct *n)
434{
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437}
438
439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440static inline bool napi_reschedule(struct napi_struct *napi)
441{
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447}
448
449void __napi_complete(struct napi_struct *n);
450void napi_complete_done(struct napi_struct *n, int work_done);
451/**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458static inline void napi_complete(struct napi_struct *n)
459{
460 return napi_complete_done(n, 0);
461}
462
463/**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470struct napi_struct *napi_by_id(unsigned int napi_id);
471
472/**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478void napi_hash_add(struct napi_struct *napi);
479
480/**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487void napi_hash_del(struct napi_struct *napi);
488
489/**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496void napi_disable(struct napi_struct *n);
497
498/**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505static inline void napi_enable(struct napi_struct *n)
506{
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 clear_bit(NAPI_STATE_NPSVC, &n->state);
511}
512
513#ifdef CONFIG_SMP
514/**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522static inline void napi_synchronize(const struct napi_struct *n)
523{
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526}
527#else
528# define napi_synchronize(n) barrier()
529#endif
530
531enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535};
536
537#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547/*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557struct netdev_queue {
558/*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564#ifdef CONFIG_SYSFS
565 struct kobject kobj;
566#endif
567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569#endif
570/*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588#ifdef CONFIG_BQL
589 struct dql dql;
590#endif
591 unsigned long tx_maxrate;
592} ____cacheline_aligned_in_smp;
593
594static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595{
596#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 return q->numa_node;
598#else
599 return NUMA_NO_NODE;
600#endif
601}
602
603static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604{
605#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 q->numa_node = node;
607#endif
608}
609
610#ifdef CONFIG_RPS
611/*
612 * This structure holds an RPS map which can be of variable length. The
613 * map is an array of CPUs.
614 */
615struct rps_map {
616 unsigned int len;
617 struct rcu_head rcu;
618 u16 cpus[0];
619};
620#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621
622/*
623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624 * tail pointer for that CPU's input queue at the time of last enqueue, and
625 * a hardware filter index.
626 */
627struct rps_dev_flow {
628 u16 cpu;
629 u16 filter;
630 unsigned int last_qtail;
631};
632#define RPS_NO_FILTER 0xffff
633
634/*
635 * The rps_dev_flow_table structure contains a table of flow mappings.
636 */
637struct rps_dev_flow_table {
638 unsigned int mask;
639 struct rcu_head rcu;
640 struct rps_dev_flow flows[0];
641};
642#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643 ((_num) * sizeof(struct rps_dev_flow)))
644
645/*
646 * The rps_sock_flow_table contains mappings of flows to the last CPU
647 * on which they were processed by the application (set in recvmsg).
648 * Each entry is a 32bit value. Upper part is the high order bits
649 * of flow hash, lower part is cpu number.
650 * rps_cpu_mask is used to partition the space, depending on number of
651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653 * meaning we use 32-6=26 bits for the hash.
654 */
655struct rps_sock_flow_table {
656 u32 mask;
657
658 u32 ents[0] ____cacheline_aligned_in_smp;
659};
660#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661
662#define RPS_NO_CPU 0xffff
663
664extern u32 rps_cpu_mask;
665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 u32 hash)
669{
670 if (table && hash) {
671 unsigned int index = hash & table->mask;
672 u32 val = hash & ~rps_cpu_mask;
673
674 /* We only give a hint, preemption can change cpu under us */
675 val |= raw_smp_processor_id();
676
677 if (table->ents[index] != val)
678 table->ents[index] = val;
679 }
680}
681
682#ifdef CONFIG_RFS_ACCEL
683bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 u16 filter_id);
685#endif
686#endif /* CONFIG_RPS */
687
688/* This structure contains an instance of an RX queue. */
689struct netdev_rx_queue {
690#ifdef CONFIG_RPS
691 struct rps_map __rcu *rps_map;
692 struct rps_dev_flow_table __rcu *rps_flow_table;
693#endif
694 struct kobject kobj;
695 struct net_device *dev;
696} ____cacheline_aligned_in_smp;
697
698/*
699 * RX queue sysfs structures and functions.
700 */
701struct rx_queue_attribute {
702 struct attribute attr;
703 ssize_t (*show)(struct netdev_rx_queue *queue,
704 struct rx_queue_attribute *attr, char *buf);
705 ssize_t (*store)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, const char *buf, size_t len);
707};
708
709#ifdef CONFIG_XPS
710/*
711 * This structure holds an XPS map which can be of variable length. The
712 * map is an array of queues.
713 */
714struct xps_map {
715 unsigned int len;
716 unsigned int alloc_len;
717 struct rcu_head rcu;
718 u16 queues[0];
719};
720#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
722 / sizeof(u16))
723
724/*
725 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 */
727struct xps_dev_maps {
728 struct rcu_head rcu;
729 struct xps_map __rcu *cpu_map[0];
730};
731#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
732 (nr_cpu_ids * sizeof(struct xps_map *)))
733#endif /* CONFIG_XPS */
734
735#define TC_MAX_QUEUE 16
736#define TC_BITMASK 15
737/* HW offloaded queuing disciplines txq count and offset maps */
738struct netdev_tc_txq {
739 u16 count;
740 u16 offset;
741};
742
743#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744/*
745 * This structure is to hold information about the device
746 * configured to run FCoE protocol stack.
747 */
748struct netdev_fcoe_hbainfo {
749 char manufacturer[64];
750 char serial_number[64];
751 char hardware_version[64];
752 char driver_version[64];
753 char optionrom_version[64];
754 char firmware_version[64];
755 char model[256];
756 char model_description[256];
757};
758#endif
759
760#define MAX_PHYS_ITEM_ID_LEN 32
761
762/* This structure holds a unique identifier to identify some
763 * physical item (port for example) used by a netdevice.
764 */
765struct netdev_phys_item_id {
766 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 unsigned char id_len;
768};
769
770static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 struct netdev_phys_item_id *b)
772{
773 return a->id_len == b->id_len &&
774 memcmp(a->id, b->id, a->id_len) == 0;
775}
776
777typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 struct sk_buff *skb);
779
780/*
781 * This structure defines the management hooks for network devices.
782 * The following hooks can be defined; unless noted otherwise, they are
783 * optional and can be filled with a null pointer.
784 *
785 * int (*ndo_init)(struct net_device *dev);
786 * This function is called once when network device is registered.
787 * The network device can use this to any late stage initializaton
788 * or semantic validattion. It can fail with an error code which will
789 * be propogated back to register_netdev
790 *
791 * void (*ndo_uninit)(struct net_device *dev);
792 * This function is called when device is unregistered or when registration
793 * fails. It is not called if init fails.
794 *
795 * int (*ndo_open)(struct net_device *dev);
796 * This function is called when network device transistions to the up
797 * state.
798 *
799 * int (*ndo_stop)(struct net_device *dev);
800 * This function is called when network device transistions to the down
801 * state.
802 *
803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804 * struct net_device *dev);
805 * Called when a packet needs to be transmitted.
806 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
807 * the queue before that can happen; it's for obsolete devices and weird
808 * corner cases, but the stack really does a non-trivial amount
809 * of useless work if you return NETDEV_TX_BUSY.
810 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811 * Required can not be NULL.
812 *
813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814 * void *accel_priv, select_queue_fallback_t fallback);
815 * Called to decide which queue to when device supports multiple
816 * transmit queues.
817 *
818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819 * This function is called to allow device receiver to make
820 * changes to configuration when multicast or promiscious is enabled.
821 *
822 * void (*ndo_set_rx_mode)(struct net_device *dev);
823 * This function is called device changes address list filtering.
824 * If driver handles unicast address filtering, it should set
825 * IFF_UNICAST_FLT to its priv_flags.
826 *
827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828 * This function is called when the Media Access Control address
829 * needs to be changed. If this interface is not defined, the
830 * mac address can not be changed.
831 *
832 * int (*ndo_validate_addr)(struct net_device *dev);
833 * Test if Media Access Control address is valid for the device.
834 *
835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836 * Called when a user request an ioctl which can't be handled by
837 * the generic interface code. If not defined ioctl's return
838 * not supported error code.
839 *
840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841 * Used to set network devices bus interface parameters. This interface
842 * is retained for legacy reason, new devices should use the bus
843 * interface (PCI) for low level management.
844 *
845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846 * Called when a user wants to change the Maximum Transfer Unit
847 * of a device. If not defined, any request to change MTU will
848 * will return an error.
849 *
850 * void (*ndo_tx_timeout)(struct net_device *dev);
851 * Callback uses when the transmitter has not made any progress
852 * for dev->watchdog ticks.
853 *
854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855 * struct rtnl_link_stats64 *storage);
856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857 * Called when a user wants to get the network device usage
858 * statistics. Drivers must do one of the following:
859 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
860 * rtnl_link_stats64 structure passed by the caller.
861 * 2. Define @ndo_get_stats to update a net_device_stats structure
862 * (which should normally be dev->stats) and return a pointer to
863 * it. The structure may be changed asynchronously only if each
864 * field is written atomically.
865 * 3. Update dev->stats asynchronously and atomically, and define
866 * neither operation.
867 *
868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869 * If device support VLAN filtering this function is called when a
870 * VLAN id is registered.
871 *
872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873 * If device support VLAN filtering this function is called when a
874 * VLAN id is unregistered.
875 *
876 * void (*ndo_poll_controller)(struct net_device *dev);
877 *
878 * SR-IOV management functions.
879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882 * int max_tx_rate);
883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884 * int (*ndo_get_vf_config)(struct net_device *dev,
885 * int vf, struct ifla_vf_info *ivf);
886 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
887 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
888 * struct nlattr *port[]);
889 *
890 * Enable or disable the VF ability to query its RSS Redirection Table and
891 * Hash Key. This is needed since on some devices VF share this information
892 * with PF and querying it may adduce a theoretical security risk.
893 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
894 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
895 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
896 * Called to setup 'tc' number of traffic classes in the net device. This
897 * is always called from the stack with the rtnl lock held and netif tx
898 * queues stopped. This allows the netdevice to perform queue management
899 * safely.
900 *
901 * Fiber Channel over Ethernet (FCoE) offload functions.
902 * int (*ndo_fcoe_enable)(struct net_device *dev);
903 * Called when the FCoE protocol stack wants to start using LLD for FCoE
904 * so the underlying device can perform whatever needed configuration or
905 * initialization to support acceleration of FCoE traffic.
906 *
907 * int (*ndo_fcoe_disable)(struct net_device *dev);
908 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
909 * so the underlying device can perform whatever needed clean-ups to
910 * stop supporting acceleration of FCoE traffic.
911 *
912 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
913 * struct scatterlist *sgl, unsigned int sgc);
914 * Called when the FCoE Initiator wants to initialize an I/O that
915 * is a possible candidate for Direct Data Placement (DDP). The LLD can
916 * perform necessary setup and returns 1 to indicate the device is set up
917 * successfully to perform DDP on this I/O, otherwise this returns 0.
918 *
919 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
920 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
921 * indicated by the FC exchange id 'xid', so the underlying device can
922 * clean up and reuse resources for later DDP requests.
923 *
924 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
925 * struct scatterlist *sgl, unsigned int sgc);
926 * Called when the FCoE Target wants to initialize an I/O that
927 * is a possible candidate for Direct Data Placement (DDP). The LLD can
928 * perform necessary setup and returns 1 to indicate the device is set up
929 * successfully to perform DDP on this I/O, otherwise this returns 0.
930 *
931 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
932 * struct netdev_fcoe_hbainfo *hbainfo);
933 * Called when the FCoE Protocol stack wants information on the underlying
934 * device. This information is utilized by the FCoE protocol stack to
935 * register attributes with Fiber Channel management service as per the
936 * FC-GS Fabric Device Management Information(FDMI) specification.
937 *
938 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
939 * Called when the underlying device wants to override default World Wide
940 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
941 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
942 * protocol stack to use.
943 *
944 * RFS acceleration.
945 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
946 * u16 rxq_index, u32 flow_id);
947 * Set hardware filter for RFS. rxq_index is the target queue index;
948 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
949 * Return the filter ID on success, or a negative error code.
950 *
951 * Slave management functions (for bridge, bonding, etc).
952 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
953 * Called to make another netdev an underling.
954 *
955 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
956 * Called to release previously enslaved netdev.
957 *
958 * Feature/offload setting functions.
959 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
960 * netdev_features_t features);
961 * Adjusts the requested feature flags according to device-specific
962 * constraints, and returns the resulting flags. Must not modify
963 * the device state.
964 *
965 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
966 * Called to update device configuration to new features. Passed
967 * feature set might be less than what was returned by ndo_fix_features()).
968 * Must return >0 or -errno if it changed dev->features itself.
969 *
970 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
971 * struct net_device *dev,
972 * const unsigned char *addr, u16 vid, u16 flags)
973 * Adds an FDB entry to dev for addr.
974 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
975 * struct net_device *dev,
976 * const unsigned char *addr, u16 vid)
977 * Deletes the FDB entry from dev coresponding to addr.
978 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
979 * struct net_device *dev, struct net_device *filter_dev,
980 * int idx)
981 * Used to add FDB entries to dump requests. Implementers should add
982 * entries to skb and update idx with the number of entries.
983 *
984 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
985 * u16 flags)
986 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
987 * struct net_device *dev, u32 filter_mask,
988 * int nlflags)
989 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
990 * u16 flags);
991 *
992 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
993 * Called to change device carrier. Soft-devices (like dummy, team, etc)
994 * which do not represent real hardware may define this to allow their
995 * userspace components to manage their virtual carrier state. Devices
996 * that determine carrier state from physical hardware properties (eg
997 * network cables) or protocol-dependent mechanisms (eg
998 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
999 *
1000 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1001 * struct netdev_phys_item_id *ppid);
1002 * Called to get ID of physical port of this device. If driver does
1003 * not implement this, it is assumed that the hw is not able to have
1004 * multiple net devices on single physical port.
1005 *
1006 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1007 * sa_family_t sa_family, __be16 port);
1008 * Called by vxlan to notiy a driver about the UDP port and socket
1009 * address family that vxlan is listnening to. It is called only when
1010 * a new port starts listening. The operation is protected by the
1011 * vxlan_net->sock_lock.
1012 *
1013 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1014 * sa_family_t sa_family, __be16 port);
1015 * Called by vxlan to notify the driver about a UDP port and socket
1016 * address family that vxlan is not listening to anymore. The operation
1017 * is protected by the vxlan_net->sock_lock.
1018 *
1019 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1020 * struct net_device *dev)
1021 * Called by upper layer devices to accelerate switching or other
1022 * station functionality into hardware. 'pdev is the lowerdev
1023 * to use for the offload and 'dev' is the net device that will
1024 * back the offload. Returns a pointer to the private structure
1025 * the upper layer will maintain.
1026 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1027 * Called by upper layer device to delete the station created
1028 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1029 * the station and priv is the structure returned by the add
1030 * operation.
1031 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1032 * struct net_device *dev,
1033 * void *priv);
1034 * Callback to use for xmit over the accelerated station. This
1035 * is used in place of ndo_start_xmit on accelerated net
1036 * devices.
1037 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1038 * struct net_device *dev
1039 * netdev_features_t features);
1040 * Called by core transmit path to determine if device is capable of
1041 * performing offload operations on a given packet. This is to give
1042 * the device an opportunity to implement any restrictions that cannot
1043 * be otherwise expressed by feature flags. The check is called with
1044 * the set of features that the stack has calculated and it returns
1045 * those the driver believes to be appropriate.
1046 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1047 * int queue_index, u32 maxrate);
1048 * Called when a user wants to set a max-rate limitation of specific
1049 * TX queue.
1050 * int (*ndo_get_iflink)(const struct net_device *dev);
1051 * Called to get the iflink value of this device.
1052 * void (*ndo_change_proto_down)(struct net_device *dev,
1053 * bool proto_down);
1054 * This function is used to pass protocol port error state information
1055 * to the switch driver. The switch driver can react to the proto_down
1056 * by doing a phys down on the associated switch port.
1057 *
1058 */
1059struct net_device_ops {
1060 int (*ndo_init)(struct net_device *dev);
1061 void (*ndo_uninit)(struct net_device *dev);
1062 int (*ndo_open)(struct net_device *dev);
1063 int (*ndo_stop)(struct net_device *dev);
1064 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1065 struct net_device *dev);
1066 u16 (*ndo_select_queue)(struct net_device *dev,
1067 struct sk_buff *skb,
1068 void *accel_priv,
1069 select_queue_fallback_t fallback);
1070 void (*ndo_change_rx_flags)(struct net_device *dev,
1071 int flags);
1072 void (*ndo_set_rx_mode)(struct net_device *dev);
1073 int (*ndo_set_mac_address)(struct net_device *dev,
1074 void *addr);
1075 int (*ndo_validate_addr)(struct net_device *dev);
1076 int (*ndo_do_ioctl)(struct net_device *dev,
1077 struct ifreq *ifr, int cmd);
1078 int (*ndo_set_config)(struct net_device *dev,
1079 struct ifmap *map);
1080 int (*ndo_change_mtu)(struct net_device *dev,
1081 int new_mtu);
1082 int (*ndo_neigh_setup)(struct net_device *dev,
1083 struct neigh_parms *);
1084 void (*ndo_tx_timeout) (struct net_device *dev);
1085
1086 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1087 struct rtnl_link_stats64 *storage);
1088 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1089
1090 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1091 __be16 proto, u16 vid);
1092 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1093 __be16 proto, u16 vid);
1094#ifdef CONFIG_NET_POLL_CONTROLLER
1095 void (*ndo_poll_controller)(struct net_device *dev);
1096 int (*ndo_netpoll_setup)(struct net_device *dev,
1097 struct netpoll_info *info);
1098 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1099#endif
1100#ifdef CONFIG_NET_RX_BUSY_POLL
1101 int (*ndo_busy_poll)(struct napi_struct *dev);
1102#endif
1103 int (*ndo_set_vf_mac)(struct net_device *dev,
1104 int queue, u8 *mac);
1105 int (*ndo_set_vf_vlan)(struct net_device *dev,
1106 int queue, u16 vlan, u8 qos);
1107 int (*ndo_set_vf_rate)(struct net_device *dev,
1108 int vf, int min_tx_rate,
1109 int max_tx_rate);
1110 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1111 int vf, bool setting);
1112 int (*ndo_get_vf_config)(struct net_device *dev,
1113 int vf,
1114 struct ifla_vf_info *ivf);
1115 int (*ndo_set_vf_link_state)(struct net_device *dev,
1116 int vf, int link_state);
1117 int (*ndo_get_vf_stats)(struct net_device *dev,
1118 int vf,
1119 struct ifla_vf_stats
1120 *vf_stats);
1121 int (*ndo_set_vf_port)(struct net_device *dev,
1122 int vf,
1123 struct nlattr *port[]);
1124 int (*ndo_get_vf_port)(struct net_device *dev,
1125 int vf, struct sk_buff *skb);
1126 int (*ndo_set_vf_rss_query_en)(
1127 struct net_device *dev,
1128 int vf, bool setting);
1129 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1130#if IS_ENABLED(CONFIG_FCOE)
1131 int (*ndo_fcoe_enable)(struct net_device *dev);
1132 int (*ndo_fcoe_disable)(struct net_device *dev);
1133 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1134 u16 xid,
1135 struct scatterlist *sgl,
1136 unsigned int sgc);
1137 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1138 u16 xid);
1139 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1140 u16 xid,
1141 struct scatterlist *sgl,
1142 unsigned int sgc);
1143 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1144 struct netdev_fcoe_hbainfo *hbainfo);
1145#endif
1146
1147#if IS_ENABLED(CONFIG_LIBFCOE)
1148#define NETDEV_FCOE_WWNN 0
1149#define NETDEV_FCOE_WWPN 1
1150 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1151 u64 *wwn, int type);
1152#endif
1153
1154#ifdef CONFIG_RFS_ACCEL
1155 int (*ndo_rx_flow_steer)(struct net_device *dev,
1156 const struct sk_buff *skb,
1157 u16 rxq_index,
1158 u32 flow_id);
1159#endif
1160 int (*ndo_add_slave)(struct net_device *dev,
1161 struct net_device *slave_dev);
1162 int (*ndo_del_slave)(struct net_device *dev,
1163 struct net_device *slave_dev);
1164 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165 netdev_features_t features);
1166 int (*ndo_set_features)(struct net_device *dev,
1167 netdev_features_t features);
1168 int (*ndo_neigh_construct)(struct neighbour *n);
1169 void (*ndo_neigh_destroy)(struct neighbour *n);
1170
1171 int (*ndo_fdb_add)(struct ndmsg *ndm,
1172 struct nlattr *tb[],
1173 struct net_device *dev,
1174 const unsigned char *addr,
1175 u16 vid,
1176 u16 flags);
1177 int (*ndo_fdb_del)(struct ndmsg *ndm,
1178 struct nlattr *tb[],
1179 struct net_device *dev,
1180 const unsigned char *addr,
1181 u16 vid);
1182 int (*ndo_fdb_dump)(struct sk_buff *skb,
1183 struct netlink_callback *cb,
1184 struct net_device *dev,
1185 struct net_device *filter_dev,
1186 int idx);
1187
1188 int (*ndo_bridge_setlink)(struct net_device *dev,
1189 struct nlmsghdr *nlh,
1190 u16 flags);
1191 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1192 u32 pid, u32 seq,
1193 struct net_device *dev,
1194 u32 filter_mask,
1195 int nlflags);
1196 int (*ndo_bridge_dellink)(struct net_device *dev,
1197 struct nlmsghdr *nlh,
1198 u16 flags);
1199 int (*ndo_change_carrier)(struct net_device *dev,
1200 bool new_carrier);
1201 int (*ndo_get_phys_port_id)(struct net_device *dev,
1202 struct netdev_phys_item_id *ppid);
1203 int (*ndo_get_phys_port_name)(struct net_device *dev,
1204 char *name, size_t len);
1205 void (*ndo_add_vxlan_port)(struct net_device *dev,
1206 sa_family_t sa_family,
1207 __be16 port);
1208 void (*ndo_del_vxlan_port)(struct net_device *dev,
1209 sa_family_t sa_family,
1210 __be16 port);
1211
1212 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213 struct net_device *dev);
1214 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1215 void *priv);
1216
1217 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1218 struct net_device *dev,
1219 void *priv);
1220 int (*ndo_get_lock_subclass)(struct net_device *dev);
1221 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1222 struct net_device *dev,
1223 netdev_features_t features);
1224 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225 int queue_index,
1226 u32 maxrate);
1227 int (*ndo_get_iflink)(const struct net_device *dev);
1228 int (*ndo_change_proto_down)(struct net_device *dev,
1229 bool proto_down);
1230};
1231
1232/**
1233 * enum net_device_priv_flags - &struct net_device priv_flags
1234 *
1235 * These are the &struct net_device, they are only set internally
1236 * by drivers and used in the kernel. These flags are invisible to
1237 * userspace, this means that the order of these flags can change
1238 * during any kernel release.
1239 *
1240 * You should have a pretty good reason to be extending these flags.
1241 *
1242 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1243 * @IFF_EBRIDGE: Ethernet bridging device
1244 * @IFF_BONDING: bonding master or slave
1245 * @IFF_ISATAP: ISATAP interface (RFC4214)
1246 * @IFF_WAN_HDLC: WAN HDLC device
1247 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1248 * release skb->dst
1249 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1250 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1251 * @IFF_MACVLAN_PORT: device used as macvlan port
1252 * @IFF_BRIDGE_PORT: device used as bridge port
1253 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1254 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1255 * @IFF_UNICAST_FLT: Supports unicast filtering
1256 * @IFF_TEAM_PORT: device used as team port
1257 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1258 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1259 * change when it's running
1260 * @IFF_MACVLAN: Macvlan device
1261 * @IFF_VRF_MASTER: device is a VRF master
1262 * @IFF_NO_QUEUE: device can run without qdisc attached
1263 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1264 */
1265enum netdev_priv_flags {
1266 IFF_802_1Q_VLAN = 1<<0,
1267 IFF_EBRIDGE = 1<<1,
1268 IFF_BONDING = 1<<2,
1269 IFF_ISATAP = 1<<3,
1270 IFF_WAN_HDLC = 1<<4,
1271 IFF_XMIT_DST_RELEASE = 1<<5,
1272 IFF_DONT_BRIDGE = 1<<6,
1273 IFF_DISABLE_NETPOLL = 1<<7,
1274 IFF_MACVLAN_PORT = 1<<8,
1275 IFF_BRIDGE_PORT = 1<<9,
1276 IFF_OVS_DATAPATH = 1<<10,
1277 IFF_TX_SKB_SHARING = 1<<11,
1278 IFF_UNICAST_FLT = 1<<12,
1279 IFF_TEAM_PORT = 1<<13,
1280 IFF_SUPP_NOFCS = 1<<14,
1281 IFF_LIVE_ADDR_CHANGE = 1<<15,
1282 IFF_MACVLAN = 1<<16,
1283 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1284 IFF_IPVLAN_MASTER = 1<<18,
1285 IFF_IPVLAN_SLAVE = 1<<19,
1286 IFF_VRF_MASTER = 1<<20,
1287 IFF_NO_QUEUE = 1<<21,
1288 IFF_OPENVSWITCH = 1<<22,
1289};
1290
1291#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1292#define IFF_EBRIDGE IFF_EBRIDGE
1293#define IFF_BONDING IFF_BONDING
1294#define IFF_ISATAP IFF_ISATAP
1295#define IFF_WAN_HDLC IFF_WAN_HDLC
1296#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1297#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1298#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1299#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1300#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1301#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1302#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1303#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1304#define IFF_TEAM_PORT IFF_TEAM_PORT
1305#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1306#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1307#define IFF_MACVLAN IFF_MACVLAN
1308#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1309#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1310#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1311#define IFF_VRF_MASTER IFF_VRF_MASTER
1312#define IFF_NO_QUEUE IFF_NO_QUEUE
1313#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1314
1315/**
1316 * struct net_device - The DEVICE structure.
1317 * Actually, this whole structure is a big mistake. It mixes I/O
1318 * data with strictly "high-level" data, and it has to know about
1319 * almost every data structure used in the INET module.
1320 *
1321 * @name: This is the first field of the "visible" part of this structure
1322 * (i.e. as seen by users in the "Space.c" file). It is the name
1323 * of the interface.
1324 *
1325 * @name_hlist: Device name hash chain, please keep it close to name[]
1326 * @ifalias: SNMP alias
1327 * @mem_end: Shared memory end
1328 * @mem_start: Shared memory start
1329 * @base_addr: Device I/O address
1330 * @irq: Device IRQ number
1331 *
1332 * @carrier_changes: Stats to monitor carrier on<->off transitions
1333 *
1334 * @state: Generic network queuing layer state, see netdev_state_t
1335 * @dev_list: The global list of network devices
1336 * @napi_list: List entry, that is used for polling napi devices
1337 * @unreg_list: List entry, that is used, when we are unregistering the
1338 * device, see the function unregister_netdev
1339 * @close_list: List entry, that is used, when we are closing the device
1340 *
1341 * @adj_list: Directly linked devices, like slaves for bonding
1342 * @all_adj_list: All linked devices, *including* neighbours
1343 * @features: Currently active device features
1344 * @hw_features: User-changeable features
1345 *
1346 * @wanted_features: User-requested features
1347 * @vlan_features: Mask of features inheritable by VLAN devices
1348 *
1349 * @hw_enc_features: Mask of features inherited by encapsulating devices
1350 * This field indicates what encapsulation
1351 * offloads the hardware is capable of doing,
1352 * and drivers will need to set them appropriately.
1353 *
1354 * @mpls_features: Mask of features inheritable by MPLS
1355 *
1356 * @ifindex: interface index
1357 * @group: The group, that the device belongs to
1358 *
1359 * @stats: Statistics struct, which was left as a legacy, use
1360 * rtnl_link_stats64 instead
1361 *
1362 * @rx_dropped: Dropped packets by core network,
1363 * do not use this in drivers
1364 * @tx_dropped: Dropped packets by core network,
1365 * do not use this in drivers
1366 *
1367 * @wireless_handlers: List of functions to handle Wireless Extensions,
1368 * instead of ioctl,
1369 * see <net/iw_handler.h> for details.
1370 * @wireless_data: Instance data managed by the core of wireless extensions
1371 *
1372 * @netdev_ops: Includes several pointers to callbacks,
1373 * if one wants to override the ndo_*() functions
1374 * @ethtool_ops: Management operations
1375 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1376 * of Layer 2 headers.
1377 *
1378 * @flags: Interface flags (a la BSD)
1379 * @priv_flags: Like 'flags' but invisible to userspace,
1380 * see if.h for the definitions
1381 * @gflags: Global flags ( kept as legacy )
1382 * @padded: How much padding added by alloc_netdev()
1383 * @operstate: RFC2863 operstate
1384 * @link_mode: Mapping policy to operstate
1385 * @if_port: Selectable AUI, TP, ...
1386 * @dma: DMA channel
1387 * @mtu: Interface MTU value
1388 * @type: Interface hardware type
1389 * @hard_header_len: Hardware header length
1390 *
1391 * @needed_headroom: Extra headroom the hardware may need, but not in all
1392 * cases can this be guaranteed
1393 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1394 * cases can this be guaranteed. Some cases also use
1395 * LL_MAX_HEADER instead to allocate the skb
1396 *
1397 * interface address info:
1398 *
1399 * @perm_addr: Permanent hw address
1400 * @addr_assign_type: Hw address assignment type
1401 * @addr_len: Hardware address length
1402 * @neigh_priv_len; Used in neigh_alloc(),
1403 * initialized only in atm/clip.c
1404 * @dev_id: Used to differentiate devices that share
1405 * the same link layer address
1406 * @dev_port: Used to differentiate devices that share
1407 * the same function
1408 * @addr_list_lock: XXX: need comments on this one
1409 * @uc_promisc: Counter, that indicates, that promiscuous mode
1410 * has been enabled due to the need to listen to
1411 * additional unicast addresses in a device that
1412 * does not implement ndo_set_rx_mode()
1413 * @uc: unicast mac addresses
1414 * @mc: multicast mac addresses
1415 * @dev_addrs: list of device hw addresses
1416 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1417 * @promiscuity: Number of times, the NIC is told to work in
1418 * Promiscuous mode, if it becomes 0 the NIC will
1419 * exit from working in Promiscuous mode
1420 * @allmulti: Counter, enables or disables allmulticast mode
1421 *
1422 * @vlan_info: VLAN info
1423 * @dsa_ptr: dsa specific data
1424 * @tipc_ptr: TIPC specific data
1425 * @atalk_ptr: AppleTalk link
1426 * @ip_ptr: IPv4 specific data
1427 * @dn_ptr: DECnet specific data
1428 * @ip6_ptr: IPv6 specific data
1429 * @ax25_ptr: AX.25 specific data
1430 * @vrf_ptr: VRF specific data
1431 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1432 *
1433 * @last_rx: Time of last Rx
1434 * @dev_addr: Hw address (before bcast,
1435 * because most packets are unicast)
1436 *
1437 * @_rx: Array of RX queues
1438 * @num_rx_queues: Number of RX queues
1439 * allocated at register_netdev() time
1440 * @real_num_rx_queues: Number of RX queues currently active in device
1441 *
1442 * @rx_handler: handler for received packets
1443 * @rx_handler_data: XXX: need comments on this one
1444 * @ingress_queue: XXX: need comments on this one
1445 * @broadcast: hw bcast address
1446 *
1447 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1448 * indexed by RX queue number. Assigned by driver.
1449 * This must only be set if the ndo_rx_flow_steer
1450 * operation is defined
1451 * @index_hlist: Device index hash chain
1452 *
1453 * @_tx: Array of TX queues
1454 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1455 * @real_num_tx_queues: Number of TX queues currently active in device
1456 * @qdisc: Root qdisc from userspace point of view
1457 * @tx_queue_len: Max frames per queue allowed
1458 * @tx_global_lock: XXX: need comments on this one
1459 *
1460 * @xps_maps: XXX: need comments on this one
1461 *
1462 * @offload_fwd_mark: Offload device fwding mark
1463 *
1464 * @trans_start: Time (in jiffies) of last Tx
1465 * @watchdog_timeo: Represents the timeout that is used by
1466 * the watchdog ( see dev_watchdog() )
1467 * @watchdog_timer: List of timers
1468 *
1469 * @pcpu_refcnt: Number of references to this device
1470 * @todo_list: Delayed register/unregister
1471 * @link_watch_list: XXX: need comments on this one
1472 *
1473 * @reg_state: Register/unregister state machine
1474 * @dismantle: Device is going to be freed
1475 * @rtnl_link_state: This enum represents the phases of creating
1476 * a new link
1477 *
1478 * @destructor: Called from unregister,
1479 * can be used to call free_netdev
1480 * @npinfo: XXX: need comments on this one
1481 * @nd_net: Network namespace this network device is inside
1482 *
1483 * @ml_priv: Mid-layer private
1484 * @lstats: Loopback statistics
1485 * @tstats: Tunnel statistics
1486 * @dstats: Dummy statistics
1487 * @vstats: Virtual ethernet statistics
1488 *
1489 * @garp_port: GARP
1490 * @mrp_port: MRP
1491 *
1492 * @dev: Class/net/name entry
1493 * @sysfs_groups: Space for optional device, statistics and wireless
1494 * sysfs groups
1495 *
1496 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1497 * @rtnl_link_ops: Rtnl_link_ops
1498 *
1499 * @gso_max_size: Maximum size of generic segmentation offload
1500 * @gso_max_segs: Maximum number of segments that can be passed to the
1501 * NIC for GSO
1502 * @gso_min_segs: Minimum number of segments that can be passed to the
1503 * NIC for GSO
1504 *
1505 * @dcbnl_ops: Data Center Bridging netlink ops
1506 * @num_tc: Number of traffic classes in the net device
1507 * @tc_to_txq: XXX: need comments on this one
1508 * @prio_tc_map XXX: need comments on this one
1509 *
1510 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1511 *
1512 * @priomap: XXX: need comments on this one
1513 * @phydev: Physical device may attach itself
1514 * for hardware timestamping
1515 *
1516 * @qdisc_tx_busylock: XXX: need comments on this one
1517 *
1518 * @proto_down: protocol port state information can be sent to the
1519 * switch driver and used to set the phys state of the
1520 * switch port.
1521 *
1522 * FIXME: cleanup struct net_device such that network protocol info
1523 * moves out.
1524 */
1525
1526struct net_device {
1527 char name[IFNAMSIZ];
1528 struct hlist_node name_hlist;
1529 char *ifalias;
1530 /*
1531 * I/O specific fields
1532 * FIXME: Merge these and struct ifmap into one
1533 */
1534 unsigned long mem_end;
1535 unsigned long mem_start;
1536 unsigned long base_addr;
1537 int irq;
1538
1539 atomic_t carrier_changes;
1540
1541 /*
1542 * Some hardware also needs these fields (state,dev_list,
1543 * napi_list,unreg_list,close_list) but they are not
1544 * part of the usual set specified in Space.c.
1545 */
1546
1547 unsigned long state;
1548
1549 struct list_head dev_list;
1550 struct list_head napi_list;
1551 struct list_head unreg_list;
1552 struct list_head close_list;
1553 struct list_head ptype_all;
1554 struct list_head ptype_specific;
1555
1556 struct {
1557 struct list_head upper;
1558 struct list_head lower;
1559 } adj_list;
1560
1561 struct {
1562 struct list_head upper;
1563 struct list_head lower;
1564 } all_adj_list;
1565
1566 netdev_features_t features;
1567 netdev_features_t hw_features;
1568 netdev_features_t wanted_features;
1569 netdev_features_t vlan_features;
1570 netdev_features_t hw_enc_features;
1571 netdev_features_t mpls_features;
1572
1573 int ifindex;
1574 int group;
1575
1576 struct net_device_stats stats;
1577
1578 atomic_long_t rx_dropped;
1579 atomic_long_t tx_dropped;
1580
1581#ifdef CONFIG_WIRELESS_EXT
1582 const struct iw_handler_def * wireless_handlers;
1583 struct iw_public_data * wireless_data;
1584#endif
1585 const struct net_device_ops *netdev_ops;
1586 const struct ethtool_ops *ethtool_ops;
1587#ifdef CONFIG_NET_SWITCHDEV
1588 const struct switchdev_ops *switchdev_ops;
1589#endif
1590
1591 const struct header_ops *header_ops;
1592
1593 unsigned int flags;
1594 unsigned int priv_flags;
1595
1596 unsigned short gflags;
1597 unsigned short padded;
1598
1599 unsigned char operstate;
1600 unsigned char link_mode;
1601
1602 unsigned char if_port;
1603 unsigned char dma;
1604
1605 unsigned int mtu;
1606 unsigned short type;
1607 unsigned short hard_header_len;
1608
1609 unsigned short needed_headroom;
1610 unsigned short needed_tailroom;
1611
1612 /* Interface address info. */
1613 unsigned char perm_addr[MAX_ADDR_LEN];
1614 unsigned char addr_assign_type;
1615 unsigned char addr_len;
1616 unsigned short neigh_priv_len;
1617 unsigned short dev_id;
1618 unsigned short dev_port;
1619 spinlock_t addr_list_lock;
1620 unsigned char name_assign_type;
1621 bool uc_promisc;
1622 struct netdev_hw_addr_list uc;
1623 struct netdev_hw_addr_list mc;
1624 struct netdev_hw_addr_list dev_addrs;
1625
1626#ifdef CONFIG_SYSFS
1627 struct kset *queues_kset;
1628#endif
1629 unsigned int promiscuity;
1630 unsigned int allmulti;
1631
1632
1633 /* Protocol specific pointers */
1634
1635#if IS_ENABLED(CONFIG_VLAN_8021Q)
1636 struct vlan_info __rcu *vlan_info;
1637#endif
1638#if IS_ENABLED(CONFIG_NET_DSA)
1639 struct dsa_switch_tree *dsa_ptr;
1640#endif
1641#if IS_ENABLED(CONFIG_TIPC)
1642 struct tipc_bearer __rcu *tipc_ptr;
1643#endif
1644 void *atalk_ptr;
1645 struct in_device __rcu *ip_ptr;
1646 struct dn_dev __rcu *dn_ptr;
1647 struct inet6_dev __rcu *ip6_ptr;
1648 void *ax25_ptr;
1649 struct net_vrf_dev __rcu *vrf_ptr;
1650 struct wireless_dev *ieee80211_ptr;
1651 struct wpan_dev *ieee802154_ptr;
1652#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1653 struct mpls_dev __rcu *mpls_ptr;
1654#endif
1655
1656/*
1657 * Cache lines mostly used on receive path (including eth_type_trans())
1658 */
1659 unsigned long last_rx;
1660
1661 /* Interface address info used in eth_type_trans() */
1662 unsigned char *dev_addr;
1663
1664
1665#ifdef CONFIG_SYSFS
1666 struct netdev_rx_queue *_rx;
1667
1668 unsigned int num_rx_queues;
1669 unsigned int real_num_rx_queues;
1670
1671#endif
1672
1673 unsigned long gro_flush_timeout;
1674 rx_handler_func_t __rcu *rx_handler;
1675 void __rcu *rx_handler_data;
1676
1677#ifdef CONFIG_NET_CLS_ACT
1678 struct tcf_proto __rcu *ingress_cl_list;
1679#endif
1680 struct netdev_queue __rcu *ingress_queue;
1681#ifdef CONFIG_NETFILTER_INGRESS
1682 struct list_head nf_hooks_ingress;
1683#endif
1684
1685 unsigned char broadcast[MAX_ADDR_LEN];
1686#ifdef CONFIG_RFS_ACCEL
1687 struct cpu_rmap *rx_cpu_rmap;
1688#endif
1689 struct hlist_node index_hlist;
1690
1691/*
1692 * Cache lines mostly used on transmit path
1693 */
1694 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1695 unsigned int num_tx_queues;
1696 unsigned int real_num_tx_queues;
1697 struct Qdisc *qdisc;
1698 unsigned long tx_queue_len;
1699 spinlock_t tx_global_lock;
1700 int watchdog_timeo;
1701
1702#ifdef CONFIG_XPS
1703 struct xps_dev_maps __rcu *xps_maps;
1704#endif
1705
1706#ifdef CONFIG_NET_SWITCHDEV
1707 u32 offload_fwd_mark;
1708#endif
1709
1710 /* These may be needed for future network-power-down code. */
1711
1712 /*
1713 * trans_start here is expensive for high speed devices on SMP,
1714 * please use netdev_queue->trans_start instead.
1715 */
1716 unsigned long trans_start;
1717
1718 struct timer_list watchdog_timer;
1719
1720 int __percpu *pcpu_refcnt;
1721 struct list_head todo_list;
1722
1723 struct list_head link_watch_list;
1724
1725 enum { NETREG_UNINITIALIZED=0,
1726 NETREG_REGISTERED, /* completed register_netdevice */
1727 NETREG_UNREGISTERING, /* called unregister_netdevice */
1728 NETREG_UNREGISTERED, /* completed unregister todo */
1729 NETREG_RELEASED, /* called free_netdev */
1730 NETREG_DUMMY, /* dummy device for NAPI poll */
1731 } reg_state:8;
1732
1733 bool dismantle;
1734
1735 enum {
1736 RTNL_LINK_INITIALIZED,
1737 RTNL_LINK_INITIALIZING,
1738 } rtnl_link_state:16;
1739
1740 void (*destructor)(struct net_device *dev);
1741
1742#ifdef CONFIG_NETPOLL
1743 struct netpoll_info __rcu *npinfo;
1744#endif
1745
1746 possible_net_t nd_net;
1747
1748 /* mid-layer private */
1749 union {
1750 void *ml_priv;
1751 struct pcpu_lstats __percpu *lstats;
1752 struct pcpu_sw_netstats __percpu *tstats;
1753 struct pcpu_dstats __percpu *dstats;
1754 struct pcpu_vstats __percpu *vstats;
1755 };
1756
1757 struct garp_port __rcu *garp_port;
1758 struct mrp_port __rcu *mrp_port;
1759
1760 struct device dev;
1761 const struct attribute_group *sysfs_groups[4];
1762 const struct attribute_group *sysfs_rx_queue_group;
1763
1764 const struct rtnl_link_ops *rtnl_link_ops;
1765
1766 /* for setting kernel sock attribute on TCP connection setup */
1767#define GSO_MAX_SIZE 65536
1768 unsigned int gso_max_size;
1769#define GSO_MAX_SEGS 65535
1770 u16 gso_max_segs;
1771 u16 gso_min_segs;
1772#ifdef CONFIG_DCB
1773 const struct dcbnl_rtnl_ops *dcbnl_ops;
1774#endif
1775 u8 num_tc;
1776 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1777 u8 prio_tc_map[TC_BITMASK + 1];
1778
1779#if IS_ENABLED(CONFIG_FCOE)
1780 unsigned int fcoe_ddp_xid;
1781#endif
1782#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1783 struct netprio_map __rcu *priomap;
1784#endif
1785 struct phy_device *phydev;
1786 struct lock_class_key *qdisc_tx_busylock;
1787 bool proto_down;
1788};
1789#define to_net_dev(d) container_of(d, struct net_device, dev)
1790
1791#define NETDEV_ALIGN 32
1792
1793static inline
1794int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1795{
1796 return dev->prio_tc_map[prio & TC_BITMASK];
1797}
1798
1799static inline
1800int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1801{
1802 if (tc >= dev->num_tc)
1803 return -EINVAL;
1804
1805 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1806 return 0;
1807}
1808
1809static inline
1810void netdev_reset_tc(struct net_device *dev)
1811{
1812 dev->num_tc = 0;
1813 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1814 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1815}
1816
1817static inline
1818int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1819{
1820 if (tc >= dev->num_tc)
1821 return -EINVAL;
1822
1823 dev->tc_to_txq[tc].count = count;
1824 dev->tc_to_txq[tc].offset = offset;
1825 return 0;
1826}
1827
1828static inline
1829int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1830{
1831 if (num_tc > TC_MAX_QUEUE)
1832 return -EINVAL;
1833
1834 dev->num_tc = num_tc;
1835 return 0;
1836}
1837
1838static inline
1839int netdev_get_num_tc(struct net_device *dev)
1840{
1841 return dev->num_tc;
1842}
1843
1844static inline
1845struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1846 unsigned int index)
1847{
1848 return &dev->_tx[index];
1849}
1850
1851static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1852 const struct sk_buff *skb)
1853{
1854 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1855}
1856
1857static inline void netdev_for_each_tx_queue(struct net_device *dev,
1858 void (*f)(struct net_device *,
1859 struct netdev_queue *,
1860 void *),
1861 void *arg)
1862{
1863 unsigned int i;
1864
1865 for (i = 0; i < dev->num_tx_queues; i++)
1866 f(dev, &dev->_tx[i], arg);
1867}
1868
1869struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1870 struct sk_buff *skb,
1871 void *accel_priv);
1872
1873/*
1874 * Net namespace inlines
1875 */
1876static inline
1877struct net *dev_net(const struct net_device *dev)
1878{
1879 return read_pnet(&dev->nd_net);
1880}
1881
1882static inline
1883void dev_net_set(struct net_device *dev, struct net *net)
1884{
1885 write_pnet(&dev->nd_net, net);
1886}
1887
1888static inline bool netdev_uses_dsa(struct net_device *dev)
1889{
1890#if IS_ENABLED(CONFIG_NET_DSA)
1891 if (dev->dsa_ptr != NULL)
1892 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1893#endif
1894 return false;
1895}
1896
1897/**
1898 * netdev_priv - access network device private data
1899 * @dev: network device
1900 *
1901 * Get network device private data
1902 */
1903static inline void *netdev_priv(const struct net_device *dev)
1904{
1905 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1906}
1907
1908/* Set the sysfs physical device reference for the network logical device
1909 * if set prior to registration will cause a symlink during initialization.
1910 */
1911#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1912
1913/* Set the sysfs device type for the network logical device to allow
1914 * fine-grained identification of different network device types. For
1915 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1916 */
1917#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1918
1919/* Default NAPI poll() weight
1920 * Device drivers are strongly advised to not use bigger value
1921 */
1922#define NAPI_POLL_WEIGHT 64
1923
1924/**
1925 * netif_napi_add - initialize a napi context
1926 * @dev: network device
1927 * @napi: napi context
1928 * @poll: polling function
1929 * @weight: default weight
1930 *
1931 * netif_napi_add() must be used to initialize a napi context prior to calling
1932 * *any* of the other napi related functions.
1933 */
1934void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1935 int (*poll)(struct napi_struct *, int), int weight);
1936
1937/**
1938 * netif_napi_del - remove a napi context
1939 * @napi: napi context
1940 *
1941 * netif_napi_del() removes a napi context from the network device napi list
1942 */
1943void netif_napi_del(struct napi_struct *napi);
1944
1945struct napi_gro_cb {
1946 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1947 void *frag0;
1948
1949 /* Length of frag0. */
1950 unsigned int frag0_len;
1951
1952 /* This indicates where we are processing relative to skb->data. */
1953 int data_offset;
1954
1955 /* This is non-zero if the packet cannot be merged with the new skb. */
1956 u16 flush;
1957
1958 /* Save the IP ID here and check when we get to the transport layer */
1959 u16 flush_id;
1960
1961 /* Number of segments aggregated. */
1962 u16 count;
1963
1964 /* Start offset for remote checksum offload */
1965 u16 gro_remcsum_start;
1966
1967 /* jiffies when first packet was created/queued */
1968 unsigned long age;
1969
1970 /* Used in ipv6_gro_receive() and foo-over-udp */
1971 u16 proto;
1972
1973 /* This is non-zero if the packet may be of the same flow. */
1974 u8 same_flow:1;
1975
1976 /* Used in udp_gro_receive */
1977 u8 udp_mark:1;
1978
1979 /* GRO checksum is valid */
1980 u8 csum_valid:1;
1981
1982 /* Number of checksums via CHECKSUM_UNNECESSARY */
1983 u8 csum_cnt:3;
1984
1985 /* Free the skb? */
1986 u8 free:2;
1987#define NAPI_GRO_FREE 1
1988#define NAPI_GRO_FREE_STOLEN_HEAD 2
1989
1990 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1991 u8 is_ipv6:1;
1992
1993 /* 7 bit hole */
1994
1995 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1996 __wsum csum;
1997
1998 /* used in skb_gro_receive() slow path */
1999 struct sk_buff *last;
2000};
2001
2002#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2003
2004struct packet_type {
2005 __be16 type; /* This is really htons(ether_type). */
2006 struct net_device *dev; /* NULL is wildcarded here */
2007 int (*func) (struct sk_buff *,
2008 struct net_device *,
2009 struct packet_type *,
2010 struct net_device *);
2011 bool (*id_match)(struct packet_type *ptype,
2012 struct sock *sk);
2013 void *af_packet_priv;
2014 struct list_head list;
2015};
2016
2017struct offload_callbacks {
2018 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2019 netdev_features_t features);
2020 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2021 struct sk_buff *skb);
2022 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2023};
2024
2025struct packet_offload {
2026 __be16 type; /* This is really htons(ether_type). */
2027 u16 priority;
2028 struct offload_callbacks callbacks;
2029 struct list_head list;
2030};
2031
2032struct udp_offload;
2033
2034struct udp_offload_callbacks {
2035 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2036 struct sk_buff *skb,
2037 struct udp_offload *uoff);
2038 int (*gro_complete)(struct sk_buff *skb,
2039 int nhoff,
2040 struct udp_offload *uoff);
2041};
2042
2043struct udp_offload {
2044 __be16 port;
2045 u8 ipproto;
2046 struct udp_offload_callbacks callbacks;
2047};
2048
2049/* often modified stats are per cpu, other are shared (netdev->stats) */
2050struct pcpu_sw_netstats {
2051 u64 rx_packets;
2052 u64 rx_bytes;
2053 u64 tx_packets;
2054 u64 tx_bytes;
2055 struct u64_stats_sync syncp;
2056};
2057
2058#define netdev_alloc_pcpu_stats(type) \
2059({ \
2060 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2061 if (pcpu_stats) { \
2062 int __cpu; \
2063 for_each_possible_cpu(__cpu) { \
2064 typeof(type) *stat; \
2065 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2066 u64_stats_init(&stat->syncp); \
2067 } \
2068 } \
2069 pcpu_stats; \
2070})
2071
2072#include <linux/notifier.h>
2073
2074/* netdevice notifier chain. Please remember to update the rtnetlink
2075 * notification exclusion list in rtnetlink_event() when adding new
2076 * types.
2077 */
2078#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2079#define NETDEV_DOWN 0x0002
2080#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2081 detected a hardware crash and restarted
2082 - we can use this eg to kick tcp sessions
2083 once done */
2084#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2085#define NETDEV_REGISTER 0x0005
2086#define NETDEV_UNREGISTER 0x0006
2087#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2088#define NETDEV_CHANGEADDR 0x0008
2089#define NETDEV_GOING_DOWN 0x0009
2090#define NETDEV_CHANGENAME 0x000A
2091#define NETDEV_FEAT_CHANGE 0x000B
2092#define NETDEV_BONDING_FAILOVER 0x000C
2093#define NETDEV_PRE_UP 0x000D
2094#define NETDEV_PRE_TYPE_CHANGE 0x000E
2095#define NETDEV_POST_TYPE_CHANGE 0x000F
2096#define NETDEV_POST_INIT 0x0010
2097#define NETDEV_UNREGISTER_FINAL 0x0011
2098#define NETDEV_RELEASE 0x0012
2099#define NETDEV_NOTIFY_PEERS 0x0013
2100#define NETDEV_JOIN 0x0014
2101#define NETDEV_CHANGEUPPER 0x0015
2102#define NETDEV_RESEND_IGMP 0x0016
2103#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2104#define NETDEV_CHANGEINFODATA 0x0018
2105#define NETDEV_BONDING_INFO 0x0019
2106
2107int register_netdevice_notifier(struct notifier_block *nb);
2108int unregister_netdevice_notifier(struct notifier_block *nb);
2109
2110struct netdev_notifier_info {
2111 struct net_device *dev;
2112};
2113
2114struct netdev_notifier_change_info {
2115 struct netdev_notifier_info info; /* must be first */
2116 unsigned int flags_changed;
2117};
2118
2119struct netdev_notifier_changeupper_info {
2120 struct netdev_notifier_info info; /* must be first */
2121 struct net_device *upper_dev; /* new upper dev */
2122 bool master; /* is upper dev master */
2123 bool linking; /* is the nofication for link or unlink */
2124};
2125
2126static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2127 struct net_device *dev)
2128{
2129 info->dev = dev;
2130}
2131
2132static inline struct net_device *
2133netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2134{
2135 return info->dev;
2136}
2137
2138int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2139
2140
2141extern rwlock_t dev_base_lock; /* Device list lock */
2142
2143#define for_each_netdev(net, d) \
2144 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2145#define for_each_netdev_reverse(net, d) \
2146 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2147#define for_each_netdev_rcu(net, d) \
2148 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2149#define for_each_netdev_safe(net, d, n) \
2150 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2151#define for_each_netdev_continue(net, d) \
2152 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2153#define for_each_netdev_continue_rcu(net, d) \
2154 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2155#define for_each_netdev_in_bond_rcu(bond, slave) \
2156 for_each_netdev_rcu(&init_net, slave) \
2157 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2158#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2159
2160static inline struct net_device *next_net_device(struct net_device *dev)
2161{
2162 struct list_head *lh;
2163 struct net *net;
2164
2165 net = dev_net(dev);
2166 lh = dev->dev_list.next;
2167 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2168}
2169
2170static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2171{
2172 struct list_head *lh;
2173 struct net *net;
2174
2175 net = dev_net(dev);
2176 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2177 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2178}
2179
2180static inline struct net_device *first_net_device(struct net *net)
2181{
2182 return list_empty(&net->dev_base_head) ? NULL :
2183 net_device_entry(net->dev_base_head.next);
2184}
2185
2186static inline struct net_device *first_net_device_rcu(struct net *net)
2187{
2188 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2189
2190 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2191}
2192
2193int netdev_boot_setup_check(struct net_device *dev);
2194unsigned long netdev_boot_base(const char *prefix, int unit);
2195struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2196 const char *hwaddr);
2197struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2198struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2199void dev_add_pack(struct packet_type *pt);
2200void dev_remove_pack(struct packet_type *pt);
2201void __dev_remove_pack(struct packet_type *pt);
2202void dev_add_offload(struct packet_offload *po);
2203void dev_remove_offload(struct packet_offload *po);
2204
2205int dev_get_iflink(const struct net_device *dev);
2206struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2207 unsigned short mask);
2208struct net_device *dev_get_by_name(struct net *net, const char *name);
2209struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2210struct net_device *__dev_get_by_name(struct net *net, const char *name);
2211int dev_alloc_name(struct net_device *dev, const char *name);
2212int dev_open(struct net_device *dev);
2213int dev_close(struct net_device *dev);
2214int dev_close_many(struct list_head *head, bool unlink);
2215void dev_disable_lro(struct net_device *dev);
2216int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2217int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2218static inline int dev_queue_xmit(struct sk_buff *skb)
2219{
2220 return dev_queue_xmit_sk(skb->sk, skb);
2221}
2222int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2223int register_netdevice(struct net_device *dev);
2224void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2225void unregister_netdevice_many(struct list_head *head);
2226static inline void unregister_netdevice(struct net_device *dev)
2227{
2228 unregister_netdevice_queue(dev, NULL);
2229}
2230
2231int netdev_refcnt_read(const struct net_device *dev);
2232void free_netdev(struct net_device *dev);
2233void netdev_freemem(struct net_device *dev);
2234void synchronize_net(void);
2235int init_dummy_netdev(struct net_device *dev);
2236
2237DECLARE_PER_CPU(int, xmit_recursion);
2238static inline int dev_recursion_level(void)
2239{
2240 return this_cpu_read(xmit_recursion);
2241}
2242
2243struct net_device *dev_get_by_index(struct net *net, int ifindex);
2244struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2245struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2246int netdev_get_name(struct net *net, char *name, int ifindex);
2247int dev_restart(struct net_device *dev);
2248int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2249
2250static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2251{
2252 return NAPI_GRO_CB(skb)->data_offset;
2253}
2254
2255static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2256{
2257 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2258}
2259
2260static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2261{
2262 NAPI_GRO_CB(skb)->data_offset += len;
2263}
2264
2265static inline void *skb_gro_header_fast(struct sk_buff *skb,
2266 unsigned int offset)
2267{
2268 return NAPI_GRO_CB(skb)->frag0 + offset;
2269}
2270
2271static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2272{
2273 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2274}
2275
2276static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2277 unsigned int offset)
2278{
2279 if (!pskb_may_pull(skb, hlen))
2280 return NULL;
2281
2282 NAPI_GRO_CB(skb)->frag0 = NULL;
2283 NAPI_GRO_CB(skb)->frag0_len = 0;
2284 return skb->data + offset;
2285}
2286
2287static inline void *skb_gro_network_header(struct sk_buff *skb)
2288{
2289 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2290 skb_network_offset(skb);
2291}
2292
2293static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2294 const void *start, unsigned int len)
2295{
2296 if (NAPI_GRO_CB(skb)->csum_valid)
2297 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2298 csum_partial(start, len, 0));
2299}
2300
2301/* GRO checksum functions. These are logical equivalents of the normal
2302 * checksum functions (in skbuff.h) except that they operate on the GRO
2303 * offsets and fields in sk_buff.
2304 */
2305
2306__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2307
2308static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2309{
2310 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2311}
2312
2313static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2314 bool zero_okay,
2315 __sum16 check)
2316{
2317 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2318 skb_checksum_start_offset(skb) <
2319 skb_gro_offset(skb)) &&
2320 !skb_at_gro_remcsum_start(skb) &&
2321 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2322 (!zero_okay || check));
2323}
2324
2325static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2326 __wsum psum)
2327{
2328 if (NAPI_GRO_CB(skb)->csum_valid &&
2329 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2330 return 0;
2331
2332 NAPI_GRO_CB(skb)->csum = psum;
2333
2334 return __skb_gro_checksum_complete(skb);
2335}
2336
2337static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2338{
2339 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2340 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2341 NAPI_GRO_CB(skb)->csum_cnt--;
2342 } else {
2343 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2344 * verified a new top level checksum or an encapsulated one
2345 * during GRO. This saves work if we fallback to normal path.
2346 */
2347 __skb_incr_checksum_unnecessary(skb);
2348 }
2349}
2350
2351#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2352 compute_pseudo) \
2353({ \
2354 __sum16 __ret = 0; \
2355 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2356 __ret = __skb_gro_checksum_validate_complete(skb, \
2357 compute_pseudo(skb, proto)); \
2358 if (__ret) \
2359 __skb_mark_checksum_bad(skb); \
2360 else \
2361 skb_gro_incr_csum_unnecessary(skb); \
2362 __ret; \
2363})
2364
2365#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2366 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2367
2368#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2369 compute_pseudo) \
2370 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2371
2372#define skb_gro_checksum_simple_validate(skb) \
2373 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2374
2375static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2376{
2377 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2378 !NAPI_GRO_CB(skb)->csum_valid);
2379}
2380
2381static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2382 __sum16 check, __wsum pseudo)
2383{
2384 NAPI_GRO_CB(skb)->csum = ~pseudo;
2385 NAPI_GRO_CB(skb)->csum_valid = 1;
2386}
2387
2388#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2389do { \
2390 if (__skb_gro_checksum_convert_check(skb)) \
2391 __skb_gro_checksum_convert(skb, check, \
2392 compute_pseudo(skb, proto)); \
2393} while (0)
2394
2395struct gro_remcsum {
2396 int offset;
2397 __wsum delta;
2398};
2399
2400static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2401{
2402 grc->offset = 0;
2403 grc->delta = 0;
2404}
2405
2406static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2407 unsigned int off, size_t hdrlen,
2408 int start, int offset,
2409 struct gro_remcsum *grc,
2410 bool nopartial)
2411{
2412 __wsum delta;
2413 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2414
2415 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2416
2417 if (!nopartial) {
2418 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2419 return ptr;
2420 }
2421
2422 ptr = skb_gro_header_fast(skb, off);
2423 if (skb_gro_header_hard(skb, off + plen)) {
2424 ptr = skb_gro_header_slow(skb, off + plen, off);
2425 if (!ptr)
2426 return NULL;
2427 }
2428
2429 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2430 start, offset);
2431
2432 /* Adjust skb->csum since we changed the packet */
2433 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2434
2435 grc->offset = off + hdrlen + offset;
2436 grc->delta = delta;
2437
2438 return ptr;
2439}
2440
2441static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2442 struct gro_remcsum *grc)
2443{
2444 void *ptr;
2445 size_t plen = grc->offset + sizeof(u16);
2446
2447 if (!grc->delta)
2448 return;
2449
2450 ptr = skb_gro_header_fast(skb, grc->offset);
2451 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2452 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2453 if (!ptr)
2454 return;
2455 }
2456
2457 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2458}
2459
2460static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2461 unsigned short type,
2462 const void *daddr, const void *saddr,
2463 unsigned int len)
2464{
2465 if (!dev->header_ops || !dev->header_ops->create)
2466 return 0;
2467
2468 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2469}
2470
2471static inline int dev_parse_header(const struct sk_buff *skb,
2472 unsigned char *haddr)
2473{
2474 const struct net_device *dev = skb->dev;
2475
2476 if (!dev->header_ops || !dev->header_ops->parse)
2477 return 0;
2478 return dev->header_ops->parse(skb, haddr);
2479}
2480
2481typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2482int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2483static inline int unregister_gifconf(unsigned int family)
2484{
2485 return register_gifconf(family, NULL);
2486}
2487
2488#ifdef CONFIG_NET_FLOW_LIMIT
2489#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2490struct sd_flow_limit {
2491 u64 count;
2492 unsigned int num_buckets;
2493 unsigned int history_head;
2494 u16 history[FLOW_LIMIT_HISTORY];
2495 u8 buckets[];
2496};
2497
2498extern int netdev_flow_limit_table_len;
2499#endif /* CONFIG_NET_FLOW_LIMIT */
2500
2501/*
2502 * Incoming packets are placed on per-cpu queues
2503 */
2504struct softnet_data {
2505 struct list_head poll_list;
2506 struct sk_buff_head process_queue;
2507
2508 /* stats */
2509 unsigned int processed;
2510 unsigned int time_squeeze;
2511 unsigned int cpu_collision;
2512 unsigned int received_rps;
2513#ifdef CONFIG_RPS
2514 struct softnet_data *rps_ipi_list;
2515#endif
2516#ifdef CONFIG_NET_FLOW_LIMIT
2517 struct sd_flow_limit __rcu *flow_limit;
2518#endif
2519 struct Qdisc *output_queue;
2520 struct Qdisc **output_queue_tailp;
2521 struct sk_buff *completion_queue;
2522
2523#ifdef CONFIG_RPS
2524 /* Elements below can be accessed between CPUs for RPS */
2525 struct call_single_data csd ____cacheline_aligned_in_smp;
2526 struct softnet_data *rps_ipi_next;
2527 unsigned int cpu;
2528 unsigned int input_queue_head;
2529 unsigned int input_queue_tail;
2530#endif
2531 unsigned int dropped;
2532 struct sk_buff_head input_pkt_queue;
2533 struct napi_struct backlog;
2534
2535};
2536
2537static inline void input_queue_head_incr(struct softnet_data *sd)
2538{
2539#ifdef CONFIG_RPS
2540 sd->input_queue_head++;
2541#endif
2542}
2543
2544static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2545 unsigned int *qtail)
2546{
2547#ifdef CONFIG_RPS
2548 *qtail = ++sd->input_queue_tail;
2549#endif
2550}
2551
2552DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2553
2554void __netif_schedule(struct Qdisc *q);
2555void netif_schedule_queue(struct netdev_queue *txq);
2556
2557static inline void netif_tx_schedule_all(struct net_device *dev)
2558{
2559 unsigned int i;
2560
2561 for (i = 0; i < dev->num_tx_queues; i++)
2562 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2563}
2564
2565static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2566{
2567 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2568}
2569
2570/**
2571 * netif_start_queue - allow transmit
2572 * @dev: network device
2573 *
2574 * Allow upper layers to call the device hard_start_xmit routine.
2575 */
2576static inline void netif_start_queue(struct net_device *dev)
2577{
2578 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2579}
2580
2581static inline void netif_tx_start_all_queues(struct net_device *dev)
2582{
2583 unsigned int i;
2584
2585 for (i = 0; i < dev->num_tx_queues; i++) {
2586 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2587 netif_tx_start_queue(txq);
2588 }
2589}
2590
2591void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2592
2593/**
2594 * netif_wake_queue - restart transmit
2595 * @dev: network device
2596 *
2597 * Allow upper layers to call the device hard_start_xmit routine.
2598 * Used for flow control when transmit resources are available.
2599 */
2600static inline void netif_wake_queue(struct net_device *dev)
2601{
2602 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2603}
2604
2605static inline void netif_tx_wake_all_queues(struct net_device *dev)
2606{
2607 unsigned int i;
2608
2609 for (i = 0; i < dev->num_tx_queues; i++) {
2610 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2611 netif_tx_wake_queue(txq);
2612 }
2613}
2614
2615static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2616{
2617 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2618}
2619
2620/**
2621 * netif_stop_queue - stop transmitted packets
2622 * @dev: network device
2623 *
2624 * Stop upper layers calling the device hard_start_xmit routine.
2625 * Used for flow control when transmit resources are unavailable.
2626 */
2627static inline void netif_stop_queue(struct net_device *dev)
2628{
2629 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2630}
2631
2632void netif_tx_stop_all_queues(struct net_device *dev);
2633
2634static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2635{
2636 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2637}
2638
2639/**
2640 * netif_queue_stopped - test if transmit queue is flowblocked
2641 * @dev: network device
2642 *
2643 * Test if transmit queue on device is currently unable to send.
2644 */
2645static inline bool netif_queue_stopped(const struct net_device *dev)
2646{
2647 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2648}
2649
2650static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2651{
2652 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2653}
2654
2655static inline bool
2656netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2657{
2658 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2659}
2660
2661static inline bool
2662netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2663{
2664 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2665}
2666
2667/**
2668 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2669 * @dev_queue: pointer to transmit queue
2670 *
2671 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2672 * to give appropriate hint to the cpu.
2673 */
2674static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2675{
2676#ifdef CONFIG_BQL
2677 prefetchw(&dev_queue->dql.num_queued);
2678#endif
2679}
2680
2681/**
2682 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2683 * @dev_queue: pointer to transmit queue
2684 *
2685 * BQL enabled drivers might use this helper in their TX completion path,
2686 * to give appropriate hint to the cpu.
2687 */
2688static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2689{
2690#ifdef CONFIG_BQL
2691 prefetchw(&dev_queue->dql.limit);
2692#endif
2693}
2694
2695static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2696 unsigned int bytes)
2697{
2698#ifdef CONFIG_BQL
2699 dql_queued(&dev_queue->dql, bytes);
2700
2701 if (likely(dql_avail(&dev_queue->dql) >= 0))
2702 return;
2703
2704 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2705
2706 /*
2707 * The XOFF flag must be set before checking the dql_avail below,
2708 * because in netdev_tx_completed_queue we update the dql_completed
2709 * before checking the XOFF flag.
2710 */
2711 smp_mb();
2712
2713 /* check again in case another CPU has just made room avail */
2714 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2715 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2716#endif
2717}
2718
2719/**
2720 * netdev_sent_queue - report the number of bytes queued to hardware
2721 * @dev: network device
2722 * @bytes: number of bytes queued to the hardware device queue
2723 *
2724 * Report the number of bytes queued for sending/completion to the network
2725 * device hardware queue. @bytes should be a good approximation and should
2726 * exactly match netdev_completed_queue() @bytes
2727 */
2728static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2729{
2730 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2731}
2732
2733static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2734 unsigned int pkts, unsigned int bytes)
2735{
2736#ifdef CONFIG_BQL
2737 if (unlikely(!bytes))
2738 return;
2739
2740 dql_completed(&dev_queue->dql, bytes);
2741
2742 /*
2743 * Without the memory barrier there is a small possiblity that
2744 * netdev_tx_sent_queue will miss the update and cause the queue to
2745 * be stopped forever
2746 */
2747 smp_mb();
2748
2749 if (dql_avail(&dev_queue->dql) < 0)
2750 return;
2751
2752 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2753 netif_schedule_queue(dev_queue);
2754#endif
2755}
2756
2757/**
2758 * netdev_completed_queue - report bytes and packets completed by device
2759 * @dev: network device
2760 * @pkts: actual number of packets sent over the medium
2761 * @bytes: actual number of bytes sent over the medium
2762 *
2763 * Report the number of bytes and packets transmitted by the network device
2764 * hardware queue over the physical medium, @bytes must exactly match the
2765 * @bytes amount passed to netdev_sent_queue()
2766 */
2767static inline void netdev_completed_queue(struct net_device *dev,
2768 unsigned int pkts, unsigned int bytes)
2769{
2770 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2771}
2772
2773static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2774{
2775#ifdef CONFIG_BQL
2776 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2777 dql_reset(&q->dql);
2778#endif
2779}
2780
2781/**
2782 * netdev_reset_queue - reset the packets and bytes count of a network device
2783 * @dev_queue: network device
2784 *
2785 * Reset the bytes and packet count of a network device and clear the
2786 * software flow control OFF bit for this network device
2787 */
2788static inline void netdev_reset_queue(struct net_device *dev_queue)
2789{
2790 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2791}
2792
2793/**
2794 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2795 * @dev: network device
2796 * @queue_index: given tx queue index
2797 *
2798 * Returns 0 if given tx queue index >= number of device tx queues,
2799 * otherwise returns the originally passed tx queue index.
2800 */
2801static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2802{
2803 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2804 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2805 dev->name, queue_index,
2806 dev->real_num_tx_queues);
2807 return 0;
2808 }
2809
2810 return queue_index;
2811}
2812
2813/**
2814 * netif_running - test if up
2815 * @dev: network device
2816 *
2817 * Test if the device has been brought up.
2818 */
2819static inline bool netif_running(const struct net_device *dev)
2820{
2821 return test_bit(__LINK_STATE_START, &dev->state);
2822}
2823
2824/*
2825 * Routines to manage the subqueues on a device. We only need start
2826 * stop, and a check if it's stopped. All other device management is
2827 * done at the overall netdevice level.
2828 * Also test the device if we're multiqueue.
2829 */
2830
2831/**
2832 * netif_start_subqueue - allow sending packets on subqueue
2833 * @dev: network device
2834 * @queue_index: sub queue index
2835 *
2836 * Start individual transmit queue of a device with multiple transmit queues.
2837 */
2838static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2839{
2840 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2841
2842 netif_tx_start_queue(txq);
2843}
2844
2845/**
2846 * netif_stop_subqueue - stop sending packets on subqueue
2847 * @dev: network device
2848 * @queue_index: sub queue index
2849 *
2850 * Stop individual transmit queue of a device with multiple transmit queues.
2851 */
2852static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2853{
2854 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2855 netif_tx_stop_queue(txq);
2856}
2857
2858/**
2859 * netif_subqueue_stopped - test status of subqueue
2860 * @dev: network device
2861 * @queue_index: sub queue index
2862 *
2863 * Check individual transmit queue of a device with multiple transmit queues.
2864 */
2865static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2866 u16 queue_index)
2867{
2868 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2869
2870 return netif_tx_queue_stopped(txq);
2871}
2872
2873static inline bool netif_subqueue_stopped(const struct net_device *dev,
2874 struct sk_buff *skb)
2875{
2876 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2877}
2878
2879void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2880
2881#ifdef CONFIG_XPS
2882int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2883 u16 index);
2884#else
2885static inline int netif_set_xps_queue(struct net_device *dev,
2886 const struct cpumask *mask,
2887 u16 index)
2888{
2889 return 0;
2890}
2891#endif
2892
2893u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2894 unsigned int num_tx_queues);
2895
2896/*
2897 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2898 * as a distribution range limit for the returned value.
2899 */
2900static inline u16 skb_tx_hash(const struct net_device *dev,
2901 struct sk_buff *skb)
2902{
2903 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2904}
2905
2906/**
2907 * netif_is_multiqueue - test if device has multiple transmit queues
2908 * @dev: network device
2909 *
2910 * Check if device has multiple transmit queues
2911 */
2912static inline bool netif_is_multiqueue(const struct net_device *dev)
2913{
2914 return dev->num_tx_queues > 1;
2915}
2916
2917int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2918
2919#ifdef CONFIG_SYSFS
2920int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2921#else
2922static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2923 unsigned int rxq)
2924{
2925 return 0;
2926}
2927#endif
2928
2929#ifdef CONFIG_SYSFS
2930static inline unsigned int get_netdev_rx_queue_index(
2931 struct netdev_rx_queue *queue)
2932{
2933 struct net_device *dev = queue->dev;
2934 int index = queue - dev->_rx;
2935
2936 BUG_ON(index >= dev->num_rx_queues);
2937 return index;
2938}
2939#endif
2940
2941#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2942int netif_get_num_default_rss_queues(void);
2943
2944enum skb_free_reason {
2945 SKB_REASON_CONSUMED,
2946 SKB_REASON_DROPPED,
2947};
2948
2949void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2950void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2951
2952/*
2953 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2954 * interrupt context or with hardware interrupts being disabled.
2955 * (in_irq() || irqs_disabled())
2956 *
2957 * We provide four helpers that can be used in following contexts :
2958 *
2959 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2960 * replacing kfree_skb(skb)
2961 *
2962 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2963 * Typically used in place of consume_skb(skb) in TX completion path
2964 *
2965 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2966 * replacing kfree_skb(skb)
2967 *
2968 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2969 * and consumed a packet. Used in place of consume_skb(skb)
2970 */
2971static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2972{
2973 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2974}
2975
2976static inline void dev_consume_skb_irq(struct sk_buff *skb)
2977{
2978 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2979}
2980
2981static inline void dev_kfree_skb_any(struct sk_buff *skb)
2982{
2983 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2984}
2985
2986static inline void dev_consume_skb_any(struct sk_buff *skb)
2987{
2988 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2989}
2990
2991int netif_rx(struct sk_buff *skb);
2992int netif_rx_ni(struct sk_buff *skb);
2993int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2994static inline int netif_receive_skb(struct sk_buff *skb)
2995{
2996 return netif_receive_skb_sk(skb->sk, skb);
2997}
2998gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2999void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3000struct sk_buff *napi_get_frags(struct napi_struct *napi);
3001gro_result_t napi_gro_frags(struct napi_struct *napi);
3002struct packet_offload *gro_find_receive_by_type(__be16 type);
3003struct packet_offload *gro_find_complete_by_type(__be16 type);
3004
3005static inline void napi_free_frags(struct napi_struct *napi)
3006{
3007 kfree_skb(napi->skb);
3008 napi->skb = NULL;
3009}
3010
3011int netdev_rx_handler_register(struct net_device *dev,
3012 rx_handler_func_t *rx_handler,
3013 void *rx_handler_data);
3014void netdev_rx_handler_unregister(struct net_device *dev);
3015
3016bool dev_valid_name(const char *name);
3017int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3018int dev_ethtool(struct net *net, struct ifreq *);
3019unsigned int dev_get_flags(const struct net_device *);
3020int __dev_change_flags(struct net_device *, unsigned int flags);
3021int dev_change_flags(struct net_device *, unsigned int);
3022void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3023 unsigned int gchanges);
3024int dev_change_name(struct net_device *, const char *);
3025int dev_set_alias(struct net_device *, const char *, size_t);
3026int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3027int dev_set_mtu(struct net_device *, int);
3028void dev_set_group(struct net_device *, int);
3029int dev_set_mac_address(struct net_device *, struct sockaddr *);
3030int dev_change_carrier(struct net_device *, bool new_carrier);
3031int dev_get_phys_port_id(struct net_device *dev,
3032 struct netdev_phys_item_id *ppid);
3033int dev_get_phys_port_name(struct net_device *dev,
3034 char *name, size_t len);
3035int dev_change_proto_down(struct net_device *dev, bool proto_down);
3036struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3037struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3038 struct netdev_queue *txq, int *ret);
3039int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3040int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3041bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3042
3043extern int netdev_budget;
3044
3045/* Called by rtnetlink.c:rtnl_unlock() */
3046void netdev_run_todo(void);
3047
3048/**
3049 * dev_put - release reference to device
3050 * @dev: network device
3051 *
3052 * Release reference to device to allow it to be freed.
3053 */
3054static inline void dev_put(struct net_device *dev)
3055{
3056 this_cpu_dec(*dev->pcpu_refcnt);
3057}
3058
3059/**
3060 * dev_hold - get reference to device
3061 * @dev: network device
3062 *
3063 * Hold reference to device to keep it from being freed.
3064 */
3065static inline void dev_hold(struct net_device *dev)
3066{
3067 this_cpu_inc(*dev->pcpu_refcnt);
3068}
3069
3070/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3071 * and _off may be called from IRQ context, but it is caller
3072 * who is responsible for serialization of these calls.
3073 *
3074 * The name carrier is inappropriate, these functions should really be
3075 * called netif_lowerlayer_*() because they represent the state of any
3076 * kind of lower layer not just hardware media.
3077 */
3078
3079void linkwatch_init_dev(struct net_device *dev);
3080void linkwatch_fire_event(struct net_device *dev);
3081void linkwatch_forget_dev(struct net_device *dev);
3082
3083/**
3084 * netif_carrier_ok - test if carrier present
3085 * @dev: network device
3086 *
3087 * Check if carrier is present on device
3088 */
3089static inline bool netif_carrier_ok(const struct net_device *dev)
3090{
3091 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3092}
3093
3094unsigned long dev_trans_start(struct net_device *dev);
3095
3096void __netdev_watchdog_up(struct net_device *dev);
3097
3098void netif_carrier_on(struct net_device *dev);
3099
3100void netif_carrier_off(struct net_device *dev);
3101
3102/**
3103 * netif_dormant_on - mark device as dormant.
3104 * @dev: network device
3105 *
3106 * Mark device as dormant (as per RFC2863).
3107 *
3108 * The dormant state indicates that the relevant interface is not
3109 * actually in a condition to pass packets (i.e., it is not 'up') but is
3110 * in a "pending" state, waiting for some external event. For "on-
3111 * demand" interfaces, this new state identifies the situation where the
3112 * interface is waiting for events to place it in the up state.
3113 *
3114 */
3115static inline void netif_dormant_on(struct net_device *dev)
3116{
3117 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3118 linkwatch_fire_event(dev);
3119}
3120
3121/**
3122 * netif_dormant_off - set device as not dormant.
3123 * @dev: network device
3124 *
3125 * Device is not in dormant state.
3126 */
3127static inline void netif_dormant_off(struct net_device *dev)
3128{
3129 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3130 linkwatch_fire_event(dev);
3131}
3132
3133/**
3134 * netif_dormant - test if carrier present
3135 * @dev: network device
3136 *
3137 * Check if carrier is present on device
3138 */
3139static inline bool netif_dormant(const struct net_device *dev)
3140{
3141 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3142}
3143
3144
3145/**
3146 * netif_oper_up - test if device is operational
3147 * @dev: network device
3148 *
3149 * Check if carrier is operational
3150 */
3151static inline bool netif_oper_up(const struct net_device *dev)
3152{
3153 return (dev->operstate == IF_OPER_UP ||
3154 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3155}
3156
3157/**
3158 * netif_device_present - is device available or removed
3159 * @dev: network device
3160 *
3161 * Check if device has not been removed from system.
3162 */
3163static inline bool netif_device_present(struct net_device *dev)
3164{
3165 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3166}
3167
3168void netif_device_detach(struct net_device *dev);
3169
3170void netif_device_attach(struct net_device *dev);
3171
3172/*
3173 * Network interface message level settings
3174 */
3175
3176enum {
3177 NETIF_MSG_DRV = 0x0001,
3178 NETIF_MSG_PROBE = 0x0002,
3179 NETIF_MSG_LINK = 0x0004,
3180 NETIF_MSG_TIMER = 0x0008,
3181 NETIF_MSG_IFDOWN = 0x0010,
3182 NETIF_MSG_IFUP = 0x0020,
3183 NETIF_MSG_RX_ERR = 0x0040,
3184 NETIF_MSG_TX_ERR = 0x0080,
3185 NETIF_MSG_TX_QUEUED = 0x0100,
3186 NETIF_MSG_INTR = 0x0200,
3187 NETIF_MSG_TX_DONE = 0x0400,
3188 NETIF_MSG_RX_STATUS = 0x0800,
3189 NETIF_MSG_PKTDATA = 0x1000,
3190 NETIF_MSG_HW = 0x2000,
3191 NETIF_MSG_WOL = 0x4000,
3192};
3193
3194#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3195#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3196#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3197#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3198#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3199#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3200#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3201#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3202#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3203#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3204#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3205#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3206#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3207#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3208#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3209
3210static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3211{
3212 /* use default */
3213 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3214 return default_msg_enable_bits;
3215 if (debug_value == 0) /* no output */
3216 return 0;
3217 /* set low N bits */
3218 return (1 << debug_value) - 1;
3219}
3220
3221static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3222{
3223 spin_lock(&txq->_xmit_lock);
3224 txq->xmit_lock_owner = cpu;
3225}
3226
3227static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3228{
3229 spin_lock_bh(&txq->_xmit_lock);
3230 txq->xmit_lock_owner = smp_processor_id();
3231}
3232
3233static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3234{
3235 bool ok = spin_trylock(&txq->_xmit_lock);
3236 if (likely(ok))
3237 txq->xmit_lock_owner = smp_processor_id();
3238 return ok;
3239}
3240
3241static inline void __netif_tx_unlock(struct netdev_queue *txq)
3242{
3243 txq->xmit_lock_owner = -1;
3244 spin_unlock(&txq->_xmit_lock);
3245}
3246
3247static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3248{
3249 txq->xmit_lock_owner = -1;
3250 spin_unlock_bh(&txq->_xmit_lock);
3251}
3252
3253static inline void txq_trans_update(struct netdev_queue *txq)
3254{
3255 if (txq->xmit_lock_owner != -1)
3256 txq->trans_start = jiffies;
3257}
3258
3259/**
3260 * netif_tx_lock - grab network device transmit lock
3261 * @dev: network device
3262 *
3263 * Get network device transmit lock
3264 */
3265static inline void netif_tx_lock(struct net_device *dev)
3266{
3267 unsigned int i;
3268 int cpu;
3269
3270 spin_lock(&dev->tx_global_lock);
3271 cpu = smp_processor_id();
3272 for (i = 0; i < dev->num_tx_queues; i++) {
3273 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3274
3275 /* We are the only thread of execution doing a
3276 * freeze, but we have to grab the _xmit_lock in
3277 * order to synchronize with threads which are in
3278 * the ->hard_start_xmit() handler and already
3279 * checked the frozen bit.
3280 */
3281 __netif_tx_lock(txq, cpu);
3282 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3283 __netif_tx_unlock(txq);
3284 }
3285}
3286
3287static inline void netif_tx_lock_bh(struct net_device *dev)
3288{
3289 local_bh_disable();
3290 netif_tx_lock(dev);
3291}
3292
3293static inline void netif_tx_unlock(struct net_device *dev)
3294{
3295 unsigned int i;
3296
3297 for (i = 0; i < dev->num_tx_queues; i++) {
3298 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3299
3300 /* No need to grab the _xmit_lock here. If the
3301 * queue is not stopped for another reason, we
3302 * force a schedule.
3303 */
3304 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3305 netif_schedule_queue(txq);
3306 }
3307 spin_unlock(&dev->tx_global_lock);
3308}
3309
3310static inline void netif_tx_unlock_bh(struct net_device *dev)
3311{
3312 netif_tx_unlock(dev);
3313 local_bh_enable();
3314}
3315
3316#define HARD_TX_LOCK(dev, txq, cpu) { \
3317 if ((dev->features & NETIF_F_LLTX) == 0) { \
3318 __netif_tx_lock(txq, cpu); \
3319 } \
3320}
3321
3322#define HARD_TX_TRYLOCK(dev, txq) \
3323 (((dev->features & NETIF_F_LLTX) == 0) ? \
3324 __netif_tx_trylock(txq) : \
3325 true )
3326
3327#define HARD_TX_UNLOCK(dev, txq) { \
3328 if ((dev->features & NETIF_F_LLTX) == 0) { \
3329 __netif_tx_unlock(txq); \
3330 } \
3331}
3332
3333static inline void netif_tx_disable(struct net_device *dev)
3334{
3335 unsigned int i;
3336 int cpu;
3337
3338 local_bh_disable();
3339 cpu = smp_processor_id();
3340 for (i = 0; i < dev->num_tx_queues; i++) {
3341 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3342
3343 __netif_tx_lock(txq, cpu);
3344 netif_tx_stop_queue(txq);
3345 __netif_tx_unlock(txq);
3346 }
3347 local_bh_enable();
3348}
3349
3350static inline void netif_addr_lock(struct net_device *dev)
3351{
3352 spin_lock(&dev->addr_list_lock);
3353}
3354
3355static inline void netif_addr_lock_nested(struct net_device *dev)
3356{
3357 int subclass = SINGLE_DEPTH_NESTING;
3358
3359 if (dev->netdev_ops->ndo_get_lock_subclass)
3360 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3361
3362 spin_lock_nested(&dev->addr_list_lock, subclass);
3363}
3364
3365static inline void netif_addr_lock_bh(struct net_device *dev)
3366{
3367 spin_lock_bh(&dev->addr_list_lock);
3368}
3369
3370static inline void netif_addr_unlock(struct net_device *dev)
3371{
3372 spin_unlock(&dev->addr_list_lock);
3373}
3374
3375static inline void netif_addr_unlock_bh(struct net_device *dev)
3376{
3377 spin_unlock_bh(&dev->addr_list_lock);
3378}
3379
3380/*
3381 * dev_addrs walker. Should be used only for read access. Call with
3382 * rcu_read_lock held.
3383 */
3384#define for_each_dev_addr(dev, ha) \
3385 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3386
3387/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3388
3389void ether_setup(struct net_device *dev);
3390
3391/* Support for loadable net-drivers */
3392struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3393 unsigned char name_assign_type,
3394 void (*setup)(struct net_device *),
3395 unsigned int txqs, unsigned int rxqs);
3396#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3397 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3398
3399#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3400 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3401 count)
3402
3403int register_netdev(struct net_device *dev);
3404void unregister_netdev(struct net_device *dev);
3405
3406/* General hardware address lists handling functions */
3407int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3408 struct netdev_hw_addr_list *from_list, int addr_len);
3409void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3410 struct netdev_hw_addr_list *from_list, int addr_len);
3411int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3412 struct net_device *dev,
3413 int (*sync)(struct net_device *, const unsigned char *),
3414 int (*unsync)(struct net_device *,
3415 const unsigned char *));
3416void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3417 struct net_device *dev,
3418 int (*unsync)(struct net_device *,
3419 const unsigned char *));
3420void __hw_addr_init(struct netdev_hw_addr_list *list);
3421
3422/* Functions used for device addresses handling */
3423int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3424 unsigned char addr_type);
3425int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3426 unsigned char addr_type);
3427void dev_addr_flush(struct net_device *dev);
3428int dev_addr_init(struct net_device *dev);
3429
3430/* Functions used for unicast addresses handling */
3431int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3432int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3433int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3434int dev_uc_sync(struct net_device *to, struct net_device *from);
3435int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3436void dev_uc_unsync(struct net_device *to, struct net_device *from);
3437void dev_uc_flush(struct net_device *dev);
3438void dev_uc_init(struct net_device *dev);
3439
3440/**
3441 * __dev_uc_sync - Synchonize device's unicast list
3442 * @dev: device to sync
3443 * @sync: function to call if address should be added
3444 * @unsync: function to call if address should be removed
3445 *
3446 * Add newly added addresses to the interface, and release
3447 * addresses that have been deleted.
3448 **/
3449static inline int __dev_uc_sync(struct net_device *dev,
3450 int (*sync)(struct net_device *,
3451 const unsigned char *),
3452 int (*unsync)(struct net_device *,
3453 const unsigned char *))
3454{
3455 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3456}
3457
3458/**
3459 * __dev_uc_unsync - Remove synchronized addresses from device
3460 * @dev: device to sync
3461 * @unsync: function to call if address should be removed
3462 *
3463 * Remove all addresses that were added to the device by dev_uc_sync().
3464 **/
3465static inline void __dev_uc_unsync(struct net_device *dev,
3466 int (*unsync)(struct net_device *,
3467 const unsigned char *))
3468{
3469 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3470}
3471
3472/* Functions used for multicast addresses handling */
3473int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3474int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3475int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3476int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3477int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3478int dev_mc_sync(struct net_device *to, struct net_device *from);
3479int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3480void dev_mc_unsync(struct net_device *to, struct net_device *from);
3481void dev_mc_flush(struct net_device *dev);
3482void dev_mc_init(struct net_device *dev);
3483
3484/**
3485 * __dev_mc_sync - Synchonize device's multicast list
3486 * @dev: device to sync
3487 * @sync: function to call if address should be added
3488 * @unsync: function to call if address should be removed
3489 *
3490 * Add newly added addresses to the interface, and release
3491 * addresses that have been deleted.
3492 **/
3493static inline int __dev_mc_sync(struct net_device *dev,
3494 int (*sync)(struct net_device *,
3495 const unsigned char *),
3496 int (*unsync)(struct net_device *,
3497 const unsigned char *))
3498{
3499 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3500}
3501
3502/**
3503 * __dev_mc_unsync - Remove synchronized addresses from device
3504 * @dev: device to sync
3505 * @unsync: function to call if address should be removed
3506 *
3507 * Remove all addresses that were added to the device by dev_mc_sync().
3508 **/
3509static inline void __dev_mc_unsync(struct net_device *dev,
3510 int (*unsync)(struct net_device *,
3511 const unsigned char *))
3512{
3513 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3514}
3515
3516/* Functions used for secondary unicast and multicast support */
3517void dev_set_rx_mode(struct net_device *dev);
3518void __dev_set_rx_mode(struct net_device *dev);
3519int dev_set_promiscuity(struct net_device *dev, int inc);
3520int dev_set_allmulti(struct net_device *dev, int inc);
3521void netdev_state_change(struct net_device *dev);
3522void netdev_notify_peers(struct net_device *dev);
3523void netdev_features_change(struct net_device *dev);
3524/* Load a device via the kmod */
3525void dev_load(struct net *net, const char *name);
3526struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3527 struct rtnl_link_stats64 *storage);
3528void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3529 const struct net_device_stats *netdev_stats);
3530
3531extern int netdev_max_backlog;
3532extern int netdev_tstamp_prequeue;
3533extern int weight_p;
3534extern int bpf_jit_enable;
3535
3536bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3537struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3538 struct list_head **iter);
3539struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3540 struct list_head **iter);
3541
3542/* iterate through upper list, must be called under RCU read lock */
3543#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3544 for (iter = &(dev)->adj_list.upper, \
3545 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3546 updev; \
3547 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3548
3549/* iterate through upper list, must be called under RCU read lock */
3550#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3551 for (iter = &(dev)->all_adj_list.upper, \
3552 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3553 updev; \
3554 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3555
3556void *netdev_lower_get_next_private(struct net_device *dev,
3557 struct list_head **iter);
3558void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3559 struct list_head **iter);
3560
3561#define netdev_for_each_lower_private(dev, priv, iter) \
3562 for (iter = (dev)->adj_list.lower.next, \
3563 priv = netdev_lower_get_next_private(dev, &(iter)); \
3564 priv; \
3565 priv = netdev_lower_get_next_private(dev, &(iter)))
3566
3567#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3568 for (iter = &(dev)->adj_list.lower, \
3569 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3570 priv; \
3571 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3572
3573void *netdev_lower_get_next(struct net_device *dev,
3574 struct list_head **iter);
3575#define netdev_for_each_lower_dev(dev, ldev, iter) \
3576 for (iter = &(dev)->adj_list.lower, \
3577 ldev = netdev_lower_get_next(dev, &(iter)); \
3578 ldev; \
3579 ldev = netdev_lower_get_next(dev, &(iter)))
3580
3581void *netdev_adjacent_get_private(struct list_head *adj_list);
3582void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3583struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3584struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3585int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3586int netdev_master_upper_dev_link(struct net_device *dev,
3587 struct net_device *upper_dev);
3588int netdev_master_upper_dev_link_private(struct net_device *dev,
3589 struct net_device *upper_dev,
3590 void *private);
3591void netdev_upper_dev_unlink(struct net_device *dev,
3592 struct net_device *upper_dev);
3593void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3594void *netdev_lower_dev_get_private(struct net_device *dev,
3595 struct net_device *lower_dev);
3596
3597/* RSS keys are 40 or 52 bytes long */
3598#define NETDEV_RSS_KEY_LEN 52
3599extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3600void netdev_rss_key_fill(void *buffer, size_t len);
3601
3602int dev_get_nest_level(struct net_device *dev,
3603 bool (*type_check)(struct net_device *dev));
3604int skb_checksum_help(struct sk_buff *skb);
3605struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3606 netdev_features_t features, bool tx_path);
3607struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3608 netdev_features_t features);
3609
3610struct netdev_bonding_info {
3611 ifslave slave;
3612 ifbond master;
3613};
3614
3615struct netdev_notifier_bonding_info {
3616 struct netdev_notifier_info info; /* must be first */
3617 struct netdev_bonding_info bonding_info;
3618};
3619
3620void netdev_bonding_info_change(struct net_device *dev,
3621 struct netdev_bonding_info *bonding_info);
3622
3623static inline
3624struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3625{
3626 return __skb_gso_segment(skb, features, true);
3627}
3628__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3629
3630static inline bool can_checksum_protocol(netdev_features_t features,
3631 __be16 protocol)
3632{
3633 return ((features & NETIF_F_GEN_CSUM) ||
3634 ((features & NETIF_F_V4_CSUM) &&
3635 protocol == htons(ETH_P_IP)) ||
3636 ((features & NETIF_F_V6_CSUM) &&
3637 protocol == htons(ETH_P_IPV6)) ||
3638 ((features & NETIF_F_FCOE_CRC) &&
3639 protocol == htons(ETH_P_FCOE)));
3640}
3641
3642#ifdef CONFIG_BUG
3643void netdev_rx_csum_fault(struct net_device *dev);
3644#else
3645static inline void netdev_rx_csum_fault(struct net_device *dev)
3646{
3647}
3648#endif
3649/* rx skb timestamps */
3650void net_enable_timestamp(void);
3651void net_disable_timestamp(void);
3652
3653#ifdef CONFIG_PROC_FS
3654int __init dev_proc_init(void);
3655#else
3656#define dev_proc_init() 0
3657#endif
3658
3659static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3660 struct sk_buff *skb, struct net_device *dev,
3661 bool more)
3662{
3663 skb->xmit_more = more ? 1 : 0;
3664 return ops->ndo_start_xmit(skb, dev);
3665}
3666
3667static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3668 struct netdev_queue *txq, bool more)
3669{
3670 const struct net_device_ops *ops = dev->netdev_ops;
3671 int rc;
3672
3673 rc = __netdev_start_xmit(ops, skb, dev, more);
3674 if (rc == NETDEV_TX_OK)
3675 txq_trans_update(txq);
3676
3677 return rc;
3678}
3679
3680int netdev_class_create_file_ns(struct class_attribute *class_attr,
3681 const void *ns);
3682void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3683 const void *ns);
3684
3685static inline int netdev_class_create_file(struct class_attribute *class_attr)
3686{
3687 return netdev_class_create_file_ns(class_attr, NULL);
3688}
3689
3690static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3691{
3692 netdev_class_remove_file_ns(class_attr, NULL);
3693}
3694
3695extern struct kobj_ns_type_operations net_ns_type_operations;
3696
3697const char *netdev_drivername(const struct net_device *dev);
3698
3699void linkwatch_run_queue(void);
3700
3701static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3702 netdev_features_t f2)
3703{
3704 if (f1 & NETIF_F_GEN_CSUM)
3705 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3706 if (f2 & NETIF_F_GEN_CSUM)
3707 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3708 f1 &= f2;
3709 if (f1 & NETIF_F_GEN_CSUM)
3710 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3711
3712 return f1;
3713}
3714
3715static inline netdev_features_t netdev_get_wanted_features(
3716 struct net_device *dev)
3717{
3718 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3719}
3720netdev_features_t netdev_increment_features(netdev_features_t all,
3721 netdev_features_t one, netdev_features_t mask);
3722
3723/* Allow TSO being used on stacked device :
3724 * Performing the GSO segmentation before last device
3725 * is a performance improvement.
3726 */
3727static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3728 netdev_features_t mask)
3729{
3730 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3731}
3732
3733int __netdev_update_features(struct net_device *dev);
3734void netdev_update_features(struct net_device *dev);
3735void netdev_change_features(struct net_device *dev);
3736
3737void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3738 struct net_device *dev);
3739
3740netdev_features_t passthru_features_check(struct sk_buff *skb,
3741 struct net_device *dev,
3742 netdev_features_t features);
3743netdev_features_t netif_skb_features(struct sk_buff *skb);
3744
3745static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3746{
3747 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3748
3749 /* check flags correspondence */
3750 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3751 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3752 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3753 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3754 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3755 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3756 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3757 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3758 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3759 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3760 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3761 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3762 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3763
3764 return (features & feature) == feature;
3765}
3766
3767static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3768{
3769 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3770 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3771}
3772
3773static inline bool netif_needs_gso(struct sk_buff *skb,
3774 netdev_features_t features)
3775{
3776 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3777 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3778 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3779}
3780
3781static inline void netif_set_gso_max_size(struct net_device *dev,
3782 unsigned int size)
3783{
3784 dev->gso_max_size = size;
3785}
3786
3787static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3788 int pulled_hlen, u16 mac_offset,
3789 int mac_len)
3790{
3791 skb->protocol = protocol;
3792 skb->encapsulation = 1;
3793 skb_push(skb, pulled_hlen);
3794 skb_reset_transport_header(skb);
3795 skb->mac_header = mac_offset;
3796 skb->network_header = skb->mac_header + mac_len;
3797 skb->mac_len = mac_len;
3798}
3799
3800static inline bool netif_is_macvlan(struct net_device *dev)
3801{
3802 return dev->priv_flags & IFF_MACVLAN;
3803}
3804
3805static inline bool netif_is_macvlan_port(struct net_device *dev)
3806{
3807 return dev->priv_flags & IFF_MACVLAN_PORT;
3808}
3809
3810static inline bool netif_is_ipvlan(struct net_device *dev)
3811{
3812 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3813}
3814
3815static inline bool netif_is_ipvlan_port(struct net_device *dev)
3816{
3817 return dev->priv_flags & IFF_IPVLAN_MASTER;
3818}
3819
3820static inline bool netif_is_bond_master(struct net_device *dev)
3821{
3822 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3823}
3824
3825static inline bool netif_is_bond_slave(struct net_device *dev)
3826{
3827 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3828}
3829
3830static inline bool netif_supports_nofcs(struct net_device *dev)
3831{
3832 return dev->priv_flags & IFF_SUPP_NOFCS;
3833}
3834
3835static inline bool netif_is_vrf(const struct net_device *dev)
3836{
3837 return dev->priv_flags & IFF_VRF_MASTER;
3838}
3839
3840static inline bool netif_is_bridge_master(const struct net_device *dev)
3841{
3842 return dev->priv_flags & IFF_EBRIDGE;
3843}
3844
3845static inline bool netif_is_ovs_master(const struct net_device *dev)
3846{
3847 return dev->priv_flags & IFF_OPENVSWITCH;
3848}
3849
3850static inline bool netif_index_is_vrf(struct net *net, int ifindex)
3851{
3852 bool rc = false;
3853
3854#if IS_ENABLED(CONFIG_NET_VRF)
3855 struct net_device *dev;
3856
3857 if (ifindex == 0)
3858 return false;
3859
3860 rcu_read_lock();
3861
3862 dev = dev_get_by_index_rcu(net, ifindex);
3863 if (dev)
3864 rc = netif_is_vrf(dev);
3865
3866 rcu_read_unlock();
3867#endif
3868 return rc;
3869}
3870
3871/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3872static inline void netif_keep_dst(struct net_device *dev)
3873{
3874 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3875}
3876
3877extern struct pernet_operations __net_initdata loopback_net_ops;
3878
3879/* Logging, debugging and troubleshooting/diagnostic helpers. */
3880
3881/* netdev_printk helpers, similar to dev_printk */
3882
3883static inline const char *netdev_name(const struct net_device *dev)
3884{
3885 if (!dev->name[0] || strchr(dev->name, '%'))
3886 return "(unnamed net_device)";
3887 return dev->name;
3888}
3889
3890static inline const char *netdev_reg_state(const struct net_device *dev)
3891{
3892 switch (dev->reg_state) {
3893 case NETREG_UNINITIALIZED: return " (uninitialized)";
3894 case NETREG_REGISTERED: return "";
3895 case NETREG_UNREGISTERING: return " (unregistering)";
3896 case NETREG_UNREGISTERED: return " (unregistered)";
3897 case NETREG_RELEASED: return " (released)";
3898 case NETREG_DUMMY: return " (dummy)";
3899 }
3900
3901 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3902 return " (unknown)";
3903}
3904
3905__printf(3, 4)
3906void netdev_printk(const char *level, const struct net_device *dev,
3907 const char *format, ...);
3908__printf(2, 3)
3909void netdev_emerg(const struct net_device *dev, const char *format, ...);
3910__printf(2, 3)
3911void netdev_alert(const struct net_device *dev, const char *format, ...);
3912__printf(2, 3)
3913void netdev_crit(const struct net_device *dev, const char *format, ...);
3914__printf(2, 3)
3915void netdev_err(const struct net_device *dev, const char *format, ...);
3916__printf(2, 3)
3917void netdev_warn(const struct net_device *dev, const char *format, ...);
3918__printf(2, 3)
3919void netdev_notice(const struct net_device *dev, const char *format, ...);
3920__printf(2, 3)
3921void netdev_info(const struct net_device *dev, const char *format, ...);
3922
3923#define MODULE_ALIAS_NETDEV(device) \
3924 MODULE_ALIAS("netdev-" device)
3925
3926#if defined(CONFIG_DYNAMIC_DEBUG)
3927#define netdev_dbg(__dev, format, args...) \
3928do { \
3929 dynamic_netdev_dbg(__dev, format, ##args); \
3930} while (0)
3931#elif defined(DEBUG)
3932#define netdev_dbg(__dev, format, args...) \
3933 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3934#else
3935#define netdev_dbg(__dev, format, args...) \
3936({ \
3937 if (0) \
3938 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3939})
3940#endif
3941
3942#if defined(VERBOSE_DEBUG)
3943#define netdev_vdbg netdev_dbg
3944#else
3945
3946#define netdev_vdbg(dev, format, args...) \
3947({ \
3948 if (0) \
3949 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3950 0; \
3951})
3952#endif
3953
3954/*
3955 * netdev_WARN() acts like dev_printk(), but with the key difference
3956 * of using a WARN/WARN_ON to get the message out, including the
3957 * file/line information and a backtrace.
3958 */
3959#define netdev_WARN(dev, format, args...) \
3960 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3961 netdev_reg_state(dev), ##args)
3962
3963/* netif printk helpers, similar to netdev_printk */
3964
3965#define netif_printk(priv, type, level, dev, fmt, args...) \
3966do { \
3967 if (netif_msg_##type(priv)) \
3968 netdev_printk(level, (dev), fmt, ##args); \
3969} while (0)
3970
3971#define netif_level(level, priv, type, dev, fmt, args...) \
3972do { \
3973 if (netif_msg_##type(priv)) \
3974 netdev_##level(dev, fmt, ##args); \
3975} while (0)
3976
3977#define netif_emerg(priv, type, dev, fmt, args...) \
3978 netif_level(emerg, priv, type, dev, fmt, ##args)
3979#define netif_alert(priv, type, dev, fmt, args...) \
3980 netif_level(alert, priv, type, dev, fmt, ##args)
3981#define netif_crit(priv, type, dev, fmt, args...) \
3982 netif_level(crit, priv, type, dev, fmt, ##args)
3983#define netif_err(priv, type, dev, fmt, args...) \
3984 netif_level(err, priv, type, dev, fmt, ##args)
3985#define netif_warn(priv, type, dev, fmt, args...) \
3986 netif_level(warn, priv, type, dev, fmt, ##args)
3987#define netif_notice(priv, type, dev, fmt, args...) \
3988 netif_level(notice, priv, type, dev, fmt, ##args)
3989#define netif_info(priv, type, dev, fmt, args...) \
3990 netif_level(info, priv, type, dev, fmt, ##args)
3991
3992#if defined(CONFIG_DYNAMIC_DEBUG)
3993#define netif_dbg(priv, type, netdev, format, args...) \
3994do { \
3995 if (netif_msg_##type(priv)) \
3996 dynamic_netdev_dbg(netdev, format, ##args); \
3997} while (0)
3998#elif defined(DEBUG)
3999#define netif_dbg(priv, type, dev, format, args...) \
4000 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4001#else
4002#define netif_dbg(priv, type, dev, format, args...) \
4003({ \
4004 if (0) \
4005 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4006 0; \
4007})
4008#endif
4009
4010#if defined(VERBOSE_DEBUG)
4011#define netif_vdbg netif_dbg
4012#else
4013#define netif_vdbg(priv, type, dev, format, args...) \
4014({ \
4015 if (0) \
4016 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4017 0; \
4018})
4019#endif
4020
4021/*
4022 * The list of packet types we will receive (as opposed to discard)
4023 * and the routines to invoke.
4024 *
4025 * Why 16. Because with 16 the only overlap we get on a hash of the
4026 * low nibble of the protocol value is RARP/SNAP/X.25.
4027 *
4028 * NOTE: That is no longer true with the addition of VLAN tags. Not
4029 * sure which should go first, but I bet it won't make much
4030 * difference if we are running VLANs. The good news is that
4031 * this protocol won't be in the list unless compiled in, so
4032 * the average user (w/out VLANs) will not be adversely affected.
4033 * --BLG
4034 *
4035 * 0800 IP
4036 * 8100 802.1Q VLAN
4037 * 0001 802.3
4038 * 0002 AX.25
4039 * 0004 802.2
4040 * 8035 RARP
4041 * 0005 SNAP
4042 * 0805 X.25
4043 * 0806 ARP
4044 * 8137 IPX
4045 * 0009 Localtalk
4046 * 86DD IPv6
4047 */
4048#define PTYPE_HASH_SIZE (16)
4049#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4050
4051#endif /* _LINUX_NETDEVICE_H */