Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39#include <linux/slab.h>
40#include <linux/reboot.h>
41#include <linux/kconfig.h>
42
43#include <linux/mtd/mtd.h>
44#include <linux/mtd/partitions.h>
45
46#include "mtdcore.h"
47
48static struct backing_dev_info mtd_bdi = {
49};
50
51#ifdef CONFIG_PM_SLEEP
52
53static int mtd_cls_suspend(struct device *dev)
54{
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58}
59
60static int mtd_cls_resume(struct device *dev)
61{
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67}
68
69static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71#else
72#define MTD_CLS_PM_OPS NULL
73#endif
74
75static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
78 .pm = MTD_CLS_PM_OPS,
79};
80
81static DEFINE_IDR(mtd_idr);
82
83/* These are exported solely for the purpose of mtd_blkdevs.c. You
84 should not use them for _anything_ else */
85DEFINE_MUTEX(mtd_table_mutex);
86EXPORT_SYMBOL_GPL(mtd_table_mutex);
87
88struct mtd_info *__mtd_next_device(int i)
89{
90 return idr_get_next(&mtd_idr, &i);
91}
92EXPORT_SYMBOL_GPL(__mtd_next_device);
93
94static LIST_HEAD(mtd_notifiers);
95
96
97#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98
99/* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102static void mtd_release(struct device *dev)
103{
104 struct mtd_info *mtd = dev_get_drvdata(dev);
105 dev_t index = MTD_DEVT(mtd->index);
106
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
109}
110
111static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113{
114 struct mtd_info *mtd = dev_get_drvdata(dev);
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147}
148static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152{
153 struct mtd_info *mtd = dev_get_drvdata(dev);
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157}
158static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162{
163 struct mtd_info *mtd = dev_get_drvdata(dev);
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168}
169static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178}
179static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188}
189static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
191static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199}
200static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
202static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204{
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209}
210static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214{
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219}
220static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225{
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230}
231static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232
233static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235{
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239}
240static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
242static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245{
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249}
250
251static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254{
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265}
266static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
270static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277}
278static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
280static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287}
288static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298}
299static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308}
309static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313{
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318}
319static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
321static struct attribute *mtd_attrs[] = {
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
327 &dev_attr_subpagesize.attr,
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
331 &dev_attr_ecc_strength.attr,
332 &dev_attr_ecc_step_size.attr,
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
337 &dev_attr_bitflip_threshold.attr,
338 NULL,
339};
340ATTRIBUTE_GROUPS(mtd);
341
342static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346};
347
348#ifndef CONFIG_MMU
349unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350{
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361}
362EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363#endif
364
365static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367{
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374}
375
376/**
377 * add_mtd_device - register an MTD device
378 * @mtd: pointer to new MTD device info structure
379 *
380 * Add a device to the list of MTD devices present in the system, and
381 * notify each currently active MTD 'user' of its arrival. Returns
382 * zero on success or non-zero on failure.
383 */
384
385int add_mtd_device(struct mtd_info *mtd)
386{
387 struct mtd_notifier *not;
388 int i, error;
389
390 mtd->backing_dev_info = &mtd_bdi;
391
392 BUG_ON(mtd->writesize == 0);
393 mutex_lock(&mtd_table_mutex);
394
395 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
396 if (i < 0) {
397 error = i;
398 goto fail_locked;
399 }
400
401 mtd->index = i;
402 mtd->usecount = 0;
403
404 /* default value if not set by driver */
405 if (mtd->bitflip_threshold == 0)
406 mtd->bitflip_threshold = mtd->ecc_strength;
407
408 if (is_power_of_2(mtd->erasesize))
409 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
410 else
411 mtd->erasesize_shift = 0;
412
413 if (is_power_of_2(mtd->writesize))
414 mtd->writesize_shift = ffs(mtd->writesize) - 1;
415 else
416 mtd->writesize_shift = 0;
417
418 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
419 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
420
421 /* Some chips always power up locked. Unlock them now */
422 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
423 error = mtd_unlock(mtd, 0, mtd->size);
424 if (error && error != -EOPNOTSUPP)
425 printk(KERN_WARNING
426 "%s: unlock failed, writes may not work\n",
427 mtd->name);
428 /* Ignore unlock failures? */
429 error = 0;
430 }
431
432 /* Caller should have set dev.parent to match the
433 * physical device.
434 */
435 mtd->dev.type = &mtd_devtype;
436 mtd->dev.class = &mtd_class;
437 mtd->dev.devt = MTD_DEVT(i);
438 dev_set_name(&mtd->dev, "mtd%d", i);
439 dev_set_drvdata(&mtd->dev, mtd);
440 error = device_register(&mtd->dev);
441 if (error)
442 goto fail_added;
443
444 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
445 "mtd%dro", i);
446
447 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
448 /* No need to get a refcount on the module containing
449 the notifier, since we hold the mtd_table_mutex */
450 list_for_each_entry(not, &mtd_notifiers, list)
451 not->add(mtd);
452
453 mutex_unlock(&mtd_table_mutex);
454 /* We _know_ we aren't being removed, because
455 our caller is still holding us here. So none
456 of this try_ nonsense, and no bitching about it
457 either. :) */
458 __module_get(THIS_MODULE);
459 return 0;
460
461fail_added:
462 idr_remove(&mtd_idr, i);
463fail_locked:
464 mutex_unlock(&mtd_table_mutex);
465 return error;
466}
467
468/**
469 * del_mtd_device - unregister an MTD device
470 * @mtd: pointer to MTD device info structure
471 *
472 * Remove a device from the list of MTD devices present in the system,
473 * and notify each currently active MTD 'user' of its departure.
474 * Returns zero on success or 1 on failure, which currently will happen
475 * if the requested device does not appear to be present in the list.
476 */
477
478int del_mtd_device(struct mtd_info *mtd)
479{
480 int ret;
481 struct mtd_notifier *not;
482
483 mutex_lock(&mtd_table_mutex);
484
485 if (idr_find(&mtd_idr, mtd->index) != mtd) {
486 ret = -ENODEV;
487 goto out_error;
488 }
489
490 /* No need to get a refcount on the module containing
491 the notifier, since we hold the mtd_table_mutex */
492 list_for_each_entry(not, &mtd_notifiers, list)
493 not->remove(mtd);
494
495 if (mtd->usecount) {
496 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
497 mtd->index, mtd->name, mtd->usecount);
498 ret = -EBUSY;
499 } else {
500 device_unregister(&mtd->dev);
501
502 idr_remove(&mtd_idr, mtd->index);
503
504 module_put(THIS_MODULE);
505 ret = 0;
506 }
507
508out_error:
509 mutex_unlock(&mtd_table_mutex);
510 return ret;
511}
512
513static int mtd_add_device_partitions(struct mtd_info *mtd,
514 struct mtd_partition *real_parts,
515 int nbparts)
516{
517 int ret;
518
519 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
520 ret = add_mtd_device(mtd);
521 if (ret)
522 return ret;
523 }
524
525 if (nbparts > 0) {
526 ret = add_mtd_partitions(mtd, real_parts, nbparts);
527 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
528 del_mtd_device(mtd);
529 return ret;
530 }
531
532 return 0;
533}
534
535
536/**
537 * mtd_device_parse_register - parse partitions and register an MTD device.
538 *
539 * @mtd: the MTD device to register
540 * @types: the list of MTD partition probes to try, see
541 * 'parse_mtd_partitions()' for more information
542 * @parser_data: MTD partition parser-specific data
543 * @parts: fallback partition information to register, if parsing fails;
544 * only valid if %nr_parts > %0
545 * @nr_parts: the number of partitions in parts, if zero then the full
546 * MTD device is registered if no partition info is found
547 *
548 * This function aggregates MTD partitions parsing (done by
549 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
550 * basically follows the most common pattern found in many MTD drivers:
551 *
552 * * It first tries to probe partitions on MTD device @mtd using parsers
553 * specified in @types (if @types is %NULL, then the default list of parsers
554 * is used, see 'parse_mtd_partitions()' for more information). If none are
555 * found this functions tries to fallback to information specified in
556 * @parts/@nr_parts.
557 * * If any partitioning info was found, this function registers the found
558 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
559 * as a whole is registered first.
560 * * If no partitions were found this function just registers the MTD device
561 * @mtd and exits.
562 *
563 * Returns zero in case of success and a negative error code in case of failure.
564 */
565int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
566 struct mtd_part_parser_data *parser_data,
567 const struct mtd_partition *parts,
568 int nr_parts)
569{
570 int ret;
571 struct mtd_partition *real_parts = NULL;
572
573 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
574 if (ret <= 0 && nr_parts && parts) {
575 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
576 GFP_KERNEL);
577 if (!real_parts)
578 ret = -ENOMEM;
579 else
580 ret = nr_parts;
581 }
582
583 if (ret >= 0)
584 ret = mtd_add_device_partitions(mtd, real_parts, ret);
585
586 /*
587 * FIXME: some drivers unfortunately call this function more than once.
588 * So we have to check if we've already assigned the reboot notifier.
589 *
590 * Generally, we can make multiple calls work for most cases, but it
591 * does cause problems with parse_mtd_partitions() above (e.g.,
592 * cmdlineparts will register partitions more than once).
593 */
594 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
595 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
596 register_reboot_notifier(&mtd->reboot_notifier);
597 }
598
599 kfree(real_parts);
600 return ret;
601}
602EXPORT_SYMBOL_GPL(mtd_device_parse_register);
603
604/**
605 * mtd_device_unregister - unregister an existing MTD device.
606 *
607 * @master: the MTD device to unregister. This will unregister both the master
608 * and any partitions if registered.
609 */
610int mtd_device_unregister(struct mtd_info *master)
611{
612 int err;
613
614 if (master->_reboot)
615 unregister_reboot_notifier(&master->reboot_notifier);
616
617 err = del_mtd_partitions(master);
618 if (err)
619 return err;
620
621 if (!device_is_registered(&master->dev))
622 return 0;
623
624 return del_mtd_device(master);
625}
626EXPORT_SYMBOL_GPL(mtd_device_unregister);
627
628/**
629 * register_mtd_user - register a 'user' of MTD devices.
630 * @new: pointer to notifier info structure
631 *
632 * Registers a pair of callbacks function to be called upon addition
633 * or removal of MTD devices. Causes the 'add' callback to be immediately
634 * invoked for each MTD device currently present in the system.
635 */
636void register_mtd_user (struct mtd_notifier *new)
637{
638 struct mtd_info *mtd;
639
640 mutex_lock(&mtd_table_mutex);
641
642 list_add(&new->list, &mtd_notifiers);
643
644 __module_get(THIS_MODULE);
645
646 mtd_for_each_device(mtd)
647 new->add(mtd);
648
649 mutex_unlock(&mtd_table_mutex);
650}
651EXPORT_SYMBOL_GPL(register_mtd_user);
652
653/**
654 * unregister_mtd_user - unregister a 'user' of MTD devices.
655 * @old: pointer to notifier info structure
656 *
657 * Removes a callback function pair from the list of 'users' to be
658 * notified upon addition or removal of MTD devices. Causes the
659 * 'remove' callback to be immediately invoked for each MTD device
660 * currently present in the system.
661 */
662int unregister_mtd_user (struct mtd_notifier *old)
663{
664 struct mtd_info *mtd;
665
666 mutex_lock(&mtd_table_mutex);
667
668 module_put(THIS_MODULE);
669
670 mtd_for_each_device(mtd)
671 old->remove(mtd);
672
673 list_del(&old->list);
674 mutex_unlock(&mtd_table_mutex);
675 return 0;
676}
677EXPORT_SYMBOL_GPL(unregister_mtd_user);
678
679/**
680 * get_mtd_device - obtain a validated handle for an MTD device
681 * @mtd: last known address of the required MTD device
682 * @num: internal device number of the required MTD device
683 *
684 * Given a number and NULL address, return the num'th entry in the device
685 * table, if any. Given an address and num == -1, search the device table
686 * for a device with that address and return if it's still present. Given
687 * both, return the num'th driver only if its address matches. Return
688 * error code if not.
689 */
690struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
691{
692 struct mtd_info *ret = NULL, *other;
693 int err = -ENODEV;
694
695 mutex_lock(&mtd_table_mutex);
696
697 if (num == -1) {
698 mtd_for_each_device(other) {
699 if (other == mtd) {
700 ret = mtd;
701 break;
702 }
703 }
704 } else if (num >= 0) {
705 ret = idr_find(&mtd_idr, num);
706 if (mtd && mtd != ret)
707 ret = NULL;
708 }
709
710 if (!ret) {
711 ret = ERR_PTR(err);
712 goto out;
713 }
714
715 err = __get_mtd_device(ret);
716 if (err)
717 ret = ERR_PTR(err);
718out:
719 mutex_unlock(&mtd_table_mutex);
720 return ret;
721}
722EXPORT_SYMBOL_GPL(get_mtd_device);
723
724
725int __get_mtd_device(struct mtd_info *mtd)
726{
727 int err;
728
729 if (!try_module_get(mtd->owner))
730 return -ENODEV;
731
732 if (mtd->_get_device) {
733 err = mtd->_get_device(mtd);
734
735 if (err) {
736 module_put(mtd->owner);
737 return err;
738 }
739 }
740 mtd->usecount++;
741 return 0;
742}
743EXPORT_SYMBOL_GPL(__get_mtd_device);
744
745/**
746 * get_mtd_device_nm - obtain a validated handle for an MTD device by
747 * device name
748 * @name: MTD device name to open
749 *
750 * This function returns MTD device description structure in case of
751 * success and an error code in case of failure.
752 */
753struct mtd_info *get_mtd_device_nm(const char *name)
754{
755 int err = -ENODEV;
756 struct mtd_info *mtd = NULL, *other;
757
758 mutex_lock(&mtd_table_mutex);
759
760 mtd_for_each_device(other) {
761 if (!strcmp(name, other->name)) {
762 mtd = other;
763 break;
764 }
765 }
766
767 if (!mtd)
768 goto out_unlock;
769
770 err = __get_mtd_device(mtd);
771 if (err)
772 goto out_unlock;
773
774 mutex_unlock(&mtd_table_mutex);
775 return mtd;
776
777out_unlock:
778 mutex_unlock(&mtd_table_mutex);
779 return ERR_PTR(err);
780}
781EXPORT_SYMBOL_GPL(get_mtd_device_nm);
782
783void put_mtd_device(struct mtd_info *mtd)
784{
785 mutex_lock(&mtd_table_mutex);
786 __put_mtd_device(mtd);
787 mutex_unlock(&mtd_table_mutex);
788
789}
790EXPORT_SYMBOL_GPL(put_mtd_device);
791
792void __put_mtd_device(struct mtd_info *mtd)
793{
794 --mtd->usecount;
795 BUG_ON(mtd->usecount < 0);
796
797 if (mtd->_put_device)
798 mtd->_put_device(mtd);
799
800 module_put(mtd->owner);
801}
802EXPORT_SYMBOL_GPL(__put_mtd_device);
803
804/*
805 * Erase is an asynchronous operation. Device drivers are supposed
806 * to call instr->callback() whenever the operation completes, even
807 * if it completes with a failure.
808 * Callers are supposed to pass a callback function and wait for it
809 * to be called before writing to the block.
810 */
811int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
812{
813 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
814 return -EINVAL;
815 if (!(mtd->flags & MTD_WRITEABLE))
816 return -EROFS;
817 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
818 if (!instr->len) {
819 instr->state = MTD_ERASE_DONE;
820 mtd_erase_callback(instr);
821 return 0;
822 }
823 return mtd->_erase(mtd, instr);
824}
825EXPORT_SYMBOL_GPL(mtd_erase);
826
827/*
828 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
829 */
830int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
831 void **virt, resource_size_t *phys)
832{
833 *retlen = 0;
834 *virt = NULL;
835 if (phys)
836 *phys = 0;
837 if (!mtd->_point)
838 return -EOPNOTSUPP;
839 if (from < 0 || from >= mtd->size || len > mtd->size - from)
840 return -EINVAL;
841 if (!len)
842 return 0;
843 return mtd->_point(mtd, from, len, retlen, virt, phys);
844}
845EXPORT_SYMBOL_GPL(mtd_point);
846
847/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
848int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
849{
850 if (!mtd->_point)
851 return -EOPNOTSUPP;
852 if (from < 0 || from >= mtd->size || len > mtd->size - from)
853 return -EINVAL;
854 if (!len)
855 return 0;
856 return mtd->_unpoint(mtd, from, len);
857}
858EXPORT_SYMBOL_GPL(mtd_unpoint);
859
860/*
861 * Allow NOMMU mmap() to directly map the device (if not NULL)
862 * - return the address to which the offset maps
863 * - return -ENOSYS to indicate refusal to do the mapping
864 */
865unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
866 unsigned long offset, unsigned long flags)
867{
868 if (!mtd->_get_unmapped_area)
869 return -EOPNOTSUPP;
870 if (offset >= mtd->size || len > mtd->size - offset)
871 return -EINVAL;
872 return mtd->_get_unmapped_area(mtd, len, offset, flags);
873}
874EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
875
876int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
877 u_char *buf)
878{
879 int ret_code;
880 *retlen = 0;
881 if (from < 0 || from >= mtd->size || len > mtd->size - from)
882 return -EINVAL;
883 if (!len)
884 return 0;
885
886 /*
887 * In the absence of an error, drivers return a non-negative integer
888 * representing the maximum number of bitflips that were corrected on
889 * any one ecc region (if applicable; zero otherwise).
890 */
891 ret_code = mtd->_read(mtd, from, len, retlen, buf);
892 if (unlikely(ret_code < 0))
893 return ret_code;
894 if (mtd->ecc_strength == 0)
895 return 0; /* device lacks ecc */
896 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
897}
898EXPORT_SYMBOL_GPL(mtd_read);
899
900int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
901 const u_char *buf)
902{
903 *retlen = 0;
904 if (to < 0 || to >= mtd->size || len > mtd->size - to)
905 return -EINVAL;
906 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
907 return -EROFS;
908 if (!len)
909 return 0;
910 return mtd->_write(mtd, to, len, retlen, buf);
911}
912EXPORT_SYMBOL_GPL(mtd_write);
913
914/*
915 * In blackbox flight recorder like scenarios we want to make successful writes
916 * in interrupt context. panic_write() is only intended to be called when its
917 * known the kernel is about to panic and we need the write to succeed. Since
918 * the kernel is not going to be running for much longer, this function can
919 * break locks and delay to ensure the write succeeds (but not sleep).
920 */
921int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
922 const u_char *buf)
923{
924 *retlen = 0;
925 if (!mtd->_panic_write)
926 return -EOPNOTSUPP;
927 if (to < 0 || to >= mtd->size || len > mtd->size - to)
928 return -EINVAL;
929 if (!(mtd->flags & MTD_WRITEABLE))
930 return -EROFS;
931 if (!len)
932 return 0;
933 return mtd->_panic_write(mtd, to, len, retlen, buf);
934}
935EXPORT_SYMBOL_GPL(mtd_panic_write);
936
937int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
938{
939 int ret_code;
940 ops->retlen = ops->oobretlen = 0;
941 if (!mtd->_read_oob)
942 return -EOPNOTSUPP;
943 /*
944 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
945 * similar to mtd->_read(), returning a non-negative integer
946 * representing max bitflips. In other cases, mtd->_read_oob() may
947 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
948 */
949 ret_code = mtd->_read_oob(mtd, from, ops);
950 if (unlikely(ret_code < 0))
951 return ret_code;
952 if (mtd->ecc_strength == 0)
953 return 0; /* device lacks ecc */
954 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
955}
956EXPORT_SYMBOL_GPL(mtd_read_oob);
957
958/*
959 * Method to access the protection register area, present in some flash
960 * devices. The user data is one time programmable but the factory data is read
961 * only.
962 */
963int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
964 struct otp_info *buf)
965{
966 if (!mtd->_get_fact_prot_info)
967 return -EOPNOTSUPP;
968 if (!len)
969 return 0;
970 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
971}
972EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
973
974int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
975 size_t *retlen, u_char *buf)
976{
977 *retlen = 0;
978 if (!mtd->_read_fact_prot_reg)
979 return -EOPNOTSUPP;
980 if (!len)
981 return 0;
982 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
983}
984EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
985
986int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
987 struct otp_info *buf)
988{
989 if (!mtd->_get_user_prot_info)
990 return -EOPNOTSUPP;
991 if (!len)
992 return 0;
993 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
994}
995EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
996
997int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
998 size_t *retlen, u_char *buf)
999{
1000 *retlen = 0;
1001 if (!mtd->_read_user_prot_reg)
1002 return -EOPNOTSUPP;
1003 if (!len)
1004 return 0;
1005 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1006}
1007EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1008
1009int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1010 size_t *retlen, u_char *buf)
1011{
1012 int ret;
1013
1014 *retlen = 0;
1015 if (!mtd->_write_user_prot_reg)
1016 return -EOPNOTSUPP;
1017 if (!len)
1018 return 0;
1019 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * If no data could be written at all, we are out of memory and
1025 * must return -ENOSPC.
1026 */
1027 return (*retlen) ? 0 : -ENOSPC;
1028}
1029EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1030
1031int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1032{
1033 if (!mtd->_lock_user_prot_reg)
1034 return -EOPNOTSUPP;
1035 if (!len)
1036 return 0;
1037 return mtd->_lock_user_prot_reg(mtd, from, len);
1038}
1039EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1040
1041/* Chip-supported device locking */
1042int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1043{
1044 if (!mtd->_lock)
1045 return -EOPNOTSUPP;
1046 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1047 return -EINVAL;
1048 if (!len)
1049 return 0;
1050 return mtd->_lock(mtd, ofs, len);
1051}
1052EXPORT_SYMBOL_GPL(mtd_lock);
1053
1054int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1055{
1056 if (!mtd->_unlock)
1057 return -EOPNOTSUPP;
1058 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1059 return -EINVAL;
1060 if (!len)
1061 return 0;
1062 return mtd->_unlock(mtd, ofs, len);
1063}
1064EXPORT_SYMBOL_GPL(mtd_unlock);
1065
1066int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1067{
1068 if (!mtd->_is_locked)
1069 return -EOPNOTSUPP;
1070 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1071 return -EINVAL;
1072 if (!len)
1073 return 0;
1074 return mtd->_is_locked(mtd, ofs, len);
1075}
1076EXPORT_SYMBOL_GPL(mtd_is_locked);
1077
1078int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1079{
1080 if (ofs < 0 || ofs >= mtd->size)
1081 return -EINVAL;
1082 if (!mtd->_block_isreserved)
1083 return 0;
1084 return mtd->_block_isreserved(mtd, ofs);
1085}
1086EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1087
1088int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1089{
1090 if (ofs < 0 || ofs >= mtd->size)
1091 return -EINVAL;
1092 if (!mtd->_block_isbad)
1093 return 0;
1094 return mtd->_block_isbad(mtd, ofs);
1095}
1096EXPORT_SYMBOL_GPL(mtd_block_isbad);
1097
1098int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1099{
1100 if (!mtd->_block_markbad)
1101 return -EOPNOTSUPP;
1102 if (ofs < 0 || ofs >= mtd->size)
1103 return -EINVAL;
1104 if (!(mtd->flags & MTD_WRITEABLE))
1105 return -EROFS;
1106 return mtd->_block_markbad(mtd, ofs);
1107}
1108EXPORT_SYMBOL_GPL(mtd_block_markbad);
1109
1110/*
1111 * default_mtd_writev - the default writev method
1112 * @mtd: mtd device description object pointer
1113 * @vecs: the vectors to write
1114 * @count: count of vectors in @vecs
1115 * @to: the MTD device offset to write to
1116 * @retlen: on exit contains the count of bytes written to the MTD device.
1117 *
1118 * This function returns zero in case of success and a negative error code in
1119 * case of failure.
1120 */
1121static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1122 unsigned long count, loff_t to, size_t *retlen)
1123{
1124 unsigned long i;
1125 size_t totlen = 0, thislen;
1126 int ret = 0;
1127
1128 for (i = 0; i < count; i++) {
1129 if (!vecs[i].iov_len)
1130 continue;
1131 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1132 vecs[i].iov_base);
1133 totlen += thislen;
1134 if (ret || thislen != vecs[i].iov_len)
1135 break;
1136 to += vecs[i].iov_len;
1137 }
1138 *retlen = totlen;
1139 return ret;
1140}
1141
1142/*
1143 * mtd_writev - the vector-based MTD write method
1144 * @mtd: mtd device description object pointer
1145 * @vecs: the vectors to write
1146 * @count: count of vectors in @vecs
1147 * @to: the MTD device offset to write to
1148 * @retlen: on exit contains the count of bytes written to the MTD device.
1149 *
1150 * This function returns zero in case of success and a negative error code in
1151 * case of failure.
1152 */
1153int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1154 unsigned long count, loff_t to, size_t *retlen)
1155{
1156 *retlen = 0;
1157 if (!(mtd->flags & MTD_WRITEABLE))
1158 return -EROFS;
1159 if (!mtd->_writev)
1160 return default_mtd_writev(mtd, vecs, count, to, retlen);
1161 return mtd->_writev(mtd, vecs, count, to, retlen);
1162}
1163EXPORT_SYMBOL_GPL(mtd_writev);
1164
1165/**
1166 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1167 * @mtd: mtd device description object pointer
1168 * @size: a pointer to the ideal or maximum size of the allocation, points
1169 * to the actual allocation size on success.
1170 *
1171 * This routine attempts to allocate a contiguous kernel buffer up to
1172 * the specified size, backing off the size of the request exponentially
1173 * until the request succeeds or until the allocation size falls below
1174 * the system page size. This attempts to make sure it does not adversely
1175 * impact system performance, so when allocating more than one page, we
1176 * ask the memory allocator to avoid re-trying, swapping, writing back
1177 * or performing I/O.
1178 *
1179 * Note, this function also makes sure that the allocated buffer is aligned to
1180 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1181 *
1182 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1183 * to handle smaller (i.e. degraded) buffer allocations under low- or
1184 * fragmented-memory situations where such reduced allocations, from a
1185 * requested ideal, are allowed.
1186 *
1187 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1188 */
1189void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1190{
1191 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1192 __GFP_NORETRY | __GFP_NO_KSWAPD;
1193 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1194 void *kbuf;
1195
1196 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1197
1198 while (*size > min_alloc) {
1199 kbuf = kmalloc(*size, flags);
1200 if (kbuf)
1201 return kbuf;
1202
1203 *size >>= 1;
1204 *size = ALIGN(*size, mtd->writesize);
1205 }
1206
1207 /*
1208 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1209 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1210 */
1211 return kmalloc(*size, GFP_KERNEL);
1212}
1213EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1214
1215#ifdef CONFIG_PROC_FS
1216
1217/*====================================================================*/
1218/* Support for /proc/mtd */
1219
1220static int mtd_proc_show(struct seq_file *m, void *v)
1221{
1222 struct mtd_info *mtd;
1223
1224 seq_puts(m, "dev: size erasesize name\n");
1225 mutex_lock(&mtd_table_mutex);
1226 mtd_for_each_device(mtd) {
1227 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1228 mtd->index, (unsigned long long)mtd->size,
1229 mtd->erasesize, mtd->name);
1230 }
1231 mutex_unlock(&mtd_table_mutex);
1232 return 0;
1233}
1234
1235static int mtd_proc_open(struct inode *inode, struct file *file)
1236{
1237 return single_open(file, mtd_proc_show, NULL);
1238}
1239
1240static const struct file_operations mtd_proc_ops = {
1241 .open = mtd_proc_open,
1242 .read = seq_read,
1243 .llseek = seq_lseek,
1244 .release = single_release,
1245};
1246#endif /* CONFIG_PROC_FS */
1247
1248/*====================================================================*/
1249/* Init code */
1250
1251static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1252{
1253 int ret;
1254
1255 ret = bdi_init(bdi);
1256 if (!ret)
1257 ret = bdi_register(bdi, NULL, "%s", name);
1258
1259 if (ret)
1260 bdi_destroy(bdi);
1261
1262 return ret;
1263}
1264
1265static struct proc_dir_entry *proc_mtd;
1266
1267static int __init init_mtd(void)
1268{
1269 int ret;
1270
1271 ret = class_register(&mtd_class);
1272 if (ret)
1273 goto err_reg;
1274
1275 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1276 if (ret)
1277 goto err_bdi;
1278
1279 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1280
1281 ret = init_mtdchar();
1282 if (ret)
1283 goto out_procfs;
1284
1285 return 0;
1286
1287out_procfs:
1288 if (proc_mtd)
1289 remove_proc_entry("mtd", NULL);
1290err_bdi:
1291 class_unregister(&mtd_class);
1292err_reg:
1293 pr_err("Error registering mtd class or bdi: %d\n", ret);
1294 return ret;
1295}
1296
1297static void __exit cleanup_mtd(void)
1298{
1299 cleanup_mtdchar();
1300 if (proc_mtd)
1301 remove_proc_entry("mtd", NULL);
1302 class_unregister(&mtd_class);
1303 bdi_destroy(&mtd_bdi);
1304}
1305
1306module_init(init_mtd);
1307module_exit(cleanup_mtd);
1308
1309MODULE_LICENSE("GPL");
1310MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1311MODULE_DESCRIPTION("Core MTD registration and access routines");