Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mmzone.h>
30#include <linux/writeback.h>
31
32struct mem_cgroup;
33struct page;
34struct mm_struct;
35struct kmem_cache;
36
37/*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53};
54
55struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59};
60
61enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73};
74
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88/*
89 * Bits in struct cg_proto.flags
90 */
91enum cg_proto_flags {
92 /* Currently active and new sockets should be assigned to cgroups */
93 MEMCG_SOCK_ACTIVE,
94 /* It was ever activated; we must disarm static keys on destruction */
95 MEMCG_SOCK_ACTIVATED,
96};
97
98struct cg_proto {
99 struct page_counter memory_allocated; /* Current allocated memory. */
100 struct percpu_counter sockets_allocated; /* Current number of sockets. */
101 int memory_pressure;
102 long sysctl_mem[3];
103 unsigned long flags;
104 /*
105 * memcg field is used to find which memcg we belong directly
106 * Each memcg struct can hold more than one cg_proto, so container_of
107 * won't really cut.
108 *
109 * The elegant solution would be having an inverse function to
110 * proto_cgroup in struct proto, but that means polluting the structure
111 * for everybody, instead of just for memcg users.
112 */
113 struct mem_cgroup *memcg;
114};
115
116#ifdef CONFIG_MEMCG
117struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEMCG_NR_EVENTS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122};
123
124struct mem_cgroup_reclaim_iter {
125 struct mem_cgroup *position;
126 /* scan generation, increased every round-trip */
127 unsigned int generation;
128};
129
130/*
131 * per-zone information in memory controller.
132 */
133struct mem_cgroup_per_zone {
134 struct lruvec lruvec;
135 unsigned long lru_size[NR_LRU_LISTS];
136
137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
138
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *memcg; /* Back pointer, we cannot */
144 /* use container_of */
145};
146
147struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149};
150
151struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154};
155
156/* For threshold */
157struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164};
165
166struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175};
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Accounted resources */
187 struct page_counter memory;
188 struct page_counter memsw;
189 struct page_counter kmem;
190
191 /* Normal memory consumption range */
192 unsigned long low;
193 unsigned long high;
194
195 unsigned long soft_limit;
196
197 /* vmpressure notifications */
198 struct vmpressure vmpressure;
199
200 /* css_online() has been completed */
201 int initialized;
202
203 /*
204 * Should the accounting and control be hierarchical, per subtree?
205 */
206 bool use_hierarchy;
207
208 /* protected by memcg_oom_lock */
209 bool oom_lock;
210 int under_oom;
211
212 int swappiness;
213 /* OOM-Killer disable */
214 int oom_kill_disable;
215
216 /* protect arrays of thresholds */
217 struct mutex thresholds_lock;
218
219 /* thresholds for memory usage. RCU-protected */
220 struct mem_cgroup_thresholds thresholds;
221
222 /* thresholds for mem+swap usage. RCU-protected */
223 struct mem_cgroup_thresholds memsw_thresholds;
224
225 /* For oom notifier event fd */
226 struct list_head oom_notify;
227
228 /*
229 * Should we move charges of a task when a task is moved into this
230 * mem_cgroup ? And what type of charges should we move ?
231 */
232 unsigned long move_charge_at_immigrate;
233 /*
234 * set > 0 if pages under this cgroup are moving to other cgroup.
235 */
236 atomic_t moving_account;
237 /* taken only while moving_account > 0 */
238 spinlock_t move_lock;
239 struct task_struct *move_lock_task;
240 unsigned long move_lock_flags;
241 /*
242 * percpu counter.
243 */
244 struct mem_cgroup_stat_cpu __percpu *stat;
245 spinlock_t pcp_counter_lock;
246
247#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
248 struct cg_proto tcp_mem;
249#endif
250#if defined(CONFIG_MEMCG_KMEM)
251 /* Index in the kmem_cache->memcg_params.memcg_caches array */
252 int kmemcg_id;
253 bool kmem_acct_activated;
254 bool kmem_acct_active;
255#endif
256
257 int last_scanned_node;
258#if MAX_NUMNODES > 1
259 nodemask_t scan_nodes;
260 atomic_t numainfo_events;
261 atomic_t numainfo_updating;
262#endif
263
264#ifdef CONFIG_CGROUP_WRITEBACK
265 struct list_head cgwb_list;
266 struct wb_domain cgwb_domain;
267#endif
268
269 /* List of events which userspace want to receive */
270 struct list_head event_list;
271 spinlock_t event_list_lock;
272
273 struct mem_cgroup_per_node *nodeinfo[0];
274 /* WARNING: nodeinfo must be the last member here */
275};
276extern struct cgroup_subsys_state *mem_cgroup_root_css;
277
278/**
279 * mem_cgroup_events - count memory events against a cgroup
280 * @memcg: the memory cgroup
281 * @idx: the event index
282 * @nr: the number of events to account for
283 */
284static inline void mem_cgroup_events(struct mem_cgroup *memcg,
285 enum mem_cgroup_events_index idx,
286 unsigned int nr)
287{
288 this_cpu_add(memcg->stat->events[idx], nr);
289}
290
291bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
292
293int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
294 gfp_t gfp_mask, struct mem_cgroup **memcgp);
295void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
296 bool lrucare);
297void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
298void mem_cgroup_uncharge(struct page *page);
299void mem_cgroup_uncharge_list(struct list_head *page_list);
300
301void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
302 bool lrucare);
303
304struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
305struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
306
307bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
308struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
309struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
310
311static inline
312struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
313 return css ? container_of(css, struct mem_cgroup, css) : NULL;
314}
315
316struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
317 struct mem_cgroup *,
318 struct mem_cgroup_reclaim_cookie *);
319void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
320
321static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
322 struct mem_cgroup *root)
323{
324 if (root == memcg)
325 return true;
326 if (!root->use_hierarchy)
327 return false;
328 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
329}
330
331static inline bool mm_match_cgroup(struct mm_struct *mm,
332 struct mem_cgroup *memcg)
333{
334 struct mem_cgroup *task_memcg;
335 bool match = false;
336
337 rcu_read_lock();
338 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
339 if (task_memcg)
340 match = mem_cgroup_is_descendant(task_memcg, memcg);
341 rcu_read_unlock();
342 return match;
343}
344
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
346ino_t page_cgroup_ino(struct page *page);
347
348static inline bool mem_cgroup_disabled(void)
349{
350 if (memory_cgrp_subsys.disabled)
351 return true;
352 return false;
353}
354
355/*
356 * For memory reclaim.
357 */
358int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
359
360void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 int nr_pages);
362
363static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
364{
365 struct mem_cgroup_per_zone *mz;
366 struct mem_cgroup *memcg;
367
368 if (mem_cgroup_disabled())
369 return true;
370
371 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
372 memcg = mz->memcg;
373
374 return !!(memcg->css.flags & CSS_ONLINE);
375}
376
377static inline
378unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
379{
380 struct mem_cgroup_per_zone *mz;
381
382 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
383 return mz->lru_size[lru];
384}
385
386static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
387{
388 unsigned long inactive_ratio;
389 unsigned long inactive;
390 unsigned long active;
391 unsigned long gb;
392
393 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
394 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
395
396 gb = (inactive + active) >> (30 - PAGE_SHIFT);
397 if (gb)
398 inactive_ratio = int_sqrt(10 * gb);
399 else
400 inactive_ratio = 1;
401
402 return inactive * inactive_ratio < active;
403}
404
405void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
406 struct task_struct *p);
407
408static inline void mem_cgroup_oom_enable(void)
409{
410 WARN_ON(current->memcg_oom.may_oom);
411 current->memcg_oom.may_oom = 1;
412}
413
414static inline void mem_cgroup_oom_disable(void)
415{
416 WARN_ON(!current->memcg_oom.may_oom);
417 current->memcg_oom.may_oom = 0;
418}
419
420static inline bool task_in_memcg_oom(struct task_struct *p)
421{
422 return p->memcg_oom.memcg;
423}
424
425bool mem_cgroup_oom_synchronize(bool wait);
426
427#ifdef CONFIG_MEMCG_SWAP
428extern int do_swap_account;
429#endif
430
431struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
432void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
433
434/**
435 * mem_cgroup_update_page_stat - update page state statistics
436 * @memcg: memcg to account against
437 * @idx: page state item to account
438 * @val: number of pages (positive or negative)
439 *
440 * See mem_cgroup_begin_page_stat() for locking requirements.
441 */
442static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
443 enum mem_cgroup_stat_index idx, int val)
444{
445 VM_BUG_ON(!rcu_read_lock_held());
446
447 if (memcg)
448 this_cpu_add(memcg->stat->count[idx], val);
449}
450
451static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
452 enum mem_cgroup_stat_index idx)
453{
454 mem_cgroup_update_page_stat(memcg, idx, 1);
455}
456
457static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
458 enum mem_cgroup_stat_index idx)
459{
460 mem_cgroup_update_page_stat(memcg, idx, -1);
461}
462
463unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
464 gfp_t gfp_mask,
465 unsigned long *total_scanned);
466
467static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
468 enum vm_event_item idx)
469{
470 struct mem_cgroup *memcg;
471
472 if (mem_cgroup_disabled())
473 return;
474
475 rcu_read_lock();
476 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
477 if (unlikely(!memcg))
478 goto out;
479
480 switch (idx) {
481 case PGFAULT:
482 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
483 break;
484 case PGMAJFAULT:
485 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
486 break;
487 default:
488 BUG();
489 }
490out:
491 rcu_read_unlock();
492}
493#ifdef CONFIG_TRANSPARENT_HUGEPAGE
494void mem_cgroup_split_huge_fixup(struct page *head);
495#endif
496
497#else /* CONFIG_MEMCG */
498struct mem_cgroup;
499
500static inline void mem_cgroup_events(struct mem_cgroup *memcg,
501 enum mem_cgroup_events_index idx,
502 unsigned int nr)
503{
504}
505
506static inline bool mem_cgroup_low(struct mem_cgroup *root,
507 struct mem_cgroup *memcg)
508{
509 return false;
510}
511
512static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
513 gfp_t gfp_mask,
514 struct mem_cgroup **memcgp)
515{
516 *memcgp = NULL;
517 return 0;
518}
519
520static inline void mem_cgroup_commit_charge(struct page *page,
521 struct mem_cgroup *memcg,
522 bool lrucare)
523{
524}
525
526static inline void mem_cgroup_cancel_charge(struct page *page,
527 struct mem_cgroup *memcg)
528{
529}
530
531static inline void mem_cgroup_uncharge(struct page *page)
532{
533}
534
535static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
536{
537}
538
539static inline void mem_cgroup_migrate(struct page *oldpage,
540 struct page *newpage,
541 bool lrucare)
542{
543}
544
545static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
546 struct mem_cgroup *memcg)
547{
548 return &zone->lruvec;
549}
550
551static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
552 struct zone *zone)
553{
554 return &zone->lruvec;
555}
556
557static inline bool mm_match_cgroup(struct mm_struct *mm,
558 struct mem_cgroup *memcg)
559{
560 return true;
561}
562
563static inline bool task_in_mem_cgroup(struct task_struct *task,
564 const struct mem_cgroup *memcg)
565{
566 return true;
567}
568
569static inline struct mem_cgroup *
570mem_cgroup_iter(struct mem_cgroup *root,
571 struct mem_cgroup *prev,
572 struct mem_cgroup_reclaim_cookie *reclaim)
573{
574 return NULL;
575}
576
577static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
578 struct mem_cgroup *prev)
579{
580}
581
582static inline bool mem_cgroup_disabled(void)
583{
584 return true;
585}
586
587static inline int
588mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
589{
590 return 1;
591}
592
593static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
594{
595 return true;
596}
597
598static inline unsigned long
599mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
600{
601 return 0;
602}
603
604static inline void
605mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
606 int increment)
607{
608}
609
610static inline void
611mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
612{
613}
614
615static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
616{
617 return NULL;
618}
619
620static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
621{
622}
623
624static inline void mem_cgroup_oom_enable(void)
625{
626}
627
628static inline void mem_cgroup_oom_disable(void)
629{
630}
631
632static inline bool task_in_memcg_oom(struct task_struct *p)
633{
634 return false;
635}
636
637static inline bool mem_cgroup_oom_synchronize(bool wait)
638{
639 return false;
640}
641
642static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
643 enum mem_cgroup_stat_index idx)
644{
645}
646
647static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
648 enum mem_cgroup_stat_index idx)
649{
650}
651
652static inline
653unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
654 gfp_t gfp_mask,
655 unsigned long *total_scanned)
656{
657 return 0;
658}
659
660static inline void mem_cgroup_split_huge_fixup(struct page *head)
661{
662}
663
664static inline
665void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
666{
667}
668#endif /* CONFIG_MEMCG */
669
670enum {
671 UNDER_LIMIT,
672 SOFT_LIMIT,
673 OVER_LIMIT,
674};
675
676#ifdef CONFIG_CGROUP_WRITEBACK
677
678struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
679struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
680void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
681 unsigned long *pdirty, unsigned long *pwriteback);
682
683#else /* CONFIG_CGROUP_WRITEBACK */
684
685static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
686{
687 return NULL;
688}
689
690static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
691 unsigned long *pavail,
692 unsigned long *pdirty,
693 unsigned long *pwriteback)
694{
695}
696
697#endif /* CONFIG_CGROUP_WRITEBACK */
698
699struct sock;
700#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
701void sock_update_memcg(struct sock *sk);
702void sock_release_memcg(struct sock *sk);
703#else
704static inline void sock_update_memcg(struct sock *sk)
705{
706}
707static inline void sock_release_memcg(struct sock *sk)
708{
709}
710#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
711
712#ifdef CONFIG_MEMCG_KMEM
713extern struct static_key memcg_kmem_enabled_key;
714
715extern int memcg_nr_cache_ids;
716void memcg_get_cache_ids(void);
717void memcg_put_cache_ids(void);
718
719/*
720 * Helper macro to loop through all memcg-specific caches. Callers must still
721 * check if the cache is valid (it is either valid or NULL).
722 * the slab_mutex must be held when looping through those caches
723 */
724#define for_each_memcg_cache_index(_idx) \
725 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
726
727static inline bool memcg_kmem_enabled(void)
728{
729 return static_key_false(&memcg_kmem_enabled_key);
730}
731
732static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
733{
734 return memcg->kmem_acct_active;
735}
736
737/*
738 * In general, we'll do everything in our power to not incur in any overhead
739 * for non-memcg users for the kmem functions. Not even a function call, if we
740 * can avoid it.
741 *
742 * Therefore, we'll inline all those functions so that in the best case, we'll
743 * see that kmemcg is off for everybody and proceed quickly. If it is on,
744 * we'll still do most of the flag checking inline. We check a lot of
745 * conditions, but because they are pretty simple, they are expected to be
746 * fast.
747 */
748bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
749 int order);
750void __memcg_kmem_commit_charge(struct page *page,
751 struct mem_cgroup *memcg, int order);
752void __memcg_kmem_uncharge_pages(struct page *page, int order);
753
754/*
755 * helper for acessing a memcg's index. It will be used as an index in the
756 * child cache array in kmem_cache, and also to derive its name. This function
757 * will return -1 when this is not a kmem-limited memcg.
758 */
759static inline int memcg_cache_id(struct mem_cgroup *memcg)
760{
761 return memcg ? memcg->kmemcg_id : -1;
762}
763
764struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
765void __memcg_kmem_put_cache(struct kmem_cache *cachep);
766
767struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
768
769int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
770 unsigned long nr_pages);
771void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
772
773/**
774 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
775 * @gfp: the gfp allocation flags.
776 * @memcg: a pointer to the memcg this was charged against.
777 * @order: allocation order.
778 *
779 * returns true if the memcg where the current task belongs can hold this
780 * allocation.
781 *
782 * We return true automatically if this allocation is not to be accounted to
783 * any memcg.
784 */
785static inline bool
786memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
787{
788 if (!memcg_kmem_enabled())
789 return true;
790
791 if (gfp & __GFP_NOACCOUNT)
792 return true;
793 /*
794 * __GFP_NOFAIL allocations will move on even if charging is not
795 * possible. Therefore we don't even try, and have this allocation
796 * unaccounted. We could in theory charge it forcibly, but we hope
797 * those allocations are rare, and won't be worth the trouble.
798 */
799 if (gfp & __GFP_NOFAIL)
800 return true;
801 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
802 return true;
803
804 /* If the test is dying, just let it go. */
805 if (unlikely(fatal_signal_pending(current)))
806 return true;
807
808 return __memcg_kmem_newpage_charge(gfp, memcg, order);
809}
810
811/**
812 * memcg_kmem_uncharge_pages: uncharge pages from memcg
813 * @page: pointer to struct page being freed
814 * @order: allocation order.
815 */
816static inline void
817memcg_kmem_uncharge_pages(struct page *page, int order)
818{
819 if (memcg_kmem_enabled())
820 __memcg_kmem_uncharge_pages(page, order);
821}
822
823/**
824 * memcg_kmem_commit_charge: embeds correct memcg in a page
825 * @page: pointer to struct page recently allocated
826 * @memcg: the memcg structure we charged against
827 * @order: allocation order.
828 *
829 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
830 * failure of the allocation. if @page is NULL, this function will revert the
831 * charges. Otherwise, it will commit @page to @memcg.
832 */
833static inline void
834memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
835{
836 if (memcg_kmem_enabled() && memcg)
837 __memcg_kmem_commit_charge(page, memcg, order);
838}
839
840/**
841 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
842 * @cachep: the original global kmem cache
843 * @gfp: allocation flags.
844 *
845 * All memory allocated from a per-memcg cache is charged to the owner memcg.
846 */
847static __always_inline struct kmem_cache *
848memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
849{
850 if (!memcg_kmem_enabled())
851 return cachep;
852 if (gfp & __GFP_NOACCOUNT)
853 return cachep;
854 if (gfp & __GFP_NOFAIL)
855 return cachep;
856 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
857 return cachep;
858 if (unlikely(fatal_signal_pending(current)))
859 return cachep;
860
861 return __memcg_kmem_get_cache(cachep);
862}
863
864static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
865{
866 if (memcg_kmem_enabled())
867 __memcg_kmem_put_cache(cachep);
868}
869
870static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
871{
872 if (!memcg_kmem_enabled())
873 return NULL;
874 return __mem_cgroup_from_kmem(ptr);
875}
876#else
877#define for_each_memcg_cache_index(_idx) \
878 for (; NULL; )
879
880static inline bool memcg_kmem_enabled(void)
881{
882 return false;
883}
884
885static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
886{
887 return false;
888}
889
890static inline bool
891memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
892{
893 return true;
894}
895
896static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
897{
898}
899
900static inline void
901memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
902{
903}
904
905static inline int memcg_cache_id(struct mem_cgroup *memcg)
906{
907 return -1;
908}
909
910static inline void memcg_get_cache_ids(void)
911{
912}
913
914static inline void memcg_put_cache_ids(void)
915{
916}
917
918static inline struct kmem_cache *
919memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
920{
921 return cachep;
922}
923
924static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
925{
926}
927
928static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
929{
930 return NULL;
931}
932#endif /* CONFIG_MEMCG_KMEM */
933#endif /* _LINUX_MEMCONTROL_H */
934