at v4.3-rc2 24 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31 32struct mem_cgroup; 33struct page; 34struct mm_struct; 35struct kmem_cache; 36 37/* 38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 39 * These two lists should keep in accord with each other. 40 */ 41enum mem_cgroup_stat_index { 42 /* 43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 44 */ 45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */ 50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 52 MEM_CGROUP_STAT_NSTATS, 53}; 54 55struct mem_cgroup_reclaim_cookie { 56 struct zone *zone; 57 int priority; 58 unsigned int generation; 59}; 60 61enum mem_cgroup_events_index { 62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 66 MEM_CGROUP_EVENTS_NSTATS, 67 /* default hierarchy events */ 68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS, 69 MEMCG_HIGH, 70 MEMCG_MAX, 71 MEMCG_OOM, 72 MEMCG_NR_EVENTS, 73}; 74 75/* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86}; 87 88/* 89 * Bits in struct cg_proto.flags 90 */ 91enum cg_proto_flags { 92 /* Currently active and new sockets should be assigned to cgroups */ 93 MEMCG_SOCK_ACTIVE, 94 /* It was ever activated; we must disarm static keys on destruction */ 95 MEMCG_SOCK_ACTIVATED, 96}; 97 98struct cg_proto { 99 struct page_counter memory_allocated; /* Current allocated memory. */ 100 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 101 int memory_pressure; 102 long sysctl_mem[3]; 103 unsigned long flags; 104 /* 105 * memcg field is used to find which memcg we belong directly 106 * Each memcg struct can hold more than one cg_proto, so container_of 107 * won't really cut. 108 * 109 * The elegant solution would be having an inverse function to 110 * proto_cgroup in struct proto, but that means polluting the structure 111 * for everybody, instead of just for memcg users. 112 */ 113 struct mem_cgroup *memcg; 114}; 115 116#ifdef CONFIG_MEMCG 117struct mem_cgroup_stat_cpu { 118 long count[MEM_CGROUP_STAT_NSTATS]; 119 unsigned long events[MEMCG_NR_EVENTS]; 120 unsigned long nr_page_events; 121 unsigned long targets[MEM_CGROUP_NTARGETS]; 122}; 123 124struct mem_cgroup_reclaim_iter { 125 struct mem_cgroup *position; 126 /* scan generation, increased every round-trip */ 127 unsigned int generation; 128}; 129 130/* 131 * per-zone information in memory controller. 132 */ 133struct mem_cgroup_per_zone { 134 struct lruvec lruvec; 135 unsigned long lru_size[NR_LRU_LISTS]; 136 137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 138 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 144 /* use container_of */ 145}; 146 147struct mem_cgroup_per_node { 148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 149}; 150 151struct mem_cgroup_threshold { 152 struct eventfd_ctx *eventfd; 153 unsigned long threshold; 154}; 155 156/* For threshold */ 157struct mem_cgroup_threshold_ary { 158 /* An array index points to threshold just below or equal to usage. */ 159 int current_threshold; 160 /* Size of entries[] */ 161 unsigned int size; 162 /* Array of thresholds */ 163 struct mem_cgroup_threshold entries[0]; 164}; 165 166struct mem_cgroup_thresholds { 167 /* Primary thresholds array */ 168 struct mem_cgroup_threshold_ary *primary; 169 /* 170 * Spare threshold array. 171 * This is needed to make mem_cgroup_unregister_event() "never fail". 172 * It must be able to store at least primary->size - 1 entries. 173 */ 174 struct mem_cgroup_threshold_ary *spare; 175}; 176 177/* 178 * The memory controller data structure. The memory controller controls both 179 * page cache and RSS per cgroup. We would eventually like to provide 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 181 * to help the administrator determine what knobs to tune. 182 */ 183struct mem_cgroup { 184 struct cgroup_subsys_state css; 185 186 /* Accounted resources */ 187 struct page_counter memory; 188 struct page_counter memsw; 189 struct page_counter kmem; 190 191 /* Normal memory consumption range */ 192 unsigned long low; 193 unsigned long high; 194 195 unsigned long soft_limit; 196 197 /* vmpressure notifications */ 198 struct vmpressure vmpressure; 199 200 /* css_online() has been completed */ 201 int initialized; 202 203 /* 204 * Should the accounting and control be hierarchical, per subtree? 205 */ 206 bool use_hierarchy; 207 208 /* protected by memcg_oom_lock */ 209 bool oom_lock; 210 int under_oom; 211 212 int swappiness; 213 /* OOM-Killer disable */ 214 int oom_kill_disable; 215 216 /* protect arrays of thresholds */ 217 struct mutex thresholds_lock; 218 219 /* thresholds for memory usage. RCU-protected */ 220 struct mem_cgroup_thresholds thresholds; 221 222 /* thresholds for mem+swap usage. RCU-protected */ 223 struct mem_cgroup_thresholds memsw_thresholds; 224 225 /* For oom notifier event fd */ 226 struct list_head oom_notify; 227 228 /* 229 * Should we move charges of a task when a task is moved into this 230 * mem_cgroup ? And what type of charges should we move ? 231 */ 232 unsigned long move_charge_at_immigrate; 233 /* 234 * set > 0 if pages under this cgroup are moving to other cgroup. 235 */ 236 atomic_t moving_account; 237 /* taken only while moving_account > 0 */ 238 spinlock_t move_lock; 239 struct task_struct *move_lock_task; 240 unsigned long move_lock_flags; 241 /* 242 * percpu counter. 243 */ 244 struct mem_cgroup_stat_cpu __percpu *stat; 245 spinlock_t pcp_counter_lock; 246 247#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 248 struct cg_proto tcp_mem; 249#endif 250#if defined(CONFIG_MEMCG_KMEM) 251 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 252 int kmemcg_id; 253 bool kmem_acct_activated; 254 bool kmem_acct_active; 255#endif 256 257 int last_scanned_node; 258#if MAX_NUMNODES > 1 259 nodemask_t scan_nodes; 260 atomic_t numainfo_events; 261 atomic_t numainfo_updating; 262#endif 263 264#ifdef CONFIG_CGROUP_WRITEBACK 265 struct list_head cgwb_list; 266 struct wb_domain cgwb_domain; 267#endif 268 269 /* List of events which userspace want to receive */ 270 struct list_head event_list; 271 spinlock_t event_list_lock; 272 273 struct mem_cgroup_per_node *nodeinfo[0]; 274 /* WARNING: nodeinfo must be the last member here */ 275}; 276extern struct cgroup_subsys_state *mem_cgroup_root_css; 277 278/** 279 * mem_cgroup_events - count memory events against a cgroup 280 * @memcg: the memory cgroup 281 * @idx: the event index 282 * @nr: the number of events to account for 283 */ 284static inline void mem_cgroup_events(struct mem_cgroup *memcg, 285 enum mem_cgroup_events_index idx, 286 unsigned int nr) 287{ 288 this_cpu_add(memcg->stat->events[idx], nr); 289} 290 291bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 292 293int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 294 gfp_t gfp_mask, struct mem_cgroup **memcgp); 295void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 296 bool lrucare); 297void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 298void mem_cgroup_uncharge(struct page *page); 299void mem_cgroup_uncharge_list(struct list_head *page_list); 300 301void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 302 bool lrucare); 303 304struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 305struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 306 307bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 308struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 309struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 310 311static inline 312struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 313 return css ? container_of(css, struct mem_cgroup, css) : NULL; 314} 315 316struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 317 struct mem_cgroup *, 318 struct mem_cgroup_reclaim_cookie *); 319void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 320 321static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 322 struct mem_cgroup *root) 323{ 324 if (root == memcg) 325 return true; 326 if (!root->use_hierarchy) 327 return false; 328 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 329} 330 331static inline bool mm_match_cgroup(struct mm_struct *mm, 332 struct mem_cgroup *memcg) 333{ 334 struct mem_cgroup *task_memcg; 335 bool match = false; 336 337 rcu_read_lock(); 338 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 339 if (task_memcg) 340 match = mem_cgroup_is_descendant(task_memcg, memcg); 341 rcu_read_unlock(); 342 return match; 343} 344 345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 346ino_t page_cgroup_ino(struct page *page); 347 348static inline bool mem_cgroup_disabled(void) 349{ 350 if (memory_cgrp_subsys.disabled) 351 return true; 352 return false; 353} 354 355/* 356 * For memory reclaim. 357 */ 358int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 359 360void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 361 int nr_pages); 362 363static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 364{ 365 struct mem_cgroup_per_zone *mz; 366 struct mem_cgroup *memcg; 367 368 if (mem_cgroup_disabled()) 369 return true; 370 371 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 372 memcg = mz->memcg; 373 374 return !!(memcg->css.flags & CSS_ONLINE); 375} 376 377static inline 378unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 379{ 380 struct mem_cgroup_per_zone *mz; 381 382 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 383 return mz->lru_size[lru]; 384} 385 386static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 387{ 388 unsigned long inactive_ratio; 389 unsigned long inactive; 390 unsigned long active; 391 unsigned long gb; 392 393 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 394 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 395 396 gb = (inactive + active) >> (30 - PAGE_SHIFT); 397 if (gb) 398 inactive_ratio = int_sqrt(10 * gb); 399 else 400 inactive_ratio = 1; 401 402 return inactive * inactive_ratio < active; 403} 404 405void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 406 struct task_struct *p); 407 408static inline void mem_cgroup_oom_enable(void) 409{ 410 WARN_ON(current->memcg_oom.may_oom); 411 current->memcg_oom.may_oom = 1; 412} 413 414static inline void mem_cgroup_oom_disable(void) 415{ 416 WARN_ON(!current->memcg_oom.may_oom); 417 current->memcg_oom.may_oom = 0; 418} 419 420static inline bool task_in_memcg_oom(struct task_struct *p) 421{ 422 return p->memcg_oom.memcg; 423} 424 425bool mem_cgroup_oom_synchronize(bool wait); 426 427#ifdef CONFIG_MEMCG_SWAP 428extern int do_swap_account; 429#endif 430 431struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page); 432void mem_cgroup_end_page_stat(struct mem_cgroup *memcg); 433 434/** 435 * mem_cgroup_update_page_stat - update page state statistics 436 * @memcg: memcg to account against 437 * @idx: page state item to account 438 * @val: number of pages (positive or negative) 439 * 440 * See mem_cgroup_begin_page_stat() for locking requirements. 441 */ 442static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 443 enum mem_cgroup_stat_index idx, int val) 444{ 445 VM_BUG_ON(!rcu_read_lock_held()); 446 447 if (memcg) 448 this_cpu_add(memcg->stat->count[idx], val); 449} 450 451static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 452 enum mem_cgroup_stat_index idx) 453{ 454 mem_cgroup_update_page_stat(memcg, idx, 1); 455} 456 457static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 458 enum mem_cgroup_stat_index idx) 459{ 460 mem_cgroup_update_page_stat(memcg, idx, -1); 461} 462 463unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 464 gfp_t gfp_mask, 465 unsigned long *total_scanned); 466 467static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 468 enum vm_event_item idx) 469{ 470 struct mem_cgroup *memcg; 471 472 if (mem_cgroup_disabled()) 473 return; 474 475 rcu_read_lock(); 476 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 477 if (unlikely(!memcg)) 478 goto out; 479 480 switch (idx) { 481 case PGFAULT: 482 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 483 break; 484 case PGMAJFAULT: 485 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 486 break; 487 default: 488 BUG(); 489 } 490out: 491 rcu_read_unlock(); 492} 493#ifdef CONFIG_TRANSPARENT_HUGEPAGE 494void mem_cgroup_split_huge_fixup(struct page *head); 495#endif 496 497#else /* CONFIG_MEMCG */ 498struct mem_cgroup; 499 500static inline void mem_cgroup_events(struct mem_cgroup *memcg, 501 enum mem_cgroup_events_index idx, 502 unsigned int nr) 503{ 504} 505 506static inline bool mem_cgroup_low(struct mem_cgroup *root, 507 struct mem_cgroup *memcg) 508{ 509 return false; 510} 511 512static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 513 gfp_t gfp_mask, 514 struct mem_cgroup **memcgp) 515{ 516 *memcgp = NULL; 517 return 0; 518} 519 520static inline void mem_cgroup_commit_charge(struct page *page, 521 struct mem_cgroup *memcg, 522 bool lrucare) 523{ 524} 525 526static inline void mem_cgroup_cancel_charge(struct page *page, 527 struct mem_cgroup *memcg) 528{ 529} 530 531static inline void mem_cgroup_uncharge(struct page *page) 532{ 533} 534 535static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 536{ 537} 538 539static inline void mem_cgroup_migrate(struct page *oldpage, 540 struct page *newpage, 541 bool lrucare) 542{ 543} 544 545static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 546 struct mem_cgroup *memcg) 547{ 548 return &zone->lruvec; 549} 550 551static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 552 struct zone *zone) 553{ 554 return &zone->lruvec; 555} 556 557static inline bool mm_match_cgroup(struct mm_struct *mm, 558 struct mem_cgroup *memcg) 559{ 560 return true; 561} 562 563static inline bool task_in_mem_cgroup(struct task_struct *task, 564 const struct mem_cgroup *memcg) 565{ 566 return true; 567} 568 569static inline struct mem_cgroup * 570mem_cgroup_iter(struct mem_cgroup *root, 571 struct mem_cgroup *prev, 572 struct mem_cgroup_reclaim_cookie *reclaim) 573{ 574 return NULL; 575} 576 577static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 578 struct mem_cgroup *prev) 579{ 580} 581 582static inline bool mem_cgroup_disabled(void) 583{ 584 return true; 585} 586 587static inline int 588mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 589{ 590 return 1; 591} 592 593static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 594{ 595 return true; 596} 597 598static inline unsigned long 599mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 600{ 601 return 0; 602} 603 604static inline void 605mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 606 int increment) 607{ 608} 609 610static inline void 611mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 612{ 613} 614 615static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page) 616{ 617 return NULL; 618} 619 620static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg) 621{ 622} 623 624static inline void mem_cgroup_oom_enable(void) 625{ 626} 627 628static inline void mem_cgroup_oom_disable(void) 629{ 630} 631 632static inline bool task_in_memcg_oom(struct task_struct *p) 633{ 634 return false; 635} 636 637static inline bool mem_cgroup_oom_synchronize(bool wait) 638{ 639 return false; 640} 641 642static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 643 enum mem_cgroup_stat_index idx) 644{ 645} 646 647static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 648 enum mem_cgroup_stat_index idx) 649{ 650} 651 652static inline 653unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 654 gfp_t gfp_mask, 655 unsigned long *total_scanned) 656{ 657 return 0; 658} 659 660static inline void mem_cgroup_split_huge_fixup(struct page *head) 661{ 662} 663 664static inline 665void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 666{ 667} 668#endif /* CONFIG_MEMCG */ 669 670enum { 671 UNDER_LIMIT, 672 SOFT_LIMIT, 673 OVER_LIMIT, 674}; 675 676#ifdef CONFIG_CGROUP_WRITEBACK 677 678struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 679struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 680void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail, 681 unsigned long *pdirty, unsigned long *pwriteback); 682 683#else /* CONFIG_CGROUP_WRITEBACK */ 684 685static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 686{ 687 return NULL; 688} 689 690static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 691 unsigned long *pavail, 692 unsigned long *pdirty, 693 unsigned long *pwriteback) 694{ 695} 696 697#endif /* CONFIG_CGROUP_WRITEBACK */ 698 699struct sock; 700#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 701void sock_update_memcg(struct sock *sk); 702void sock_release_memcg(struct sock *sk); 703#else 704static inline void sock_update_memcg(struct sock *sk) 705{ 706} 707static inline void sock_release_memcg(struct sock *sk) 708{ 709} 710#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 711 712#ifdef CONFIG_MEMCG_KMEM 713extern struct static_key memcg_kmem_enabled_key; 714 715extern int memcg_nr_cache_ids; 716void memcg_get_cache_ids(void); 717void memcg_put_cache_ids(void); 718 719/* 720 * Helper macro to loop through all memcg-specific caches. Callers must still 721 * check if the cache is valid (it is either valid or NULL). 722 * the slab_mutex must be held when looping through those caches 723 */ 724#define for_each_memcg_cache_index(_idx) \ 725 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 726 727static inline bool memcg_kmem_enabled(void) 728{ 729 return static_key_false(&memcg_kmem_enabled_key); 730} 731 732static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg) 733{ 734 return memcg->kmem_acct_active; 735} 736 737/* 738 * In general, we'll do everything in our power to not incur in any overhead 739 * for non-memcg users for the kmem functions. Not even a function call, if we 740 * can avoid it. 741 * 742 * Therefore, we'll inline all those functions so that in the best case, we'll 743 * see that kmemcg is off for everybody and proceed quickly. If it is on, 744 * we'll still do most of the flag checking inline. We check a lot of 745 * conditions, but because they are pretty simple, they are expected to be 746 * fast. 747 */ 748bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 749 int order); 750void __memcg_kmem_commit_charge(struct page *page, 751 struct mem_cgroup *memcg, int order); 752void __memcg_kmem_uncharge_pages(struct page *page, int order); 753 754/* 755 * helper for acessing a memcg's index. It will be used as an index in the 756 * child cache array in kmem_cache, and also to derive its name. This function 757 * will return -1 when this is not a kmem-limited memcg. 758 */ 759static inline int memcg_cache_id(struct mem_cgroup *memcg) 760{ 761 return memcg ? memcg->kmemcg_id : -1; 762} 763 764struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep); 765void __memcg_kmem_put_cache(struct kmem_cache *cachep); 766 767struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr); 768 769int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, 770 unsigned long nr_pages); 771void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages); 772 773/** 774 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 775 * @gfp: the gfp allocation flags. 776 * @memcg: a pointer to the memcg this was charged against. 777 * @order: allocation order. 778 * 779 * returns true if the memcg where the current task belongs can hold this 780 * allocation. 781 * 782 * We return true automatically if this allocation is not to be accounted to 783 * any memcg. 784 */ 785static inline bool 786memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 787{ 788 if (!memcg_kmem_enabled()) 789 return true; 790 791 if (gfp & __GFP_NOACCOUNT) 792 return true; 793 /* 794 * __GFP_NOFAIL allocations will move on even if charging is not 795 * possible. Therefore we don't even try, and have this allocation 796 * unaccounted. We could in theory charge it forcibly, but we hope 797 * those allocations are rare, and won't be worth the trouble. 798 */ 799 if (gfp & __GFP_NOFAIL) 800 return true; 801 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 802 return true; 803 804 /* If the test is dying, just let it go. */ 805 if (unlikely(fatal_signal_pending(current))) 806 return true; 807 808 return __memcg_kmem_newpage_charge(gfp, memcg, order); 809} 810 811/** 812 * memcg_kmem_uncharge_pages: uncharge pages from memcg 813 * @page: pointer to struct page being freed 814 * @order: allocation order. 815 */ 816static inline void 817memcg_kmem_uncharge_pages(struct page *page, int order) 818{ 819 if (memcg_kmem_enabled()) 820 __memcg_kmem_uncharge_pages(page, order); 821} 822 823/** 824 * memcg_kmem_commit_charge: embeds correct memcg in a page 825 * @page: pointer to struct page recently allocated 826 * @memcg: the memcg structure we charged against 827 * @order: allocation order. 828 * 829 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 830 * failure of the allocation. if @page is NULL, this function will revert the 831 * charges. Otherwise, it will commit @page to @memcg. 832 */ 833static inline void 834memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 835{ 836 if (memcg_kmem_enabled() && memcg) 837 __memcg_kmem_commit_charge(page, memcg, order); 838} 839 840/** 841 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 842 * @cachep: the original global kmem cache 843 * @gfp: allocation flags. 844 * 845 * All memory allocated from a per-memcg cache is charged to the owner memcg. 846 */ 847static __always_inline struct kmem_cache * 848memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 849{ 850 if (!memcg_kmem_enabled()) 851 return cachep; 852 if (gfp & __GFP_NOACCOUNT) 853 return cachep; 854 if (gfp & __GFP_NOFAIL) 855 return cachep; 856 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 857 return cachep; 858 if (unlikely(fatal_signal_pending(current))) 859 return cachep; 860 861 return __memcg_kmem_get_cache(cachep); 862} 863 864static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 865{ 866 if (memcg_kmem_enabled()) 867 __memcg_kmem_put_cache(cachep); 868} 869 870static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr) 871{ 872 if (!memcg_kmem_enabled()) 873 return NULL; 874 return __mem_cgroup_from_kmem(ptr); 875} 876#else 877#define for_each_memcg_cache_index(_idx) \ 878 for (; NULL; ) 879 880static inline bool memcg_kmem_enabled(void) 881{ 882 return false; 883} 884 885static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg) 886{ 887 return false; 888} 889 890static inline bool 891memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 892{ 893 return true; 894} 895 896static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 897{ 898} 899 900static inline void 901memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 902{ 903} 904 905static inline int memcg_cache_id(struct mem_cgroup *memcg) 906{ 907 return -1; 908} 909 910static inline void memcg_get_cache_ids(void) 911{ 912} 913 914static inline void memcg_put_cache_ids(void) 915{ 916} 917 918static inline struct kmem_cache * 919memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 920{ 921 return cachep; 922} 923 924static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 925{ 926} 927 928static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr) 929{ 930 return NULL; 931} 932#endif /* CONFIG_MEMCG_KMEM */ 933#endif /* _LINUX_MEMCONTROL_H */ 934