at v4.3-rc2 302 lines 8.6 kB view raw
1/* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 * 14 * Support the cycle counter clocksource and tile timer clock event device. 15 */ 16 17#include <linux/time.h> 18#include <linux/timex.h> 19#include <linux/clocksource.h> 20#include <linux/clockchips.h> 21#include <linux/hardirq.h> 22#include <linux/sched.h> 23#include <linux/smp.h> 24#include <linux/delay.h> 25#include <linux/module.h> 26#include <linux/timekeeper_internal.h> 27#include <asm/irq_regs.h> 28#include <asm/traps.h> 29#include <asm/vdso.h> 30#include <hv/hypervisor.h> 31#include <arch/interrupts.h> 32#include <arch/spr_def.h> 33 34 35/* 36 * Define the cycle counter clock source. 37 */ 38 39/* How many cycles per second we are running at. */ 40static cycles_t cycles_per_sec __write_once; 41 42cycles_t get_clock_rate(void) 43{ 44 return cycles_per_sec; 45} 46 47#if CHIP_HAS_SPLIT_CYCLE() 48cycles_t get_cycles(void) 49{ 50 unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH); 51 unsigned int low = __insn_mfspr(SPR_CYCLE_LOW); 52 unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH); 53 54 while (unlikely(high != high2)) { 55 low = __insn_mfspr(SPR_CYCLE_LOW); 56 high = high2; 57 high2 = __insn_mfspr(SPR_CYCLE_HIGH); 58 } 59 60 return (((cycles_t)high) << 32) | low; 61} 62EXPORT_SYMBOL(get_cycles); 63#endif 64 65/* 66 * We use a relatively small shift value so that sched_clock() 67 * won't wrap around very often. 68 */ 69#define SCHED_CLOCK_SHIFT 10 70 71static unsigned long sched_clock_mult __write_once; 72 73static cycles_t clocksource_get_cycles(struct clocksource *cs) 74{ 75 return get_cycles(); 76} 77 78static struct clocksource cycle_counter_cs = { 79 .name = "cycle counter", 80 .rating = 300, 81 .read = clocksource_get_cycles, 82 .mask = CLOCKSOURCE_MASK(64), 83 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 84}; 85 86/* 87 * Called very early from setup_arch() to set cycles_per_sec. 88 * We initialize it early so we can use it to set up loops_per_jiffy. 89 */ 90void __init setup_clock(void) 91{ 92 cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED); 93 sched_clock_mult = 94 clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT); 95} 96 97void __init calibrate_delay(void) 98{ 99 loops_per_jiffy = get_clock_rate() / HZ; 100 pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n", 101 loops_per_jiffy / (500000 / HZ), 102 (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy); 103} 104 105/* Called fairly late in init/main.c, but before we go smp. */ 106void __init time_init(void) 107{ 108 /* Initialize and register the clock source. */ 109 clocksource_register_hz(&cycle_counter_cs, cycles_per_sec); 110 111 /* Start up the tile-timer interrupt source on the boot cpu. */ 112 setup_tile_timer(); 113} 114 115/* 116 * Define the tile timer clock event device. The timer is driven by 117 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down 118 * counter, plus bit 31, which signifies that the counter has wrapped 119 * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be 120 * raised as long as bit 31 is set. 121 * 122 * The TILE_MINSEC value represents the largest range of real-time 123 * we can possibly cover with the timer, based on MAX_TICK combined 124 * with the slowest reasonable clock rate we might run at. 125 */ 126 127#define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */ 128#define TILE_MINSEC 5 /* timer covers no more than 5 seconds */ 129 130static int tile_timer_set_next_event(unsigned long ticks, 131 struct clock_event_device *evt) 132{ 133 BUG_ON(ticks > MAX_TICK); 134 __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks); 135 arch_local_irq_unmask_now(INT_TILE_TIMER); 136 return 0; 137} 138 139/* 140 * Whenever anyone tries to change modes, we just mask interrupts 141 * and wait for the next event to get set. 142 */ 143static int tile_timer_shutdown(struct clock_event_device *evt) 144{ 145 arch_local_irq_mask_now(INT_TILE_TIMER); 146 return 0; 147} 148 149/* 150 * Set min_delta_ns to 1 microsecond, since it takes about 151 * that long to fire the interrupt. 152 */ 153static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = { 154 .name = "tile timer", 155 .features = CLOCK_EVT_FEAT_ONESHOT, 156 .min_delta_ns = 1000, 157 .rating = 100, 158 .irq = -1, 159 .set_next_event = tile_timer_set_next_event, 160 .set_state_shutdown = tile_timer_shutdown, 161 .set_state_oneshot = tile_timer_shutdown, 162 .tick_resume = tile_timer_shutdown, 163}; 164 165void setup_tile_timer(void) 166{ 167 struct clock_event_device *evt = this_cpu_ptr(&tile_timer); 168 169 /* Fill in fields that are speed-specific. */ 170 clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC); 171 evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt); 172 173 /* Mark as being for this cpu only. */ 174 evt->cpumask = cpumask_of(smp_processor_id()); 175 176 /* Start out with timer not firing. */ 177 arch_local_irq_mask_now(INT_TILE_TIMER); 178 179 /* Register tile timer. */ 180 clockevents_register_device(evt); 181} 182 183/* Called from the interrupt vector. */ 184void do_timer_interrupt(struct pt_regs *regs, int fault_num) 185{ 186 struct pt_regs *old_regs = set_irq_regs(regs); 187 struct clock_event_device *evt = this_cpu_ptr(&tile_timer); 188 189 /* 190 * Mask the timer interrupt here, since we are a oneshot timer 191 * and there are now by definition no events pending. 192 */ 193 arch_local_irq_mask(INT_TILE_TIMER); 194 195 /* Track time spent here in an interrupt context */ 196 irq_enter(); 197 198 /* Track interrupt count. */ 199 __this_cpu_inc(irq_stat.irq_timer_count); 200 201 /* Call the generic timer handler */ 202 evt->event_handler(evt); 203 204 /* 205 * Track time spent against the current process again and 206 * process any softirqs if they are waiting. 207 */ 208 irq_exit(); 209 210 set_irq_regs(old_regs); 211} 212 213/* 214 * Scheduler clock - returns current time in nanosec units. 215 * Note that with LOCKDEP, this is called during lockdep_init(), and 216 * we will claim that sched_clock() is zero for a little while, until 217 * we run setup_clock(), above. 218 */ 219unsigned long long sched_clock(void) 220{ 221 return clocksource_cyc2ns(get_cycles(), 222 sched_clock_mult, SCHED_CLOCK_SHIFT); 223} 224 225int setup_profiling_timer(unsigned int multiplier) 226{ 227 return -EINVAL; 228} 229 230/* 231 * Use the tile timer to convert nsecs to core clock cycles, relying 232 * on it having the same frequency as SPR_CYCLE. 233 */ 234cycles_t ns2cycles(unsigned long nsecs) 235{ 236 /* 237 * We do not have to disable preemption here as each core has the same 238 * clock frequency. 239 */ 240 struct clock_event_device *dev = raw_cpu_ptr(&tile_timer); 241 242 /* 243 * as in clocksource.h and x86's timer.h, we split the calculation 244 * into 2 parts to avoid unecessary overflow of the intermediate 245 * value. This will not lead to any loss of precision. 246 */ 247 u64 quot = (u64)nsecs >> dev->shift; 248 u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1); 249 return quot * dev->mult + ((rem * dev->mult) >> dev->shift); 250} 251 252void update_vsyscall_tz(void) 253{ 254 write_seqcount_begin(&vdso_data->tz_seq); 255 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 256 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 257 write_seqcount_end(&vdso_data->tz_seq); 258} 259 260void update_vsyscall(struct timekeeper *tk) 261{ 262 if (tk->tkr_mono.clock != &cycle_counter_cs) 263 return; 264 265 write_seqcount_begin(&vdso_data->tb_seq); 266 267 vdso_data->cycle_last = tk->tkr_mono.cycle_last; 268 vdso_data->mask = tk->tkr_mono.mask; 269 vdso_data->mult = tk->tkr_mono.mult; 270 vdso_data->shift = tk->tkr_mono.shift; 271 272 vdso_data->wall_time_sec = tk->xtime_sec; 273 vdso_data->wall_time_snsec = tk->tkr_mono.xtime_nsec; 274 275 vdso_data->monotonic_time_sec = tk->xtime_sec 276 + tk->wall_to_monotonic.tv_sec; 277 vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec 278 + ((u64)tk->wall_to_monotonic.tv_nsec 279 << tk->tkr_mono.shift); 280 while (vdso_data->monotonic_time_snsec >= 281 (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { 282 vdso_data->monotonic_time_snsec -= 283 ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift; 284 vdso_data->monotonic_time_sec++; 285 } 286 287 vdso_data->wall_time_coarse_sec = tk->xtime_sec; 288 vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >> 289 tk->tkr_mono.shift); 290 291 vdso_data->monotonic_time_coarse_sec = 292 vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec; 293 vdso_data->monotonic_time_coarse_nsec = 294 vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 295 296 while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) { 297 vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC; 298 vdso_data->monotonic_time_coarse_sec++; 299 } 300 301 write_seqcount_end(&vdso_data->tb_seq); 302}