at v4.20 4.7 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _TOOLS_LINUX_COMPILER_H_ 3#define _TOOLS_LINUX_COMPILER_H_ 4 5#ifdef __GNUC__ 6#include <linux/compiler-gcc.h> 7#endif 8 9#ifndef __compiletime_error 10# define __compiletime_error(message) 11#endif 12 13/* Optimization barrier */ 14/* The "volatile" is due to gcc bugs */ 15#define barrier() __asm__ __volatile__("": : :"memory") 16 17#ifndef __always_inline 18# define __always_inline inline __attribute__((always_inline)) 19#endif 20 21#ifndef noinline 22#define noinline 23#endif 24 25/* Are two types/vars the same type (ignoring qualifiers)? */ 26#ifndef __same_type 27# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) 28#endif 29 30#ifdef __ANDROID__ 31/* 32 * FIXME: Big hammer to get rid of tons of: 33 * "warning: always_inline function might not be inlinable" 34 * 35 * At least on android-ndk-r12/platforms/android-24/arch-arm 36 */ 37#undef __always_inline 38#define __always_inline inline 39#endif 40 41#define __user 42#define __rcu 43#define __read_mostly 44 45#ifndef __attribute_const__ 46# define __attribute_const__ 47#endif 48 49#ifndef __maybe_unused 50# define __maybe_unused __attribute__((unused)) 51#endif 52 53#ifndef __used 54# define __used __attribute__((__unused__)) 55#endif 56 57#ifndef __packed 58# define __packed __attribute__((__packed__)) 59#endif 60 61#ifndef __force 62# define __force 63#endif 64 65#ifndef __weak 66# define __weak __attribute__((weak)) 67#endif 68 69#ifndef likely 70# define likely(x) __builtin_expect(!!(x), 1) 71#endif 72 73#ifndef unlikely 74# define unlikely(x) __builtin_expect(!!(x), 0) 75#endif 76 77#ifndef __init 78# define __init 79#endif 80 81#ifndef noinline 82# define noinline 83#endif 84 85#define uninitialized_var(x) x = *(&(x)) 86 87#include <linux/types.h> 88 89/* 90 * Following functions are taken from kernel sources and 91 * break aliasing rules in their original form. 92 * 93 * While kernel is compiled with -fno-strict-aliasing, 94 * perf uses -Wstrict-aliasing=3 which makes build fail 95 * under gcc 4.4. 96 * 97 * Using extra __may_alias__ type to allow aliasing 98 * in this case. 99 */ 100typedef __u8 __attribute__((__may_alias__)) __u8_alias_t; 101typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; 102typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; 103typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; 104 105static __always_inline void __read_once_size(const volatile void *p, void *res, int size) 106{ 107 switch (size) { 108 case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break; 109 case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; 110 case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; 111 case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; 112 default: 113 barrier(); 114 __builtin_memcpy((void *)res, (const void *)p, size); 115 barrier(); 116 } 117} 118 119static __always_inline void __write_once_size(volatile void *p, void *res, int size) 120{ 121 switch (size) { 122 case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break; 123 case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; 124 case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; 125 case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; 126 default: 127 barrier(); 128 __builtin_memcpy((void *)p, (const void *)res, size); 129 barrier(); 130 } 131} 132 133/* 134 * Prevent the compiler from merging or refetching reads or writes. The 135 * compiler is also forbidden from reordering successive instances of 136 * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some 137 * particular ordering. One way to make the compiler aware of ordering is to 138 * put the two invocations of READ_ONCE or WRITE_ONCE in different C 139 * statements. 140 * 141 * These two macros will also work on aggregate data types like structs or 142 * unions. If the size of the accessed data type exceeds the word size of 143 * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will 144 * fall back to memcpy and print a compile-time warning. 145 * 146 * Their two major use cases are: (1) Mediating communication between 147 * process-level code and irq/NMI handlers, all running on the same CPU, 148 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 149 * mutilate accesses that either do not require ordering or that interact 150 * with an explicit memory barrier or atomic instruction that provides the 151 * required ordering. 152 */ 153 154#define READ_ONCE(x) \ 155({ \ 156 union { typeof(x) __val; char __c[1]; } __u = \ 157 { .__c = { 0 } }; \ 158 __read_once_size(&(x), __u.__c, sizeof(x)); \ 159 __u.__val; \ 160}) 161 162#define WRITE_ONCE(x, val) \ 163({ \ 164 union { typeof(x) __val; char __c[1]; } __u = \ 165 { .__val = (val) }; \ 166 __write_once_size(&(x), __u.__c, sizeof(x)); \ 167 __u.__val; \ 168}) 169 170 171#ifndef __fallthrough 172# define __fallthrough 173#endif 174 175#endif /* _TOOLS_LINUX_COMPILER_H */