at v4.3-rc3 40 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17#ifndef LINUX_DMAENGINE_H 18#define LINUX_DMAENGINE_H 19 20#include <linux/device.h> 21#include <linux/err.h> 22#include <linux/uio.h> 23#include <linux/bug.h> 24#include <linux/scatterlist.h> 25#include <linux/bitmap.h> 26#include <linux/types.h> 27#include <asm/page.h> 28 29/** 30 * typedef dma_cookie_t - an opaque DMA cookie 31 * 32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 33 */ 34typedef s32 dma_cookie_t; 35#define DMA_MIN_COOKIE 1 36 37static inline int dma_submit_error(dma_cookie_t cookie) 38{ 39 return cookie < 0 ? cookie : 0; 40} 41 42/** 43 * enum dma_status - DMA transaction status 44 * @DMA_COMPLETE: transaction completed 45 * @DMA_IN_PROGRESS: transaction not yet processed 46 * @DMA_PAUSED: transaction is paused 47 * @DMA_ERROR: transaction failed 48 */ 49enum dma_status { 50 DMA_COMPLETE, 51 DMA_IN_PROGRESS, 52 DMA_PAUSED, 53 DMA_ERROR, 54}; 55 56/** 57 * enum dma_transaction_type - DMA transaction types/indexes 58 * 59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 60 * automatically set as dma devices are registered. 61 */ 62enum dma_transaction_type { 63 DMA_MEMCPY, 64 DMA_XOR, 65 DMA_PQ, 66 DMA_XOR_VAL, 67 DMA_PQ_VAL, 68 DMA_MEMSET, 69 DMA_MEMSET_SG, 70 DMA_INTERRUPT, 71 DMA_SG, 72 DMA_PRIVATE, 73 DMA_ASYNC_TX, 74 DMA_SLAVE, 75 DMA_CYCLIC, 76 DMA_INTERLEAVE, 77/* last transaction type for creation of the capabilities mask */ 78 DMA_TX_TYPE_END, 79}; 80 81/** 82 * enum dma_transfer_direction - dma transfer mode and direction indicator 83 * @DMA_MEM_TO_MEM: Async/Memcpy mode 84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 87 */ 88enum dma_transfer_direction { 89 DMA_MEM_TO_MEM, 90 DMA_MEM_TO_DEV, 91 DMA_DEV_TO_MEM, 92 DMA_DEV_TO_DEV, 93 DMA_TRANS_NONE, 94}; 95 96/** 97 * Interleaved Transfer Request 98 * ---------------------------- 99 * A chunk is collection of contiguous bytes to be transfered. 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 101 * ICGs may or maynot change between chunks. 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 103 * that when repeated an integral number of times, specifies the transfer. 104 * A transfer template is specification of a Frame, the number of times 105 * it is to be repeated and other per-transfer attributes. 106 * 107 * Practically, a client driver would have ready a template for each 108 * type of transfer it is going to need during its lifetime and 109 * set only 'src_start' and 'dst_start' before submitting the requests. 110 * 111 * 112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 114 * 115 * == Chunk size 116 * ... ICG 117 */ 118 119/** 120 * struct data_chunk - Element of scatter-gather list that makes a frame. 121 * @size: Number of bytes to read from source. 122 * size_dst := fn(op, size_src), so doesn't mean much for destination. 123 * @icg: Number of bytes to jump after last src/dst address of this 124 * chunk and before first src/dst address for next chunk. 125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 127 * @dst_icg: Number of bytes to jump after last dst address of this 128 * chunk and before the first dst address for next chunk. 129 * Ignored if dst_inc is true and dst_sgl is false. 130 * @src_icg: Number of bytes to jump after last src address of this 131 * chunk and before the first src address for next chunk. 132 * Ignored if src_inc is true and src_sgl is false. 133 */ 134struct data_chunk { 135 size_t size; 136 size_t icg; 137 size_t dst_icg; 138 size_t src_icg; 139}; 140 141/** 142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 143 * and attributes. 144 * @src_start: Bus address of source for the first chunk. 145 * @dst_start: Bus address of destination for the first chunk. 146 * @dir: Specifies the type of Source and Destination. 147 * @src_inc: If the source address increments after reading from it. 148 * @dst_inc: If the destination address increments after writing to it. 149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 150 * Otherwise, source is read contiguously (icg ignored). 151 * Ignored if src_inc is false. 152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 153 * Otherwise, destination is filled contiguously (icg ignored). 154 * Ignored if dst_inc is false. 155 * @numf: Number of frames in this template. 156 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 157 * @sgl: Array of {chunk,icg} pairs that make up a frame. 158 */ 159struct dma_interleaved_template { 160 dma_addr_t src_start; 161 dma_addr_t dst_start; 162 enum dma_transfer_direction dir; 163 bool src_inc; 164 bool dst_inc; 165 bool src_sgl; 166 bool dst_sgl; 167 size_t numf; 168 size_t frame_size; 169 struct data_chunk sgl[0]; 170}; 171 172/** 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 174 * control completion, and communicate status. 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 176 * this transaction 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 178 * acknowledges receipt, i.e. has has a chance to establish any dependency 179 * chains 180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 183 * sources that were the result of a previous operation, in the case of a PQ 184 * operation it continues the calculation with new sources 185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 186 * on the result of this operation 187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 188 * cleared or freed 189 */ 190enum dma_ctrl_flags { 191 DMA_PREP_INTERRUPT = (1 << 0), 192 DMA_CTRL_ACK = (1 << 1), 193 DMA_PREP_PQ_DISABLE_P = (1 << 2), 194 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 195 DMA_PREP_CONTINUE = (1 << 4), 196 DMA_PREP_FENCE = (1 << 5), 197 DMA_CTRL_REUSE = (1 << 6), 198}; 199 200/** 201 * enum sum_check_bits - bit position of pq_check_flags 202 */ 203enum sum_check_bits { 204 SUM_CHECK_P = 0, 205 SUM_CHECK_Q = 1, 206}; 207 208/** 209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 212 */ 213enum sum_check_flags { 214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 216}; 217 218 219/** 220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 221 * See linux/cpumask.h 222 */ 223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 224 225/** 226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 227 * @memcpy_count: transaction counter 228 * @bytes_transferred: byte counter 229 */ 230 231struct dma_chan_percpu { 232 /* stats */ 233 unsigned long memcpy_count; 234 unsigned long bytes_transferred; 235}; 236 237/** 238 * struct dma_router - DMA router structure 239 * @dev: pointer to the DMA router device 240 * @route_free: function to be called when the route can be disconnected 241 */ 242struct dma_router { 243 struct device *dev; 244 void (*route_free)(struct device *dev, void *route_data); 245}; 246 247/** 248 * struct dma_chan - devices supply DMA channels, clients use them 249 * @device: ptr to the dma device who supplies this channel, always !%NULL 250 * @cookie: last cookie value returned to client 251 * @completed_cookie: last completed cookie for this channel 252 * @chan_id: channel ID for sysfs 253 * @dev: class device for sysfs 254 * @device_node: used to add this to the device chan list 255 * @local: per-cpu pointer to a struct dma_chan_percpu 256 * @client_count: how many clients are using this channel 257 * @table_count: number of appearances in the mem-to-mem allocation table 258 * @router: pointer to the DMA router structure 259 * @route_data: channel specific data for the router 260 * @private: private data for certain client-channel associations 261 */ 262struct dma_chan { 263 struct dma_device *device; 264 dma_cookie_t cookie; 265 dma_cookie_t completed_cookie; 266 267 /* sysfs */ 268 int chan_id; 269 struct dma_chan_dev *dev; 270 271 struct list_head device_node; 272 struct dma_chan_percpu __percpu *local; 273 int client_count; 274 int table_count; 275 276 /* DMA router */ 277 struct dma_router *router; 278 void *route_data; 279 280 void *private; 281}; 282 283/** 284 * struct dma_chan_dev - relate sysfs device node to backing channel device 285 * @chan: driver channel device 286 * @device: sysfs device 287 * @dev_id: parent dma_device dev_id 288 * @idr_ref: reference count to gate release of dma_device dev_id 289 */ 290struct dma_chan_dev { 291 struct dma_chan *chan; 292 struct device device; 293 int dev_id; 294 atomic_t *idr_ref; 295}; 296 297/** 298 * enum dma_slave_buswidth - defines bus width of the DMA slave 299 * device, source or target buses 300 */ 301enum dma_slave_buswidth { 302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 311}; 312 313/** 314 * struct dma_slave_config - dma slave channel runtime config 315 * @direction: whether the data shall go in or out on this slave 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 317 * legal values. DEPRECATED, drivers should use the direction argument 318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 319 * the dir field in the dma_interleaved_template structure. 320 * @src_addr: this is the physical address where DMA slave data 321 * should be read (RX), if the source is memory this argument is 322 * ignored. 323 * @dst_addr: this is the physical address where DMA slave data 324 * should be written (TX), if the source is memory this argument 325 * is ignored. 326 * @src_addr_width: this is the width in bytes of the source (RX) 327 * register where DMA data shall be read. If the source 328 * is memory this may be ignored depending on architecture. 329 * Legal values: 1, 2, 4, 8. 330 * @dst_addr_width: same as src_addr_width but for destination 331 * target (TX) mutatis mutandis. 332 * @src_maxburst: the maximum number of words (note: words, as in 333 * units of the src_addr_width member, not bytes) that can be sent 334 * in one burst to the device. Typically something like half the 335 * FIFO depth on I/O peripherals so you don't overflow it. This 336 * may or may not be applicable on memory sources. 337 * @dst_maxburst: same as src_maxburst but for destination target 338 * mutatis mutandis. 339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 340 * with 'true' if peripheral should be flow controller. Direction will be 341 * selected at Runtime. 342 * @slave_id: Slave requester id. Only valid for slave channels. The dma 343 * slave peripheral will have unique id as dma requester which need to be 344 * pass as slave config. 345 * 346 * This struct is passed in as configuration data to a DMA engine 347 * in order to set up a certain channel for DMA transport at runtime. 348 * The DMA device/engine has to provide support for an additional 349 * callback in the dma_device structure, device_config and this struct 350 * will then be passed in as an argument to the function. 351 * 352 * The rationale for adding configuration information to this struct is as 353 * follows: if it is likely that more than one DMA slave controllers in 354 * the world will support the configuration option, then make it generic. 355 * If not: if it is fixed so that it be sent in static from the platform 356 * data, then prefer to do that. 357 */ 358struct dma_slave_config { 359 enum dma_transfer_direction direction; 360 dma_addr_t src_addr; 361 dma_addr_t dst_addr; 362 enum dma_slave_buswidth src_addr_width; 363 enum dma_slave_buswidth dst_addr_width; 364 u32 src_maxburst; 365 u32 dst_maxburst; 366 bool device_fc; 367 unsigned int slave_id; 368}; 369 370/** 371 * enum dma_residue_granularity - Granularity of the reported transfer residue 372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 373 * DMA channel is only able to tell whether a descriptor has been completed or 374 * not, which means residue reporting is not supported by this channel. The 375 * residue field of the dma_tx_state field will always be 0. 376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 377 * completed segment of the transfer (For cyclic transfers this is after each 378 * period). This is typically implemented by having the hardware generate an 379 * interrupt after each transferred segment and then the drivers updates the 380 * outstanding residue by the size of the segment. Another possibility is if 381 * the hardware supports scatter-gather and the segment descriptor has a field 382 * which gets set after the segment has been completed. The driver then counts 383 * the number of segments without the flag set to compute the residue. 384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 385 * burst. This is typically only supported if the hardware has a progress 386 * register of some sort (E.g. a register with the current read/write address 387 * or a register with the amount of bursts/beats/bytes that have been 388 * transferred or still need to be transferred). 389 */ 390enum dma_residue_granularity { 391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 393 DMA_RESIDUE_GRANULARITY_BURST = 2, 394}; 395 396/* struct dma_slave_caps - expose capabilities of a slave channel only 397 * 398 * @src_addr_widths: bit mask of src addr widths the channel supports 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports 400 * @directions: bit mask of slave direction the channel supported 401 * since the enum dma_transfer_direction is not defined as bits for each 402 * type of direction, the dma controller should fill (1 << <TYPE>) and same 403 * should be checked by controller as well 404 * @cmd_pause: true, if pause and thereby resume is supported 405 * @cmd_terminate: true, if terminate cmd is supported 406 * @residue_granularity: granularity of the reported transfer residue 407 * @descriptor_reuse: if a descriptor can be reused by client and 408 * resubmitted multiple times 409 */ 410struct dma_slave_caps { 411 u32 src_addr_widths; 412 u32 dst_addr_widths; 413 u32 directions; 414 bool cmd_pause; 415 bool cmd_terminate; 416 enum dma_residue_granularity residue_granularity; 417 bool descriptor_reuse; 418}; 419 420static inline const char *dma_chan_name(struct dma_chan *chan) 421{ 422 return dev_name(&chan->dev->device); 423} 424 425void dma_chan_cleanup(struct kref *kref); 426 427/** 428 * typedef dma_filter_fn - callback filter for dma_request_channel 429 * @chan: channel to be reviewed 430 * @filter_param: opaque parameter passed through dma_request_channel 431 * 432 * When this optional parameter is specified in a call to dma_request_channel a 433 * suitable channel is passed to this routine for further dispositioning before 434 * being returned. Where 'suitable' indicates a non-busy channel that 435 * satisfies the given capability mask. It returns 'true' to indicate that the 436 * channel is suitable. 437 */ 438typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 439 440typedef void (*dma_async_tx_callback)(void *dma_async_param); 441 442struct dmaengine_unmap_data { 443 u8 map_cnt; 444 u8 to_cnt; 445 u8 from_cnt; 446 u8 bidi_cnt; 447 struct device *dev; 448 struct kref kref; 449 size_t len; 450 dma_addr_t addr[0]; 451}; 452 453/** 454 * struct dma_async_tx_descriptor - async transaction descriptor 455 * ---dma generic offload fields--- 456 * @cookie: tracking cookie for this transaction, set to -EBUSY if 457 * this tx is sitting on a dependency list 458 * @flags: flags to augment operation preparation, control completion, and 459 * communicate status 460 * @phys: physical address of the descriptor 461 * @chan: target channel for this operation 462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 463 * descriptor pending. To be pushed on .issue_pending() call 464 * @callback: routine to call after this operation is complete 465 * @callback_param: general parameter to pass to the callback routine 466 * ---async_tx api specific fields--- 467 * @next: at completion submit this descriptor 468 * @parent: pointer to the next level up in the dependency chain 469 * @lock: protect the parent and next pointers 470 */ 471struct dma_async_tx_descriptor { 472 dma_cookie_t cookie; 473 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 474 dma_addr_t phys; 475 struct dma_chan *chan; 476 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 477 int (*desc_free)(struct dma_async_tx_descriptor *tx); 478 dma_async_tx_callback callback; 479 void *callback_param; 480 struct dmaengine_unmap_data *unmap; 481#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 482 struct dma_async_tx_descriptor *next; 483 struct dma_async_tx_descriptor *parent; 484 spinlock_t lock; 485#endif 486}; 487 488#ifdef CONFIG_DMA_ENGINE 489static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 490 struct dmaengine_unmap_data *unmap) 491{ 492 kref_get(&unmap->kref); 493 tx->unmap = unmap; 494} 495 496struct dmaengine_unmap_data * 497dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 498void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 499#else 500static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 501 struct dmaengine_unmap_data *unmap) 502{ 503} 504static inline struct dmaengine_unmap_data * 505dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 506{ 507 return NULL; 508} 509static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 510{ 511} 512#endif 513 514static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 515{ 516 if (tx->unmap) { 517 dmaengine_unmap_put(tx->unmap); 518 tx->unmap = NULL; 519 } 520} 521 522#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 523static inline void txd_lock(struct dma_async_tx_descriptor *txd) 524{ 525} 526static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 527{ 528} 529static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 530{ 531 BUG(); 532} 533static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 534{ 535} 536static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 537{ 538} 539static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 540{ 541 return NULL; 542} 543static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 544{ 545 return NULL; 546} 547 548#else 549static inline void txd_lock(struct dma_async_tx_descriptor *txd) 550{ 551 spin_lock_bh(&txd->lock); 552} 553static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 554{ 555 spin_unlock_bh(&txd->lock); 556} 557static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 558{ 559 txd->next = next; 560 next->parent = txd; 561} 562static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 563{ 564 txd->parent = NULL; 565} 566static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 567{ 568 txd->next = NULL; 569} 570static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 571{ 572 return txd->parent; 573} 574static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 575{ 576 return txd->next; 577} 578#endif 579 580/** 581 * struct dma_tx_state - filled in to report the status of 582 * a transfer. 583 * @last: last completed DMA cookie 584 * @used: last issued DMA cookie (i.e. the one in progress) 585 * @residue: the remaining number of bytes left to transmit 586 * on the selected transfer for states DMA_IN_PROGRESS and 587 * DMA_PAUSED if this is implemented in the driver, else 0 588 */ 589struct dma_tx_state { 590 dma_cookie_t last; 591 dma_cookie_t used; 592 u32 residue; 593}; 594 595/** 596 * enum dmaengine_alignment - defines alignment of the DMA async tx 597 * buffers 598 */ 599enum dmaengine_alignment { 600 DMAENGINE_ALIGN_1_BYTE = 0, 601 DMAENGINE_ALIGN_2_BYTES = 1, 602 DMAENGINE_ALIGN_4_BYTES = 2, 603 DMAENGINE_ALIGN_8_BYTES = 3, 604 DMAENGINE_ALIGN_16_BYTES = 4, 605 DMAENGINE_ALIGN_32_BYTES = 5, 606 DMAENGINE_ALIGN_64_BYTES = 6, 607}; 608 609/** 610 * struct dma_device - info on the entity supplying DMA services 611 * @chancnt: how many DMA channels are supported 612 * @privatecnt: how many DMA channels are requested by dma_request_channel 613 * @channels: the list of struct dma_chan 614 * @global_node: list_head for global dma_device_list 615 * @cap_mask: one or more dma_capability flags 616 * @max_xor: maximum number of xor sources, 0 if no capability 617 * @max_pq: maximum number of PQ sources and PQ-continue capability 618 * @copy_align: alignment shift for memcpy operations 619 * @xor_align: alignment shift for xor operations 620 * @pq_align: alignment shift for pq operations 621 * @fill_align: alignment shift for memset operations 622 * @dev_id: unique device ID 623 * @dev: struct device reference for dma mapping api 624 * @src_addr_widths: bit mask of src addr widths the device supports 625 * @dst_addr_widths: bit mask of dst addr widths the device supports 626 * @directions: bit mask of slave direction the device supports since 627 * the enum dma_transfer_direction is not defined as bits for 628 * each type of direction, the dma controller should fill (1 << 629 * <TYPE>) and same should be checked by controller as well 630 * @residue_granularity: granularity of the transfer residue reported 631 * by tx_status 632 * @device_alloc_chan_resources: allocate resources and return the 633 * number of allocated descriptors 634 * @device_free_chan_resources: release DMA channel's resources 635 * @device_prep_dma_memcpy: prepares a memcpy operation 636 * @device_prep_dma_xor: prepares a xor operation 637 * @device_prep_dma_xor_val: prepares a xor validation operation 638 * @device_prep_dma_pq: prepares a pq operation 639 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 640 * @device_prep_dma_memset: prepares a memset operation 641 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 642 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 643 * @device_prep_slave_sg: prepares a slave dma operation 644 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 645 * The function takes a buffer of size buf_len. The callback function will 646 * be called after period_len bytes have been transferred. 647 * @device_prep_interleaved_dma: Transfer expression in a generic way. 648 * @device_config: Pushes a new configuration to a channel, return 0 or an error 649 * code 650 * @device_pause: Pauses any transfer happening on a channel. Returns 651 * 0 or an error code 652 * @device_resume: Resumes any transfer on a channel previously 653 * paused. Returns 0 or an error code 654 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 655 * or an error code 656 * @device_tx_status: poll for transaction completion, the optional 657 * txstate parameter can be supplied with a pointer to get a 658 * struct with auxiliary transfer status information, otherwise the call 659 * will just return a simple status code 660 * @device_issue_pending: push pending transactions to hardware 661 */ 662struct dma_device { 663 664 unsigned int chancnt; 665 unsigned int privatecnt; 666 struct list_head channels; 667 struct list_head global_node; 668 dma_cap_mask_t cap_mask; 669 unsigned short max_xor; 670 unsigned short max_pq; 671 enum dmaengine_alignment copy_align; 672 enum dmaengine_alignment xor_align; 673 enum dmaengine_alignment pq_align; 674 enum dmaengine_alignment fill_align; 675 #define DMA_HAS_PQ_CONTINUE (1 << 15) 676 677 int dev_id; 678 struct device *dev; 679 680 u32 src_addr_widths; 681 u32 dst_addr_widths; 682 u32 directions; 683 enum dma_residue_granularity residue_granularity; 684 685 int (*device_alloc_chan_resources)(struct dma_chan *chan); 686 void (*device_free_chan_resources)(struct dma_chan *chan); 687 688 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 689 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 690 size_t len, unsigned long flags); 691 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 692 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 693 unsigned int src_cnt, size_t len, unsigned long flags); 694 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 695 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 696 size_t len, enum sum_check_flags *result, unsigned long flags); 697 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 698 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 699 unsigned int src_cnt, const unsigned char *scf, 700 size_t len, unsigned long flags); 701 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 702 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 703 unsigned int src_cnt, const unsigned char *scf, size_t len, 704 enum sum_check_flags *pqres, unsigned long flags); 705 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 706 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 707 unsigned long flags); 708 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 709 struct dma_chan *chan, struct scatterlist *sg, 710 unsigned int nents, int value, unsigned long flags); 711 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 712 struct dma_chan *chan, unsigned long flags); 713 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 714 struct dma_chan *chan, 715 struct scatterlist *dst_sg, unsigned int dst_nents, 716 struct scatterlist *src_sg, unsigned int src_nents, 717 unsigned long flags); 718 719 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 720 struct dma_chan *chan, struct scatterlist *sgl, 721 unsigned int sg_len, enum dma_transfer_direction direction, 722 unsigned long flags, void *context); 723 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 724 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 725 size_t period_len, enum dma_transfer_direction direction, 726 unsigned long flags); 727 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 728 struct dma_chan *chan, struct dma_interleaved_template *xt, 729 unsigned long flags); 730 731 int (*device_config)(struct dma_chan *chan, 732 struct dma_slave_config *config); 733 int (*device_pause)(struct dma_chan *chan); 734 int (*device_resume)(struct dma_chan *chan); 735 int (*device_terminate_all)(struct dma_chan *chan); 736 737 enum dma_status (*device_tx_status)(struct dma_chan *chan, 738 dma_cookie_t cookie, 739 struct dma_tx_state *txstate); 740 void (*device_issue_pending)(struct dma_chan *chan); 741}; 742 743static inline int dmaengine_slave_config(struct dma_chan *chan, 744 struct dma_slave_config *config) 745{ 746 if (chan->device->device_config) 747 return chan->device->device_config(chan, config); 748 749 return -ENOSYS; 750} 751 752static inline bool is_slave_direction(enum dma_transfer_direction direction) 753{ 754 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 755} 756 757static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 758 struct dma_chan *chan, dma_addr_t buf, size_t len, 759 enum dma_transfer_direction dir, unsigned long flags) 760{ 761 struct scatterlist sg; 762 sg_init_table(&sg, 1); 763 sg_dma_address(&sg) = buf; 764 sg_dma_len(&sg) = len; 765 766 return chan->device->device_prep_slave_sg(chan, &sg, 1, 767 dir, flags, NULL); 768} 769 770static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 771 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 772 enum dma_transfer_direction dir, unsigned long flags) 773{ 774 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 775 dir, flags, NULL); 776} 777 778#ifdef CONFIG_RAPIDIO_DMA_ENGINE 779struct rio_dma_ext; 780static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 781 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 782 enum dma_transfer_direction dir, unsigned long flags, 783 struct rio_dma_ext *rio_ext) 784{ 785 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 786 dir, flags, rio_ext); 787} 788#endif 789 790static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 791 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 792 size_t period_len, enum dma_transfer_direction dir, 793 unsigned long flags) 794{ 795 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 796 period_len, dir, flags); 797} 798 799static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 800 struct dma_chan *chan, struct dma_interleaved_template *xt, 801 unsigned long flags) 802{ 803 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 804} 805 806static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 807 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 808 unsigned long flags) 809{ 810 if (!chan || !chan->device) 811 return NULL; 812 813 return chan->device->device_prep_dma_memset(chan, dest, value, 814 len, flags); 815} 816 817static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( 818 struct dma_chan *chan, 819 struct scatterlist *dst_sg, unsigned int dst_nents, 820 struct scatterlist *src_sg, unsigned int src_nents, 821 unsigned long flags) 822{ 823 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, 824 src_sg, src_nents, flags); 825} 826 827static inline int dmaengine_terminate_all(struct dma_chan *chan) 828{ 829 if (chan->device->device_terminate_all) 830 return chan->device->device_terminate_all(chan); 831 832 return -ENOSYS; 833} 834 835static inline int dmaengine_pause(struct dma_chan *chan) 836{ 837 if (chan->device->device_pause) 838 return chan->device->device_pause(chan); 839 840 return -ENOSYS; 841} 842 843static inline int dmaengine_resume(struct dma_chan *chan) 844{ 845 if (chan->device->device_resume) 846 return chan->device->device_resume(chan); 847 848 return -ENOSYS; 849} 850 851static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 852 dma_cookie_t cookie, struct dma_tx_state *state) 853{ 854 return chan->device->device_tx_status(chan, cookie, state); 855} 856 857static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 858{ 859 return desc->tx_submit(desc); 860} 861 862static inline bool dmaengine_check_align(enum dmaengine_alignment align, 863 size_t off1, size_t off2, size_t len) 864{ 865 size_t mask; 866 867 if (!align) 868 return true; 869 mask = (1 << align) - 1; 870 if (mask & (off1 | off2 | len)) 871 return false; 872 return true; 873} 874 875static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 876 size_t off2, size_t len) 877{ 878 return dmaengine_check_align(dev->copy_align, off1, off2, len); 879} 880 881static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 882 size_t off2, size_t len) 883{ 884 return dmaengine_check_align(dev->xor_align, off1, off2, len); 885} 886 887static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 888 size_t off2, size_t len) 889{ 890 return dmaengine_check_align(dev->pq_align, off1, off2, len); 891} 892 893static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 894 size_t off2, size_t len) 895{ 896 return dmaengine_check_align(dev->fill_align, off1, off2, len); 897} 898 899static inline void 900dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 901{ 902 dma->max_pq = maxpq; 903 if (has_pq_continue) 904 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 905} 906 907static inline bool dmaf_continue(enum dma_ctrl_flags flags) 908{ 909 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 910} 911 912static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 913{ 914 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 915 916 return (flags & mask) == mask; 917} 918 919static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 920{ 921 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 922} 923 924static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 925{ 926 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 927} 928 929/* dma_maxpq - reduce maxpq in the face of continued operations 930 * @dma - dma device with PQ capability 931 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 932 * 933 * When an engine does not support native continuation we need 3 extra 934 * source slots to reuse P and Q with the following coefficients: 935 * 1/ {00} * P : remove P from Q', but use it as a source for P' 936 * 2/ {01} * Q : use Q to continue Q' calculation 937 * 3/ {00} * Q : subtract Q from P' to cancel (2) 938 * 939 * In the case where P is disabled we only need 1 extra source: 940 * 1/ {01} * Q : use Q to continue Q' calculation 941 */ 942static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 943{ 944 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 945 return dma_dev_to_maxpq(dma); 946 else if (dmaf_p_disabled_continue(flags)) 947 return dma_dev_to_maxpq(dma) - 1; 948 else if (dmaf_continue(flags)) 949 return dma_dev_to_maxpq(dma) - 3; 950 BUG(); 951} 952 953static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 954 size_t dir_icg) 955{ 956 if (inc) { 957 if (dir_icg) 958 return dir_icg; 959 else if (sgl) 960 return icg; 961 } 962 963 return 0; 964} 965 966static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 967 struct data_chunk *chunk) 968{ 969 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 970 chunk->icg, chunk->dst_icg); 971} 972 973static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 974 struct data_chunk *chunk) 975{ 976 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 977 chunk->icg, chunk->src_icg); 978} 979 980/* --- public DMA engine API --- */ 981 982#ifdef CONFIG_DMA_ENGINE 983void dmaengine_get(void); 984void dmaengine_put(void); 985#else 986static inline void dmaengine_get(void) 987{ 988} 989static inline void dmaengine_put(void) 990{ 991} 992#endif 993 994#ifdef CONFIG_ASYNC_TX_DMA 995#define async_dmaengine_get() dmaengine_get() 996#define async_dmaengine_put() dmaengine_put() 997#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 998#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 999#else 1000#define async_dma_find_channel(type) dma_find_channel(type) 1001#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1002#else 1003static inline void async_dmaengine_get(void) 1004{ 1005} 1006static inline void async_dmaengine_put(void) 1007{ 1008} 1009static inline struct dma_chan * 1010async_dma_find_channel(enum dma_transaction_type type) 1011{ 1012 return NULL; 1013} 1014#endif /* CONFIG_ASYNC_TX_DMA */ 1015void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1016 struct dma_chan *chan); 1017 1018static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1019{ 1020 tx->flags |= DMA_CTRL_ACK; 1021} 1022 1023static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1024{ 1025 tx->flags &= ~DMA_CTRL_ACK; 1026} 1027 1028static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1029{ 1030 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1031} 1032 1033#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1034static inline void 1035__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1036{ 1037 set_bit(tx_type, dstp->bits); 1038} 1039 1040#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1041static inline void 1042__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1043{ 1044 clear_bit(tx_type, dstp->bits); 1045} 1046 1047#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1048static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1049{ 1050 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1051} 1052 1053#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1054static inline int 1055__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1056{ 1057 return test_bit(tx_type, srcp->bits); 1058} 1059 1060#define for_each_dma_cap_mask(cap, mask) \ 1061 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1062 1063/** 1064 * dma_async_issue_pending - flush pending transactions to HW 1065 * @chan: target DMA channel 1066 * 1067 * This allows drivers to push copies to HW in batches, 1068 * reducing MMIO writes where possible. 1069 */ 1070static inline void dma_async_issue_pending(struct dma_chan *chan) 1071{ 1072 chan->device->device_issue_pending(chan); 1073} 1074 1075/** 1076 * dma_async_is_tx_complete - poll for transaction completion 1077 * @chan: DMA channel 1078 * @cookie: transaction identifier to check status of 1079 * @last: returns last completed cookie, can be NULL 1080 * @used: returns last issued cookie, can be NULL 1081 * 1082 * If @last and @used are passed in, upon return they reflect the driver 1083 * internal state and can be used with dma_async_is_complete() to check 1084 * the status of multiple cookies without re-checking hardware state. 1085 */ 1086static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1087 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1088{ 1089 struct dma_tx_state state; 1090 enum dma_status status; 1091 1092 status = chan->device->device_tx_status(chan, cookie, &state); 1093 if (last) 1094 *last = state.last; 1095 if (used) 1096 *used = state.used; 1097 return status; 1098} 1099 1100/** 1101 * dma_async_is_complete - test a cookie against chan state 1102 * @cookie: transaction identifier to test status of 1103 * @last_complete: last know completed transaction 1104 * @last_used: last cookie value handed out 1105 * 1106 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1107 * the test logic is separated for lightweight testing of multiple cookies 1108 */ 1109static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1110 dma_cookie_t last_complete, dma_cookie_t last_used) 1111{ 1112 if (last_complete <= last_used) { 1113 if ((cookie <= last_complete) || (cookie > last_used)) 1114 return DMA_COMPLETE; 1115 } else { 1116 if ((cookie <= last_complete) && (cookie > last_used)) 1117 return DMA_COMPLETE; 1118 } 1119 return DMA_IN_PROGRESS; 1120} 1121 1122static inline void 1123dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1124{ 1125 if (st) { 1126 st->last = last; 1127 st->used = used; 1128 st->residue = residue; 1129 } 1130} 1131 1132#ifdef CONFIG_DMA_ENGINE 1133struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1134enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1135enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1136void dma_issue_pending_all(void); 1137struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1138 dma_filter_fn fn, void *fn_param); 1139struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1140 const char *name); 1141struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1142void dma_release_channel(struct dma_chan *chan); 1143int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1144#else 1145static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1146{ 1147 return NULL; 1148} 1149static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1150{ 1151 return DMA_COMPLETE; 1152} 1153static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1154{ 1155 return DMA_COMPLETE; 1156} 1157static inline void dma_issue_pending_all(void) 1158{ 1159} 1160static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1161 dma_filter_fn fn, void *fn_param) 1162{ 1163 return NULL; 1164} 1165static inline struct dma_chan *dma_request_slave_channel_reason( 1166 struct device *dev, const char *name) 1167{ 1168 return ERR_PTR(-ENODEV); 1169} 1170static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1171 const char *name) 1172{ 1173 return NULL; 1174} 1175static inline void dma_release_channel(struct dma_chan *chan) 1176{ 1177} 1178static inline int dma_get_slave_caps(struct dma_chan *chan, 1179 struct dma_slave_caps *caps) 1180{ 1181 return -ENXIO; 1182} 1183#endif 1184 1185static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1186{ 1187 struct dma_slave_caps caps; 1188 1189 dma_get_slave_caps(tx->chan, &caps); 1190 1191 if (caps.descriptor_reuse) { 1192 tx->flags |= DMA_CTRL_REUSE; 1193 return 0; 1194 } else { 1195 return -EPERM; 1196 } 1197} 1198 1199static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1200{ 1201 tx->flags &= ~DMA_CTRL_REUSE; 1202} 1203 1204static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1205{ 1206 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1207} 1208 1209static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1210{ 1211 /* this is supported for reusable desc, so check that */ 1212 if (dmaengine_desc_test_reuse(desc)) 1213 return desc->desc_free(desc); 1214 else 1215 return -EPERM; 1216} 1217 1218/* --- DMA device --- */ 1219 1220int dma_async_device_register(struct dma_device *device); 1221void dma_async_device_unregister(struct dma_device *device); 1222void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1223struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1224struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1225#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1226#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1227 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1228 1229static inline struct dma_chan 1230*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1231 dma_filter_fn fn, void *fn_param, 1232 struct device *dev, const char *name) 1233{ 1234 struct dma_chan *chan; 1235 1236 chan = dma_request_slave_channel(dev, name); 1237 if (chan) 1238 return chan; 1239 1240 if (!fn || !fn_param) 1241 return NULL; 1242 1243 return __dma_request_channel(mask, fn, fn_param); 1244} 1245#endif /* DMAENGINE_H */