Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/dst_metadata.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148
149#include "net-sysfs.h"
150
151#define MAX_GRO_SKBS 8
152
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156static DEFINE_SPINLOCK(ptype_lock);
157static DEFINE_SPINLOCK(offload_lock);
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
160static struct list_head offload_base __read_mostly;
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231/* Device list insertion */
232static void list_netdevice(struct net_device *dev)
233{
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246}
247
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263}
264
265/*
266 * Our notifier list
267 */
268
269static RAW_NOTIFIER_HEAD(netdev_chain);
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279#ifdef CONFIG_LOCKDEP
280/*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
351#else
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357{
358}
359#endif
360
361/*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391}
392
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413}
414EXPORT_SYMBOL(dev_add_pack);
415
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444out:
445 spin_unlock(&ptype_lock);
446}
447EXPORT_SYMBOL(__dev_remove_pack);
448
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466}
467EXPORT_SYMBOL(dev_remove_pack);
468
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
509static void __dev_remove_offload(struct packet_offload *po)
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
525 spin_unlock(&offload_lock);
526}
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
548/******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609}
610EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613/**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722/**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
734struct net_device *__dev_get_by_name(struct net *net, const char *name)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_name);
746
747/**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772/**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
784struct net_device *dev_get_by_name(struct net *net, const char *name)
785{
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794}
795EXPORT_SYMBOL(dev_get_by_name);
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810{
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819}
820EXPORT_SYMBOL(__dev_get_by_index);
821
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847/**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
858struct net_device *dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868}
869EXPORT_SYMBOL(dev_get_by_index);
870
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
930/**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946{
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959{
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968}
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972{
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984}
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000{
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 p = strchr(name, '%');
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1082
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1122}
1123
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1146{
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1178
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1181
1182 net = dev_net(dev);
1183 if (dev->flags & IFF_UP)
1184 return -EBUSY;
1185
1186 write_seqcount_begin(&devnet_rename_seq);
1187
1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 write_seqcount_end(&devnet_rename_seq);
1190 return 0;
1191 }
1192
1193 memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195 err = dev_get_valid_name(net, dev, newname);
1196 if (err < 0) {
1197 write_seqcount_end(&devnet_rename_seq);
1198 return err;
1199 }
1200
1201 if (oldname[0] && !strchr(oldname, '%'))
1202 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204 old_assign_type = dev->name_assign_type;
1205 dev->name_assign_type = NET_NAME_RENAMED;
1206
1207rollback:
1208 ret = device_rename(&dev->dev, dev->name);
1209 if (ret) {
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 write_seqcount_end(&devnet_rename_seq);
1213 return ret;
1214 }
1215
1216 write_seqcount_end(&devnet_rename_seq);
1217
1218 netdev_adjacent_rename_links(dev, oldname);
1219
1220 write_lock_bh(&dev_base_lock);
1221 hlist_del_rcu(&dev->name_hlist);
1222 write_unlock_bh(&dev_base_lock);
1223
1224 synchronize_rcu();
1225
1226 write_lock_bh(&dev_base_lock);
1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 write_unlock_bh(&dev_base_lock);
1229
1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 ret = notifier_to_errno(ret);
1232
1233 if (ret) {
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235 if (err >= 0) {
1236 err = ret;
1237 write_seqcount_begin(&devnet_rename_seq);
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 memcpy(oldname, newname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 old_assign_type = NET_NAME_RENAMED;
1242 goto rollback;
1243 } else {
1244 pr_err("%s: name change rollback failed: %d\n",
1245 dev->name, ret);
1246 }
1247 }
1248
1249 return err;
1250}
1251
1252/**
1253 * dev_set_alias - change ifalias of a device
1254 * @dev: device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1257 *
1258 * Set ifalias for a device,
1259 */
1260int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261{
1262 struct dev_ifalias *new_alias = NULL;
1263
1264 if (len >= IFALIASZ)
1265 return -EINVAL;
1266
1267 if (len) {
1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 if (!new_alias)
1270 return -ENOMEM;
1271
1272 memcpy(new_alias->ifalias, alias, len);
1273 new_alias->ifalias[len] = 0;
1274 }
1275
1276 mutex_lock(&ifalias_mutex);
1277 rcu_swap_protected(dev->ifalias, new_alias,
1278 mutex_is_locked(&ifalias_mutex));
1279 mutex_unlock(&ifalias_mutex);
1280
1281 if (new_alias)
1282 kfree_rcu(new_alias, rcuhead);
1283
1284 return len;
1285}
1286EXPORT_SYMBOL(dev_set_alias);
1287
1288/**
1289 * dev_get_alias - get ifalias of a device
1290 * @dev: device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1293 *
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1296 */
1297int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298{
1299 const struct dev_ifalias *alias;
1300 int ret = 0;
1301
1302 rcu_read_lock();
1303 alias = rcu_dereference(dev->ifalias);
1304 if (alias)
1305 ret = snprintf(name, len, "%s", alias->ifalias);
1306 rcu_read_unlock();
1307
1308 return ret;
1309}
1310
1311/**
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1314 *
1315 * Called to indicate a device has changed features.
1316 */
1317void netdev_features_change(struct net_device *dev)
1318{
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320}
1321EXPORT_SYMBOL(netdev_features_change);
1322
1323/**
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1326 *
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1330 */
1331void netdev_state_change(struct net_device *dev)
1332{
1333 if (dev->flags & IFF_UP) {
1334 struct netdev_notifier_change_info change_info = {
1335 .info.dev = dev,
1336 };
1337
1338 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 &change_info.info);
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 }
1342}
1343EXPORT_SYMBOL(netdev_state_change);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 rtnl_unlock();
1361}
1362EXPORT_SYMBOL(netdev_notify_peers);
1363
1364static int __dev_open(struct net_device *dev)
1365{
1366 const struct net_device_ops *ops = dev->netdev_ops;
1367 int ret;
1368
1369 ASSERT_RTNL();
1370
1371 if (!netif_device_present(dev))
1372 return -ENODEV;
1373
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1377 */
1378 netpoll_poll_disable(dev);
1379
1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 ret = notifier_to_errno(ret);
1382 if (ret)
1383 return ret;
1384
1385 set_bit(__LINK_STATE_START, &dev->state);
1386
1387 if (ops->ndo_validate_addr)
1388 ret = ops->ndo_validate_addr(dev);
1389
1390 if (!ret && ops->ndo_open)
1391 ret = ops->ndo_open(dev);
1392
1393 netpoll_poll_enable(dev);
1394
1395 if (ret)
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397 else {
1398 dev->flags |= IFF_UP;
1399 dev_set_rx_mode(dev);
1400 dev_activate(dev);
1401 add_device_randomness(dev->dev_addr, dev->addr_len);
1402 }
1403
1404 return ret;
1405}
1406
1407/**
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1410 *
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1415 *
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1418 */
1419int dev_open(struct net_device *dev)
1420{
1421 int ret;
1422
1423 if (dev->flags & IFF_UP)
1424 return 0;
1425
1426 ret = __dev_open(dev);
1427 if (ret < 0)
1428 return ret;
1429
1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433 return ret;
1434}
1435EXPORT_SYMBOL(dev_open);
1436
1437static void __dev_close_many(struct list_head *head)
1438{
1439 struct net_device *dev;
1440
1441 ASSERT_RTNL();
1442 might_sleep();
1443
1444 list_for_each_entry(dev, head, close_list) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev);
1447
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1454 *
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1457 */
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1459 }
1460
1461 dev_deactivate_many(head);
1462
1463 list_for_each_entry(dev, head, close_list) {
1464 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466 /*
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1469 *
1470 * We allow it to be called even after a DETACH hot-plug
1471 * event.
1472 */
1473 if (ops->ndo_stop)
1474 ops->ndo_stop(dev);
1475
1476 dev->flags &= ~IFF_UP;
1477 netpoll_poll_enable(dev);
1478 }
1479}
1480
1481static void __dev_close(struct net_device *dev)
1482{
1483 LIST_HEAD(single);
1484
1485 list_add(&dev->close_list, &single);
1486 __dev_close_many(&single);
1487 list_del(&single);
1488}
1489
1490void dev_close_many(struct list_head *head, bool unlink)
1491{
1492 struct net_device *dev, *tmp;
1493
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev, tmp, head, close_list)
1496 if (!(dev->flags & IFF_UP))
1497 list_del_init(&dev->close_list);
1498
1499 __dev_close_many(head);
1500
1501 list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 if (unlink)
1505 list_del_init(&dev->close_list);
1506 }
1507}
1508EXPORT_SYMBOL(dev_close_many);
1509
1510/**
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1513 *
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517 * chain.
1518 */
1519void dev_close(struct net_device *dev)
1520{
1521 if (dev->flags & IFF_UP) {
1522 LIST_HEAD(single);
1523
1524 list_add(&dev->close_list, &single);
1525 dev_close_many(&single, true);
1526 list_del(&single);
1527 }
1528}
1529EXPORT_SYMBOL(dev_close);
1530
1531
1532/**
1533 * dev_disable_lro - disable Large Receive Offload on a device
1534 * @dev: device
1535 *
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1539 */
1540void dev_disable_lro(struct net_device *dev)
1541{
1542 struct net_device *lower_dev;
1543 struct list_head *iter;
1544
1545 dev->wanted_features &= ~NETIF_F_LRO;
1546 netdev_update_features(dev);
1547
1548 if (unlikely(dev->features & NETIF_F_LRO))
1549 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551 netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 dev_disable_lro(lower_dev);
1553}
1554EXPORT_SYMBOL(dev_disable_lro);
1555
1556/**
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558 * @dev: device
1559 *
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1562 * the device.
1563 */
1564static void dev_disable_gro_hw(struct net_device *dev)
1565{
1566 dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 netdev_update_features(dev);
1568
1569 if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571}
1572
1573const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574{
1575#define N(val) \
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1578 switch (cmd) {
1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 }
1589#undef N
1590 return "UNKNOWN_NETDEV_EVENT";
1591}
1592EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 struct net_device *dev)
1596{
1597 struct netdev_notifier_info info = {
1598 .dev = dev,
1599 };
1600
1601 return nb->notifier_call(nb, val, &info);
1602}
1603
1604static int dev_boot_phase = 1;
1605
1606/**
1607 * register_netdevice_notifier - register a network notifier block
1608 * @nb: notifier
1609 *
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1618 */
1619
1620int register_netdevice_notifier(struct notifier_block *nb)
1621{
1622 struct net_device *dev;
1623 struct net_device *last;
1624 struct net *net;
1625 int err;
1626
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem);
1629 rtnl_lock();
1630 err = raw_notifier_chain_register(&netdev_chain, nb);
1631 if (err)
1632 goto unlock;
1633 if (dev_boot_phase)
1634 goto unlock;
1635 for_each_net(net) {
1636 for_each_netdev(net, dev) {
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 goto rollback;
1641
1642 if (!(dev->flags & IFF_UP))
1643 continue;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 }
1647 }
1648
1649unlock:
1650 rtnl_unlock();
1651 up_write(&pernet_ops_rwsem);
1652 return err;
1653
1654rollback:
1655 last = dev;
1656 for_each_net(net) {
1657 for_each_netdev(net, dev) {
1658 if (dev == last)
1659 goto outroll;
1660
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 dev);
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 }
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 }
1669
1670outroll:
1671 raw_notifier_chain_unregister(&netdev_chain, nb);
1672 goto unlock;
1673}
1674EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676/**
1677 * unregister_netdevice_notifier - unregister a network notifier block
1678 * @nb: notifier
1679 *
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1684 *
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1688 */
1689
1690int unregister_netdevice_notifier(struct notifier_block *nb)
1691{
1692 struct net_device *dev;
1693 struct net *net;
1694 int err;
1695
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1698 rtnl_lock();
1699 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 if (err)
1701 goto unlock;
1702
1703 for_each_net(net) {
1704 for_each_netdev(net, dev) {
1705 if (dev->flags & IFF_UP) {
1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 dev);
1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 }
1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 }
1712 }
1713unlock:
1714 rtnl_unlock();
1715 up_write(&pernet_ops_rwsem);
1716 return err;
1717}
1718EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720/**
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1724 *
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1727 */
1728
1729static int call_netdevice_notifiers_info(unsigned long val,
1730 struct netdev_notifier_info *info)
1731{
1732 ASSERT_RTNL();
1733 return raw_notifier_call_chain(&netdev_chain, val, info);
1734}
1735
1736/**
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1745int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746{
1747 struct netdev_notifier_info info = {
1748 .dev = dev,
1749 };
1750
1751 return call_netdevice_notifiers_info(val, &info);
1752}
1753EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755/**
1756 * call_netdevice_notifiers_mtu - call all network notifier blocks
1757 * @val: value passed unmodified to notifier function
1758 * @dev: net_device pointer passed unmodified to notifier function
1759 * @arg: additional u32 argument passed to the notifier function
1760 *
1761 * Call all network notifier blocks. Parameters and return value
1762 * are as for raw_notifier_call_chain().
1763 */
1764static int call_netdevice_notifiers_mtu(unsigned long val,
1765 struct net_device *dev, u32 arg)
1766{
1767 struct netdev_notifier_info_ext info = {
1768 .info.dev = dev,
1769 .ext.mtu = arg,
1770 };
1771
1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774 return call_netdevice_notifiers_info(val, &info.info);
1775}
1776
1777#ifdef CONFIG_NET_INGRESS
1778static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780void net_inc_ingress_queue(void)
1781{
1782 static_branch_inc(&ingress_needed_key);
1783}
1784EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786void net_dec_ingress_queue(void)
1787{
1788 static_branch_dec(&ingress_needed_key);
1789}
1790EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791#endif
1792
1793#ifdef CONFIG_NET_EGRESS
1794static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796void net_inc_egress_queue(void)
1797{
1798 static_branch_inc(&egress_needed_key);
1799}
1800EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802void net_dec_egress_queue(void)
1803{
1804 static_branch_dec(&egress_needed_key);
1805}
1806EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807#endif
1808
1809static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810#ifdef HAVE_JUMP_LABEL
1811static atomic_t netstamp_needed_deferred;
1812static atomic_t netstamp_wanted;
1813static void netstamp_clear(struct work_struct *work)
1814{
1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 int wanted;
1817
1818 wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 if (wanted > 0)
1820 static_branch_enable(&netstamp_needed_key);
1821 else
1822 static_branch_disable(&netstamp_needed_key);
1823}
1824static DECLARE_WORK(netstamp_work, netstamp_clear);
1825#endif
1826
1827void net_enable_timestamp(void)
1828{
1829#ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 0)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 return;
1838 }
1839 atomic_inc(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841#else
1842 static_branch_inc(&netstamp_needed_key);
1843#endif
1844}
1845EXPORT_SYMBOL(net_enable_timestamp);
1846
1847void net_disable_timestamp(void)
1848{
1849#ifdef HAVE_JUMP_LABEL
1850 int wanted;
1851
1852 while (1) {
1853 wanted = atomic_read(&netstamp_wanted);
1854 if (wanted <= 1)
1855 break;
1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 return;
1858 }
1859 atomic_dec(&netstamp_needed_deferred);
1860 schedule_work(&netstamp_work);
1861#else
1862 static_branch_dec(&netstamp_needed_key);
1863#endif
1864}
1865EXPORT_SYMBOL(net_disable_timestamp);
1866
1867static inline void net_timestamp_set(struct sk_buff *skb)
1868{
1869 skb->tstamp = 0;
1870 if (static_branch_unlikely(&netstamp_needed_key))
1871 __net_timestamp(skb);
1872}
1873
1874#define net_timestamp_check(COND, SKB) \
1875 if (static_branch_unlikely(&netstamp_needed_key)) { \
1876 if ((COND) && !(SKB)->tstamp) \
1877 __net_timestamp(SKB); \
1878 } \
1879
1880bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881{
1882 unsigned int len;
1883
1884 if (!(dev->flags & IFF_UP))
1885 return false;
1886
1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 if (skb->len <= len)
1889 return true;
1890
1891 /* if TSO is enabled, we don't care about the length as the packet
1892 * could be forwarded without being segmented before
1893 */
1894 if (skb_is_gso(skb))
1895 return true;
1896
1897 return false;
1898}
1899EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902{
1903 int ret = ____dev_forward_skb(dev, skb);
1904
1905 if (likely(!ret)) {
1906 skb->protocol = eth_type_trans(skb, dev);
1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 }
1909
1910 return ret;
1911}
1912EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914/**
1915 * dev_forward_skb - loopback an skb to another netif
1916 *
1917 * @dev: destination network device
1918 * @skb: buffer to forward
1919 *
1920 * return values:
1921 * NET_RX_SUCCESS (no congestion)
1922 * NET_RX_DROP (packet was dropped, but freed)
1923 *
1924 * dev_forward_skb can be used for injecting an skb from the
1925 * start_xmit function of one device into the receive queue
1926 * of another device.
1927 *
1928 * The receiving device may be in another namespace, so
1929 * we have to clear all information in the skb that could
1930 * impact namespace isolation.
1931 */
1932int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933{
1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935}
1936EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938static inline int deliver_skb(struct sk_buff *skb,
1939 struct packet_type *pt_prev,
1940 struct net_device *orig_dev)
1941{
1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 return -ENOMEM;
1944 refcount_inc(&skb->users);
1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946}
1947
1948static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 struct packet_type **pt,
1950 struct net_device *orig_dev,
1951 __be16 type,
1952 struct list_head *ptype_list)
1953{
1954 struct packet_type *ptype, *pt_prev = *pt;
1955
1956 list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 if (ptype->type != type)
1958 continue;
1959 if (pt_prev)
1960 deliver_skb(skb, pt_prev, orig_dev);
1961 pt_prev = ptype;
1962 }
1963 *pt = pt_prev;
1964}
1965
1966static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967{
1968 if (!ptype->af_packet_priv || !skb->sk)
1969 return false;
1970
1971 if (ptype->id_match)
1972 return ptype->id_match(ptype, skb->sk);
1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 return true;
1975
1976 return false;
1977}
1978
1979/**
1980 * dev_nit_active - return true if any network interface taps are in use
1981 *
1982 * @dev: network device to check for the presence of taps
1983 */
1984bool dev_nit_active(struct net_device *dev)
1985{
1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987}
1988EXPORT_SYMBOL_GPL(dev_nit_active);
1989
1990/*
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1993 */
1994
1995void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996{
1997 struct packet_type *ptype;
1998 struct sk_buff *skb2 = NULL;
1999 struct packet_type *pt_prev = NULL;
2000 struct list_head *ptype_list = &ptype_all;
2001
2002 rcu_read_lock();
2003again:
2004 list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 if (ptype->ignore_outgoing)
2006 continue;
2007
2008 /* Never send packets back to the socket
2009 * they originated from - MvS (miquels@drinkel.ow.org)
2010 */
2011 if (skb_loop_sk(ptype, skb))
2012 continue;
2013
2014 if (pt_prev) {
2015 deliver_skb(skb2, pt_prev, skb->dev);
2016 pt_prev = ptype;
2017 continue;
2018 }
2019
2020 /* need to clone skb, done only once */
2021 skb2 = skb_clone(skb, GFP_ATOMIC);
2022 if (!skb2)
2023 goto out_unlock;
2024
2025 net_timestamp_set(skb2);
2026
2027 /* skb->nh should be correctly
2028 * set by sender, so that the second statement is
2029 * just protection against buggy protocols.
2030 */
2031 skb_reset_mac_header(skb2);
2032
2033 if (skb_network_header(skb2) < skb2->data ||
2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 ntohs(skb2->protocol),
2037 dev->name);
2038 skb_reset_network_header(skb2);
2039 }
2040
2041 skb2->transport_header = skb2->network_header;
2042 skb2->pkt_type = PACKET_OUTGOING;
2043 pt_prev = ptype;
2044 }
2045
2046 if (ptype_list == &ptype_all) {
2047 ptype_list = &dev->ptype_all;
2048 goto again;
2049 }
2050out_unlock:
2051 if (pt_prev) {
2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054 else
2055 kfree_skb(skb2);
2056 }
2057 rcu_read_unlock();
2058}
2059EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060
2061/**
2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063 * @dev: Network device
2064 * @txq: number of queues available
2065 *
2066 * If real_num_tx_queues is changed the tc mappings may no longer be
2067 * valid. To resolve this verify the tc mapping remains valid and if
2068 * not NULL the mapping. With no priorities mapping to this
2069 * offset/count pair it will no longer be used. In the worst case TC0
2070 * is invalid nothing can be done so disable priority mappings. If is
2071 * expected that drivers will fix this mapping if they can before
2072 * calling netif_set_real_num_tx_queues.
2073 */
2074static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075{
2076 int i;
2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078
2079 /* If TC0 is invalidated disable TC mapping */
2080 if (tc->offset + tc->count > txq) {
2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082 dev->num_tc = 0;
2083 return;
2084 }
2085
2086 /* Invalidated prio to tc mappings set to TC0 */
2087 for (i = 1; i < TC_BITMASK + 1; i++) {
2088 int q = netdev_get_prio_tc_map(dev, i);
2089
2090 tc = &dev->tc_to_txq[q];
2091 if (tc->offset + tc->count > txq) {
2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093 i, q);
2094 netdev_set_prio_tc_map(dev, i, 0);
2095 }
2096 }
2097}
2098
2099int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100{
2101 if (dev->num_tc) {
2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 int i;
2104
2105 /* walk through the TCs and see if it falls into any of them */
2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107 if ((txq - tc->offset) < tc->count)
2108 return i;
2109 }
2110
2111 /* didn't find it, just return -1 to indicate no match */
2112 return -1;
2113 }
2114
2115 return 0;
2116}
2117EXPORT_SYMBOL(netdev_txq_to_tc);
2118
2119#ifdef CONFIG_XPS
2120struct static_key xps_needed __read_mostly;
2121EXPORT_SYMBOL(xps_needed);
2122struct static_key xps_rxqs_needed __read_mostly;
2123EXPORT_SYMBOL(xps_rxqs_needed);
2124static DEFINE_MUTEX(xps_map_mutex);
2125#define xmap_dereference(P) \
2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127
2128static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129 int tci, u16 index)
2130{
2131 struct xps_map *map = NULL;
2132 int pos;
2133
2134 if (dev_maps)
2135 map = xmap_dereference(dev_maps->attr_map[tci]);
2136 if (!map)
2137 return false;
2138
2139 for (pos = map->len; pos--;) {
2140 if (map->queues[pos] != index)
2141 continue;
2142
2143 if (map->len > 1) {
2144 map->queues[pos] = map->queues[--map->len];
2145 break;
2146 }
2147
2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149 kfree_rcu(map, rcu);
2150 return false;
2151 }
2152
2153 return true;
2154}
2155
2156static bool remove_xps_queue_cpu(struct net_device *dev,
2157 struct xps_dev_maps *dev_maps,
2158 int cpu, u16 offset, u16 count)
2159{
2160 int num_tc = dev->num_tc ? : 1;
2161 bool active = false;
2162 int tci;
2163
2164 for (tci = cpu * num_tc; num_tc--; tci++) {
2165 int i, j;
2166
2167 for (i = count, j = offset; i--; j++) {
2168 if (!remove_xps_queue(dev_maps, tci, j))
2169 break;
2170 }
2171
2172 active |= i < 0;
2173 }
2174
2175 return active;
2176}
2177
2178static void reset_xps_maps(struct net_device *dev,
2179 struct xps_dev_maps *dev_maps,
2180 bool is_rxqs_map)
2181{
2182 if (is_rxqs_map) {
2183 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2184 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2185 } else {
2186 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2187 }
2188 static_key_slow_dec_cpuslocked(&xps_needed);
2189 kfree_rcu(dev_maps, rcu);
2190}
2191
2192static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2193 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2194 u16 offset, u16 count, bool is_rxqs_map)
2195{
2196 bool active = false;
2197 int i, j;
2198
2199 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2200 j < nr_ids;)
2201 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2202 count);
2203 if (!active)
2204 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2205
2206 if (!is_rxqs_map) {
2207 for (i = offset + (count - 1); count--; i--) {
2208 netdev_queue_numa_node_write(
2209 netdev_get_tx_queue(dev, i),
2210 NUMA_NO_NODE);
2211 }
2212 }
2213}
2214
2215static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2216 u16 count)
2217{
2218 const unsigned long *possible_mask = NULL;
2219 struct xps_dev_maps *dev_maps;
2220 unsigned int nr_ids;
2221
2222 if (!static_key_false(&xps_needed))
2223 return;
2224
2225 cpus_read_lock();
2226 mutex_lock(&xps_map_mutex);
2227
2228 if (static_key_false(&xps_rxqs_needed)) {
2229 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2230 if (dev_maps) {
2231 nr_ids = dev->num_rx_queues;
2232 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2233 offset, count, true);
2234 }
2235 }
2236
2237 dev_maps = xmap_dereference(dev->xps_cpus_map);
2238 if (!dev_maps)
2239 goto out_no_maps;
2240
2241 if (num_possible_cpus() > 1)
2242 possible_mask = cpumask_bits(cpu_possible_mask);
2243 nr_ids = nr_cpu_ids;
2244 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2245 false);
2246
2247out_no_maps:
2248 mutex_unlock(&xps_map_mutex);
2249 cpus_read_unlock();
2250}
2251
2252static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2253{
2254 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2255}
2256
2257static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2258 u16 index, bool is_rxqs_map)
2259{
2260 struct xps_map *new_map;
2261 int alloc_len = XPS_MIN_MAP_ALLOC;
2262 int i, pos;
2263
2264 for (pos = 0; map && pos < map->len; pos++) {
2265 if (map->queues[pos] != index)
2266 continue;
2267 return map;
2268 }
2269
2270 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2271 if (map) {
2272 if (pos < map->alloc_len)
2273 return map;
2274
2275 alloc_len = map->alloc_len * 2;
2276 }
2277
2278 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2279 * map
2280 */
2281 if (is_rxqs_map)
2282 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2283 else
2284 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2285 cpu_to_node(attr_index));
2286 if (!new_map)
2287 return NULL;
2288
2289 for (i = 0; i < pos; i++)
2290 new_map->queues[i] = map->queues[i];
2291 new_map->alloc_len = alloc_len;
2292 new_map->len = pos;
2293
2294 return new_map;
2295}
2296
2297/* Must be called under cpus_read_lock */
2298int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2299 u16 index, bool is_rxqs_map)
2300{
2301 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2302 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2303 int i, j, tci, numa_node_id = -2;
2304 int maps_sz, num_tc = 1, tc = 0;
2305 struct xps_map *map, *new_map;
2306 bool active = false;
2307 unsigned int nr_ids;
2308
2309 if (dev->num_tc) {
2310 /* Do not allow XPS on subordinate device directly */
2311 num_tc = dev->num_tc;
2312 if (num_tc < 0)
2313 return -EINVAL;
2314
2315 /* If queue belongs to subordinate dev use its map */
2316 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2317
2318 tc = netdev_txq_to_tc(dev, index);
2319 if (tc < 0)
2320 return -EINVAL;
2321 }
2322
2323 mutex_lock(&xps_map_mutex);
2324 if (is_rxqs_map) {
2325 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2326 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2327 nr_ids = dev->num_rx_queues;
2328 } else {
2329 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2330 if (num_possible_cpus() > 1) {
2331 online_mask = cpumask_bits(cpu_online_mask);
2332 possible_mask = cpumask_bits(cpu_possible_mask);
2333 }
2334 dev_maps = xmap_dereference(dev->xps_cpus_map);
2335 nr_ids = nr_cpu_ids;
2336 }
2337
2338 if (maps_sz < L1_CACHE_BYTES)
2339 maps_sz = L1_CACHE_BYTES;
2340
2341 /* allocate memory for queue storage */
2342 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2343 j < nr_ids;) {
2344 if (!new_dev_maps)
2345 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2346 if (!new_dev_maps) {
2347 mutex_unlock(&xps_map_mutex);
2348 return -ENOMEM;
2349 }
2350
2351 tci = j * num_tc + tc;
2352 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2353 NULL;
2354
2355 map = expand_xps_map(map, j, index, is_rxqs_map);
2356 if (!map)
2357 goto error;
2358
2359 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2360 }
2361
2362 if (!new_dev_maps)
2363 goto out_no_new_maps;
2364
2365 if (!dev_maps) {
2366 /* Increment static keys at most once per type */
2367 static_key_slow_inc_cpuslocked(&xps_needed);
2368 if (is_rxqs_map)
2369 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2370 }
2371
2372 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373 j < nr_ids;) {
2374 /* copy maps belonging to foreign traffic classes */
2375 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2376 /* fill in the new device map from the old device map */
2377 map = xmap_dereference(dev_maps->attr_map[tci]);
2378 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2379 }
2380
2381 /* We need to explicitly update tci as prevous loop
2382 * could break out early if dev_maps is NULL.
2383 */
2384 tci = j * num_tc + tc;
2385
2386 if (netif_attr_test_mask(j, mask, nr_ids) &&
2387 netif_attr_test_online(j, online_mask, nr_ids)) {
2388 /* add tx-queue to CPU/rx-queue maps */
2389 int pos = 0;
2390
2391 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2392 while ((pos < map->len) && (map->queues[pos] != index))
2393 pos++;
2394
2395 if (pos == map->len)
2396 map->queues[map->len++] = index;
2397#ifdef CONFIG_NUMA
2398 if (!is_rxqs_map) {
2399 if (numa_node_id == -2)
2400 numa_node_id = cpu_to_node(j);
2401 else if (numa_node_id != cpu_to_node(j))
2402 numa_node_id = -1;
2403 }
2404#endif
2405 } else if (dev_maps) {
2406 /* fill in the new device map from the old device map */
2407 map = xmap_dereference(dev_maps->attr_map[tci]);
2408 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2409 }
2410
2411 /* copy maps belonging to foreign traffic classes */
2412 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2413 /* fill in the new device map from the old device map */
2414 map = xmap_dereference(dev_maps->attr_map[tci]);
2415 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2416 }
2417 }
2418
2419 if (is_rxqs_map)
2420 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2421 else
2422 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2423
2424 /* Cleanup old maps */
2425 if (!dev_maps)
2426 goto out_no_old_maps;
2427
2428 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2429 j < nr_ids;) {
2430 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2431 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2432 map = xmap_dereference(dev_maps->attr_map[tci]);
2433 if (map && map != new_map)
2434 kfree_rcu(map, rcu);
2435 }
2436 }
2437
2438 kfree_rcu(dev_maps, rcu);
2439
2440out_no_old_maps:
2441 dev_maps = new_dev_maps;
2442 active = true;
2443
2444out_no_new_maps:
2445 if (!is_rxqs_map) {
2446 /* update Tx queue numa node */
2447 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2448 (numa_node_id >= 0) ?
2449 numa_node_id : NUMA_NO_NODE);
2450 }
2451
2452 if (!dev_maps)
2453 goto out_no_maps;
2454
2455 /* removes tx-queue from unused CPUs/rx-queues */
2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 j < nr_ids;) {
2458 for (i = tc, tci = j * num_tc; i--; tci++)
2459 active |= remove_xps_queue(dev_maps, tci, index);
2460 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2461 !netif_attr_test_online(j, online_mask, nr_ids))
2462 active |= remove_xps_queue(dev_maps, tci, index);
2463 for (i = num_tc - tc, tci++; --i; tci++)
2464 active |= remove_xps_queue(dev_maps, tci, index);
2465 }
2466
2467 /* free map if not active */
2468 if (!active)
2469 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2470
2471out_no_maps:
2472 mutex_unlock(&xps_map_mutex);
2473
2474 return 0;
2475error:
2476 /* remove any maps that we added */
2477 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2478 j < nr_ids;) {
2479 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2480 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2481 map = dev_maps ?
2482 xmap_dereference(dev_maps->attr_map[tci]) :
2483 NULL;
2484 if (new_map && new_map != map)
2485 kfree(new_map);
2486 }
2487 }
2488
2489 mutex_unlock(&xps_map_mutex);
2490
2491 kfree(new_dev_maps);
2492 return -ENOMEM;
2493}
2494EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2495
2496int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2497 u16 index)
2498{
2499 int ret;
2500
2501 cpus_read_lock();
2502 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2503 cpus_read_unlock();
2504
2505 return ret;
2506}
2507EXPORT_SYMBOL(netif_set_xps_queue);
2508
2509#endif
2510static void netdev_unbind_all_sb_channels(struct net_device *dev)
2511{
2512 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2513
2514 /* Unbind any subordinate channels */
2515 while (txq-- != &dev->_tx[0]) {
2516 if (txq->sb_dev)
2517 netdev_unbind_sb_channel(dev, txq->sb_dev);
2518 }
2519}
2520
2521void netdev_reset_tc(struct net_device *dev)
2522{
2523#ifdef CONFIG_XPS
2524 netif_reset_xps_queues_gt(dev, 0);
2525#endif
2526 netdev_unbind_all_sb_channels(dev);
2527
2528 /* Reset TC configuration of device */
2529 dev->num_tc = 0;
2530 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2531 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2532}
2533EXPORT_SYMBOL(netdev_reset_tc);
2534
2535int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2536{
2537 if (tc >= dev->num_tc)
2538 return -EINVAL;
2539
2540#ifdef CONFIG_XPS
2541 netif_reset_xps_queues(dev, offset, count);
2542#endif
2543 dev->tc_to_txq[tc].count = count;
2544 dev->tc_to_txq[tc].offset = offset;
2545 return 0;
2546}
2547EXPORT_SYMBOL(netdev_set_tc_queue);
2548
2549int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2550{
2551 if (num_tc > TC_MAX_QUEUE)
2552 return -EINVAL;
2553
2554#ifdef CONFIG_XPS
2555 netif_reset_xps_queues_gt(dev, 0);
2556#endif
2557 netdev_unbind_all_sb_channels(dev);
2558
2559 dev->num_tc = num_tc;
2560 return 0;
2561}
2562EXPORT_SYMBOL(netdev_set_num_tc);
2563
2564void netdev_unbind_sb_channel(struct net_device *dev,
2565 struct net_device *sb_dev)
2566{
2567 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2568
2569#ifdef CONFIG_XPS
2570 netif_reset_xps_queues_gt(sb_dev, 0);
2571#endif
2572 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2573 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2574
2575 while (txq-- != &dev->_tx[0]) {
2576 if (txq->sb_dev == sb_dev)
2577 txq->sb_dev = NULL;
2578 }
2579}
2580EXPORT_SYMBOL(netdev_unbind_sb_channel);
2581
2582int netdev_bind_sb_channel_queue(struct net_device *dev,
2583 struct net_device *sb_dev,
2584 u8 tc, u16 count, u16 offset)
2585{
2586 /* Make certain the sb_dev and dev are already configured */
2587 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2588 return -EINVAL;
2589
2590 /* We cannot hand out queues we don't have */
2591 if ((offset + count) > dev->real_num_tx_queues)
2592 return -EINVAL;
2593
2594 /* Record the mapping */
2595 sb_dev->tc_to_txq[tc].count = count;
2596 sb_dev->tc_to_txq[tc].offset = offset;
2597
2598 /* Provide a way for Tx queue to find the tc_to_txq map or
2599 * XPS map for itself.
2600 */
2601 while (count--)
2602 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2603
2604 return 0;
2605}
2606EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2607
2608int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2609{
2610 /* Do not use a multiqueue device to represent a subordinate channel */
2611 if (netif_is_multiqueue(dev))
2612 return -ENODEV;
2613
2614 /* We allow channels 1 - 32767 to be used for subordinate channels.
2615 * Channel 0 is meant to be "native" mode and used only to represent
2616 * the main root device. We allow writing 0 to reset the device back
2617 * to normal mode after being used as a subordinate channel.
2618 */
2619 if (channel > S16_MAX)
2620 return -EINVAL;
2621
2622 dev->num_tc = -channel;
2623
2624 return 0;
2625}
2626EXPORT_SYMBOL(netdev_set_sb_channel);
2627
2628/*
2629 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2630 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2631 */
2632int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2633{
2634 bool disabling;
2635 int rc;
2636
2637 disabling = txq < dev->real_num_tx_queues;
2638
2639 if (txq < 1 || txq > dev->num_tx_queues)
2640 return -EINVAL;
2641
2642 if (dev->reg_state == NETREG_REGISTERED ||
2643 dev->reg_state == NETREG_UNREGISTERING) {
2644 ASSERT_RTNL();
2645
2646 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2647 txq);
2648 if (rc)
2649 return rc;
2650
2651 if (dev->num_tc)
2652 netif_setup_tc(dev, txq);
2653
2654 dev->real_num_tx_queues = txq;
2655
2656 if (disabling) {
2657 synchronize_net();
2658 qdisc_reset_all_tx_gt(dev, txq);
2659#ifdef CONFIG_XPS
2660 netif_reset_xps_queues_gt(dev, txq);
2661#endif
2662 }
2663 } else {
2664 dev->real_num_tx_queues = txq;
2665 }
2666
2667 return 0;
2668}
2669EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2670
2671#ifdef CONFIG_SYSFS
2672/**
2673 * netif_set_real_num_rx_queues - set actual number of RX queues used
2674 * @dev: Network device
2675 * @rxq: Actual number of RX queues
2676 *
2677 * This must be called either with the rtnl_lock held or before
2678 * registration of the net device. Returns 0 on success, or a
2679 * negative error code. If called before registration, it always
2680 * succeeds.
2681 */
2682int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2683{
2684 int rc;
2685
2686 if (rxq < 1 || rxq > dev->num_rx_queues)
2687 return -EINVAL;
2688
2689 if (dev->reg_state == NETREG_REGISTERED) {
2690 ASSERT_RTNL();
2691
2692 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2693 rxq);
2694 if (rc)
2695 return rc;
2696 }
2697
2698 dev->real_num_rx_queues = rxq;
2699 return 0;
2700}
2701EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2702#endif
2703
2704/**
2705 * netif_get_num_default_rss_queues - default number of RSS queues
2706 *
2707 * This routine should set an upper limit on the number of RSS queues
2708 * used by default by multiqueue devices.
2709 */
2710int netif_get_num_default_rss_queues(void)
2711{
2712 return is_kdump_kernel() ?
2713 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2714}
2715EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2716
2717static void __netif_reschedule(struct Qdisc *q)
2718{
2719 struct softnet_data *sd;
2720 unsigned long flags;
2721
2722 local_irq_save(flags);
2723 sd = this_cpu_ptr(&softnet_data);
2724 q->next_sched = NULL;
2725 *sd->output_queue_tailp = q;
2726 sd->output_queue_tailp = &q->next_sched;
2727 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2728 local_irq_restore(flags);
2729}
2730
2731void __netif_schedule(struct Qdisc *q)
2732{
2733 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2734 __netif_reschedule(q);
2735}
2736EXPORT_SYMBOL(__netif_schedule);
2737
2738struct dev_kfree_skb_cb {
2739 enum skb_free_reason reason;
2740};
2741
2742static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2743{
2744 return (struct dev_kfree_skb_cb *)skb->cb;
2745}
2746
2747void netif_schedule_queue(struct netdev_queue *txq)
2748{
2749 rcu_read_lock();
2750 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2751 struct Qdisc *q = rcu_dereference(txq->qdisc);
2752
2753 __netif_schedule(q);
2754 }
2755 rcu_read_unlock();
2756}
2757EXPORT_SYMBOL(netif_schedule_queue);
2758
2759void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2760{
2761 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2762 struct Qdisc *q;
2763
2764 rcu_read_lock();
2765 q = rcu_dereference(dev_queue->qdisc);
2766 __netif_schedule(q);
2767 rcu_read_unlock();
2768 }
2769}
2770EXPORT_SYMBOL(netif_tx_wake_queue);
2771
2772void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2773{
2774 unsigned long flags;
2775
2776 if (unlikely(!skb))
2777 return;
2778
2779 if (likely(refcount_read(&skb->users) == 1)) {
2780 smp_rmb();
2781 refcount_set(&skb->users, 0);
2782 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2783 return;
2784 }
2785 get_kfree_skb_cb(skb)->reason = reason;
2786 local_irq_save(flags);
2787 skb->next = __this_cpu_read(softnet_data.completion_queue);
2788 __this_cpu_write(softnet_data.completion_queue, skb);
2789 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2790 local_irq_restore(flags);
2791}
2792EXPORT_SYMBOL(__dev_kfree_skb_irq);
2793
2794void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2795{
2796 if (in_irq() || irqs_disabled())
2797 __dev_kfree_skb_irq(skb, reason);
2798 else
2799 dev_kfree_skb(skb);
2800}
2801EXPORT_SYMBOL(__dev_kfree_skb_any);
2802
2803
2804/**
2805 * netif_device_detach - mark device as removed
2806 * @dev: network device
2807 *
2808 * Mark device as removed from system and therefore no longer available.
2809 */
2810void netif_device_detach(struct net_device *dev)
2811{
2812 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2813 netif_running(dev)) {
2814 netif_tx_stop_all_queues(dev);
2815 }
2816}
2817EXPORT_SYMBOL(netif_device_detach);
2818
2819/**
2820 * netif_device_attach - mark device as attached
2821 * @dev: network device
2822 *
2823 * Mark device as attached from system and restart if needed.
2824 */
2825void netif_device_attach(struct net_device *dev)
2826{
2827 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828 netif_running(dev)) {
2829 netif_tx_wake_all_queues(dev);
2830 __netdev_watchdog_up(dev);
2831 }
2832}
2833EXPORT_SYMBOL(netif_device_attach);
2834
2835/*
2836 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2837 * to be used as a distribution range.
2838 */
2839static u16 skb_tx_hash(const struct net_device *dev,
2840 const struct net_device *sb_dev,
2841 struct sk_buff *skb)
2842{
2843 u32 hash;
2844 u16 qoffset = 0;
2845 u16 qcount = dev->real_num_tx_queues;
2846
2847 if (dev->num_tc) {
2848 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2849
2850 qoffset = sb_dev->tc_to_txq[tc].offset;
2851 qcount = sb_dev->tc_to_txq[tc].count;
2852 }
2853
2854 if (skb_rx_queue_recorded(skb)) {
2855 hash = skb_get_rx_queue(skb);
2856 while (unlikely(hash >= qcount))
2857 hash -= qcount;
2858 return hash + qoffset;
2859 }
2860
2861 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2862}
2863
2864static void skb_warn_bad_offload(const struct sk_buff *skb)
2865{
2866 static const netdev_features_t null_features;
2867 struct net_device *dev = skb->dev;
2868 const char *name = "";
2869
2870 if (!net_ratelimit())
2871 return;
2872
2873 if (dev) {
2874 if (dev->dev.parent)
2875 name = dev_driver_string(dev->dev.parent);
2876 else
2877 name = netdev_name(dev);
2878 }
2879 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2880 "gso_type=%d ip_summed=%d\n",
2881 name, dev ? &dev->features : &null_features,
2882 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2883 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2884 skb_shinfo(skb)->gso_type, skb->ip_summed);
2885}
2886
2887/*
2888 * Invalidate hardware checksum when packet is to be mangled, and
2889 * complete checksum manually on outgoing path.
2890 */
2891int skb_checksum_help(struct sk_buff *skb)
2892{
2893 __wsum csum;
2894 int ret = 0, offset;
2895
2896 if (skb->ip_summed == CHECKSUM_COMPLETE)
2897 goto out_set_summed;
2898
2899 if (unlikely(skb_shinfo(skb)->gso_size)) {
2900 skb_warn_bad_offload(skb);
2901 return -EINVAL;
2902 }
2903
2904 /* Before computing a checksum, we should make sure no frag could
2905 * be modified by an external entity : checksum could be wrong.
2906 */
2907 if (skb_has_shared_frag(skb)) {
2908 ret = __skb_linearize(skb);
2909 if (ret)
2910 goto out;
2911 }
2912
2913 offset = skb_checksum_start_offset(skb);
2914 BUG_ON(offset >= skb_headlen(skb));
2915 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2916
2917 offset += skb->csum_offset;
2918 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2919
2920 if (skb_cloned(skb) &&
2921 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2922 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923 if (ret)
2924 goto out;
2925 }
2926
2927 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2928out_set_summed:
2929 skb->ip_summed = CHECKSUM_NONE;
2930out:
2931 return ret;
2932}
2933EXPORT_SYMBOL(skb_checksum_help);
2934
2935int skb_crc32c_csum_help(struct sk_buff *skb)
2936{
2937 __le32 crc32c_csum;
2938 int ret = 0, offset, start;
2939
2940 if (skb->ip_summed != CHECKSUM_PARTIAL)
2941 goto out;
2942
2943 if (unlikely(skb_is_gso(skb)))
2944 goto out;
2945
2946 /* Before computing a checksum, we should make sure no frag could
2947 * be modified by an external entity : checksum could be wrong.
2948 */
2949 if (unlikely(skb_has_shared_frag(skb))) {
2950 ret = __skb_linearize(skb);
2951 if (ret)
2952 goto out;
2953 }
2954 start = skb_checksum_start_offset(skb);
2955 offset = start + offsetof(struct sctphdr, checksum);
2956 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2957 ret = -EINVAL;
2958 goto out;
2959 }
2960 if (skb_cloned(skb) &&
2961 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2962 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2963 if (ret)
2964 goto out;
2965 }
2966 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2967 skb->len - start, ~(__u32)0,
2968 crc32c_csum_stub));
2969 *(__le32 *)(skb->data + offset) = crc32c_csum;
2970 skb->ip_summed = CHECKSUM_NONE;
2971 skb->csum_not_inet = 0;
2972out:
2973 return ret;
2974}
2975
2976__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2977{
2978 __be16 type = skb->protocol;
2979
2980 /* Tunnel gso handlers can set protocol to ethernet. */
2981 if (type == htons(ETH_P_TEB)) {
2982 struct ethhdr *eth;
2983
2984 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2985 return 0;
2986
2987 eth = (struct ethhdr *)skb->data;
2988 type = eth->h_proto;
2989 }
2990
2991 return __vlan_get_protocol(skb, type, depth);
2992}
2993
2994/**
2995 * skb_mac_gso_segment - mac layer segmentation handler.
2996 * @skb: buffer to segment
2997 * @features: features for the output path (see dev->features)
2998 */
2999struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3000 netdev_features_t features)
3001{
3002 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3003 struct packet_offload *ptype;
3004 int vlan_depth = skb->mac_len;
3005 __be16 type = skb_network_protocol(skb, &vlan_depth);
3006
3007 if (unlikely(!type))
3008 return ERR_PTR(-EINVAL);
3009
3010 __skb_pull(skb, vlan_depth);
3011
3012 rcu_read_lock();
3013 list_for_each_entry_rcu(ptype, &offload_base, list) {
3014 if (ptype->type == type && ptype->callbacks.gso_segment) {
3015 segs = ptype->callbacks.gso_segment(skb, features);
3016 break;
3017 }
3018 }
3019 rcu_read_unlock();
3020
3021 __skb_push(skb, skb->data - skb_mac_header(skb));
3022
3023 return segs;
3024}
3025EXPORT_SYMBOL(skb_mac_gso_segment);
3026
3027
3028/* openvswitch calls this on rx path, so we need a different check.
3029 */
3030static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3031{
3032 if (tx_path)
3033 return skb->ip_summed != CHECKSUM_PARTIAL &&
3034 skb->ip_summed != CHECKSUM_UNNECESSARY;
3035
3036 return skb->ip_summed == CHECKSUM_NONE;
3037}
3038
3039/**
3040 * __skb_gso_segment - Perform segmentation on skb.
3041 * @skb: buffer to segment
3042 * @features: features for the output path (see dev->features)
3043 * @tx_path: whether it is called in TX path
3044 *
3045 * This function segments the given skb and returns a list of segments.
3046 *
3047 * It may return NULL if the skb requires no segmentation. This is
3048 * only possible when GSO is used for verifying header integrity.
3049 *
3050 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051 */
3052struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3053 netdev_features_t features, bool tx_path)
3054{
3055 struct sk_buff *segs;
3056
3057 if (unlikely(skb_needs_check(skb, tx_path))) {
3058 int err;
3059
3060 /* We're going to init ->check field in TCP or UDP header */
3061 err = skb_cow_head(skb, 0);
3062 if (err < 0)
3063 return ERR_PTR(err);
3064 }
3065
3066 /* Only report GSO partial support if it will enable us to
3067 * support segmentation on this frame without needing additional
3068 * work.
3069 */
3070 if (features & NETIF_F_GSO_PARTIAL) {
3071 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3072 struct net_device *dev = skb->dev;
3073
3074 partial_features |= dev->features & dev->gso_partial_features;
3075 if (!skb_gso_ok(skb, features | partial_features))
3076 features &= ~NETIF_F_GSO_PARTIAL;
3077 }
3078
3079 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3080 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3081
3082 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3083 SKB_GSO_CB(skb)->encap_level = 0;
3084
3085 skb_reset_mac_header(skb);
3086 skb_reset_mac_len(skb);
3087
3088 segs = skb_mac_gso_segment(skb, features);
3089
3090 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3091 skb_warn_bad_offload(skb);
3092
3093 return segs;
3094}
3095EXPORT_SYMBOL(__skb_gso_segment);
3096
3097/* Take action when hardware reception checksum errors are detected. */
3098#ifdef CONFIG_BUG
3099void netdev_rx_csum_fault(struct net_device *dev)
3100{
3101 if (net_ratelimit()) {
3102 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3103 dump_stack();
3104 }
3105}
3106EXPORT_SYMBOL(netdev_rx_csum_fault);
3107#endif
3108
3109/* XXX: check that highmem exists at all on the given machine. */
3110static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3111{
3112#ifdef CONFIG_HIGHMEM
3113 int i;
3114
3115 if (!(dev->features & NETIF_F_HIGHDMA)) {
3116 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3117 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3118
3119 if (PageHighMem(skb_frag_page(frag)))
3120 return 1;
3121 }
3122 }
3123#endif
3124 return 0;
3125}
3126
3127/* If MPLS offload request, verify we are testing hardware MPLS features
3128 * instead of standard features for the netdev.
3129 */
3130#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3131static netdev_features_t net_mpls_features(struct sk_buff *skb,
3132 netdev_features_t features,
3133 __be16 type)
3134{
3135 if (eth_p_mpls(type))
3136 features &= skb->dev->mpls_features;
3137
3138 return features;
3139}
3140#else
3141static netdev_features_t net_mpls_features(struct sk_buff *skb,
3142 netdev_features_t features,
3143 __be16 type)
3144{
3145 return features;
3146}
3147#endif
3148
3149static netdev_features_t harmonize_features(struct sk_buff *skb,
3150 netdev_features_t features)
3151{
3152 int tmp;
3153 __be16 type;
3154
3155 type = skb_network_protocol(skb, &tmp);
3156 features = net_mpls_features(skb, features, type);
3157
3158 if (skb->ip_summed != CHECKSUM_NONE &&
3159 !can_checksum_protocol(features, type)) {
3160 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3161 }
3162 if (illegal_highdma(skb->dev, skb))
3163 features &= ~NETIF_F_SG;
3164
3165 return features;
3166}
3167
3168netdev_features_t passthru_features_check(struct sk_buff *skb,
3169 struct net_device *dev,
3170 netdev_features_t features)
3171{
3172 return features;
3173}
3174EXPORT_SYMBOL(passthru_features_check);
3175
3176static netdev_features_t dflt_features_check(struct sk_buff *skb,
3177 struct net_device *dev,
3178 netdev_features_t features)
3179{
3180 return vlan_features_check(skb, features);
3181}
3182
3183static netdev_features_t gso_features_check(const struct sk_buff *skb,
3184 struct net_device *dev,
3185 netdev_features_t features)
3186{
3187 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3188
3189 if (gso_segs > dev->gso_max_segs)
3190 return features & ~NETIF_F_GSO_MASK;
3191
3192 /* Support for GSO partial features requires software
3193 * intervention before we can actually process the packets
3194 * so we need to strip support for any partial features now
3195 * and we can pull them back in after we have partially
3196 * segmented the frame.
3197 */
3198 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3199 features &= ~dev->gso_partial_features;
3200
3201 /* Make sure to clear the IPv4 ID mangling feature if the
3202 * IPv4 header has the potential to be fragmented.
3203 */
3204 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3205 struct iphdr *iph = skb->encapsulation ?
3206 inner_ip_hdr(skb) : ip_hdr(skb);
3207
3208 if (!(iph->frag_off & htons(IP_DF)))
3209 features &= ~NETIF_F_TSO_MANGLEID;
3210 }
3211
3212 return features;
3213}
3214
3215netdev_features_t netif_skb_features(struct sk_buff *skb)
3216{
3217 struct net_device *dev = skb->dev;
3218 netdev_features_t features = dev->features;
3219
3220 if (skb_is_gso(skb))
3221 features = gso_features_check(skb, dev, features);
3222
3223 /* If encapsulation offload request, verify we are testing
3224 * hardware encapsulation features instead of standard
3225 * features for the netdev
3226 */
3227 if (skb->encapsulation)
3228 features &= dev->hw_enc_features;
3229
3230 if (skb_vlan_tagged(skb))
3231 features = netdev_intersect_features(features,
3232 dev->vlan_features |
3233 NETIF_F_HW_VLAN_CTAG_TX |
3234 NETIF_F_HW_VLAN_STAG_TX);
3235
3236 if (dev->netdev_ops->ndo_features_check)
3237 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3238 features);
3239 else
3240 features &= dflt_features_check(skb, dev, features);
3241
3242 return harmonize_features(skb, features);
3243}
3244EXPORT_SYMBOL(netif_skb_features);
3245
3246static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3247 struct netdev_queue *txq, bool more)
3248{
3249 unsigned int len;
3250 int rc;
3251
3252 if (dev_nit_active(dev))
3253 dev_queue_xmit_nit(skb, dev);
3254
3255 len = skb->len;
3256 trace_net_dev_start_xmit(skb, dev);
3257 rc = netdev_start_xmit(skb, dev, txq, more);
3258 trace_net_dev_xmit(skb, rc, dev, len);
3259
3260 return rc;
3261}
3262
3263struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3264 struct netdev_queue *txq, int *ret)
3265{
3266 struct sk_buff *skb = first;
3267 int rc = NETDEV_TX_OK;
3268
3269 while (skb) {
3270 struct sk_buff *next = skb->next;
3271
3272 skb_mark_not_on_list(skb);
3273 rc = xmit_one(skb, dev, txq, next != NULL);
3274 if (unlikely(!dev_xmit_complete(rc))) {
3275 skb->next = next;
3276 goto out;
3277 }
3278
3279 skb = next;
3280 if (netif_tx_queue_stopped(txq) && skb) {
3281 rc = NETDEV_TX_BUSY;
3282 break;
3283 }
3284 }
3285
3286out:
3287 *ret = rc;
3288 return skb;
3289}
3290
3291static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3292 netdev_features_t features)
3293{
3294 if (skb_vlan_tag_present(skb) &&
3295 !vlan_hw_offload_capable(features, skb->vlan_proto))
3296 skb = __vlan_hwaccel_push_inside(skb);
3297 return skb;
3298}
3299
3300int skb_csum_hwoffload_help(struct sk_buff *skb,
3301 const netdev_features_t features)
3302{
3303 if (unlikely(skb->csum_not_inet))
3304 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3305 skb_crc32c_csum_help(skb);
3306
3307 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3308}
3309EXPORT_SYMBOL(skb_csum_hwoffload_help);
3310
3311static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3312{
3313 netdev_features_t features;
3314
3315 features = netif_skb_features(skb);
3316 skb = validate_xmit_vlan(skb, features);
3317 if (unlikely(!skb))
3318 goto out_null;
3319
3320 skb = sk_validate_xmit_skb(skb, dev);
3321 if (unlikely(!skb))
3322 goto out_null;
3323
3324 if (netif_needs_gso(skb, features)) {
3325 struct sk_buff *segs;
3326
3327 segs = skb_gso_segment(skb, features);
3328 if (IS_ERR(segs)) {
3329 goto out_kfree_skb;
3330 } else if (segs) {
3331 consume_skb(skb);
3332 skb = segs;
3333 }
3334 } else {
3335 if (skb_needs_linearize(skb, features) &&
3336 __skb_linearize(skb))
3337 goto out_kfree_skb;
3338
3339 /* If packet is not checksummed and device does not
3340 * support checksumming for this protocol, complete
3341 * checksumming here.
3342 */
3343 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3344 if (skb->encapsulation)
3345 skb_set_inner_transport_header(skb,
3346 skb_checksum_start_offset(skb));
3347 else
3348 skb_set_transport_header(skb,
3349 skb_checksum_start_offset(skb));
3350 if (skb_csum_hwoffload_help(skb, features))
3351 goto out_kfree_skb;
3352 }
3353 }
3354
3355 skb = validate_xmit_xfrm(skb, features, again);
3356
3357 return skb;
3358
3359out_kfree_skb:
3360 kfree_skb(skb);
3361out_null:
3362 atomic_long_inc(&dev->tx_dropped);
3363 return NULL;
3364}
3365
3366struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3367{
3368 struct sk_buff *next, *head = NULL, *tail;
3369
3370 for (; skb != NULL; skb = next) {
3371 next = skb->next;
3372 skb_mark_not_on_list(skb);
3373
3374 /* in case skb wont be segmented, point to itself */
3375 skb->prev = skb;
3376
3377 skb = validate_xmit_skb(skb, dev, again);
3378 if (!skb)
3379 continue;
3380
3381 if (!head)
3382 head = skb;
3383 else
3384 tail->next = skb;
3385 /* If skb was segmented, skb->prev points to
3386 * the last segment. If not, it still contains skb.
3387 */
3388 tail = skb->prev;
3389 }
3390 return head;
3391}
3392EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3393
3394static void qdisc_pkt_len_init(struct sk_buff *skb)
3395{
3396 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3397
3398 qdisc_skb_cb(skb)->pkt_len = skb->len;
3399
3400 /* To get more precise estimation of bytes sent on wire,
3401 * we add to pkt_len the headers size of all segments
3402 */
3403 if (shinfo->gso_size) {
3404 unsigned int hdr_len;
3405 u16 gso_segs = shinfo->gso_segs;
3406
3407 /* mac layer + network layer */
3408 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3409
3410 /* + transport layer */
3411 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3412 const struct tcphdr *th;
3413 struct tcphdr _tcphdr;
3414
3415 th = skb_header_pointer(skb, skb_transport_offset(skb),
3416 sizeof(_tcphdr), &_tcphdr);
3417 if (likely(th))
3418 hdr_len += __tcp_hdrlen(th);
3419 } else {
3420 struct udphdr _udphdr;
3421
3422 if (skb_header_pointer(skb, skb_transport_offset(skb),
3423 sizeof(_udphdr), &_udphdr))
3424 hdr_len += sizeof(struct udphdr);
3425 }
3426
3427 if (shinfo->gso_type & SKB_GSO_DODGY)
3428 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3429 shinfo->gso_size);
3430
3431 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3432 }
3433}
3434
3435static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3436 struct net_device *dev,
3437 struct netdev_queue *txq)
3438{
3439 spinlock_t *root_lock = qdisc_lock(q);
3440 struct sk_buff *to_free = NULL;
3441 bool contended;
3442 int rc;
3443
3444 qdisc_calculate_pkt_len(skb, q);
3445
3446 if (q->flags & TCQ_F_NOLOCK) {
3447 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3448 __qdisc_drop(skb, &to_free);
3449 rc = NET_XMIT_DROP;
3450 } else {
3451 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3452 qdisc_run(q);
3453 }
3454
3455 if (unlikely(to_free))
3456 kfree_skb_list(to_free);
3457 return rc;
3458 }
3459
3460 /*
3461 * Heuristic to force contended enqueues to serialize on a
3462 * separate lock before trying to get qdisc main lock.
3463 * This permits qdisc->running owner to get the lock more
3464 * often and dequeue packets faster.
3465 */
3466 contended = qdisc_is_running(q);
3467 if (unlikely(contended))
3468 spin_lock(&q->busylock);
3469
3470 spin_lock(root_lock);
3471 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3472 __qdisc_drop(skb, &to_free);
3473 rc = NET_XMIT_DROP;
3474 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3475 qdisc_run_begin(q)) {
3476 /*
3477 * This is a work-conserving queue; there are no old skbs
3478 * waiting to be sent out; and the qdisc is not running -
3479 * xmit the skb directly.
3480 */
3481
3482 qdisc_bstats_update(q, skb);
3483
3484 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3485 if (unlikely(contended)) {
3486 spin_unlock(&q->busylock);
3487 contended = false;
3488 }
3489 __qdisc_run(q);
3490 }
3491
3492 qdisc_run_end(q);
3493 rc = NET_XMIT_SUCCESS;
3494 } else {
3495 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496 if (qdisc_run_begin(q)) {
3497 if (unlikely(contended)) {
3498 spin_unlock(&q->busylock);
3499 contended = false;
3500 }
3501 __qdisc_run(q);
3502 qdisc_run_end(q);
3503 }
3504 }
3505 spin_unlock(root_lock);
3506 if (unlikely(to_free))
3507 kfree_skb_list(to_free);
3508 if (unlikely(contended))
3509 spin_unlock(&q->busylock);
3510 return rc;
3511}
3512
3513#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3514static void skb_update_prio(struct sk_buff *skb)
3515{
3516 const struct netprio_map *map;
3517 const struct sock *sk;
3518 unsigned int prioidx;
3519
3520 if (skb->priority)
3521 return;
3522 map = rcu_dereference_bh(skb->dev->priomap);
3523 if (!map)
3524 return;
3525 sk = skb_to_full_sk(skb);
3526 if (!sk)
3527 return;
3528
3529 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3530
3531 if (prioidx < map->priomap_len)
3532 skb->priority = map->priomap[prioidx];
3533}
3534#else
3535#define skb_update_prio(skb)
3536#endif
3537
3538DEFINE_PER_CPU(int, xmit_recursion);
3539EXPORT_SYMBOL(xmit_recursion);
3540
3541/**
3542 * dev_loopback_xmit - loop back @skb
3543 * @net: network namespace this loopback is happening in
3544 * @sk: sk needed to be a netfilter okfn
3545 * @skb: buffer to transmit
3546 */
3547int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3548{
3549 skb_reset_mac_header(skb);
3550 __skb_pull(skb, skb_network_offset(skb));
3551 skb->pkt_type = PACKET_LOOPBACK;
3552 skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 WARN_ON(!skb_dst(skb));
3554 skb_dst_force(skb);
3555 netif_rx_ni(skb);
3556 return 0;
3557}
3558EXPORT_SYMBOL(dev_loopback_xmit);
3559
3560#ifdef CONFIG_NET_EGRESS
3561static struct sk_buff *
3562sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3563{
3564 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3565 struct tcf_result cl_res;
3566
3567 if (!miniq)
3568 return skb;
3569
3570 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3571 mini_qdisc_bstats_cpu_update(miniq, skb);
3572
3573 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3574 case TC_ACT_OK:
3575 case TC_ACT_RECLASSIFY:
3576 skb->tc_index = TC_H_MIN(cl_res.classid);
3577 break;
3578 case TC_ACT_SHOT:
3579 mini_qdisc_qstats_cpu_drop(miniq);
3580 *ret = NET_XMIT_DROP;
3581 kfree_skb(skb);
3582 return NULL;
3583 case TC_ACT_STOLEN:
3584 case TC_ACT_QUEUED:
3585 case TC_ACT_TRAP:
3586 *ret = NET_XMIT_SUCCESS;
3587 consume_skb(skb);
3588 return NULL;
3589 case TC_ACT_REDIRECT:
3590 /* No need to push/pop skb's mac_header here on egress! */
3591 skb_do_redirect(skb);
3592 *ret = NET_XMIT_SUCCESS;
3593 return NULL;
3594 default:
3595 break;
3596 }
3597
3598 return skb;
3599}
3600#endif /* CONFIG_NET_EGRESS */
3601
3602#ifdef CONFIG_XPS
3603static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3604 struct xps_dev_maps *dev_maps, unsigned int tci)
3605{
3606 struct xps_map *map;
3607 int queue_index = -1;
3608
3609 if (dev->num_tc) {
3610 tci *= dev->num_tc;
3611 tci += netdev_get_prio_tc_map(dev, skb->priority);
3612 }
3613
3614 map = rcu_dereference(dev_maps->attr_map[tci]);
3615 if (map) {
3616 if (map->len == 1)
3617 queue_index = map->queues[0];
3618 else
3619 queue_index = map->queues[reciprocal_scale(
3620 skb_get_hash(skb), map->len)];
3621 if (unlikely(queue_index >= dev->real_num_tx_queues))
3622 queue_index = -1;
3623 }
3624 return queue_index;
3625}
3626#endif
3627
3628static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3629 struct sk_buff *skb)
3630{
3631#ifdef CONFIG_XPS
3632 struct xps_dev_maps *dev_maps;
3633 struct sock *sk = skb->sk;
3634 int queue_index = -1;
3635
3636 if (!static_key_false(&xps_needed))
3637 return -1;
3638
3639 rcu_read_lock();
3640 if (!static_key_false(&xps_rxqs_needed))
3641 goto get_cpus_map;
3642
3643 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3644 if (dev_maps) {
3645 int tci = sk_rx_queue_get(sk);
3646
3647 if (tci >= 0 && tci < dev->num_rx_queues)
3648 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3649 tci);
3650 }
3651
3652get_cpus_map:
3653 if (queue_index < 0) {
3654 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3655 if (dev_maps) {
3656 unsigned int tci = skb->sender_cpu - 1;
3657
3658 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3659 tci);
3660 }
3661 }
3662 rcu_read_unlock();
3663
3664 return queue_index;
3665#else
3666 return -1;
3667#endif
3668}
3669
3670u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3671 struct net_device *sb_dev,
3672 select_queue_fallback_t fallback)
3673{
3674 return 0;
3675}
3676EXPORT_SYMBOL(dev_pick_tx_zero);
3677
3678u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3679 struct net_device *sb_dev,
3680 select_queue_fallback_t fallback)
3681{
3682 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3683}
3684EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3685
3686static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3687 struct net_device *sb_dev)
3688{
3689 struct sock *sk = skb->sk;
3690 int queue_index = sk_tx_queue_get(sk);
3691
3692 sb_dev = sb_dev ? : dev;
3693
3694 if (queue_index < 0 || skb->ooo_okay ||
3695 queue_index >= dev->real_num_tx_queues) {
3696 int new_index = get_xps_queue(dev, sb_dev, skb);
3697
3698 if (new_index < 0)
3699 new_index = skb_tx_hash(dev, sb_dev, skb);
3700
3701 if (queue_index != new_index && sk &&
3702 sk_fullsock(sk) &&
3703 rcu_access_pointer(sk->sk_dst_cache))
3704 sk_tx_queue_set(sk, new_index);
3705
3706 queue_index = new_index;
3707 }
3708
3709 return queue_index;
3710}
3711
3712struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3713 struct sk_buff *skb,
3714 struct net_device *sb_dev)
3715{
3716 int queue_index = 0;
3717
3718#ifdef CONFIG_XPS
3719 u32 sender_cpu = skb->sender_cpu - 1;
3720
3721 if (sender_cpu >= (u32)NR_CPUS)
3722 skb->sender_cpu = raw_smp_processor_id() + 1;
3723#endif
3724
3725 if (dev->real_num_tx_queues != 1) {
3726 const struct net_device_ops *ops = dev->netdev_ops;
3727
3728 if (ops->ndo_select_queue)
3729 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3730 __netdev_pick_tx);
3731 else
3732 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3733
3734 queue_index = netdev_cap_txqueue(dev, queue_index);
3735 }
3736
3737 skb_set_queue_mapping(skb, queue_index);
3738 return netdev_get_tx_queue(dev, queue_index);
3739}
3740
3741/**
3742 * __dev_queue_xmit - transmit a buffer
3743 * @skb: buffer to transmit
3744 * @sb_dev: suboordinate device used for L2 forwarding offload
3745 *
3746 * Queue a buffer for transmission to a network device. The caller must
3747 * have set the device and priority and built the buffer before calling
3748 * this function. The function can be called from an interrupt.
3749 *
3750 * A negative errno code is returned on a failure. A success does not
3751 * guarantee the frame will be transmitted as it may be dropped due
3752 * to congestion or traffic shaping.
3753 *
3754 * -----------------------------------------------------------------------------------
3755 * I notice this method can also return errors from the queue disciplines,
3756 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3757 * be positive.
3758 *
3759 * Regardless of the return value, the skb is consumed, so it is currently
3760 * difficult to retry a send to this method. (You can bump the ref count
3761 * before sending to hold a reference for retry if you are careful.)
3762 *
3763 * When calling this method, interrupts MUST be enabled. This is because
3764 * the BH enable code must have IRQs enabled so that it will not deadlock.
3765 * --BLG
3766 */
3767static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3768{
3769 struct net_device *dev = skb->dev;
3770 struct netdev_queue *txq;
3771 struct Qdisc *q;
3772 int rc = -ENOMEM;
3773 bool again = false;
3774
3775 skb_reset_mac_header(skb);
3776
3777 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3778 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3779
3780 /* Disable soft irqs for various locks below. Also
3781 * stops preemption for RCU.
3782 */
3783 rcu_read_lock_bh();
3784
3785 skb_update_prio(skb);
3786
3787 qdisc_pkt_len_init(skb);
3788#ifdef CONFIG_NET_CLS_ACT
3789 skb->tc_at_ingress = 0;
3790# ifdef CONFIG_NET_EGRESS
3791 if (static_branch_unlikely(&egress_needed_key)) {
3792 skb = sch_handle_egress(skb, &rc, dev);
3793 if (!skb)
3794 goto out;
3795 }
3796# endif
3797#endif
3798 /* If device/qdisc don't need skb->dst, release it right now while
3799 * its hot in this cpu cache.
3800 */
3801 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3802 skb_dst_drop(skb);
3803 else
3804 skb_dst_force(skb);
3805
3806 txq = netdev_pick_tx(dev, skb, sb_dev);
3807 q = rcu_dereference_bh(txq->qdisc);
3808
3809 trace_net_dev_queue(skb);
3810 if (q->enqueue) {
3811 rc = __dev_xmit_skb(skb, q, dev, txq);
3812 goto out;
3813 }
3814
3815 /* The device has no queue. Common case for software devices:
3816 * loopback, all the sorts of tunnels...
3817
3818 * Really, it is unlikely that netif_tx_lock protection is necessary
3819 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3820 * counters.)
3821 * However, it is possible, that they rely on protection
3822 * made by us here.
3823
3824 * Check this and shot the lock. It is not prone from deadlocks.
3825 *Either shot noqueue qdisc, it is even simpler 8)
3826 */
3827 if (dev->flags & IFF_UP) {
3828 int cpu = smp_processor_id(); /* ok because BHs are off */
3829
3830 if (txq->xmit_lock_owner != cpu) {
3831 if (unlikely(__this_cpu_read(xmit_recursion) >
3832 XMIT_RECURSION_LIMIT))
3833 goto recursion_alert;
3834
3835 skb = validate_xmit_skb(skb, dev, &again);
3836 if (!skb)
3837 goto out;
3838
3839 HARD_TX_LOCK(dev, txq, cpu);
3840
3841 if (!netif_xmit_stopped(txq)) {
3842 __this_cpu_inc(xmit_recursion);
3843 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3844 __this_cpu_dec(xmit_recursion);
3845 if (dev_xmit_complete(rc)) {
3846 HARD_TX_UNLOCK(dev, txq);
3847 goto out;
3848 }
3849 }
3850 HARD_TX_UNLOCK(dev, txq);
3851 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3852 dev->name);
3853 } else {
3854 /* Recursion is detected! It is possible,
3855 * unfortunately
3856 */
3857recursion_alert:
3858 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3859 dev->name);
3860 }
3861 }
3862
3863 rc = -ENETDOWN;
3864 rcu_read_unlock_bh();
3865
3866 atomic_long_inc(&dev->tx_dropped);
3867 kfree_skb_list(skb);
3868 return rc;
3869out:
3870 rcu_read_unlock_bh();
3871 return rc;
3872}
3873
3874int dev_queue_xmit(struct sk_buff *skb)
3875{
3876 return __dev_queue_xmit(skb, NULL);
3877}
3878EXPORT_SYMBOL(dev_queue_xmit);
3879
3880int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3881{
3882 return __dev_queue_xmit(skb, sb_dev);
3883}
3884EXPORT_SYMBOL(dev_queue_xmit_accel);
3885
3886int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3887{
3888 struct net_device *dev = skb->dev;
3889 struct sk_buff *orig_skb = skb;
3890 struct netdev_queue *txq;
3891 int ret = NETDEV_TX_BUSY;
3892 bool again = false;
3893
3894 if (unlikely(!netif_running(dev) ||
3895 !netif_carrier_ok(dev)))
3896 goto drop;
3897
3898 skb = validate_xmit_skb_list(skb, dev, &again);
3899 if (skb != orig_skb)
3900 goto drop;
3901
3902 skb_set_queue_mapping(skb, queue_id);
3903 txq = skb_get_tx_queue(dev, skb);
3904
3905 local_bh_disable();
3906
3907 HARD_TX_LOCK(dev, txq, smp_processor_id());
3908 if (!netif_xmit_frozen_or_drv_stopped(txq))
3909 ret = netdev_start_xmit(skb, dev, txq, false);
3910 HARD_TX_UNLOCK(dev, txq);
3911
3912 local_bh_enable();
3913
3914 if (!dev_xmit_complete(ret))
3915 kfree_skb(skb);
3916
3917 return ret;
3918drop:
3919 atomic_long_inc(&dev->tx_dropped);
3920 kfree_skb_list(skb);
3921 return NET_XMIT_DROP;
3922}
3923EXPORT_SYMBOL(dev_direct_xmit);
3924
3925/*************************************************************************
3926 * Receiver routines
3927 *************************************************************************/
3928
3929int netdev_max_backlog __read_mostly = 1000;
3930EXPORT_SYMBOL(netdev_max_backlog);
3931
3932int netdev_tstamp_prequeue __read_mostly = 1;
3933int netdev_budget __read_mostly = 300;
3934unsigned int __read_mostly netdev_budget_usecs = 2000;
3935int weight_p __read_mostly = 64; /* old backlog weight */
3936int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3937int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3938int dev_rx_weight __read_mostly = 64;
3939int dev_tx_weight __read_mostly = 64;
3940
3941/* Called with irq disabled */
3942static inline void ____napi_schedule(struct softnet_data *sd,
3943 struct napi_struct *napi)
3944{
3945 list_add_tail(&napi->poll_list, &sd->poll_list);
3946 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3947}
3948
3949#ifdef CONFIG_RPS
3950
3951/* One global table that all flow-based protocols share. */
3952struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3953EXPORT_SYMBOL(rps_sock_flow_table);
3954u32 rps_cpu_mask __read_mostly;
3955EXPORT_SYMBOL(rps_cpu_mask);
3956
3957struct static_key rps_needed __read_mostly;
3958EXPORT_SYMBOL(rps_needed);
3959struct static_key rfs_needed __read_mostly;
3960EXPORT_SYMBOL(rfs_needed);
3961
3962static struct rps_dev_flow *
3963set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 struct rps_dev_flow *rflow, u16 next_cpu)
3965{
3966 if (next_cpu < nr_cpu_ids) {
3967#ifdef CONFIG_RFS_ACCEL
3968 struct netdev_rx_queue *rxqueue;
3969 struct rps_dev_flow_table *flow_table;
3970 struct rps_dev_flow *old_rflow;
3971 u32 flow_id;
3972 u16 rxq_index;
3973 int rc;
3974
3975 /* Should we steer this flow to a different hardware queue? */
3976 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3977 !(dev->features & NETIF_F_NTUPLE))
3978 goto out;
3979 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3980 if (rxq_index == skb_get_rx_queue(skb))
3981 goto out;
3982
3983 rxqueue = dev->_rx + rxq_index;
3984 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985 if (!flow_table)
3986 goto out;
3987 flow_id = skb_get_hash(skb) & flow_table->mask;
3988 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3989 rxq_index, flow_id);
3990 if (rc < 0)
3991 goto out;
3992 old_rflow = rflow;
3993 rflow = &flow_table->flows[flow_id];
3994 rflow->filter = rc;
3995 if (old_rflow->filter == rflow->filter)
3996 old_rflow->filter = RPS_NO_FILTER;
3997 out:
3998#endif
3999 rflow->last_qtail =
4000 per_cpu(softnet_data, next_cpu).input_queue_head;
4001 }
4002
4003 rflow->cpu = next_cpu;
4004 return rflow;
4005}
4006
4007/*
4008 * get_rps_cpu is called from netif_receive_skb and returns the target
4009 * CPU from the RPS map of the receiving queue for a given skb.
4010 * rcu_read_lock must be held on entry.
4011 */
4012static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4013 struct rps_dev_flow **rflowp)
4014{
4015 const struct rps_sock_flow_table *sock_flow_table;
4016 struct netdev_rx_queue *rxqueue = dev->_rx;
4017 struct rps_dev_flow_table *flow_table;
4018 struct rps_map *map;
4019 int cpu = -1;
4020 u32 tcpu;
4021 u32 hash;
4022
4023 if (skb_rx_queue_recorded(skb)) {
4024 u16 index = skb_get_rx_queue(skb);
4025
4026 if (unlikely(index >= dev->real_num_rx_queues)) {
4027 WARN_ONCE(dev->real_num_rx_queues > 1,
4028 "%s received packet on queue %u, but number "
4029 "of RX queues is %u\n",
4030 dev->name, index, dev->real_num_rx_queues);
4031 goto done;
4032 }
4033 rxqueue += index;
4034 }
4035
4036 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4037
4038 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4039 map = rcu_dereference(rxqueue->rps_map);
4040 if (!flow_table && !map)
4041 goto done;
4042
4043 skb_reset_network_header(skb);
4044 hash = skb_get_hash(skb);
4045 if (!hash)
4046 goto done;
4047
4048 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4049 if (flow_table && sock_flow_table) {
4050 struct rps_dev_flow *rflow;
4051 u32 next_cpu;
4052 u32 ident;
4053
4054 /* First check into global flow table if there is a match */
4055 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4056 if ((ident ^ hash) & ~rps_cpu_mask)
4057 goto try_rps;
4058
4059 next_cpu = ident & rps_cpu_mask;
4060
4061 /* OK, now we know there is a match,
4062 * we can look at the local (per receive queue) flow table
4063 */
4064 rflow = &flow_table->flows[hash & flow_table->mask];
4065 tcpu = rflow->cpu;
4066
4067 /*
4068 * If the desired CPU (where last recvmsg was done) is
4069 * different from current CPU (one in the rx-queue flow
4070 * table entry), switch if one of the following holds:
4071 * - Current CPU is unset (>= nr_cpu_ids).
4072 * - Current CPU is offline.
4073 * - The current CPU's queue tail has advanced beyond the
4074 * last packet that was enqueued using this table entry.
4075 * This guarantees that all previous packets for the flow
4076 * have been dequeued, thus preserving in order delivery.
4077 */
4078 if (unlikely(tcpu != next_cpu) &&
4079 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4080 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4081 rflow->last_qtail)) >= 0)) {
4082 tcpu = next_cpu;
4083 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4084 }
4085
4086 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4087 *rflowp = rflow;
4088 cpu = tcpu;
4089 goto done;
4090 }
4091 }
4092
4093try_rps:
4094
4095 if (map) {
4096 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4097 if (cpu_online(tcpu)) {
4098 cpu = tcpu;
4099 goto done;
4100 }
4101 }
4102
4103done:
4104 return cpu;
4105}
4106
4107#ifdef CONFIG_RFS_ACCEL
4108
4109/**
4110 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4111 * @dev: Device on which the filter was set
4112 * @rxq_index: RX queue index
4113 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4114 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4115 *
4116 * Drivers that implement ndo_rx_flow_steer() should periodically call
4117 * this function for each installed filter and remove the filters for
4118 * which it returns %true.
4119 */
4120bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4121 u32 flow_id, u16 filter_id)
4122{
4123 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4124 struct rps_dev_flow_table *flow_table;
4125 struct rps_dev_flow *rflow;
4126 bool expire = true;
4127 unsigned int cpu;
4128
4129 rcu_read_lock();
4130 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4131 if (flow_table && flow_id <= flow_table->mask) {
4132 rflow = &flow_table->flows[flow_id];
4133 cpu = READ_ONCE(rflow->cpu);
4134 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4135 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4136 rflow->last_qtail) <
4137 (int)(10 * flow_table->mask)))
4138 expire = false;
4139 }
4140 rcu_read_unlock();
4141 return expire;
4142}
4143EXPORT_SYMBOL(rps_may_expire_flow);
4144
4145#endif /* CONFIG_RFS_ACCEL */
4146
4147/* Called from hardirq (IPI) context */
4148static void rps_trigger_softirq(void *data)
4149{
4150 struct softnet_data *sd = data;
4151
4152 ____napi_schedule(sd, &sd->backlog);
4153 sd->received_rps++;
4154}
4155
4156#endif /* CONFIG_RPS */
4157
4158/*
4159 * Check if this softnet_data structure is another cpu one
4160 * If yes, queue it to our IPI list and return 1
4161 * If no, return 0
4162 */
4163static int rps_ipi_queued(struct softnet_data *sd)
4164{
4165#ifdef CONFIG_RPS
4166 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4167
4168 if (sd != mysd) {
4169 sd->rps_ipi_next = mysd->rps_ipi_list;
4170 mysd->rps_ipi_list = sd;
4171
4172 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4173 return 1;
4174 }
4175#endif /* CONFIG_RPS */
4176 return 0;
4177}
4178
4179#ifdef CONFIG_NET_FLOW_LIMIT
4180int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4181#endif
4182
4183static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4184{
4185#ifdef CONFIG_NET_FLOW_LIMIT
4186 struct sd_flow_limit *fl;
4187 struct softnet_data *sd;
4188 unsigned int old_flow, new_flow;
4189
4190 if (qlen < (netdev_max_backlog >> 1))
4191 return false;
4192
4193 sd = this_cpu_ptr(&softnet_data);
4194
4195 rcu_read_lock();
4196 fl = rcu_dereference(sd->flow_limit);
4197 if (fl) {
4198 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4199 old_flow = fl->history[fl->history_head];
4200 fl->history[fl->history_head] = new_flow;
4201
4202 fl->history_head++;
4203 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4204
4205 if (likely(fl->buckets[old_flow]))
4206 fl->buckets[old_flow]--;
4207
4208 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4209 fl->count++;
4210 rcu_read_unlock();
4211 return true;
4212 }
4213 }
4214 rcu_read_unlock();
4215#endif
4216 return false;
4217}
4218
4219/*
4220 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4221 * queue (may be a remote CPU queue).
4222 */
4223static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4224 unsigned int *qtail)
4225{
4226 struct softnet_data *sd;
4227 unsigned long flags;
4228 unsigned int qlen;
4229
4230 sd = &per_cpu(softnet_data, cpu);
4231
4232 local_irq_save(flags);
4233
4234 rps_lock(sd);
4235 if (!netif_running(skb->dev))
4236 goto drop;
4237 qlen = skb_queue_len(&sd->input_pkt_queue);
4238 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4239 if (qlen) {
4240enqueue:
4241 __skb_queue_tail(&sd->input_pkt_queue, skb);
4242 input_queue_tail_incr_save(sd, qtail);
4243 rps_unlock(sd);
4244 local_irq_restore(flags);
4245 return NET_RX_SUCCESS;
4246 }
4247
4248 /* Schedule NAPI for backlog device
4249 * We can use non atomic operation since we own the queue lock
4250 */
4251 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4252 if (!rps_ipi_queued(sd))
4253 ____napi_schedule(sd, &sd->backlog);
4254 }
4255 goto enqueue;
4256 }
4257
4258drop:
4259 sd->dropped++;
4260 rps_unlock(sd);
4261
4262 local_irq_restore(flags);
4263
4264 atomic_long_inc(&skb->dev->rx_dropped);
4265 kfree_skb(skb);
4266 return NET_RX_DROP;
4267}
4268
4269static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4270{
4271 struct net_device *dev = skb->dev;
4272 struct netdev_rx_queue *rxqueue;
4273
4274 rxqueue = dev->_rx;
4275
4276 if (skb_rx_queue_recorded(skb)) {
4277 u16 index = skb_get_rx_queue(skb);
4278
4279 if (unlikely(index >= dev->real_num_rx_queues)) {
4280 WARN_ONCE(dev->real_num_rx_queues > 1,
4281 "%s received packet on queue %u, but number "
4282 "of RX queues is %u\n",
4283 dev->name, index, dev->real_num_rx_queues);
4284
4285 return rxqueue; /* Return first rxqueue */
4286 }
4287 rxqueue += index;
4288 }
4289 return rxqueue;
4290}
4291
4292static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4293 struct xdp_buff *xdp,
4294 struct bpf_prog *xdp_prog)
4295{
4296 struct netdev_rx_queue *rxqueue;
4297 void *orig_data, *orig_data_end;
4298 u32 metalen, act = XDP_DROP;
4299 __be16 orig_eth_type;
4300 struct ethhdr *eth;
4301 bool orig_bcast;
4302 int hlen, off;
4303 u32 mac_len;
4304
4305 /* Reinjected packets coming from act_mirred or similar should
4306 * not get XDP generic processing.
4307 */
4308 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4309 return XDP_PASS;
4310
4311 /* XDP packets must be linear and must have sufficient headroom
4312 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4313 * native XDP provides, thus we need to do it here as well.
4314 */
4315 if (skb_is_nonlinear(skb) ||
4316 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4317 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4318 int troom = skb->tail + skb->data_len - skb->end;
4319
4320 /* In case we have to go down the path and also linearize,
4321 * then lets do the pskb_expand_head() work just once here.
4322 */
4323 if (pskb_expand_head(skb,
4324 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4325 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4326 goto do_drop;
4327 if (skb_linearize(skb))
4328 goto do_drop;
4329 }
4330
4331 /* The XDP program wants to see the packet starting at the MAC
4332 * header.
4333 */
4334 mac_len = skb->data - skb_mac_header(skb);
4335 hlen = skb_headlen(skb) + mac_len;
4336 xdp->data = skb->data - mac_len;
4337 xdp->data_meta = xdp->data;
4338 xdp->data_end = xdp->data + hlen;
4339 xdp->data_hard_start = skb->data - skb_headroom(skb);
4340 orig_data_end = xdp->data_end;
4341 orig_data = xdp->data;
4342 eth = (struct ethhdr *)xdp->data;
4343 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4344 orig_eth_type = eth->h_proto;
4345
4346 rxqueue = netif_get_rxqueue(skb);
4347 xdp->rxq = &rxqueue->xdp_rxq;
4348
4349 act = bpf_prog_run_xdp(xdp_prog, xdp);
4350
4351 off = xdp->data - orig_data;
4352 if (off > 0)
4353 __skb_pull(skb, off);
4354 else if (off < 0)
4355 __skb_push(skb, -off);
4356 skb->mac_header += off;
4357
4358 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4359 * pckt.
4360 */
4361 off = orig_data_end - xdp->data_end;
4362 if (off != 0) {
4363 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4364 skb->len -= off;
4365
4366 }
4367
4368 /* check if XDP changed eth hdr such SKB needs update */
4369 eth = (struct ethhdr *)xdp->data;
4370 if ((orig_eth_type != eth->h_proto) ||
4371 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4372 __skb_push(skb, ETH_HLEN);
4373 skb->protocol = eth_type_trans(skb, skb->dev);
4374 }
4375
4376 switch (act) {
4377 case XDP_REDIRECT:
4378 case XDP_TX:
4379 __skb_push(skb, mac_len);
4380 break;
4381 case XDP_PASS:
4382 metalen = xdp->data - xdp->data_meta;
4383 if (metalen)
4384 skb_metadata_set(skb, metalen);
4385 break;
4386 default:
4387 bpf_warn_invalid_xdp_action(act);
4388 /* fall through */
4389 case XDP_ABORTED:
4390 trace_xdp_exception(skb->dev, xdp_prog, act);
4391 /* fall through */
4392 case XDP_DROP:
4393 do_drop:
4394 kfree_skb(skb);
4395 break;
4396 }
4397
4398 return act;
4399}
4400
4401/* When doing generic XDP we have to bypass the qdisc layer and the
4402 * network taps in order to match in-driver-XDP behavior.
4403 */
4404void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4405{
4406 struct net_device *dev = skb->dev;
4407 struct netdev_queue *txq;
4408 bool free_skb = true;
4409 int cpu, rc;
4410
4411 txq = netdev_pick_tx(dev, skb, NULL);
4412 cpu = smp_processor_id();
4413 HARD_TX_LOCK(dev, txq, cpu);
4414 if (!netif_xmit_stopped(txq)) {
4415 rc = netdev_start_xmit(skb, dev, txq, 0);
4416 if (dev_xmit_complete(rc))
4417 free_skb = false;
4418 }
4419 HARD_TX_UNLOCK(dev, txq);
4420 if (free_skb) {
4421 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4422 kfree_skb(skb);
4423 }
4424}
4425EXPORT_SYMBOL_GPL(generic_xdp_tx);
4426
4427static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4428
4429int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4430{
4431 if (xdp_prog) {
4432 struct xdp_buff xdp;
4433 u32 act;
4434 int err;
4435
4436 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4437 if (act != XDP_PASS) {
4438 switch (act) {
4439 case XDP_REDIRECT:
4440 err = xdp_do_generic_redirect(skb->dev, skb,
4441 &xdp, xdp_prog);
4442 if (err)
4443 goto out_redir;
4444 break;
4445 case XDP_TX:
4446 generic_xdp_tx(skb, xdp_prog);
4447 break;
4448 }
4449 return XDP_DROP;
4450 }
4451 }
4452 return XDP_PASS;
4453out_redir:
4454 kfree_skb(skb);
4455 return XDP_DROP;
4456}
4457EXPORT_SYMBOL_GPL(do_xdp_generic);
4458
4459static int netif_rx_internal(struct sk_buff *skb)
4460{
4461 int ret;
4462
4463 net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465 trace_netif_rx(skb);
4466
4467 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4468 int ret;
4469
4470 preempt_disable();
4471 rcu_read_lock();
4472 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4473 rcu_read_unlock();
4474 preempt_enable();
4475
4476 /* Consider XDP consuming the packet a success from
4477 * the netdev point of view we do not want to count
4478 * this as an error.
4479 */
4480 if (ret != XDP_PASS)
4481 return NET_RX_SUCCESS;
4482 }
4483
4484#ifdef CONFIG_RPS
4485 if (static_key_false(&rps_needed)) {
4486 struct rps_dev_flow voidflow, *rflow = &voidflow;
4487 int cpu;
4488
4489 preempt_disable();
4490 rcu_read_lock();
4491
4492 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4493 if (cpu < 0)
4494 cpu = smp_processor_id();
4495
4496 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4497
4498 rcu_read_unlock();
4499 preempt_enable();
4500 } else
4501#endif
4502 {
4503 unsigned int qtail;
4504
4505 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4506 put_cpu();
4507 }
4508 return ret;
4509}
4510
4511/**
4512 * netif_rx - post buffer to the network code
4513 * @skb: buffer to post
4514 *
4515 * This function receives a packet from a device driver and queues it for
4516 * the upper (protocol) levels to process. It always succeeds. The buffer
4517 * may be dropped during processing for congestion control or by the
4518 * protocol layers.
4519 *
4520 * return values:
4521 * NET_RX_SUCCESS (no congestion)
4522 * NET_RX_DROP (packet was dropped)
4523 *
4524 */
4525
4526int netif_rx(struct sk_buff *skb)
4527{
4528 trace_netif_rx_entry(skb);
4529
4530 return netif_rx_internal(skb);
4531}
4532EXPORT_SYMBOL(netif_rx);
4533
4534int netif_rx_ni(struct sk_buff *skb)
4535{
4536 int err;
4537
4538 trace_netif_rx_ni_entry(skb);
4539
4540 preempt_disable();
4541 err = netif_rx_internal(skb);
4542 if (local_softirq_pending())
4543 do_softirq();
4544 preempt_enable();
4545
4546 return err;
4547}
4548EXPORT_SYMBOL(netif_rx_ni);
4549
4550static __latent_entropy void net_tx_action(struct softirq_action *h)
4551{
4552 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4553
4554 if (sd->completion_queue) {
4555 struct sk_buff *clist;
4556
4557 local_irq_disable();
4558 clist = sd->completion_queue;
4559 sd->completion_queue = NULL;
4560 local_irq_enable();
4561
4562 while (clist) {
4563 struct sk_buff *skb = clist;
4564
4565 clist = clist->next;
4566
4567 WARN_ON(refcount_read(&skb->users));
4568 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4569 trace_consume_skb(skb);
4570 else
4571 trace_kfree_skb(skb, net_tx_action);
4572
4573 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4574 __kfree_skb(skb);
4575 else
4576 __kfree_skb_defer(skb);
4577 }
4578
4579 __kfree_skb_flush();
4580 }
4581
4582 if (sd->output_queue) {
4583 struct Qdisc *head;
4584
4585 local_irq_disable();
4586 head = sd->output_queue;
4587 sd->output_queue = NULL;
4588 sd->output_queue_tailp = &sd->output_queue;
4589 local_irq_enable();
4590
4591 while (head) {
4592 struct Qdisc *q = head;
4593 spinlock_t *root_lock = NULL;
4594
4595 head = head->next_sched;
4596
4597 if (!(q->flags & TCQ_F_NOLOCK)) {
4598 root_lock = qdisc_lock(q);
4599 spin_lock(root_lock);
4600 }
4601 /* We need to make sure head->next_sched is read
4602 * before clearing __QDISC_STATE_SCHED
4603 */
4604 smp_mb__before_atomic();
4605 clear_bit(__QDISC_STATE_SCHED, &q->state);
4606 qdisc_run(q);
4607 if (root_lock)
4608 spin_unlock(root_lock);
4609 }
4610 }
4611
4612 xfrm_dev_backlog(sd);
4613}
4614
4615#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4616/* This hook is defined here for ATM LANE */
4617int (*br_fdb_test_addr_hook)(struct net_device *dev,
4618 unsigned char *addr) __read_mostly;
4619EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4620#endif
4621
4622static inline struct sk_buff *
4623sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4624 struct net_device *orig_dev)
4625{
4626#ifdef CONFIG_NET_CLS_ACT
4627 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4628 struct tcf_result cl_res;
4629
4630 /* If there's at least one ingress present somewhere (so
4631 * we get here via enabled static key), remaining devices
4632 * that are not configured with an ingress qdisc will bail
4633 * out here.
4634 */
4635 if (!miniq)
4636 return skb;
4637
4638 if (*pt_prev) {
4639 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4640 *pt_prev = NULL;
4641 }
4642
4643 qdisc_skb_cb(skb)->pkt_len = skb->len;
4644 skb->tc_at_ingress = 1;
4645 mini_qdisc_bstats_cpu_update(miniq, skb);
4646
4647 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4648 case TC_ACT_OK:
4649 case TC_ACT_RECLASSIFY:
4650 skb->tc_index = TC_H_MIN(cl_res.classid);
4651 break;
4652 case TC_ACT_SHOT:
4653 mini_qdisc_qstats_cpu_drop(miniq);
4654 kfree_skb(skb);
4655 return NULL;
4656 case TC_ACT_STOLEN:
4657 case TC_ACT_QUEUED:
4658 case TC_ACT_TRAP:
4659 consume_skb(skb);
4660 return NULL;
4661 case TC_ACT_REDIRECT:
4662 /* skb_mac_header check was done by cls/act_bpf, so
4663 * we can safely push the L2 header back before
4664 * redirecting to another netdev
4665 */
4666 __skb_push(skb, skb->mac_len);
4667 skb_do_redirect(skb);
4668 return NULL;
4669 case TC_ACT_REINSERT:
4670 /* this does not scrub the packet, and updates stats on error */
4671 skb_tc_reinsert(skb, &cl_res);
4672 return NULL;
4673 default:
4674 break;
4675 }
4676#endif /* CONFIG_NET_CLS_ACT */
4677 return skb;
4678}
4679
4680/**
4681 * netdev_is_rx_handler_busy - check if receive handler is registered
4682 * @dev: device to check
4683 *
4684 * Check if a receive handler is already registered for a given device.
4685 * Return true if there one.
4686 *
4687 * The caller must hold the rtnl_mutex.
4688 */
4689bool netdev_is_rx_handler_busy(struct net_device *dev)
4690{
4691 ASSERT_RTNL();
4692 return dev && rtnl_dereference(dev->rx_handler);
4693}
4694EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4695
4696/**
4697 * netdev_rx_handler_register - register receive handler
4698 * @dev: device to register a handler for
4699 * @rx_handler: receive handler to register
4700 * @rx_handler_data: data pointer that is used by rx handler
4701 *
4702 * Register a receive handler for a device. This handler will then be
4703 * called from __netif_receive_skb. A negative errno code is returned
4704 * on a failure.
4705 *
4706 * The caller must hold the rtnl_mutex.
4707 *
4708 * For a general description of rx_handler, see enum rx_handler_result.
4709 */
4710int netdev_rx_handler_register(struct net_device *dev,
4711 rx_handler_func_t *rx_handler,
4712 void *rx_handler_data)
4713{
4714 if (netdev_is_rx_handler_busy(dev))
4715 return -EBUSY;
4716
4717 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4718 return -EINVAL;
4719
4720 /* Note: rx_handler_data must be set before rx_handler */
4721 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4722 rcu_assign_pointer(dev->rx_handler, rx_handler);
4723
4724 return 0;
4725}
4726EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4727
4728/**
4729 * netdev_rx_handler_unregister - unregister receive handler
4730 * @dev: device to unregister a handler from
4731 *
4732 * Unregister a receive handler from a device.
4733 *
4734 * The caller must hold the rtnl_mutex.
4735 */
4736void netdev_rx_handler_unregister(struct net_device *dev)
4737{
4738
4739 ASSERT_RTNL();
4740 RCU_INIT_POINTER(dev->rx_handler, NULL);
4741 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4742 * section has a guarantee to see a non NULL rx_handler_data
4743 * as well.
4744 */
4745 synchronize_net();
4746 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4747}
4748EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4749
4750/*
4751 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4752 * the special handling of PFMEMALLOC skbs.
4753 */
4754static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4755{
4756 switch (skb->protocol) {
4757 case htons(ETH_P_ARP):
4758 case htons(ETH_P_IP):
4759 case htons(ETH_P_IPV6):
4760 case htons(ETH_P_8021Q):
4761 case htons(ETH_P_8021AD):
4762 return true;
4763 default:
4764 return false;
4765 }
4766}
4767
4768static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4769 int *ret, struct net_device *orig_dev)
4770{
4771#ifdef CONFIG_NETFILTER_INGRESS
4772 if (nf_hook_ingress_active(skb)) {
4773 int ingress_retval;
4774
4775 if (*pt_prev) {
4776 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4777 *pt_prev = NULL;
4778 }
4779
4780 rcu_read_lock();
4781 ingress_retval = nf_hook_ingress(skb);
4782 rcu_read_unlock();
4783 return ingress_retval;
4784 }
4785#endif /* CONFIG_NETFILTER_INGRESS */
4786 return 0;
4787}
4788
4789static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4790 struct packet_type **ppt_prev)
4791{
4792 struct packet_type *ptype, *pt_prev;
4793 rx_handler_func_t *rx_handler;
4794 struct net_device *orig_dev;
4795 bool deliver_exact = false;
4796 int ret = NET_RX_DROP;
4797 __be16 type;
4798
4799 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4800
4801 trace_netif_receive_skb(skb);
4802
4803 orig_dev = skb->dev;
4804
4805 skb_reset_network_header(skb);
4806 if (!skb_transport_header_was_set(skb))
4807 skb_reset_transport_header(skb);
4808 skb_reset_mac_len(skb);
4809
4810 pt_prev = NULL;
4811
4812another_round:
4813 skb->skb_iif = skb->dev->ifindex;
4814
4815 __this_cpu_inc(softnet_data.processed);
4816
4817 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4818 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4819 skb = skb_vlan_untag(skb);
4820 if (unlikely(!skb))
4821 goto out;
4822 }
4823
4824 if (skb_skip_tc_classify(skb))
4825 goto skip_classify;
4826
4827 if (pfmemalloc)
4828 goto skip_taps;
4829
4830 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4831 if (pt_prev)
4832 ret = deliver_skb(skb, pt_prev, orig_dev);
4833 pt_prev = ptype;
4834 }
4835
4836 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4837 if (pt_prev)
4838 ret = deliver_skb(skb, pt_prev, orig_dev);
4839 pt_prev = ptype;
4840 }
4841
4842skip_taps:
4843#ifdef CONFIG_NET_INGRESS
4844 if (static_branch_unlikely(&ingress_needed_key)) {
4845 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4846 if (!skb)
4847 goto out;
4848
4849 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4850 goto out;
4851 }
4852#endif
4853 skb_reset_tc(skb);
4854skip_classify:
4855 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4856 goto drop;
4857
4858 if (skb_vlan_tag_present(skb)) {
4859 if (pt_prev) {
4860 ret = deliver_skb(skb, pt_prev, orig_dev);
4861 pt_prev = NULL;
4862 }
4863 if (vlan_do_receive(&skb))
4864 goto another_round;
4865 else if (unlikely(!skb))
4866 goto out;
4867 }
4868
4869 rx_handler = rcu_dereference(skb->dev->rx_handler);
4870 if (rx_handler) {
4871 if (pt_prev) {
4872 ret = deliver_skb(skb, pt_prev, orig_dev);
4873 pt_prev = NULL;
4874 }
4875 switch (rx_handler(&skb)) {
4876 case RX_HANDLER_CONSUMED:
4877 ret = NET_RX_SUCCESS;
4878 goto out;
4879 case RX_HANDLER_ANOTHER:
4880 goto another_round;
4881 case RX_HANDLER_EXACT:
4882 deliver_exact = true;
4883 case RX_HANDLER_PASS:
4884 break;
4885 default:
4886 BUG();
4887 }
4888 }
4889
4890 if (unlikely(skb_vlan_tag_present(skb))) {
4891 if (skb_vlan_tag_get_id(skb))
4892 skb->pkt_type = PACKET_OTHERHOST;
4893 /* Note: we might in the future use prio bits
4894 * and set skb->priority like in vlan_do_receive()
4895 * For the time being, just ignore Priority Code Point
4896 */
4897 skb->vlan_tci = 0;
4898 }
4899
4900 type = skb->protocol;
4901
4902 /* deliver only exact match when indicated */
4903 if (likely(!deliver_exact)) {
4904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905 &ptype_base[ntohs(type) &
4906 PTYPE_HASH_MASK]);
4907 }
4908
4909 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4910 &orig_dev->ptype_specific);
4911
4912 if (unlikely(skb->dev != orig_dev)) {
4913 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4914 &skb->dev->ptype_specific);
4915 }
4916
4917 if (pt_prev) {
4918 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4919 goto drop;
4920 *ppt_prev = pt_prev;
4921 } else {
4922drop:
4923 if (!deliver_exact)
4924 atomic_long_inc(&skb->dev->rx_dropped);
4925 else
4926 atomic_long_inc(&skb->dev->rx_nohandler);
4927 kfree_skb(skb);
4928 /* Jamal, now you will not able to escape explaining
4929 * me how you were going to use this. :-)
4930 */
4931 ret = NET_RX_DROP;
4932 }
4933
4934out:
4935 return ret;
4936}
4937
4938static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4939{
4940 struct net_device *orig_dev = skb->dev;
4941 struct packet_type *pt_prev = NULL;
4942 int ret;
4943
4944 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4945 if (pt_prev)
4946 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4947 return ret;
4948}
4949
4950/**
4951 * netif_receive_skb_core - special purpose version of netif_receive_skb
4952 * @skb: buffer to process
4953 *
4954 * More direct receive version of netif_receive_skb(). It should
4955 * only be used by callers that have a need to skip RPS and Generic XDP.
4956 * Caller must also take care of handling if (page_is_)pfmemalloc.
4957 *
4958 * This function may only be called from softirq context and interrupts
4959 * should be enabled.
4960 *
4961 * Return values (usually ignored):
4962 * NET_RX_SUCCESS: no congestion
4963 * NET_RX_DROP: packet was dropped
4964 */
4965int netif_receive_skb_core(struct sk_buff *skb)
4966{
4967 int ret;
4968
4969 rcu_read_lock();
4970 ret = __netif_receive_skb_one_core(skb, false);
4971 rcu_read_unlock();
4972
4973 return ret;
4974}
4975EXPORT_SYMBOL(netif_receive_skb_core);
4976
4977static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4978 struct packet_type *pt_prev,
4979 struct net_device *orig_dev)
4980{
4981 struct sk_buff *skb, *next;
4982
4983 if (!pt_prev)
4984 return;
4985 if (list_empty(head))
4986 return;
4987 if (pt_prev->list_func != NULL)
4988 pt_prev->list_func(head, pt_prev, orig_dev);
4989 else
4990 list_for_each_entry_safe(skb, next, head, list)
4991 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4992}
4993
4994static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4995{
4996 /* Fast-path assumptions:
4997 * - There is no RX handler.
4998 * - Only one packet_type matches.
4999 * If either of these fails, we will end up doing some per-packet
5000 * processing in-line, then handling the 'last ptype' for the whole
5001 * sublist. This can't cause out-of-order delivery to any single ptype,
5002 * because the 'last ptype' must be constant across the sublist, and all
5003 * other ptypes are handled per-packet.
5004 */
5005 /* Current (common) ptype of sublist */
5006 struct packet_type *pt_curr = NULL;
5007 /* Current (common) orig_dev of sublist */
5008 struct net_device *od_curr = NULL;
5009 struct list_head sublist;
5010 struct sk_buff *skb, *next;
5011
5012 INIT_LIST_HEAD(&sublist);
5013 list_for_each_entry_safe(skb, next, head, list) {
5014 struct net_device *orig_dev = skb->dev;
5015 struct packet_type *pt_prev = NULL;
5016
5017 skb_list_del_init(skb);
5018 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5019 if (!pt_prev)
5020 continue;
5021 if (pt_curr != pt_prev || od_curr != orig_dev) {
5022 /* dispatch old sublist */
5023 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5024 /* start new sublist */
5025 INIT_LIST_HEAD(&sublist);
5026 pt_curr = pt_prev;
5027 od_curr = orig_dev;
5028 }
5029 list_add_tail(&skb->list, &sublist);
5030 }
5031
5032 /* dispatch final sublist */
5033 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034}
5035
5036static int __netif_receive_skb(struct sk_buff *skb)
5037{
5038 int ret;
5039
5040 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5041 unsigned int noreclaim_flag;
5042
5043 /*
5044 * PFMEMALLOC skbs are special, they should
5045 * - be delivered to SOCK_MEMALLOC sockets only
5046 * - stay away from userspace
5047 * - have bounded memory usage
5048 *
5049 * Use PF_MEMALLOC as this saves us from propagating the allocation
5050 * context down to all allocation sites.
5051 */
5052 noreclaim_flag = memalloc_noreclaim_save();
5053 ret = __netif_receive_skb_one_core(skb, true);
5054 memalloc_noreclaim_restore(noreclaim_flag);
5055 } else
5056 ret = __netif_receive_skb_one_core(skb, false);
5057
5058 return ret;
5059}
5060
5061static void __netif_receive_skb_list(struct list_head *head)
5062{
5063 unsigned long noreclaim_flag = 0;
5064 struct sk_buff *skb, *next;
5065 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5066
5067 list_for_each_entry_safe(skb, next, head, list) {
5068 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5069 struct list_head sublist;
5070
5071 /* Handle the previous sublist */
5072 list_cut_before(&sublist, head, &skb->list);
5073 if (!list_empty(&sublist))
5074 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5075 pfmemalloc = !pfmemalloc;
5076 /* See comments in __netif_receive_skb */
5077 if (pfmemalloc)
5078 noreclaim_flag = memalloc_noreclaim_save();
5079 else
5080 memalloc_noreclaim_restore(noreclaim_flag);
5081 }
5082 }
5083 /* Handle the remaining sublist */
5084 if (!list_empty(head))
5085 __netif_receive_skb_list_core(head, pfmemalloc);
5086 /* Restore pflags */
5087 if (pfmemalloc)
5088 memalloc_noreclaim_restore(noreclaim_flag);
5089}
5090
5091static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5092{
5093 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5094 struct bpf_prog *new = xdp->prog;
5095 int ret = 0;
5096
5097 switch (xdp->command) {
5098 case XDP_SETUP_PROG:
5099 rcu_assign_pointer(dev->xdp_prog, new);
5100 if (old)
5101 bpf_prog_put(old);
5102
5103 if (old && !new) {
5104 static_branch_dec(&generic_xdp_needed_key);
5105 } else if (new && !old) {
5106 static_branch_inc(&generic_xdp_needed_key);
5107 dev_disable_lro(dev);
5108 dev_disable_gro_hw(dev);
5109 }
5110 break;
5111
5112 case XDP_QUERY_PROG:
5113 xdp->prog_id = old ? old->aux->id : 0;
5114 break;
5115
5116 default:
5117 ret = -EINVAL;
5118 break;
5119 }
5120
5121 return ret;
5122}
5123
5124static int netif_receive_skb_internal(struct sk_buff *skb)
5125{
5126 int ret;
5127
5128 net_timestamp_check(netdev_tstamp_prequeue, skb);
5129
5130 if (skb_defer_rx_timestamp(skb))
5131 return NET_RX_SUCCESS;
5132
5133 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5134 int ret;
5135
5136 preempt_disable();
5137 rcu_read_lock();
5138 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5139 rcu_read_unlock();
5140 preempt_enable();
5141
5142 if (ret != XDP_PASS)
5143 return NET_RX_DROP;
5144 }
5145
5146 rcu_read_lock();
5147#ifdef CONFIG_RPS
5148 if (static_key_false(&rps_needed)) {
5149 struct rps_dev_flow voidflow, *rflow = &voidflow;
5150 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5151
5152 if (cpu >= 0) {
5153 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154 rcu_read_unlock();
5155 return ret;
5156 }
5157 }
5158#endif
5159 ret = __netif_receive_skb(skb);
5160 rcu_read_unlock();
5161 return ret;
5162}
5163
5164static void netif_receive_skb_list_internal(struct list_head *head)
5165{
5166 struct bpf_prog *xdp_prog = NULL;
5167 struct sk_buff *skb, *next;
5168 struct list_head sublist;
5169
5170 INIT_LIST_HEAD(&sublist);
5171 list_for_each_entry_safe(skb, next, head, list) {
5172 net_timestamp_check(netdev_tstamp_prequeue, skb);
5173 skb_list_del_init(skb);
5174 if (!skb_defer_rx_timestamp(skb))
5175 list_add_tail(&skb->list, &sublist);
5176 }
5177 list_splice_init(&sublist, head);
5178
5179 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5180 preempt_disable();
5181 rcu_read_lock();
5182 list_for_each_entry_safe(skb, next, head, list) {
5183 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5184 skb_list_del_init(skb);
5185 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5186 list_add_tail(&skb->list, &sublist);
5187 }
5188 rcu_read_unlock();
5189 preempt_enable();
5190 /* Put passed packets back on main list */
5191 list_splice_init(&sublist, head);
5192 }
5193
5194 rcu_read_lock();
5195#ifdef CONFIG_RPS
5196 if (static_key_false(&rps_needed)) {
5197 list_for_each_entry_safe(skb, next, head, list) {
5198 struct rps_dev_flow voidflow, *rflow = &voidflow;
5199 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200
5201 if (cpu >= 0) {
5202 /* Will be handled, remove from list */
5203 skb_list_del_init(skb);
5204 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205 }
5206 }
5207 }
5208#endif
5209 __netif_receive_skb_list(head);
5210 rcu_read_unlock();
5211}
5212
5213/**
5214 * netif_receive_skb - process receive buffer from network
5215 * @skb: buffer to process
5216 *
5217 * netif_receive_skb() is the main receive data processing function.
5218 * It always succeeds. The buffer may be dropped during processing
5219 * for congestion control or by the protocol layers.
5220 *
5221 * This function may only be called from softirq context and interrupts
5222 * should be enabled.
5223 *
5224 * Return values (usually ignored):
5225 * NET_RX_SUCCESS: no congestion
5226 * NET_RX_DROP: packet was dropped
5227 */
5228int netif_receive_skb(struct sk_buff *skb)
5229{
5230 trace_netif_receive_skb_entry(skb);
5231
5232 return netif_receive_skb_internal(skb);
5233}
5234EXPORT_SYMBOL(netif_receive_skb);
5235
5236/**
5237 * netif_receive_skb_list - process many receive buffers from network
5238 * @head: list of skbs to process.
5239 *
5240 * Since return value of netif_receive_skb() is normally ignored, and
5241 * wouldn't be meaningful for a list, this function returns void.
5242 *
5243 * This function may only be called from softirq context and interrupts
5244 * should be enabled.
5245 */
5246void netif_receive_skb_list(struct list_head *head)
5247{
5248 struct sk_buff *skb;
5249
5250 if (list_empty(head))
5251 return;
5252 list_for_each_entry(skb, head, list)
5253 trace_netif_receive_skb_list_entry(skb);
5254 netif_receive_skb_list_internal(head);
5255}
5256EXPORT_SYMBOL(netif_receive_skb_list);
5257
5258DEFINE_PER_CPU(struct work_struct, flush_works);
5259
5260/* Network device is going away, flush any packets still pending */
5261static void flush_backlog(struct work_struct *work)
5262{
5263 struct sk_buff *skb, *tmp;
5264 struct softnet_data *sd;
5265
5266 local_bh_disable();
5267 sd = this_cpu_ptr(&softnet_data);
5268
5269 local_irq_disable();
5270 rps_lock(sd);
5271 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5272 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5273 __skb_unlink(skb, &sd->input_pkt_queue);
5274 kfree_skb(skb);
5275 input_queue_head_incr(sd);
5276 }
5277 }
5278 rps_unlock(sd);
5279 local_irq_enable();
5280
5281 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5282 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5283 __skb_unlink(skb, &sd->process_queue);
5284 kfree_skb(skb);
5285 input_queue_head_incr(sd);
5286 }
5287 }
5288 local_bh_enable();
5289}
5290
5291static void flush_all_backlogs(void)
5292{
5293 unsigned int cpu;
5294
5295 get_online_cpus();
5296
5297 for_each_online_cpu(cpu)
5298 queue_work_on(cpu, system_highpri_wq,
5299 per_cpu_ptr(&flush_works, cpu));
5300
5301 for_each_online_cpu(cpu)
5302 flush_work(per_cpu_ptr(&flush_works, cpu));
5303
5304 put_online_cpus();
5305}
5306
5307static int napi_gro_complete(struct sk_buff *skb)
5308{
5309 struct packet_offload *ptype;
5310 __be16 type = skb->protocol;
5311 struct list_head *head = &offload_base;
5312 int err = -ENOENT;
5313
5314 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5315
5316 if (NAPI_GRO_CB(skb)->count == 1) {
5317 skb_shinfo(skb)->gso_size = 0;
5318 goto out;
5319 }
5320
5321 rcu_read_lock();
5322 list_for_each_entry_rcu(ptype, head, list) {
5323 if (ptype->type != type || !ptype->callbacks.gro_complete)
5324 continue;
5325
5326 err = ptype->callbacks.gro_complete(skb, 0);
5327 break;
5328 }
5329 rcu_read_unlock();
5330
5331 if (err) {
5332 WARN_ON(&ptype->list == head);
5333 kfree_skb(skb);
5334 return NET_RX_SUCCESS;
5335 }
5336
5337out:
5338 return netif_receive_skb_internal(skb);
5339}
5340
5341static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5342 bool flush_old)
5343{
5344 struct list_head *head = &napi->gro_hash[index].list;
5345 struct sk_buff *skb, *p;
5346
5347 list_for_each_entry_safe_reverse(skb, p, head, list) {
5348 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5349 return;
5350 skb_list_del_init(skb);
5351 napi_gro_complete(skb);
5352 napi->gro_hash[index].count--;
5353 }
5354
5355 if (!napi->gro_hash[index].count)
5356 __clear_bit(index, &napi->gro_bitmask);
5357}
5358
5359/* napi->gro_hash[].list contains packets ordered by age.
5360 * youngest packets at the head of it.
5361 * Complete skbs in reverse order to reduce latencies.
5362 */
5363void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5364{
5365 u32 i;
5366
5367 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5368 if (test_bit(i, &napi->gro_bitmask))
5369 __napi_gro_flush_chain(napi, i, flush_old);
5370 }
5371}
5372EXPORT_SYMBOL(napi_gro_flush);
5373
5374static struct list_head *gro_list_prepare(struct napi_struct *napi,
5375 struct sk_buff *skb)
5376{
5377 unsigned int maclen = skb->dev->hard_header_len;
5378 u32 hash = skb_get_hash_raw(skb);
5379 struct list_head *head;
5380 struct sk_buff *p;
5381
5382 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5383 list_for_each_entry(p, head, list) {
5384 unsigned long diffs;
5385
5386 NAPI_GRO_CB(p)->flush = 0;
5387
5388 if (hash != skb_get_hash_raw(p)) {
5389 NAPI_GRO_CB(p)->same_flow = 0;
5390 continue;
5391 }
5392
5393 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5394 diffs |= p->vlan_tci ^ skb->vlan_tci;
5395 diffs |= skb_metadata_dst_cmp(p, skb);
5396 diffs |= skb_metadata_differs(p, skb);
5397 if (maclen == ETH_HLEN)
5398 diffs |= compare_ether_header(skb_mac_header(p),
5399 skb_mac_header(skb));
5400 else if (!diffs)
5401 diffs = memcmp(skb_mac_header(p),
5402 skb_mac_header(skb),
5403 maclen);
5404 NAPI_GRO_CB(p)->same_flow = !diffs;
5405 }
5406
5407 return head;
5408}
5409
5410static void skb_gro_reset_offset(struct sk_buff *skb)
5411{
5412 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5413 const skb_frag_t *frag0 = &pinfo->frags[0];
5414
5415 NAPI_GRO_CB(skb)->data_offset = 0;
5416 NAPI_GRO_CB(skb)->frag0 = NULL;
5417 NAPI_GRO_CB(skb)->frag0_len = 0;
5418
5419 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5420 pinfo->nr_frags &&
5421 !PageHighMem(skb_frag_page(frag0))) {
5422 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5423 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5424 skb_frag_size(frag0),
5425 skb->end - skb->tail);
5426 }
5427}
5428
5429static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5430{
5431 struct skb_shared_info *pinfo = skb_shinfo(skb);
5432
5433 BUG_ON(skb->end - skb->tail < grow);
5434
5435 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5436
5437 skb->data_len -= grow;
5438 skb->tail += grow;
5439
5440 pinfo->frags[0].page_offset += grow;
5441 skb_frag_size_sub(&pinfo->frags[0], grow);
5442
5443 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5444 skb_frag_unref(skb, 0);
5445 memmove(pinfo->frags, pinfo->frags + 1,
5446 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5447 }
5448}
5449
5450static void gro_flush_oldest(struct list_head *head)
5451{
5452 struct sk_buff *oldest;
5453
5454 oldest = list_last_entry(head, struct sk_buff, list);
5455
5456 /* We are called with head length >= MAX_GRO_SKBS, so this is
5457 * impossible.
5458 */
5459 if (WARN_ON_ONCE(!oldest))
5460 return;
5461
5462 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5463 * SKB to the chain.
5464 */
5465 skb_list_del_init(oldest);
5466 napi_gro_complete(oldest);
5467}
5468
5469static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5470{
5471 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5472 struct list_head *head = &offload_base;
5473 struct packet_offload *ptype;
5474 __be16 type = skb->protocol;
5475 struct list_head *gro_head;
5476 struct sk_buff *pp = NULL;
5477 enum gro_result ret;
5478 int same_flow;
5479 int grow;
5480
5481 if (netif_elide_gro(skb->dev))
5482 goto normal;
5483
5484 gro_head = gro_list_prepare(napi, skb);
5485
5486 rcu_read_lock();
5487 list_for_each_entry_rcu(ptype, head, list) {
5488 if (ptype->type != type || !ptype->callbacks.gro_receive)
5489 continue;
5490
5491 skb_set_network_header(skb, skb_gro_offset(skb));
5492 skb_reset_mac_len(skb);
5493 NAPI_GRO_CB(skb)->same_flow = 0;
5494 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5495 NAPI_GRO_CB(skb)->free = 0;
5496 NAPI_GRO_CB(skb)->encap_mark = 0;
5497 NAPI_GRO_CB(skb)->recursion_counter = 0;
5498 NAPI_GRO_CB(skb)->is_fou = 0;
5499 NAPI_GRO_CB(skb)->is_atomic = 1;
5500 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5501
5502 /* Setup for GRO checksum validation */
5503 switch (skb->ip_summed) {
5504 case CHECKSUM_COMPLETE:
5505 NAPI_GRO_CB(skb)->csum = skb->csum;
5506 NAPI_GRO_CB(skb)->csum_valid = 1;
5507 NAPI_GRO_CB(skb)->csum_cnt = 0;
5508 break;
5509 case CHECKSUM_UNNECESSARY:
5510 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5511 NAPI_GRO_CB(skb)->csum_valid = 0;
5512 break;
5513 default:
5514 NAPI_GRO_CB(skb)->csum_cnt = 0;
5515 NAPI_GRO_CB(skb)->csum_valid = 0;
5516 }
5517
5518 pp = ptype->callbacks.gro_receive(gro_head, skb);
5519 break;
5520 }
5521 rcu_read_unlock();
5522
5523 if (&ptype->list == head)
5524 goto normal;
5525
5526 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5527 ret = GRO_CONSUMED;
5528 goto ok;
5529 }
5530
5531 same_flow = NAPI_GRO_CB(skb)->same_flow;
5532 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5533
5534 if (pp) {
5535 skb_list_del_init(pp);
5536 napi_gro_complete(pp);
5537 napi->gro_hash[hash].count--;
5538 }
5539
5540 if (same_flow)
5541 goto ok;
5542
5543 if (NAPI_GRO_CB(skb)->flush)
5544 goto normal;
5545
5546 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5547 gro_flush_oldest(gro_head);
5548 } else {
5549 napi->gro_hash[hash].count++;
5550 }
5551 NAPI_GRO_CB(skb)->count = 1;
5552 NAPI_GRO_CB(skb)->age = jiffies;
5553 NAPI_GRO_CB(skb)->last = skb;
5554 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5555 list_add(&skb->list, gro_head);
5556 ret = GRO_HELD;
5557
5558pull:
5559 grow = skb_gro_offset(skb) - skb_headlen(skb);
5560 if (grow > 0)
5561 gro_pull_from_frag0(skb, grow);
5562ok:
5563 if (napi->gro_hash[hash].count) {
5564 if (!test_bit(hash, &napi->gro_bitmask))
5565 __set_bit(hash, &napi->gro_bitmask);
5566 } else if (test_bit(hash, &napi->gro_bitmask)) {
5567 __clear_bit(hash, &napi->gro_bitmask);
5568 }
5569
5570 return ret;
5571
5572normal:
5573 ret = GRO_NORMAL;
5574 goto pull;
5575}
5576
5577struct packet_offload *gro_find_receive_by_type(__be16 type)
5578{
5579 struct list_head *offload_head = &offload_base;
5580 struct packet_offload *ptype;
5581
5582 list_for_each_entry_rcu(ptype, offload_head, list) {
5583 if (ptype->type != type || !ptype->callbacks.gro_receive)
5584 continue;
5585 return ptype;
5586 }
5587 return NULL;
5588}
5589EXPORT_SYMBOL(gro_find_receive_by_type);
5590
5591struct packet_offload *gro_find_complete_by_type(__be16 type)
5592{
5593 struct list_head *offload_head = &offload_base;
5594 struct packet_offload *ptype;
5595
5596 list_for_each_entry_rcu(ptype, offload_head, list) {
5597 if (ptype->type != type || !ptype->callbacks.gro_complete)
5598 continue;
5599 return ptype;
5600 }
5601 return NULL;
5602}
5603EXPORT_SYMBOL(gro_find_complete_by_type);
5604
5605static void napi_skb_free_stolen_head(struct sk_buff *skb)
5606{
5607 skb_dst_drop(skb);
5608 secpath_reset(skb);
5609 kmem_cache_free(skbuff_head_cache, skb);
5610}
5611
5612static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5613{
5614 switch (ret) {
5615 case GRO_NORMAL:
5616 if (netif_receive_skb_internal(skb))
5617 ret = GRO_DROP;
5618 break;
5619
5620 case GRO_DROP:
5621 kfree_skb(skb);
5622 break;
5623
5624 case GRO_MERGED_FREE:
5625 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5626 napi_skb_free_stolen_head(skb);
5627 else
5628 __kfree_skb(skb);
5629 break;
5630
5631 case GRO_HELD:
5632 case GRO_MERGED:
5633 case GRO_CONSUMED:
5634 break;
5635 }
5636
5637 return ret;
5638}
5639
5640gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5641{
5642 skb_mark_napi_id(skb, napi);
5643 trace_napi_gro_receive_entry(skb);
5644
5645 skb_gro_reset_offset(skb);
5646
5647 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5648}
5649EXPORT_SYMBOL(napi_gro_receive);
5650
5651static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5652{
5653 if (unlikely(skb->pfmemalloc)) {
5654 consume_skb(skb);
5655 return;
5656 }
5657 __skb_pull(skb, skb_headlen(skb));
5658 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5659 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5660 skb->vlan_tci = 0;
5661 skb->dev = napi->dev;
5662 skb->skb_iif = 0;
5663
5664 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5665 skb->pkt_type = PACKET_HOST;
5666
5667 skb->encapsulation = 0;
5668 skb_shinfo(skb)->gso_type = 0;
5669 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5670 secpath_reset(skb);
5671
5672 napi->skb = skb;
5673}
5674
5675struct sk_buff *napi_get_frags(struct napi_struct *napi)
5676{
5677 struct sk_buff *skb = napi->skb;
5678
5679 if (!skb) {
5680 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5681 if (skb) {
5682 napi->skb = skb;
5683 skb_mark_napi_id(skb, napi);
5684 }
5685 }
5686 return skb;
5687}
5688EXPORT_SYMBOL(napi_get_frags);
5689
5690static gro_result_t napi_frags_finish(struct napi_struct *napi,
5691 struct sk_buff *skb,
5692 gro_result_t ret)
5693{
5694 switch (ret) {
5695 case GRO_NORMAL:
5696 case GRO_HELD:
5697 __skb_push(skb, ETH_HLEN);
5698 skb->protocol = eth_type_trans(skb, skb->dev);
5699 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5700 ret = GRO_DROP;
5701 break;
5702
5703 case GRO_DROP:
5704 napi_reuse_skb(napi, skb);
5705 break;
5706
5707 case GRO_MERGED_FREE:
5708 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5709 napi_skb_free_stolen_head(skb);
5710 else
5711 napi_reuse_skb(napi, skb);
5712 break;
5713
5714 case GRO_MERGED:
5715 case GRO_CONSUMED:
5716 break;
5717 }
5718
5719 return ret;
5720}
5721
5722/* Upper GRO stack assumes network header starts at gro_offset=0
5723 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5724 * We copy ethernet header into skb->data to have a common layout.
5725 */
5726static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5727{
5728 struct sk_buff *skb = napi->skb;
5729 const struct ethhdr *eth;
5730 unsigned int hlen = sizeof(*eth);
5731
5732 napi->skb = NULL;
5733
5734 skb_reset_mac_header(skb);
5735 skb_gro_reset_offset(skb);
5736
5737 eth = skb_gro_header_fast(skb, 0);
5738 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5739 eth = skb_gro_header_slow(skb, hlen, 0);
5740 if (unlikely(!eth)) {
5741 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5742 __func__, napi->dev->name);
5743 napi_reuse_skb(napi, skb);
5744 return NULL;
5745 }
5746 } else {
5747 gro_pull_from_frag0(skb, hlen);
5748 NAPI_GRO_CB(skb)->frag0 += hlen;
5749 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5750 }
5751 __skb_pull(skb, hlen);
5752
5753 /*
5754 * This works because the only protocols we care about don't require
5755 * special handling.
5756 * We'll fix it up properly in napi_frags_finish()
5757 */
5758 skb->protocol = eth->h_proto;
5759
5760 return skb;
5761}
5762
5763gro_result_t napi_gro_frags(struct napi_struct *napi)
5764{
5765 struct sk_buff *skb = napi_frags_skb(napi);
5766
5767 if (!skb)
5768 return GRO_DROP;
5769
5770 trace_napi_gro_frags_entry(skb);
5771
5772 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5773}
5774EXPORT_SYMBOL(napi_gro_frags);
5775
5776/* Compute the checksum from gro_offset and return the folded value
5777 * after adding in any pseudo checksum.
5778 */
5779__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5780{
5781 __wsum wsum;
5782 __sum16 sum;
5783
5784 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5785
5786 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5787 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5788 if (likely(!sum)) {
5789 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5790 !skb->csum_complete_sw)
5791 netdev_rx_csum_fault(skb->dev);
5792 }
5793
5794 NAPI_GRO_CB(skb)->csum = wsum;
5795 NAPI_GRO_CB(skb)->csum_valid = 1;
5796
5797 return sum;
5798}
5799EXPORT_SYMBOL(__skb_gro_checksum_complete);
5800
5801static void net_rps_send_ipi(struct softnet_data *remsd)
5802{
5803#ifdef CONFIG_RPS
5804 while (remsd) {
5805 struct softnet_data *next = remsd->rps_ipi_next;
5806
5807 if (cpu_online(remsd->cpu))
5808 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5809 remsd = next;
5810 }
5811#endif
5812}
5813
5814/*
5815 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5816 * Note: called with local irq disabled, but exits with local irq enabled.
5817 */
5818static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5819{
5820#ifdef CONFIG_RPS
5821 struct softnet_data *remsd = sd->rps_ipi_list;
5822
5823 if (remsd) {
5824 sd->rps_ipi_list = NULL;
5825
5826 local_irq_enable();
5827
5828 /* Send pending IPI's to kick RPS processing on remote cpus. */
5829 net_rps_send_ipi(remsd);
5830 } else
5831#endif
5832 local_irq_enable();
5833}
5834
5835static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5836{
5837#ifdef CONFIG_RPS
5838 return sd->rps_ipi_list != NULL;
5839#else
5840 return false;
5841#endif
5842}
5843
5844static int process_backlog(struct napi_struct *napi, int quota)
5845{
5846 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5847 bool again = true;
5848 int work = 0;
5849
5850 /* Check if we have pending ipi, its better to send them now,
5851 * not waiting net_rx_action() end.
5852 */
5853 if (sd_has_rps_ipi_waiting(sd)) {
5854 local_irq_disable();
5855 net_rps_action_and_irq_enable(sd);
5856 }
5857
5858 napi->weight = dev_rx_weight;
5859 while (again) {
5860 struct sk_buff *skb;
5861
5862 while ((skb = __skb_dequeue(&sd->process_queue))) {
5863 rcu_read_lock();
5864 __netif_receive_skb(skb);
5865 rcu_read_unlock();
5866 input_queue_head_incr(sd);
5867 if (++work >= quota)
5868 return work;
5869
5870 }
5871
5872 local_irq_disable();
5873 rps_lock(sd);
5874 if (skb_queue_empty(&sd->input_pkt_queue)) {
5875 /*
5876 * Inline a custom version of __napi_complete().
5877 * only current cpu owns and manipulates this napi,
5878 * and NAPI_STATE_SCHED is the only possible flag set
5879 * on backlog.
5880 * We can use a plain write instead of clear_bit(),
5881 * and we dont need an smp_mb() memory barrier.
5882 */
5883 napi->state = 0;
5884 again = false;
5885 } else {
5886 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5887 &sd->process_queue);
5888 }
5889 rps_unlock(sd);
5890 local_irq_enable();
5891 }
5892
5893 return work;
5894}
5895
5896/**
5897 * __napi_schedule - schedule for receive
5898 * @n: entry to schedule
5899 *
5900 * The entry's receive function will be scheduled to run.
5901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5902 */
5903void __napi_schedule(struct napi_struct *n)
5904{
5905 unsigned long flags;
5906
5907 local_irq_save(flags);
5908 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5909 local_irq_restore(flags);
5910}
5911EXPORT_SYMBOL(__napi_schedule);
5912
5913/**
5914 * napi_schedule_prep - check if napi can be scheduled
5915 * @n: napi context
5916 *
5917 * Test if NAPI routine is already running, and if not mark
5918 * it as running. This is used as a condition variable
5919 * insure only one NAPI poll instance runs. We also make
5920 * sure there is no pending NAPI disable.
5921 */
5922bool napi_schedule_prep(struct napi_struct *n)
5923{
5924 unsigned long val, new;
5925
5926 do {
5927 val = READ_ONCE(n->state);
5928 if (unlikely(val & NAPIF_STATE_DISABLE))
5929 return false;
5930 new = val | NAPIF_STATE_SCHED;
5931
5932 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5933 * This was suggested by Alexander Duyck, as compiler
5934 * emits better code than :
5935 * if (val & NAPIF_STATE_SCHED)
5936 * new |= NAPIF_STATE_MISSED;
5937 */
5938 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5939 NAPIF_STATE_MISSED;
5940 } while (cmpxchg(&n->state, val, new) != val);
5941
5942 return !(val & NAPIF_STATE_SCHED);
5943}
5944EXPORT_SYMBOL(napi_schedule_prep);
5945
5946/**
5947 * __napi_schedule_irqoff - schedule for receive
5948 * @n: entry to schedule
5949 *
5950 * Variant of __napi_schedule() assuming hard irqs are masked
5951 */
5952void __napi_schedule_irqoff(struct napi_struct *n)
5953{
5954 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5955}
5956EXPORT_SYMBOL(__napi_schedule_irqoff);
5957
5958bool napi_complete_done(struct napi_struct *n, int work_done)
5959{
5960 unsigned long flags, val, new;
5961
5962 /*
5963 * 1) Don't let napi dequeue from the cpu poll list
5964 * just in case its running on a different cpu.
5965 * 2) If we are busy polling, do nothing here, we have
5966 * the guarantee we will be called later.
5967 */
5968 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5969 NAPIF_STATE_IN_BUSY_POLL)))
5970 return false;
5971
5972 if (n->gro_bitmask) {
5973 unsigned long timeout = 0;
5974
5975 if (work_done)
5976 timeout = n->dev->gro_flush_timeout;
5977
5978 /* When the NAPI instance uses a timeout and keeps postponing
5979 * it, we need to bound somehow the time packets are kept in
5980 * the GRO layer
5981 */
5982 napi_gro_flush(n, !!timeout);
5983 if (timeout)
5984 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5985 HRTIMER_MODE_REL_PINNED);
5986 }
5987 if (unlikely(!list_empty(&n->poll_list))) {
5988 /* If n->poll_list is not empty, we need to mask irqs */
5989 local_irq_save(flags);
5990 list_del_init(&n->poll_list);
5991 local_irq_restore(flags);
5992 }
5993
5994 do {
5995 val = READ_ONCE(n->state);
5996
5997 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998
5999 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6000
6001 /* If STATE_MISSED was set, leave STATE_SCHED set,
6002 * because we will call napi->poll() one more time.
6003 * This C code was suggested by Alexander Duyck to help gcc.
6004 */
6005 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6006 NAPIF_STATE_SCHED;
6007 } while (cmpxchg(&n->state, val, new) != val);
6008
6009 if (unlikely(val & NAPIF_STATE_MISSED)) {
6010 __napi_schedule(n);
6011 return false;
6012 }
6013
6014 return true;
6015}
6016EXPORT_SYMBOL(napi_complete_done);
6017
6018/* must be called under rcu_read_lock(), as we dont take a reference */
6019static struct napi_struct *napi_by_id(unsigned int napi_id)
6020{
6021 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022 struct napi_struct *napi;
6023
6024 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025 if (napi->napi_id == napi_id)
6026 return napi;
6027
6028 return NULL;
6029}
6030
6031#if defined(CONFIG_NET_RX_BUSY_POLL)
6032
6033#define BUSY_POLL_BUDGET 8
6034
6035static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6036{
6037 int rc;
6038
6039 /* Busy polling means there is a high chance device driver hard irq
6040 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6041 * set in napi_schedule_prep().
6042 * Since we are about to call napi->poll() once more, we can safely
6043 * clear NAPI_STATE_MISSED.
6044 *
6045 * Note: x86 could use a single "lock and ..." instruction
6046 * to perform these two clear_bit()
6047 */
6048 clear_bit(NAPI_STATE_MISSED, &napi->state);
6049 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6050
6051 local_bh_disable();
6052
6053 /* All we really want here is to re-enable device interrupts.
6054 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6055 */
6056 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6057 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6058 netpoll_poll_unlock(have_poll_lock);
6059 if (rc == BUSY_POLL_BUDGET)
6060 __napi_schedule(napi);
6061 local_bh_enable();
6062}
6063
6064void napi_busy_loop(unsigned int napi_id,
6065 bool (*loop_end)(void *, unsigned long),
6066 void *loop_end_arg)
6067{
6068 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6069 int (*napi_poll)(struct napi_struct *napi, int budget);
6070 void *have_poll_lock = NULL;
6071 struct napi_struct *napi;
6072
6073restart:
6074 napi_poll = NULL;
6075
6076 rcu_read_lock();
6077
6078 napi = napi_by_id(napi_id);
6079 if (!napi)
6080 goto out;
6081
6082 preempt_disable();
6083 for (;;) {
6084 int work = 0;
6085
6086 local_bh_disable();
6087 if (!napi_poll) {
6088 unsigned long val = READ_ONCE(napi->state);
6089
6090 /* If multiple threads are competing for this napi,
6091 * we avoid dirtying napi->state as much as we can.
6092 */
6093 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6094 NAPIF_STATE_IN_BUSY_POLL))
6095 goto count;
6096 if (cmpxchg(&napi->state, val,
6097 val | NAPIF_STATE_IN_BUSY_POLL |
6098 NAPIF_STATE_SCHED) != val)
6099 goto count;
6100 have_poll_lock = netpoll_poll_lock(napi);
6101 napi_poll = napi->poll;
6102 }
6103 work = napi_poll(napi, BUSY_POLL_BUDGET);
6104 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6105count:
6106 if (work > 0)
6107 __NET_ADD_STATS(dev_net(napi->dev),
6108 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6109 local_bh_enable();
6110
6111 if (!loop_end || loop_end(loop_end_arg, start_time))
6112 break;
6113
6114 if (unlikely(need_resched())) {
6115 if (napi_poll)
6116 busy_poll_stop(napi, have_poll_lock);
6117 preempt_enable();
6118 rcu_read_unlock();
6119 cond_resched();
6120 if (loop_end(loop_end_arg, start_time))
6121 return;
6122 goto restart;
6123 }
6124 cpu_relax();
6125 }
6126 if (napi_poll)
6127 busy_poll_stop(napi, have_poll_lock);
6128 preempt_enable();
6129out:
6130 rcu_read_unlock();
6131}
6132EXPORT_SYMBOL(napi_busy_loop);
6133
6134#endif /* CONFIG_NET_RX_BUSY_POLL */
6135
6136static void napi_hash_add(struct napi_struct *napi)
6137{
6138 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6139 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6140 return;
6141
6142 spin_lock(&napi_hash_lock);
6143
6144 /* 0..NR_CPUS range is reserved for sender_cpu use */
6145 do {
6146 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6147 napi_gen_id = MIN_NAPI_ID;
6148 } while (napi_by_id(napi_gen_id));
6149 napi->napi_id = napi_gen_id;
6150
6151 hlist_add_head_rcu(&napi->napi_hash_node,
6152 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6153
6154 spin_unlock(&napi_hash_lock);
6155}
6156
6157/* Warning : caller is responsible to make sure rcu grace period
6158 * is respected before freeing memory containing @napi
6159 */
6160bool napi_hash_del(struct napi_struct *napi)
6161{
6162 bool rcu_sync_needed = false;
6163
6164 spin_lock(&napi_hash_lock);
6165
6166 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6167 rcu_sync_needed = true;
6168 hlist_del_rcu(&napi->napi_hash_node);
6169 }
6170 spin_unlock(&napi_hash_lock);
6171 return rcu_sync_needed;
6172}
6173EXPORT_SYMBOL_GPL(napi_hash_del);
6174
6175static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6176{
6177 struct napi_struct *napi;
6178
6179 napi = container_of(timer, struct napi_struct, timer);
6180
6181 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6182 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6183 */
6184 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6185 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6186 __napi_schedule_irqoff(napi);
6187
6188 return HRTIMER_NORESTART;
6189}
6190
6191static void init_gro_hash(struct napi_struct *napi)
6192{
6193 int i;
6194
6195 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6196 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6197 napi->gro_hash[i].count = 0;
6198 }
6199 napi->gro_bitmask = 0;
6200}
6201
6202void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6203 int (*poll)(struct napi_struct *, int), int weight)
6204{
6205 INIT_LIST_HEAD(&napi->poll_list);
6206 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6207 napi->timer.function = napi_watchdog;
6208 init_gro_hash(napi);
6209 napi->skb = NULL;
6210 napi->poll = poll;
6211 if (weight > NAPI_POLL_WEIGHT)
6212 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6213 weight);
6214 napi->weight = weight;
6215 list_add(&napi->dev_list, &dev->napi_list);
6216 napi->dev = dev;
6217#ifdef CONFIG_NETPOLL
6218 napi->poll_owner = -1;
6219#endif
6220 set_bit(NAPI_STATE_SCHED, &napi->state);
6221 napi_hash_add(napi);
6222}
6223EXPORT_SYMBOL(netif_napi_add);
6224
6225void napi_disable(struct napi_struct *n)
6226{
6227 might_sleep();
6228 set_bit(NAPI_STATE_DISABLE, &n->state);
6229
6230 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6231 msleep(1);
6232 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6233 msleep(1);
6234
6235 hrtimer_cancel(&n->timer);
6236
6237 clear_bit(NAPI_STATE_DISABLE, &n->state);
6238}
6239EXPORT_SYMBOL(napi_disable);
6240
6241static void flush_gro_hash(struct napi_struct *napi)
6242{
6243 int i;
6244
6245 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6246 struct sk_buff *skb, *n;
6247
6248 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6249 kfree_skb(skb);
6250 napi->gro_hash[i].count = 0;
6251 }
6252}
6253
6254/* Must be called in process context */
6255void netif_napi_del(struct napi_struct *napi)
6256{
6257 might_sleep();
6258 if (napi_hash_del(napi))
6259 synchronize_net();
6260 list_del_init(&napi->dev_list);
6261 napi_free_frags(napi);
6262
6263 flush_gro_hash(napi);
6264 napi->gro_bitmask = 0;
6265}
6266EXPORT_SYMBOL(netif_napi_del);
6267
6268static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6269{
6270 void *have;
6271 int work, weight;
6272
6273 list_del_init(&n->poll_list);
6274
6275 have = netpoll_poll_lock(n);
6276
6277 weight = n->weight;
6278
6279 /* This NAPI_STATE_SCHED test is for avoiding a race
6280 * with netpoll's poll_napi(). Only the entity which
6281 * obtains the lock and sees NAPI_STATE_SCHED set will
6282 * actually make the ->poll() call. Therefore we avoid
6283 * accidentally calling ->poll() when NAPI is not scheduled.
6284 */
6285 work = 0;
6286 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6287 work = n->poll(n, weight);
6288 trace_napi_poll(n, work, weight);
6289 }
6290
6291 WARN_ON_ONCE(work > weight);
6292
6293 if (likely(work < weight))
6294 goto out_unlock;
6295
6296 /* Drivers must not modify the NAPI state if they
6297 * consume the entire weight. In such cases this code
6298 * still "owns" the NAPI instance and therefore can
6299 * move the instance around on the list at-will.
6300 */
6301 if (unlikely(napi_disable_pending(n))) {
6302 napi_complete(n);
6303 goto out_unlock;
6304 }
6305
6306 if (n->gro_bitmask) {
6307 /* flush too old packets
6308 * If HZ < 1000, flush all packets.
6309 */
6310 napi_gro_flush(n, HZ >= 1000);
6311 }
6312
6313 /* Some drivers may have called napi_schedule
6314 * prior to exhausting their budget.
6315 */
6316 if (unlikely(!list_empty(&n->poll_list))) {
6317 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6318 n->dev ? n->dev->name : "backlog");
6319 goto out_unlock;
6320 }
6321
6322 list_add_tail(&n->poll_list, repoll);
6323
6324out_unlock:
6325 netpoll_poll_unlock(have);
6326
6327 return work;
6328}
6329
6330static __latent_entropy void net_rx_action(struct softirq_action *h)
6331{
6332 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6333 unsigned long time_limit = jiffies +
6334 usecs_to_jiffies(netdev_budget_usecs);
6335 int budget = netdev_budget;
6336 LIST_HEAD(list);
6337 LIST_HEAD(repoll);
6338
6339 local_irq_disable();
6340 list_splice_init(&sd->poll_list, &list);
6341 local_irq_enable();
6342
6343 for (;;) {
6344 struct napi_struct *n;
6345
6346 if (list_empty(&list)) {
6347 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6348 goto out;
6349 break;
6350 }
6351
6352 n = list_first_entry(&list, struct napi_struct, poll_list);
6353 budget -= napi_poll(n, &repoll);
6354
6355 /* If softirq window is exhausted then punt.
6356 * Allow this to run for 2 jiffies since which will allow
6357 * an average latency of 1.5/HZ.
6358 */
6359 if (unlikely(budget <= 0 ||
6360 time_after_eq(jiffies, time_limit))) {
6361 sd->time_squeeze++;
6362 break;
6363 }
6364 }
6365
6366 local_irq_disable();
6367
6368 list_splice_tail_init(&sd->poll_list, &list);
6369 list_splice_tail(&repoll, &list);
6370 list_splice(&list, &sd->poll_list);
6371 if (!list_empty(&sd->poll_list))
6372 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6373
6374 net_rps_action_and_irq_enable(sd);
6375out:
6376 __kfree_skb_flush();
6377}
6378
6379struct netdev_adjacent {
6380 struct net_device *dev;
6381
6382 /* upper master flag, there can only be one master device per list */
6383 bool master;
6384
6385 /* counter for the number of times this device was added to us */
6386 u16 ref_nr;
6387
6388 /* private field for the users */
6389 void *private;
6390
6391 struct list_head list;
6392 struct rcu_head rcu;
6393};
6394
6395static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6396 struct list_head *adj_list)
6397{
6398 struct netdev_adjacent *adj;
6399
6400 list_for_each_entry(adj, adj_list, list) {
6401 if (adj->dev == adj_dev)
6402 return adj;
6403 }
6404 return NULL;
6405}
6406
6407static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6408{
6409 struct net_device *dev = data;
6410
6411 return upper_dev == dev;
6412}
6413
6414/**
6415 * netdev_has_upper_dev - Check if device is linked to an upper device
6416 * @dev: device
6417 * @upper_dev: upper device to check
6418 *
6419 * Find out if a device is linked to specified upper device and return true
6420 * in case it is. Note that this checks only immediate upper device,
6421 * not through a complete stack of devices. The caller must hold the RTNL lock.
6422 */
6423bool netdev_has_upper_dev(struct net_device *dev,
6424 struct net_device *upper_dev)
6425{
6426 ASSERT_RTNL();
6427
6428 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6429 upper_dev);
6430}
6431EXPORT_SYMBOL(netdev_has_upper_dev);
6432
6433/**
6434 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6435 * @dev: device
6436 * @upper_dev: upper device to check
6437 *
6438 * Find out if a device is linked to specified upper device and return true
6439 * in case it is. Note that this checks the entire upper device chain.
6440 * The caller must hold rcu lock.
6441 */
6442
6443bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6444 struct net_device *upper_dev)
6445{
6446 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6447 upper_dev);
6448}
6449EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6450
6451/**
6452 * netdev_has_any_upper_dev - Check if device is linked to some device
6453 * @dev: device
6454 *
6455 * Find out if a device is linked to an upper device and return true in case
6456 * it is. The caller must hold the RTNL lock.
6457 */
6458bool netdev_has_any_upper_dev(struct net_device *dev)
6459{
6460 ASSERT_RTNL();
6461
6462 return !list_empty(&dev->adj_list.upper);
6463}
6464EXPORT_SYMBOL(netdev_has_any_upper_dev);
6465
6466/**
6467 * netdev_master_upper_dev_get - Get master upper device
6468 * @dev: device
6469 *
6470 * Find a master upper device and return pointer to it or NULL in case
6471 * it's not there. The caller must hold the RTNL lock.
6472 */
6473struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6474{
6475 struct netdev_adjacent *upper;
6476
6477 ASSERT_RTNL();
6478
6479 if (list_empty(&dev->adj_list.upper))
6480 return NULL;
6481
6482 upper = list_first_entry(&dev->adj_list.upper,
6483 struct netdev_adjacent, list);
6484 if (likely(upper->master))
6485 return upper->dev;
6486 return NULL;
6487}
6488EXPORT_SYMBOL(netdev_master_upper_dev_get);
6489
6490/**
6491 * netdev_has_any_lower_dev - Check if device is linked to some device
6492 * @dev: device
6493 *
6494 * Find out if a device is linked to a lower device and return true in case
6495 * it is. The caller must hold the RTNL lock.
6496 */
6497static bool netdev_has_any_lower_dev(struct net_device *dev)
6498{
6499 ASSERT_RTNL();
6500
6501 return !list_empty(&dev->adj_list.lower);
6502}
6503
6504void *netdev_adjacent_get_private(struct list_head *adj_list)
6505{
6506 struct netdev_adjacent *adj;
6507
6508 adj = list_entry(adj_list, struct netdev_adjacent, list);
6509
6510 return adj->private;
6511}
6512EXPORT_SYMBOL(netdev_adjacent_get_private);
6513
6514/**
6515 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6516 * @dev: device
6517 * @iter: list_head ** of the current position
6518 *
6519 * Gets the next device from the dev's upper list, starting from iter
6520 * position. The caller must hold RCU read lock.
6521 */
6522struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6523 struct list_head **iter)
6524{
6525 struct netdev_adjacent *upper;
6526
6527 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6528
6529 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6530
6531 if (&upper->list == &dev->adj_list.upper)
6532 return NULL;
6533
6534 *iter = &upper->list;
6535
6536 return upper->dev;
6537}
6538EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6539
6540static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541 struct list_head **iter)
6542{
6543 struct netdev_adjacent *upper;
6544
6545 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546
6547 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548
6549 if (&upper->list == &dev->adj_list.upper)
6550 return NULL;
6551
6552 *iter = &upper->list;
6553
6554 return upper->dev;
6555}
6556
6557int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6558 int (*fn)(struct net_device *dev,
6559 void *data),
6560 void *data)
6561{
6562 struct net_device *udev;
6563 struct list_head *iter;
6564 int ret;
6565
6566 for (iter = &dev->adj_list.upper,
6567 udev = netdev_next_upper_dev_rcu(dev, &iter);
6568 udev;
6569 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6570 /* first is the upper device itself */
6571 ret = fn(udev, data);
6572 if (ret)
6573 return ret;
6574
6575 /* then look at all of its upper devices */
6576 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6577 if (ret)
6578 return ret;
6579 }
6580
6581 return 0;
6582}
6583EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6584
6585/**
6586 * netdev_lower_get_next_private - Get the next ->private from the
6587 * lower neighbour list
6588 * @dev: device
6589 * @iter: list_head ** of the current position
6590 *
6591 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6592 * list, starting from iter position. The caller must hold either hold the
6593 * RTNL lock or its own locking that guarantees that the neighbour lower
6594 * list will remain unchanged.
6595 */
6596void *netdev_lower_get_next_private(struct net_device *dev,
6597 struct list_head **iter)
6598{
6599 struct netdev_adjacent *lower;
6600
6601 lower = list_entry(*iter, struct netdev_adjacent, list);
6602
6603 if (&lower->list == &dev->adj_list.lower)
6604 return NULL;
6605
6606 *iter = lower->list.next;
6607
6608 return lower->private;
6609}
6610EXPORT_SYMBOL(netdev_lower_get_next_private);
6611
6612/**
6613 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6614 * lower neighbour list, RCU
6615 * variant
6616 * @dev: device
6617 * @iter: list_head ** of the current position
6618 *
6619 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6620 * list, starting from iter position. The caller must hold RCU read lock.
6621 */
6622void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6623 struct list_head **iter)
6624{
6625 struct netdev_adjacent *lower;
6626
6627 WARN_ON_ONCE(!rcu_read_lock_held());
6628
6629 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6630
6631 if (&lower->list == &dev->adj_list.lower)
6632 return NULL;
6633
6634 *iter = &lower->list;
6635
6636 return lower->private;
6637}
6638EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6639
6640/**
6641 * netdev_lower_get_next - Get the next device from the lower neighbour
6642 * list
6643 * @dev: device
6644 * @iter: list_head ** of the current position
6645 *
6646 * Gets the next netdev_adjacent from the dev's lower neighbour
6647 * list, starting from iter position. The caller must hold RTNL lock or
6648 * its own locking that guarantees that the neighbour lower
6649 * list will remain unchanged.
6650 */
6651void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6652{
6653 struct netdev_adjacent *lower;
6654
6655 lower = list_entry(*iter, struct netdev_adjacent, list);
6656
6657 if (&lower->list == &dev->adj_list.lower)
6658 return NULL;
6659
6660 *iter = lower->list.next;
6661
6662 return lower->dev;
6663}
6664EXPORT_SYMBOL(netdev_lower_get_next);
6665
6666static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6667 struct list_head **iter)
6668{
6669 struct netdev_adjacent *lower;
6670
6671 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6672
6673 if (&lower->list == &dev->adj_list.lower)
6674 return NULL;
6675
6676 *iter = &lower->list;
6677
6678 return lower->dev;
6679}
6680
6681int netdev_walk_all_lower_dev(struct net_device *dev,
6682 int (*fn)(struct net_device *dev,
6683 void *data),
6684 void *data)
6685{
6686 struct net_device *ldev;
6687 struct list_head *iter;
6688 int ret;
6689
6690 for (iter = &dev->adj_list.lower,
6691 ldev = netdev_next_lower_dev(dev, &iter);
6692 ldev;
6693 ldev = netdev_next_lower_dev(dev, &iter)) {
6694 /* first is the lower device itself */
6695 ret = fn(ldev, data);
6696 if (ret)
6697 return ret;
6698
6699 /* then look at all of its lower devices */
6700 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6701 if (ret)
6702 return ret;
6703 }
6704
6705 return 0;
6706}
6707EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6708
6709static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6710 struct list_head **iter)
6711{
6712 struct netdev_adjacent *lower;
6713
6714 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6715 if (&lower->list == &dev->adj_list.lower)
6716 return NULL;
6717
6718 *iter = &lower->list;
6719
6720 return lower->dev;
6721}
6722
6723int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6724 int (*fn)(struct net_device *dev,
6725 void *data),
6726 void *data)
6727{
6728 struct net_device *ldev;
6729 struct list_head *iter;
6730 int ret;
6731
6732 for (iter = &dev->adj_list.lower,
6733 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6734 ldev;
6735 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6736 /* first is the lower device itself */
6737 ret = fn(ldev, data);
6738 if (ret)
6739 return ret;
6740
6741 /* then look at all of its lower devices */
6742 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6743 if (ret)
6744 return ret;
6745 }
6746
6747 return 0;
6748}
6749EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6750
6751/**
6752 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6753 * lower neighbour list, RCU
6754 * variant
6755 * @dev: device
6756 *
6757 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6758 * list. The caller must hold RCU read lock.
6759 */
6760void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6761{
6762 struct netdev_adjacent *lower;
6763
6764 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6765 struct netdev_adjacent, list);
6766 if (lower)
6767 return lower->private;
6768 return NULL;
6769}
6770EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6771
6772/**
6773 * netdev_master_upper_dev_get_rcu - Get master upper device
6774 * @dev: device
6775 *
6776 * Find a master upper device and return pointer to it or NULL in case
6777 * it's not there. The caller must hold the RCU read lock.
6778 */
6779struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6780{
6781 struct netdev_adjacent *upper;
6782
6783 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6784 struct netdev_adjacent, list);
6785 if (upper && likely(upper->master))
6786 return upper->dev;
6787 return NULL;
6788}
6789EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6790
6791static int netdev_adjacent_sysfs_add(struct net_device *dev,
6792 struct net_device *adj_dev,
6793 struct list_head *dev_list)
6794{
6795 char linkname[IFNAMSIZ+7];
6796
6797 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6798 "upper_%s" : "lower_%s", adj_dev->name);
6799 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6800 linkname);
6801}
6802static void netdev_adjacent_sysfs_del(struct net_device *dev,
6803 char *name,
6804 struct list_head *dev_list)
6805{
6806 char linkname[IFNAMSIZ+7];
6807
6808 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6809 "upper_%s" : "lower_%s", name);
6810 sysfs_remove_link(&(dev->dev.kobj), linkname);
6811}
6812
6813static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6814 struct net_device *adj_dev,
6815 struct list_head *dev_list)
6816{
6817 return (dev_list == &dev->adj_list.upper ||
6818 dev_list == &dev->adj_list.lower) &&
6819 net_eq(dev_net(dev), dev_net(adj_dev));
6820}
6821
6822static int __netdev_adjacent_dev_insert(struct net_device *dev,
6823 struct net_device *adj_dev,
6824 struct list_head *dev_list,
6825 void *private, bool master)
6826{
6827 struct netdev_adjacent *adj;
6828 int ret;
6829
6830 adj = __netdev_find_adj(adj_dev, dev_list);
6831
6832 if (adj) {
6833 adj->ref_nr += 1;
6834 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6835 dev->name, adj_dev->name, adj->ref_nr);
6836
6837 return 0;
6838 }
6839
6840 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6841 if (!adj)
6842 return -ENOMEM;
6843
6844 adj->dev = adj_dev;
6845 adj->master = master;
6846 adj->ref_nr = 1;
6847 adj->private = private;
6848 dev_hold(adj_dev);
6849
6850 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6851 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6852
6853 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6854 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6855 if (ret)
6856 goto free_adj;
6857 }
6858
6859 /* Ensure that master link is always the first item in list. */
6860 if (master) {
6861 ret = sysfs_create_link(&(dev->dev.kobj),
6862 &(adj_dev->dev.kobj), "master");
6863 if (ret)
6864 goto remove_symlinks;
6865
6866 list_add_rcu(&adj->list, dev_list);
6867 } else {
6868 list_add_tail_rcu(&adj->list, dev_list);
6869 }
6870
6871 return 0;
6872
6873remove_symlinks:
6874 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6875 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6876free_adj:
6877 kfree(adj);
6878 dev_put(adj_dev);
6879
6880 return ret;
6881}
6882
6883static void __netdev_adjacent_dev_remove(struct net_device *dev,
6884 struct net_device *adj_dev,
6885 u16 ref_nr,
6886 struct list_head *dev_list)
6887{
6888 struct netdev_adjacent *adj;
6889
6890 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6891 dev->name, adj_dev->name, ref_nr);
6892
6893 adj = __netdev_find_adj(adj_dev, dev_list);
6894
6895 if (!adj) {
6896 pr_err("Adjacency does not exist for device %s from %s\n",
6897 dev->name, adj_dev->name);
6898 WARN_ON(1);
6899 return;
6900 }
6901
6902 if (adj->ref_nr > ref_nr) {
6903 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6904 dev->name, adj_dev->name, ref_nr,
6905 adj->ref_nr - ref_nr);
6906 adj->ref_nr -= ref_nr;
6907 return;
6908 }
6909
6910 if (adj->master)
6911 sysfs_remove_link(&(dev->dev.kobj), "master");
6912
6913 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6914 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6915
6916 list_del_rcu(&adj->list);
6917 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6918 adj_dev->name, dev->name, adj_dev->name);
6919 dev_put(adj_dev);
6920 kfree_rcu(adj, rcu);
6921}
6922
6923static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6924 struct net_device *upper_dev,
6925 struct list_head *up_list,
6926 struct list_head *down_list,
6927 void *private, bool master)
6928{
6929 int ret;
6930
6931 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6932 private, master);
6933 if (ret)
6934 return ret;
6935
6936 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6937 private, false);
6938 if (ret) {
6939 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6940 return ret;
6941 }
6942
6943 return 0;
6944}
6945
6946static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6947 struct net_device *upper_dev,
6948 u16 ref_nr,
6949 struct list_head *up_list,
6950 struct list_head *down_list)
6951{
6952 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6953 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6954}
6955
6956static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6957 struct net_device *upper_dev,
6958 void *private, bool master)
6959{
6960 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6961 &dev->adj_list.upper,
6962 &upper_dev->adj_list.lower,
6963 private, master);
6964}
6965
6966static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6967 struct net_device *upper_dev)
6968{
6969 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6970 &dev->adj_list.upper,
6971 &upper_dev->adj_list.lower);
6972}
6973
6974static int __netdev_upper_dev_link(struct net_device *dev,
6975 struct net_device *upper_dev, bool master,
6976 void *upper_priv, void *upper_info,
6977 struct netlink_ext_ack *extack)
6978{
6979 struct netdev_notifier_changeupper_info changeupper_info = {
6980 .info = {
6981 .dev = dev,
6982 .extack = extack,
6983 },
6984 .upper_dev = upper_dev,
6985 .master = master,
6986 .linking = true,
6987 .upper_info = upper_info,
6988 };
6989 struct net_device *master_dev;
6990 int ret = 0;
6991
6992 ASSERT_RTNL();
6993
6994 if (dev == upper_dev)
6995 return -EBUSY;
6996
6997 /* To prevent loops, check if dev is not upper device to upper_dev. */
6998 if (netdev_has_upper_dev(upper_dev, dev))
6999 return -EBUSY;
7000
7001 if (!master) {
7002 if (netdev_has_upper_dev(dev, upper_dev))
7003 return -EEXIST;
7004 } else {
7005 master_dev = netdev_master_upper_dev_get(dev);
7006 if (master_dev)
7007 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7008 }
7009
7010 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7011 &changeupper_info.info);
7012 ret = notifier_to_errno(ret);
7013 if (ret)
7014 return ret;
7015
7016 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7017 master);
7018 if (ret)
7019 return ret;
7020
7021 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7022 &changeupper_info.info);
7023 ret = notifier_to_errno(ret);
7024 if (ret)
7025 goto rollback;
7026
7027 return 0;
7028
7029rollback:
7030 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7031
7032 return ret;
7033}
7034
7035/**
7036 * netdev_upper_dev_link - Add a link to the upper device
7037 * @dev: device
7038 * @upper_dev: new upper device
7039 * @extack: netlink extended ack
7040 *
7041 * Adds a link to device which is upper to this one. The caller must hold
7042 * the RTNL lock. On a failure a negative errno code is returned.
7043 * On success the reference counts are adjusted and the function
7044 * returns zero.
7045 */
7046int netdev_upper_dev_link(struct net_device *dev,
7047 struct net_device *upper_dev,
7048 struct netlink_ext_ack *extack)
7049{
7050 return __netdev_upper_dev_link(dev, upper_dev, false,
7051 NULL, NULL, extack);
7052}
7053EXPORT_SYMBOL(netdev_upper_dev_link);
7054
7055/**
7056 * netdev_master_upper_dev_link - Add a master link to the upper device
7057 * @dev: device
7058 * @upper_dev: new upper device
7059 * @upper_priv: upper device private
7060 * @upper_info: upper info to be passed down via notifier
7061 * @extack: netlink extended ack
7062 *
7063 * Adds a link to device which is upper to this one. In this case, only
7064 * one master upper device can be linked, although other non-master devices
7065 * might be linked as well. The caller must hold the RTNL lock.
7066 * On a failure a negative errno code is returned. On success the reference
7067 * counts are adjusted and the function returns zero.
7068 */
7069int netdev_master_upper_dev_link(struct net_device *dev,
7070 struct net_device *upper_dev,
7071 void *upper_priv, void *upper_info,
7072 struct netlink_ext_ack *extack)
7073{
7074 return __netdev_upper_dev_link(dev, upper_dev, true,
7075 upper_priv, upper_info, extack);
7076}
7077EXPORT_SYMBOL(netdev_master_upper_dev_link);
7078
7079/**
7080 * netdev_upper_dev_unlink - Removes a link to upper device
7081 * @dev: device
7082 * @upper_dev: new upper device
7083 *
7084 * Removes a link to device which is upper to this one. The caller must hold
7085 * the RTNL lock.
7086 */
7087void netdev_upper_dev_unlink(struct net_device *dev,
7088 struct net_device *upper_dev)
7089{
7090 struct netdev_notifier_changeupper_info changeupper_info = {
7091 .info = {
7092 .dev = dev,
7093 },
7094 .upper_dev = upper_dev,
7095 .linking = false,
7096 };
7097
7098 ASSERT_RTNL();
7099
7100 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7101
7102 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7103 &changeupper_info.info);
7104
7105 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7106
7107 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7108 &changeupper_info.info);
7109}
7110EXPORT_SYMBOL(netdev_upper_dev_unlink);
7111
7112/**
7113 * netdev_bonding_info_change - Dispatch event about slave change
7114 * @dev: device
7115 * @bonding_info: info to dispatch
7116 *
7117 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7118 * The caller must hold the RTNL lock.
7119 */
7120void netdev_bonding_info_change(struct net_device *dev,
7121 struct netdev_bonding_info *bonding_info)
7122{
7123 struct netdev_notifier_bonding_info info = {
7124 .info.dev = dev,
7125 };
7126
7127 memcpy(&info.bonding_info, bonding_info,
7128 sizeof(struct netdev_bonding_info));
7129 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7130 &info.info);
7131}
7132EXPORT_SYMBOL(netdev_bonding_info_change);
7133
7134static void netdev_adjacent_add_links(struct net_device *dev)
7135{
7136 struct netdev_adjacent *iter;
7137
7138 struct net *net = dev_net(dev);
7139
7140 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7141 if (!net_eq(net, dev_net(iter->dev)))
7142 continue;
7143 netdev_adjacent_sysfs_add(iter->dev, dev,
7144 &iter->dev->adj_list.lower);
7145 netdev_adjacent_sysfs_add(dev, iter->dev,
7146 &dev->adj_list.upper);
7147 }
7148
7149 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7150 if (!net_eq(net, dev_net(iter->dev)))
7151 continue;
7152 netdev_adjacent_sysfs_add(iter->dev, dev,
7153 &iter->dev->adj_list.upper);
7154 netdev_adjacent_sysfs_add(dev, iter->dev,
7155 &dev->adj_list.lower);
7156 }
7157}
7158
7159static void netdev_adjacent_del_links(struct net_device *dev)
7160{
7161 struct netdev_adjacent *iter;
7162
7163 struct net *net = dev_net(dev);
7164
7165 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7166 if (!net_eq(net, dev_net(iter->dev)))
7167 continue;
7168 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7169 &iter->dev->adj_list.lower);
7170 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7171 &dev->adj_list.upper);
7172 }
7173
7174 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7175 if (!net_eq(net, dev_net(iter->dev)))
7176 continue;
7177 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7178 &iter->dev->adj_list.upper);
7179 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7180 &dev->adj_list.lower);
7181 }
7182}
7183
7184void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7185{
7186 struct netdev_adjacent *iter;
7187
7188 struct net *net = dev_net(dev);
7189
7190 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7191 if (!net_eq(net, dev_net(iter->dev)))
7192 continue;
7193 netdev_adjacent_sysfs_del(iter->dev, oldname,
7194 &iter->dev->adj_list.lower);
7195 netdev_adjacent_sysfs_add(iter->dev, dev,
7196 &iter->dev->adj_list.lower);
7197 }
7198
7199 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7200 if (!net_eq(net, dev_net(iter->dev)))
7201 continue;
7202 netdev_adjacent_sysfs_del(iter->dev, oldname,
7203 &iter->dev->adj_list.upper);
7204 netdev_adjacent_sysfs_add(iter->dev, dev,
7205 &iter->dev->adj_list.upper);
7206 }
7207}
7208
7209void *netdev_lower_dev_get_private(struct net_device *dev,
7210 struct net_device *lower_dev)
7211{
7212 struct netdev_adjacent *lower;
7213
7214 if (!lower_dev)
7215 return NULL;
7216 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7217 if (!lower)
7218 return NULL;
7219
7220 return lower->private;
7221}
7222EXPORT_SYMBOL(netdev_lower_dev_get_private);
7223
7224
7225int dev_get_nest_level(struct net_device *dev)
7226{
7227 struct net_device *lower = NULL;
7228 struct list_head *iter;
7229 int max_nest = -1;
7230 int nest;
7231
7232 ASSERT_RTNL();
7233
7234 netdev_for_each_lower_dev(dev, lower, iter) {
7235 nest = dev_get_nest_level(lower);
7236 if (max_nest < nest)
7237 max_nest = nest;
7238 }
7239
7240 return max_nest + 1;
7241}
7242EXPORT_SYMBOL(dev_get_nest_level);
7243
7244/**
7245 * netdev_lower_change - Dispatch event about lower device state change
7246 * @lower_dev: device
7247 * @lower_state_info: state to dispatch
7248 *
7249 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7250 * The caller must hold the RTNL lock.
7251 */
7252void netdev_lower_state_changed(struct net_device *lower_dev,
7253 void *lower_state_info)
7254{
7255 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7256 .info.dev = lower_dev,
7257 };
7258
7259 ASSERT_RTNL();
7260 changelowerstate_info.lower_state_info = lower_state_info;
7261 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7262 &changelowerstate_info.info);
7263}
7264EXPORT_SYMBOL(netdev_lower_state_changed);
7265
7266static void dev_change_rx_flags(struct net_device *dev, int flags)
7267{
7268 const struct net_device_ops *ops = dev->netdev_ops;
7269
7270 if (ops->ndo_change_rx_flags)
7271 ops->ndo_change_rx_flags(dev, flags);
7272}
7273
7274static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7275{
7276 unsigned int old_flags = dev->flags;
7277 kuid_t uid;
7278 kgid_t gid;
7279
7280 ASSERT_RTNL();
7281
7282 dev->flags |= IFF_PROMISC;
7283 dev->promiscuity += inc;
7284 if (dev->promiscuity == 0) {
7285 /*
7286 * Avoid overflow.
7287 * If inc causes overflow, untouch promisc and return error.
7288 */
7289 if (inc < 0)
7290 dev->flags &= ~IFF_PROMISC;
7291 else {
7292 dev->promiscuity -= inc;
7293 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7294 dev->name);
7295 return -EOVERFLOW;
7296 }
7297 }
7298 if (dev->flags != old_flags) {
7299 pr_info("device %s %s promiscuous mode\n",
7300 dev->name,
7301 dev->flags & IFF_PROMISC ? "entered" : "left");
7302 if (audit_enabled) {
7303 current_uid_gid(&uid, &gid);
7304 audit_log(audit_context(), GFP_ATOMIC,
7305 AUDIT_ANOM_PROMISCUOUS,
7306 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7307 dev->name, (dev->flags & IFF_PROMISC),
7308 (old_flags & IFF_PROMISC),
7309 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7310 from_kuid(&init_user_ns, uid),
7311 from_kgid(&init_user_ns, gid),
7312 audit_get_sessionid(current));
7313 }
7314
7315 dev_change_rx_flags(dev, IFF_PROMISC);
7316 }
7317 if (notify)
7318 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7319 return 0;
7320}
7321
7322/**
7323 * dev_set_promiscuity - update promiscuity count on a device
7324 * @dev: device
7325 * @inc: modifier
7326 *
7327 * Add or remove promiscuity from a device. While the count in the device
7328 * remains above zero the interface remains promiscuous. Once it hits zero
7329 * the device reverts back to normal filtering operation. A negative inc
7330 * value is used to drop promiscuity on the device.
7331 * Return 0 if successful or a negative errno code on error.
7332 */
7333int dev_set_promiscuity(struct net_device *dev, int inc)
7334{
7335 unsigned int old_flags = dev->flags;
7336 int err;
7337
7338 err = __dev_set_promiscuity(dev, inc, true);
7339 if (err < 0)
7340 return err;
7341 if (dev->flags != old_flags)
7342 dev_set_rx_mode(dev);
7343 return err;
7344}
7345EXPORT_SYMBOL(dev_set_promiscuity);
7346
7347static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7348{
7349 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7350
7351 ASSERT_RTNL();
7352
7353 dev->flags |= IFF_ALLMULTI;
7354 dev->allmulti += inc;
7355 if (dev->allmulti == 0) {
7356 /*
7357 * Avoid overflow.
7358 * If inc causes overflow, untouch allmulti and return error.
7359 */
7360 if (inc < 0)
7361 dev->flags &= ~IFF_ALLMULTI;
7362 else {
7363 dev->allmulti -= inc;
7364 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7365 dev->name);
7366 return -EOVERFLOW;
7367 }
7368 }
7369 if (dev->flags ^ old_flags) {
7370 dev_change_rx_flags(dev, IFF_ALLMULTI);
7371 dev_set_rx_mode(dev);
7372 if (notify)
7373 __dev_notify_flags(dev, old_flags,
7374 dev->gflags ^ old_gflags);
7375 }
7376 return 0;
7377}
7378
7379/**
7380 * dev_set_allmulti - update allmulti count on a device
7381 * @dev: device
7382 * @inc: modifier
7383 *
7384 * Add or remove reception of all multicast frames to a device. While the
7385 * count in the device remains above zero the interface remains listening
7386 * to all interfaces. Once it hits zero the device reverts back to normal
7387 * filtering operation. A negative @inc value is used to drop the counter
7388 * when releasing a resource needing all multicasts.
7389 * Return 0 if successful or a negative errno code on error.
7390 */
7391
7392int dev_set_allmulti(struct net_device *dev, int inc)
7393{
7394 return __dev_set_allmulti(dev, inc, true);
7395}
7396EXPORT_SYMBOL(dev_set_allmulti);
7397
7398/*
7399 * Upload unicast and multicast address lists to device and
7400 * configure RX filtering. When the device doesn't support unicast
7401 * filtering it is put in promiscuous mode while unicast addresses
7402 * are present.
7403 */
7404void __dev_set_rx_mode(struct net_device *dev)
7405{
7406 const struct net_device_ops *ops = dev->netdev_ops;
7407
7408 /* dev_open will call this function so the list will stay sane. */
7409 if (!(dev->flags&IFF_UP))
7410 return;
7411
7412 if (!netif_device_present(dev))
7413 return;
7414
7415 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7416 /* Unicast addresses changes may only happen under the rtnl,
7417 * therefore calling __dev_set_promiscuity here is safe.
7418 */
7419 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7420 __dev_set_promiscuity(dev, 1, false);
7421 dev->uc_promisc = true;
7422 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7423 __dev_set_promiscuity(dev, -1, false);
7424 dev->uc_promisc = false;
7425 }
7426 }
7427
7428 if (ops->ndo_set_rx_mode)
7429 ops->ndo_set_rx_mode(dev);
7430}
7431
7432void dev_set_rx_mode(struct net_device *dev)
7433{
7434 netif_addr_lock_bh(dev);
7435 __dev_set_rx_mode(dev);
7436 netif_addr_unlock_bh(dev);
7437}
7438
7439/**
7440 * dev_get_flags - get flags reported to userspace
7441 * @dev: device
7442 *
7443 * Get the combination of flag bits exported through APIs to userspace.
7444 */
7445unsigned int dev_get_flags(const struct net_device *dev)
7446{
7447 unsigned int flags;
7448
7449 flags = (dev->flags & ~(IFF_PROMISC |
7450 IFF_ALLMULTI |
7451 IFF_RUNNING |
7452 IFF_LOWER_UP |
7453 IFF_DORMANT)) |
7454 (dev->gflags & (IFF_PROMISC |
7455 IFF_ALLMULTI));
7456
7457 if (netif_running(dev)) {
7458 if (netif_oper_up(dev))
7459 flags |= IFF_RUNNING;
7460 if (netif_carrier_ok(dev))
7461 flags |= IFF_LOWER_UP;
7462 if (netif_dormant(dev))
7463 flags |= IFF_DORMANT;
7464 }
7465
7466 return flags;
7467}
7468EXPORT_SYMBOL(dev_get_flags);
7469
7470int __dev_change_flags(struct net_device *dev, unsigned int flags)
7471{
7472 unsigned int old_flags = dev->flags;
7473 int ret;
7474
7475 ASSERT_RTNL();
7476
7477 /*
7478 * Set the flags on our device.
7479 */
7480
7481 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7482 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7483 IFF_AUTOMEDIA)) |
7484 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7485 IFF_ALLMULTI));
7486
7487 /*
7488 * Load in the correct multicast list now the flags have changed.
7489 */
7490
7491 if ((old_flags ^ flags) & IFF_MULTICAST)
7492 dev_change_rx_flags(dev, IFF_MULTICAST);
7493
7494 dev_set_rx_mode(dev);
7495
7496 /*
7497 * Have we downed the interface. We handle IFF_UP ourselves
7498 * according to user attempts to set it, rather than blindly
7499 * setting it.
7500 */
7501
7502 ret = 0;
7503 if ((old_flags ^ flags) & IFF_UP) {
7504 if (old_flags & IFF_UP)
7505 __dev_close(dev);
7506 else
7507 ret = __dev_open(dev);
7508 }
7509
7510 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7511 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7512 unsigned int old_flags = dev->flags;
7513
7514 dev->gflags ^= IFF_PROMISC;
7515
7516 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7517 if (dev->flags != old_flags)
7518 dev_set_rx_mode(dev);
7519 }
7520
7521 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7522 * is important. Some (broken) drivers set IFF_PROMISC, when
7523 * IFF_ALLMULTI is requested not asking us and not reporting.
7524 */
7525 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7526 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7527
7528 dev->gflags ^= IFF_ALLMULTI;
7529 __dev_set_allmulti(dev, inc, false);
7530 }
7531
7532 return ret;
7533}
7534
7535void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7536 unsigned int gchanges)
7537{
7538 unsigned int changes = dev->flags ^ old_flags;
7539
7540 if (gchanges)
7541 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7542
7543 if (changes & IFF_UP) {
7544 if (dev->flags & IFF_UP)
7545 call_netdevice_notifiers(NETDEV_UP, dev);
7546 else
7547 call_netdevice_notifiers(NETDEV_DOWN, dev);
7548 }
7549
7550 if (dev->flags & IFF_UP &&
7551 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7552 struct netdev_notifier_change_info change_info = {
7553 .info = {
7554 .dev = dev,
7555 },
7556 .flags_changed = changes,
7557 };
7558
7559 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7560 }
7561}
7562
7563/**
7564 * dev_change_flags - change device settings
7565 * @dev: device
7566 * @flags: device state flags
7567 *
7568 * Change settings on device based state flags. The flags are
7569 * in the userspace exported format.
7570 */
7571int dev_change_flags(struct net_device *dev, unsigned int flags)
7572{
7573 int ret;
7574 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7575
7576 ret = __dev_change_flags(dev, flags);
7577 if (ret < 0)
7578 return ret;
7579
7580 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7581 __dev_notify_flags(dev, old_flags, changes);
7582 return ret;
7583}
7584EXPORT_SYMBOL(dev_change_flags);
7585
7586int __dev_set_mtu(struct net_device *dev, int new_mtu)
7587{
7588 const struct net_device_ops *ops = dev->netdev_ops;
7589
7590 if (ops->ndo_change_mtu)
7591 return ops->ndo_change_mtu(dev, new_mtu);
7592
7593 dev->mtu = new_mtu;
7594 return 0;
7595}
7596EXPORT_SYMBOL(__dev_set_mtu);
7597
7598/**
7599 * dev_set_mtu_ext - Change maximum transfer unit
7600 * @dev: device
7601 * @new_mtu: new transfer unit
7602 * @extack: netlink extended ack
7603 *
7604 * Change the maximum transfer size of the network device.
7605 */
7606int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7607 struct netlink_ext_ack *extack)
7608{
7609 int err, orig_mtu;
7610
7611 if (new_mtu == dev->mtu)
7612 return 0;
7613
7614 /* MTU must be positive, and in range */
7615 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7616 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7617 return -EINVAL;
7618 }
7619
7620 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7621 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7622 return -EINVAL;
7623 }
7624
7625 if (!netif_device_present(dev))
7626 return -ENODEV;
7627
7628 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7629 err = notifier_to_errno(err);
7630 if (err)
7631 return err;
7632
7633 orig_mtu = dev->mtu;
7634 err = __dev_set_mtu(dev, new_mtu);
7635
7636 if (!err) {
7637 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7638 orig_mtu);
7639 err = notifier_to_errno(err);
7640 if (err) {
7641 /* setting mtu back and notifying everyone again,
7642 * so that they have a chance to revert changes.
7643 */
7644 __dev_set_mtu(dev, orig_mtu);
7645 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7646 new_mtu);
7647 }
7648 }
7649 return err;
7650}
7651
7652int dev_set_mtu(struct net_device *dev, int new_mtu)
7653{
7654 struct netlink_ext_ack extack;
7655 int err;
7656
7657 memset(&extack, 0, sizeof(extack));
7658 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7659 if (err && extack._msg)
7660 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7661 return err;
7662}
7663EXPORT_SYMBOL(dev_set_mtu);
7664
7665/**
7666 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7667 * @dev: device
7668 * @new_len: new tx queue length
7669 */
7670int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7671{
7672 unsigned int orig_len = dev->tx_queue_len;
7673 int res;
7674
7675 if (new_len != (unsigned int)new_len)
7676 return -ERANGE;
7677
7678 if (new_len != orig_len) {
7679 dev->tx_queue_len = new_len;
7680 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7681 res = notifier_to_errno(res);
7682 if (res)
7683 goto err_rollback;
7684 res = dev_qdisc_change_tx_queue_len(dev);
7685 if (res)
7686 goto err_rollback;
7687 }
7688
7689 return 0;
7690
7691err_rollback:
7692 netdev_err(dev, "refused to change device tx_queue_len\n");
7693 dev->tx_queue_len = orig_len;
7694 return res;
7695}
7696
7697/**
7698 * dev_set_group - Change group this device belongs to
7699 * @dev: device
7700 * @new_group: group this device should belong to
7701 */
7702void dev_set_group(struct net_device *dev, int new_group)
7703{
7704 dev->group = new_group;
7705}
7706EXPORT_SYMBOL(dev_set_group);
7707
7708/**
7709 * dev_set_mac_address - Change Media Access Control Address
7710 * @dev: device
7711 * @sa: new address
7712 *
7713 * Change the hardware (MAC) address of the device
7714 */
7715int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7716{
7717 const struct net_device_ops *ops = dev->netdev_ops;
7718 int err;
7719
7720 if (!ops->ndo_set_mac_address)
7721 return -EOPNOTSUPP;
7722 if (sa->sa_family != dev->type)
7723 return -EINVAL;
7724 if (!netif_device_present(dev))
7725 return -ENODEV;
7726 err = ops->ndo_set_mac_address(dev, sa);
7727 if (err)
7728 return err;
7729 dev->addr_assign_type = NET_ADDR_SET;
7730 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7731 add_device_randomness(dev->dev_addr, dev->addr_len);
7732 return 0;
7733}
7734EXPORT_SYMBOL(dev_set_mac_address);
7735
7736/**
7737 * dev_change_carrier - Change device carrier
7738 * @dev: device
7739 * @new_carrier: new value
7740 *
7741 * Change device carrier
7742 */
7743int dev_change_carrier(struct net_device *dev, bool new_carrier)
7744{
7745 const struct net_device_ops *ops = dev->netdev_ops;
7746
7747 if (!ops->ndo_change_carrier)
7748 return -EOPNOTSUPP;
7749 if (!netif_device_present(dev))
7750 return -ENODEV;
7751 return ops->ndo_change_carrier(dev, new_carrier);
7752}
7753EXPORT_SYMBOL(dev_change_carrier);
7754
7755/**
7756 * dev_get_phys_port_id - Get device physical port ID
7757 * @dev: device
7758 * @ppid: port ID
7759 *
7760 * Get device physical port ID
7761 */
7762int dev_get_phys_port_id(struct net_device *dev,
7763 struct netdev_phys_item_id *ppid)
7764{
7765 const struct net_device_ops *ops = dev->netdev_ops;
7766
7767 if (!ops->ndo_get_phys_port_id)
7768 return -EOPNOTSUPP;
7769 return ops->ndo_get_phys_port_id(dev, ppid);
7770}
7771EXPORT_SYMBOL(dev_get_phys_port_id);
7772
7773/**
7774 * dev_get_phys_port_name - Get device physical port name
7775 * @dev: device
7776 * @name: port name
7777 * @len: limit of bytes to copy to name
7778 *
7779 * Get device physical port name
7780 */
7781int dev_get_phys_port_name(struct net_device *dev,
7782 char *name, size_t len)
7783{
7784 const struct net_device_ops *ops = dev->netdev_ops;
7785
7786 if (!ops->ndo_get_phys_port_name)
7787 return -EOPNOTSUPP;
7788 return ops->ndo_get_phys_port_name(dev, name, len);
7789}
7790EXPORT_SYMBOL(dev_get_phys_port_name);
7791
7792/**
7793 * dev_change_proto_down - update protocol port state information
7794 * @dev: device
7795 * @proto_down: new value
7796 *
7797 * This info can be used by switch drivers to set the phys state of the
7798 * port.
7799 */
7800int dev_change_proto_down(struct net_device *dev, bool proto_down)
7801{
7802 const struct net_device_ops *ops = dev->netdev_ops;
7803
7804 if (!ops->ndo_change_proto_down)
7805 return -EOPNOTSUPP;
7806 if (!netif_device_present(dev))
7807 return -ENODEV;
7808 return ops->ndo_change_proto_down(dev, proto_down);
7809}
7810EXPORT_SYMBOL(dev_change_proto_down);
7811
7812u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7813 enum bpf_netdev_command cmd)
7814{
7815 struct netdev_bpf xdp;
7816
7817 if (!bpf_op)
7818 return 0;
7819
7820 memset(&xdp, 0, sizeof(xdp));
7821 xdp.command = cmd;
7822
7823 /* Query must always succeed. */
7824 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7825
7826 return xdp.prog_id;
7827}
7828
7829static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7830 struct netlink_ext_ack *extack, u32 flags,
7831 struct bpf_prog *prog)
7832{
7833 struct netdev_bpf xdp;
7834
7835 memset(&xdp, 0, sizeof(xdp));
7836 if (flags & XDP_FLAGS_HW_MODE)
7837 xdp.command = XDP_SETUP_PROG_HW;
7838 else
7839 xdp.command = XDP_SETUP_PROG;
7840 xdp.extack = extack;
7841 xdp.flags = flags;
7842 xdp.prog = prog;
7843
7844 return bpf_op(dev, &xdp);
7845}
7846
7847static void dev_xdp_uninstall(struct net_device *dev)
7848{
7849 struct netdev_bpf xdp;
7850 bpf_op_t ndo_bpf;
7851
7852 /* Remove generic XDP */
7853 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7854
7855 /* Remove from the driver */
7856 ndo_bpf = dev->netdev_ops->ndo_bpf;
7857 if (!ndo_bpf)
7858 return;
7859
7860 memset(&xdp, 0, sizeof(xdp));
7861 xdp.command = XDP_QUERY_PROG;
7862 WARN_ON(ndo_bpf(dev, &xdp));
7863 if (xdp.prog_id)
7864 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7865 NULL));
7866
7867 /* Remove HW offload */
7868 memset(&xdp, 0, sizeof(xdp));
7869 xdp.command = XDP_QUERY_PROG_HW;
7870 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7871 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7872 NULL));
7873}
7874
7875/**
7876 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7877 * @dev: device
7878 * @extack: netlink extended ack
7879 * @fd: new program fd or negative value to clear
7880 * @flags: xdp-related flags
7881 *
7882 * Set or clear a bpf program for a device
7883 */
7884int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7885 int fd, u32 flags)
7886{
7887 const struct net_device_ops *ops = dev->netdev_ops;
7888 enum bpf_netdev_command query;
7889 struct bpf_prog *prog = NULL;
7890 bpf_op_t bpf_op, bpf_chk;
7891 int err;
7892
7893 ASSERT_RTNL();
7894
7895 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7896
7897 bpf_op = bpf_chk = ops->ndo_bpf;
7898 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7899 return -EOPNOTSUPP;
7900 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7901 bpf_op = generic_xdp_install;
7902 if (bpf_op == bpf_chk)
7903 bpf_chk = generic_xdp_install;
7904
7905 if (fd >= 0) {
7906 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7907 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7908 return -EEXIST;
7909 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7910 __dev_xdp_query(dev, bpf_op, query))
7911 return -EBUSY;
7912
7913 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7914 bpf_op == ops->ndo_bpf);
7915 if (IS_ERR(prog))
7916 return PTR_ERR(prog);
7917
7918 if (!(flags & XDP_FLAGS_HW_MODE) &&
7919 bpf_prog_is_dev_bound(prog->aux)) {
7920 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7921 bpf_prog_put(prog);
7922 return -EINVAL;
7923 }
7924 }
7925
7926 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7927 if (err < 0 && prog)
7928 bpf_prog_put(prog);
7929
7930 return err;
7931}
7932
7933/**
7934 * dev_new_index - allocate an ifindex
7935 * @net: the applicable net namespace
7936 *
7937 * Returns a suitable unique value for a new device interface
7938 * number. The caller must hold the rtnl semaphore or the
7939 * dev_base_lock to be sure it remains unique.
7940 */
7941static int dev_new_index(struct net *net)
7942{
7943 int ifindex = net->ifindex;
7944
7945 for (;;) {
7946 if (++ifindex <= 0)
7947 ifindex = 1;
7948 if (!__dev_get_by_index(net, ifindex))
7949 return net->ifindex = ifindex;
7950 }
7951}
7952
7953/* Delayed registration/unregisteration */
7954static LIST_HEAD(net_todo_list);
7955DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7956
7957static void net_set_todo(struct net_device *dev)
7958{
7959 list_add_tail(&dev->todo_list, &net_todo_list);
7960 dev_net(dev)->dev_unreg_count++;
7961}
7962
7963static void rollback_registered_many(struct list_head *head)
7964{
7965 struct net_device *dev, *tmp;
7966 LIST_HEAD(close_head);
7967
7968 BUG_ON(dev_boot_phase);
7969 ASSERT_RTNL();
7970
7971 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7972 /* Some devices call without registering
7973 * for initialization unwind. Remove those
7974 * devices and proceed with the remaining.
7975 */
7976 if (dev->reg_state == NETREG_UNINITIALIZED) {
7977 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7978 dev->name, dev);
7979
7980 WARN_ON(1);
7981 list_del(&dev->unreg_list);
7982 continue;
7983 }
7984 dev->dismantle = true;
7985 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7986 }
7987
7988 /* If device is running, close it first. */
7989 list_for_each_entry(dev, head, unreg_list)
7990 list_add_tail(&dev->close_list, &close_head);
7991 dev_close_many(&close_head, true);
7992
7993 list_for_each_entry(dev, head, unreg_list) {
7994 /* And unlink it from device chain. */
7995 unlist_netdevice(dev);
7996
7997 dev->reg_state = NETREG_UNREGISTERING;
7998 }
7999 flush_all_backlogs();
8000
8001 synchronize_net();
8002
8003 list_for_each_entry(dev, head, unreg_list) {
8004 struct sk_buff *skb = NULL;
8005
8006 /* Shutdown queueing discipline. */
8007 dev_shutdown(dev);
8008
8009 dev_xdp_uninstall(dev);
8010
8011 /* Notify protocols, that we are about to destroy
8012 * this device. They should clean all the things.
8013 */
8014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8015
8016 if (!dev->rtnl_link_ops ||
8017 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8018 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8019 GFP_KERNEL, NULL, 0);
8020
8021 /*
8022 * Flush the unicast and multicast chains
8023 */
8024 dev_uc_flush(dev);
8025 dev_mc_flush(dev);
8026
8027 if (dev->netdev_ops->ndo_uninit)
8028 dev->netdev_ops->ndo_uninit(dev);
8029
8030 if (skb)
8031 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8032
8033 /* Notifier chain MUST detach us all upper devices. */
8034 WARN_ON(netdev_has_any_upper_dev(dev));
8035 WARN_ON(netdev_has_any_lower_dev(dev));
8036
8037 /* Remove entries from kobject tree */
8038 netdev_unregister_kobject(dev);
8039#ifdef CONFIG_XPS
8040 /* Remove XPS queueing entries */
8041 netif_reset_xps_queues_gt(dev, 0);
8042#endif
8043 }
8044
8045 synchronize_net();
8046
8047 list_for_each_entry(dev, head, unreg_list)
8048 dev_put(dev);
8049}
8050
8051static void rollback_registered(struct net_device *dev)
8052{
8053 LIST_HEAD(single);
8054
8055 list_add(&dev->unreg_list, &single);
8056 rollback_registered_many(&single);
8057 list_del(&single);
8058}
8059
8060static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8061 struct net_device *upper, netdev_features_t features)
8062{
8063 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8064 netdev_features_t feature;
8065 int feature_bit;
8066
8067 for_each_netdev_feature(&upper_disables, feature_bit) {
8068 feature = __NETIF_F_BIT(feature_bit);
8069 if (!(upper->wanted_features & feature)
8070 && (features & feature)) {
8071 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8072 &feature, upper->name);
8073 features &= ~feature;
8074 }
8075 }
8076
8077 return features;
8078}
8079
8080static void netdev_sync_lower_features(struct net_device *upper,
8081 struct net_device *lower, netdev_features_t features)
8082{
8083 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8084 netdev_features_t feature;
8085 int feature_bit;
8086
8087 for_each_netdev_feature(&upper_disables, feature_bit) {
8088 feature = __NETIF_F_BIT(feature_bit);
8089 if (!(features & feature) && (lower->features & feature)) {
8090 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8091 &feature, lower->name);
8092 lower->wanted_features &= ~feature;
8093 netdev_update_features(lower);
8094
8095 if (unlikely(lower->features & feature))
8096 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8097 &feature, lower->name);
8098 }
8099 }
8100}
8101
8102static netdev_features_t netdev_fix_features(struct net_device *dev,
8103 netdev_features_t features)
8104{
8105 /* Fix illegal checksum combinations */
8106 if ((features & NETIF_F_HW_CSUM) &&
8107 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8108 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8109 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8110 }
8111
8112 /* TSO requires that SG is present as well. */
8113 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8114 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8115 features &= ~NETIF_F_ALL_TSO;
8116 }
8117
8118 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8119 !(features & NETIF_F_IP_CSUM)) {
8120 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8121 features &= ~NETIF_F_TSO;
8122 features &= ~NETIF_F_TSO_ECN;
8123 }
8124
8125 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8126 !(features & NETIF_F_IPV6_CSUM)) {
8127 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8128 features &= ~NETIF_F_TSO6;
8129 }
8130
8131 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8132 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8133 features &= ~NETIF_F_TSO_MANGLEID;
8134
8135 /* TSO ECN requires that TSO is present as well. */
8136 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8137 features &= ~NETIF_F_TSO_ECN;
8138
8139 /* Software GSO depends on SG. */
8140 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8141 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8142 features &= ~NETIF_F_GSO;
8143 }
8144
8145 /* GSO partial features require GSO partial be set */
8146 if ((features & dev->gso_partial_features) &&
8147 !(features & NETIF_F_GSO_PARTIAL)) {
8148 netdev_dbg(dev,
8149 "Dropping partially supported GSO features since no GSO partial.\n");
8150 features &= ~dev->gso_partial_features;
8151 }
8152
8153 if (!(features & NETIF_F_RXCSUM)) {
8154 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8155 * successfully merged by hardware must also have the
8156 * checksum verified by hardware. If the user does not
8157 * want to enable RXCSUM, logically, we should disable GRO_HW.
8158 */
8159 if (features & NETIF_F_GRO_HW) {
8160 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8161 features &= ~NETIF_F_GRO_HW;
8162 }
8163 }
8164
8165 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8166 if (features & NETIF_F_RXFCS) {
8167 if (features & NETIF_F_LRO) {
8168 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8169 features &= ~NETIF_F_LRO;
8170 }
8171
8172 if (features & NETIF_F_GRO_HW) {
8173 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8174 features &= ~NETIF_F_GRO_HW;
8175 }
8176 }
8177
8178 return features;
8179}
8180
8181int __netdev_update_features(struct net_device *dev)
8182{
8183 struct net_device *upper, *lower;
8184 netdev_features_t features;
8185 struct list_head *iter;
8186 int err = -1;
8187
8188 ASSERT_RTNL();
8189
8190 features = netdev_get_wanted_features(dev);
8191
8192 if (dev->netdev_ops->ndo_fix_features)
8193 features = dev->netdev_ops->ndo_fix_features(dev, features);
8194
8195 /* driver might be less strict about feature dependencies */
8196 features = netdev_fix_features(dev, features);
8197
8198 /* some features can't be enabled if they're off an an upper device */
8199 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8200 features = netdev_sync_upper_features(dev, upper, features);
8201
8202 if (dev->features == features)
8203 goto sync_lower;
8204
8205 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8206 &dev->features, &features);
8207
8208 if (dev->netdev_ops->ndo_set_features)
8209 err = dev->netdev_ops->ndo_set_features(dev, features);
8210 else
8211 err = 0;
8212
8213 if (unlikely(err < 0)) {
8214 netdev_err(dev,
8215 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8216 err, &features, &dev->features);
8217 /* return non-0 since some features might have changed and
8218 * it's better to fire a spurious notification than miss it
8219 */
8220 return -1;
8221 }
8222
8223sync_lower:
8224 /* some features must be disabled on lower devices when disabled
8225 * on an upper device (think: bonding master or bridge)
8226 */
8227 netdev_for_each_lower_dev(dev, lower, iter)
8228 netdev_sync_lower_features(dev, lower, features);
8229
8230 if (!err) {
8231 netdev_features_t diff = features ^ dev->features;
8232
8233 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8234 /* udp_tunnel_{get,drop}_rx_info both need
8235 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8236 * device, or they won't do anything.
8237 * Thus we need to update dev->features
8238 * *before* calling udp_tunnel_get_rx_info,
8239 * but *after* calling udp_tunnel_drop_rx_info.
8240 */
8241 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8242 dev->features = features;
8243 udp_tunnel_get_rx_info(dev);
8244 } else {
8245 udp_tunnel_drop_rx_info(dev);
8246 }
8247 }
8248
8249 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8250 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8251 dev->features = features;
8252 err |= vlan_get_rx_ctag_filter_info(dev);
8253 } else {
8254 vlan_drop_rx_ctag_filter_info(dev);
8255 }
8256 }
8257
8258 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8259 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8260 dev->features = features;
8261 err |= vlan_get_rx_stag_filter_info(dev);
8262 } else {
8263 vlan_drop_rx_stag_filter_info(dev);
8264 }
8265 }
8266
8267 dev->features = features;
8268 }
8269
8270 return err < 0 ? 0 : 1;
8271}
8272
8273/**
8274 * netdev_update_features - recalculate device features
8275 * @dev: the device to check
8276 *
8277 * Recalculate dev->features set and send notifications if it
8278 * has changed. Should be called after driver or hardware dependent
8279 * conditions might have changed that influence the features.
8280 */
8281void netdev_update_features(struct net_device *dev)
8282{
8283 if (__netdev_update_features(dev))
8284 netdev_features_change(dev);
8285}
8286EXPORT_SYMBOL(netdev_update_features);
8287
8288/**
8289 * netdev_change_features - recalculate device features
8290 * @dev: the device to check
8291 *
8292 * Recalculate dev->features set and send notifications even
8293 * if they have not changed. Should be called instead of
8294 * netdev_update_features() if also dev->vlan_features might
8295 * have changed to allow the changes to be propagated to stacked
8296 * VLAN devices.
8297 */
8298void netdev_change_features(struct net_device *dev)
8299{
8300 __netdev_update_features(dev);
8301 netdev_features_change(dev);
8302}
8303EXPORT_SYMBOL(netdev_change_features);
8304
8305/**
8306 * netif_stacked_transfer_operstate - transfer operstate
8307 * @rootdev: the root or lower level device to transfer state from
8308 * @dev: the device to transfer operstate to
8309 *
8310 * Transfer operational state from root to device. This is normally
8311 * called when a stacking relationship exists between the root
8312 * device and the device(a leaf device).
8313 */
8314void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8315 struct net_device *dev)
8316{
8317 if (rootdev->operstate == IF_OPER_DORMANT)
8318 netif_dormant_on(dev);
8319 else
8320 netif_dormant_off(dev);
8321
8322 if (netif_carrier_ok(rootdev))
8323 netif_carrier_on(dev);
8324 else
8325 netif_carrier_off(dev);
8326}
8327EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8328
8329static int netif_alloc_rx_queues(struct net_device *dev)
8330{
8331 unsigned int i, count = dev->num_rx_queues;
8332 struct netdev_rx_queue *rx;
8333 size_t sz = count * sizeof(*rx);
8334 int err = 0;
8335
8336 BUG_ON(count < 1);
8337
8338 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8339 if (!rx)
8340 return -ENOMEM;
8341
8342 dev->_rx = rx;
8343
8344 for (i = 0; i < count; i++) {
8345 rx[i].dev = dev;
8346
8347 /* XDP RX-queue setup */
8348 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8349 if (err < 0)
8350 goto err_rxq_info;
8351 }
8352 return 0;
8353
8354err_rxq_info:
8355 /* Rollback successful reg's and free other resources */
8356 while (i--)
8357 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8358 kvfree(dev->_rx);
8359 dev->_rx = NULL;
8360 return err;
8361}
8362
8363static void netif_free_rx_queues(struct net_device *dev)
8364{
8365 unsigned int i, count = dev->num_rx_queues;
8366
8367 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8368 if (!dev->_rx)
8369 return;
8370
8371 for (i = 0; i < count; i++)
8372 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8373
8374 kvfree(dev->_rx);
8375}
8376
8377static void netdev_init_one_queue(struct net_device *dev,
8378 struct netdev_queue *queue, void *_unused)
8379{
8380 /* Initialize queue lock */
8381 spin_lock_init(&queue->_xmit_lock);
8382 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8383 queue->xmit_lock_owner = -1;
8384 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8385 queue->dev = dev;
8386#ifdef CONFIG_BQL
8387 dql_init(&queue->dql, HZ);
8388#endif
8389}
8390
8391static void netif_free_tx_queues(struct net_device *dev)
8392{
8393 kvfree(dev->_tx);
8394}
8395
8396static int netif_alloc_netdev_queues(struct net_device *dev)
8397{
8398 unsigned int count = dev->num_tx_queues;
8399 struct netdev_queue *tx;
8400 size_t sz = count * sizeof(*tx);
8401
8402 if (count < 1 || count > 0xffff)
8403 return -EINVAL;
8404
8405 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8406 if (!tx)
8407 return -ENOMEM;
8408
8409 dev->_tx = tx;
8410
8411 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8412 spin_lock_init(&dev->tx_global_lock);
8413
8414 return 0;
8415}
8416
8417void netif_tx_stop_all_queues(struct net_device *dev)
8418{
8419 unsigned int i;
8420
8421 for (i = 0; i < dev->num_tx_queues; i++) {
8422 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8423
8424 netif_tx_stop_queue(txq);
8425 }
8426}
8427EXPORT_SYMBOL(netif_tx_stop_all_queues);
8428
8429/**
8430 * register_netdevice - register a network device
8431 * @dev: device to register
8432 *
8433 * Take a completed network device structure and add it to the kernel
8434 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8435 * chain. 0 is returned on success. A negative errno code is returned
8436 * on a failure to set up the device, or if the name is a duplicate.
8437 *
8438 * Callers must hold the rtnl semaphore. You may want
8439 * register_netdev() instead of this.
8440 *
8441 * BUGS:
8442 * The locking appears insufficient to guarantee two parallel registers
8443 * will not get the same name.
8444 */
8445
8446int register_netdevice(struct net_device *dev)
8447{
8448 int ret;
8449 struct net *net = dev_net(dev);
8450
8451 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8452 NETDEV_FEATURE_COUNT);
8453 BUG_ON(dev_boot_phase);
8454 ASSERT_RTNL();
8455
8456 might_sleep();
8457
8458 /* When net_device's are persistent, this will be fatal. */
8459 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8460 BUG_ON(!net);
8461
8462 spin_lock_init(&dev->addr_list_lock);
8463 netdev_set_addr_lockdep_class(dev);
8464
8465 ret = dev_get_valid_name(net, dev, dev->name);
8466 if (ret < 0)
8467 goto out;
8468
8469 /* Init, if this function is available */
8470 if (dev->netdev_ops->ndo_init) {
8471 ret = dev->netdev_ops->ndo_init(dev);
8472 if (ret) {
8473 if (ret > 0)
8474 ret = -EIO;
8475 goto out;
8476 }
8477 }
8478
8479 if (((dev->hw_features | dev->features) &
8480 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8481 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8482 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8483 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8484 ret = -EINVAL;
8485 goto err_uninit;
8486 }
8487
8488 ret = -EBUSY;
8489 if (!dev->ifindex)
8490 dev->ifindex = dev_new_index(net);
8491 else if (__dev_get_by_index(net, dev->ifindex))
8492 goto err_uninit;
8493
8494 /* Transfer changeable features to wanted_features and enable
8495 * software offloads (GSO and GRO).
8496 */
8497 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8498 dev->features |= NETIF_F_SOFT_FEATURES;
8499
8500 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8501 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8502 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8503 }
8504
8505 dev->wanted_features = dev->features & dev->hw_features;
8506
8507 if (!(dev->flags & IFF_LOOPBACK))
8508 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8509
8510 /* If IPv4 TCP segmentation offload is supported we should also
8511 * allow the device to enable segmenting the frame with the option
8512 * of ignoring a static IP ID value. This doesn't enable the
8513 * feature itself but allows the user to enable it later.
8514 */
8515 if (dev->hw_features & NETIF_F_TSO)
8516 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8517 if (dev->vlan_features & NETIF_F_TSO)
8518 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8519 if (dev->mpls_features & NETIF_F_TSO)
8520 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8521 if (dev->hw_enc_features & NETIF_F_TSO)
8522 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8523
8524 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8525 */
8526 dev->vlan_features |= NETIF_F_HIGHDMA;
8527
8528 /* Make NETIF_F_SG inheritable to tunnel devices.
8529 */
8530 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8531
8532 /* Make NETIF_F_SG inheritable to MPLS.
8533 */
8534 dev->mpls_features |= NETIF_F_SG;
8535
8536 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8537 ret = notifier_to_errno(ret);
8538 if (ret)
8539 goto err_uninit;
8540
8541 ret = netdev_register_kobject(dev);
8542 if (ret)
8543 goto err_uninit;
8544 dev->reg_state = NETREG_REGISTERED;
8545
8546 __netdev_update_features(dev);
8547
8548 /*
8549 * Default initial state at registry is that the
8550 * device is present.
8551 */
8552
8553 set_bit(__LINK_STATE_PRESENT, &dev->state);
8554
8555 linkwatch_init_dev(dev);
8556
8557 dev_init_scheduler(dev);
8558 dev_hold(dev);
8559 list_netdevice(dev);
8560 add_device_randomness(dev->dev_addr, dev->addr_len);
8561
8562 /* If the device has permanent device address, driver should
8563 * set dev_addr and also addr_assign_type should be set to
8564 * NET_ADDR_PERM (default value).
8565 */
8566 if (dev->addr_assign_type == NET_ADDR_PERM)
8567 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8568
8569 /* Notify protocols, that a new device appeared. */
8570 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8571 ret = notifier_to_errno(ret);
8572 if (ret) {
8573 rollback_registered(dev);
8574 dev->reg_state = NETREG_UNREGISTERED;
8575 }
8576 /*
8577 * Prevent userspace races by waiting until the network
8578 * device is fully setup before sending notifications.
8579 */
8580 if (!dev->rtnl_link_ops ||
8581 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8582 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8583
8584out:
8585 return ret;
8586
8587err_uninit:
8588 if (dev->netdev_ops->ndo_uninit)
8589 dev->netdev_ops->ndo_uninit(dev);
8590 if (dev->priv_destructor)
8591 dev->priv_destructor(dev);
8592 goto out;
8593}
8594EXPORT_SYMBOL(register_netdevice);
8595
8596/**
8597 * init_dummy_netdev - init a dummy network device for NAPI
8598 * @dev: device to init
8599 *
8600 * This takes a network device structure and initialize the minimum
8601 * amount of fields so it can be used to schedule NAPI polls without
8602 * registering a full blown interface. This is to be used by drivers
8603 * that need to tie several hardware interfaces to a single NAPI
8604 * poll scheduler due to HW limitations.
8605 */
8606int init_dummy_netdev(struct net_device *dev)
8607{
8608 /* Clear everything. Note we don't initialize spinlocks
8609 * are they aren't supposed to be taken by any of the
8610 * NAPI code and this dummy netdev is supposed to be
8611 * only ever used for NAPI polls
8612 */
8613 memset(dev, 0, sizeof(struct net_device));
8614
8615 /* make sure we BUG if trying to hit standard
8616 * register/unregister code path
8617 */
8618 dev->reg_state = NETREG_DUMMY;
8619
8620 /* NAPI wants this */
8621 INIT_LIST_HEAD(&dev->napi_list);
8622
8623 /* a dummy interface is started by default */
8624 set_bit(__LINK_STATE_PRESENT, &dev->state);
8625 set_bit(__LINK_STATE_START, &dev->state);
8626
8627 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8628 * because users of this 'device' dont need to change
8629 * its refcount.
8630 */
8631
8632 return 0;
8633}
8634EXPORT_SYMBOL_GPL(init_dummy_netdev);
8635
8636
8637/**
8638 * register_netdev - register a network device
8639 * @dev: device to register
8640 *
8641 * Take a completed network device structure and add it to the kernel
8642 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8643 * chain. 0 is returned on success. A negative errno code is returned
8644 * on a failure to set up the device, or if the name is a duplicate.
8645 *
8646 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8647 * and expands the device name if you passed a format string to
8648 * alloc_netdev.
8649 */
8650int register_netdev(struct net_device *dev)
8651{
8652 int err;
8653
8654 if (rtnl_lock_killable())
8655 return -EINTR;
8656 err = register_netdevice(dev);
8657 rtnl_unlock();
8658 return err;
8659}
8660EXPORT_SYMBOL(register_netdev);
8661
8662int netdev_refcnt_read(const struct net_device *dev)
8663{
8664 int i, refcnt = 0;
8665
8666 for_each_possible_cpu(i)
8667 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8668 return refcnt;
8669}
8670EXPORT_SYMBOL(netdev_refcnt_read);
8671
8672/**
8673 * netdev_wait_allrefs - wait until all references are gone.
8674 * @dev: target net_device
8675 *
8676 * This is called when unregistering network devices.
8677 *
8678 * Any protocol or device that holds a reference should register
8679 * for netdevice notification, and cleanup and put back the
8680 * reference if they receive an UNREGISTER event.
8681 * We can get stuck here if buggy protocols don't correctly
8682 * call dev_put.
8683 */
8684static void netdev_wait_allrefs(struct net_device *dev)
8685{
8686 unsigned long rebroadcast_time, warning_time;
8687 int refcnt;
8688
8689 linkwatch_forget_dev(dev);
8690
8691 rebroadcast_time = warning_time = jiffies;
8692 refcnt = netdev_refcnt_read(dev);
8693
8694 while (refcnt != 0) {
8695 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8696 rtnl_lock();
8697
8698 /* Rebroadcast unregister notification */
8699 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8700
8701 __rtnl_unlock();
8702 rcu_barrier();
8703 rtnl_lock();
8704
8705 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8706 &dev->state)) {
8707 /* We must not have linkwatch events
8708 * pending on unregister. If this
8709 * happens, we simply run the queue
8710 * unscheduled, resulting in a noop
8711 * for this device.
8712 */
8713 linkwatch_run_queue();
8714 }
8715
8716 __rtnl_unlock();
8717
8718 rebroadcast_time = jiffies;
8719 }
8720
8721 msleep(250);
8722
8723 refcnt = netdev_refcnt_read(dev);
8724
8725 if (time_after(jiffies, warning_time + 10 * HZ)) {
8726 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8727 dev->name, refcnt);
8728 warning_time = jiffies;
8729 }
8730 }
8731}
8732
8733/* The sequence is:
8734 *
8735 * rtnl_lock();
8736 * ...
8737 * register_netdevice(x1);
8738 * register_netdevice(x2);
8739 * ...
8740 * unregister_netdevice(y1);
8741 * unregister_netdevice(y2);
8742 * ...
8743 * rtnl_unlock();
8744 * free_netdev(y1);
8745 * free_netdev(y2);
8746 *
8747 * We are invoked by rtnl_unlock().
8748 * This allows us to deal with problems:
8749 * 1) We can delete sysfs objects which invoke hotplug
8750 * without deadlocking with linkwatch via keventd.
8751 * 2) Since we run with the RTNL semaphore not held, we can sleep
8752 * safely in order to wait for the netdev refcnt to drop to zero.
8753 *
8754 * We must not return until all unregister events added during
8755 * the interval the lock was held have been completed.
8756 */
8757void netdev_run_todo(void)
8758{
8759 struct list_head list;
8760
8761 /* Snapshot list, allow later requests */
8762 list_replace_init(&net_todo_list, &list);
8763
8764 __rtnl_unlock();
8765
8766
8767 /* Wait for rcu callbacks to finish before next phase */
8768 if (!list_empty(&list))
8769 rcu_barrier();
8770
8771 while (!list_empty(&list)) {
8772 struct net_device *dev
8773 = list_first_entry(&list, struct net_device, todo_list);
8774 list_del(&dev->todo_list);
8775
8776 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8777 pr_err("network todo '%s' but state %d\n",
8778 dev->name, dev->reg_state);
8779 dump_stack();
8780 continue;
8781 }
8782
8783 dev->reg_state = NETREG_UNREGISTERED;
8784
8785 netdev_wait_allrefs(dev);
8786
8787 /* paranoia */
8788 BUG_ON(netdev_refcnt_read(dev));
8789 BUG_ON(!list_empty(&dev->ptype_all));
8790 BUG_ON(!list_empty(&dev->ptype_specific));
8791 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8792 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8793#if IS_ENABLED(CONFIG_DECNET)
8794 WARN_ON(dev->dn_ptr);
8795#endif
8796 if (dev->priv_destructor)
8797 dev->priv_destructor(dev);
8798 if (dev->needs_free_netdev)
8799 free_netdev(dev);
8800
8801 /* Report a network device has been unregistered */
8802 rtnl_lock();
8803 dev_net(dev)->dev_unreg_count--;
8804 __rtnl_unlock();
8805 wake_up(&netdev_unregistering_wq);
8806
8807 /* Free network device */
8808 kobject_put(&dev->dev.kobj);
8809 }
8810}
8811
8812/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8813 * all the same fields in the same order as net_device_stats, with only
8814 * the type differing, but rtnl_link_stats64 may have additional fields
8815 * at the end for newer counters.
8816 */
8817void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8818 const struct net_device_stats *netdev_stats)
8819{
8820#if BITS_PER_LONG == 64
8821 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8822 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8823 /* zero out counters that only exist in rtnl_link_stats64 */
8824 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8825 sizeof(*stats64) - sizeof(*netdev_stats));
8826#else
8827 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8828 const unsigned long *src = (const unsigned long *)netdev_stats;
8829 u64 *dst = (u64 *)stats64;
8830
8831 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8832 for (i = 0; i < n; i++)
8833 dst[i] = src[i];
8834 /* zero out counters that only exist in rtnl_link_stats64 */
8835 memset((char *)stats64 + n * sizeof(u64), 0,
8836 sizeof(*stats64) - n * sizeof(u64));
8837#endif
8838}
8839EXPORT_SYMBOL(netdev_stats_to_stats64);
8840
8841/**
8842 * dev_get_stats - get network device statistics
8843 * @dev: device to get statistics from
8844 * @storage: place to store stats
8845 *
8846 * Get network statistics from device. Return @storage.
8847 * The device driver may provide its own method by setting
8848 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8849 * otherwise the internal statistics structure is used.
8850 */
8851struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8852 struct rtnl_link_stats64 *storage)
8853{
8854 const struct net_device_ops *ops = dev->netdev_ops;
8855
8856 if (ops->ndo_get_stats64) {
8857 memset(storage, 0, sizeof(*storage));
8858 ops->ndo_get_stats64(dev, storage);
8859 } else if (ops->ndo_get_stats) {
8860 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8861 } else {
8862 netdev_stats_to_stats64(storage, &dev->stats);
8863 }
8864 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8865 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8866 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8867 return storage;
8868}
8869EXPORT_SYMBOL(dev_get_stats);
8870
8871struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8872{
8873 struct netdev_queue *queue = dev_ingress_queue(dev);
8874
8875#ifdef CONFIG_NET_CLS_ACT
8876 if (queue)
8877 return queue;
8878 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8879 if (!queue)
8880 return NULL;
8881 netdev_init_one_queue(dev, queue, NULL);
8882 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8883 queue->qdisc_sleeping = &noop_qdisc;
8884 rcu_assign_pointer(dev->ingress_queue, queue);
8885#endif
8886 return queue;
8887}
8888
8889static const struct ethtool_ops default_ethtool_ops;
8890
8891void netdev_set_default_ethtool_ops(struct net_device *dev,
8892 const struct ethtool_ops *ops)
8893{
8894 if (dev->ethtool_ops == &default_ethtool_ops)
8895 dev->ethtool_ops = ops;
8896}
8897EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8898
8899void netdev_freemem(struct net_device *dev)
8900{
8901 char *addr = (char *)dev - dev->padded;
8902
8903 kvfree(addr);
8904}
8905
8906/**
8907 * alloc_netdev_mqs - allocate network device
8908 * @sizeof_priv: size of private data to allocate space for
8909 * @name: device name format string
8910 * @name_assign_type: origin of device name
8911 * @setup: callback to initialize device
8912 * @txqs: the number of TX subqueues to allocate
8913 * @rxqs: the number of RX subqueues to allocate
8914 *
8915 * Allocates a struct net_device with private data area for driver use
8916 * and performs basic initialization. Also allocates subqueue structs
8917 * for each queue on the device.
8918 */
8919struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8920 unsigned char name_assign_type,
8921 void (*setup)(struct net_device *),
8922 unsigned int txqs, unsigned int rxqs)
8923{
8924 struct net_device *dev;
8925 unsigned int alloc_size;
8926 struct net_device *p;
8927
8928 BUG_ON(strlen(name) >= sizeof(dev->name));
8929
8930 if (txqs < 1) {
8931 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8932 return NULL;
8933 }
8934
8935 if (rxqs < 1) {
8936 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8937 return NULL;
8938 }
8939
8940 alloc_size = sizeof(struct net_device);
8941 if (sizeof_priv) {
8942 /* ensure 32-byte alignment of private area */
8943 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8944 alloc_size += sizeof_priv;
8945 }
8946 /* ensure 32-byte alignment of whole construct */
8947 alloc_size += NETDEV_ALIGN - 1;
8948
8949 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8950 if (!p)
8951 return NULL;
8952
8953 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8954 dev->padded = (char *)dev - (char *)p;
8955
8956 dev->pcpu_refcnt = alloc_percpu(int);
8957 if (!dev->pcpu_refcnt)
8958 goto free_dev;
8959
8960 if (dev_addr_init(dev))
8961 goto free_pcpu;
8962
8963 dev_mc_init(dev);
8964 dev_uc_init(dev);
8965
8966 dev_net_set(dev, &init_net);
8967
8968 dev->gso_max_size = GSO_MAX_SIZE;
8969 dev->gso_max_segs = GSO_MAX_SEGS;
8970
8971 INIT_LIST_HEAD(&dev->napi_list);
8972 INIT_LIST_HEAD(&dev->unreg_list);
8973 INIT_LIST_HEAD(&dev->close_list);
8974 INIT_LIST_HEAD(&dev->link_watch_list);
8975 INIT_LIST_HEAD(&dev->adj_list.upper);
8976 INIT_LIST_HEAD(&dev->adj_list.lower);
8977 INIT_LIST_HEAD(&dev->ptype_all);
8978 INIT_LIST_HEAD(&dev->ptype_specific);
8979#ifdef CONFIG_NET_SCHED
8980 hash_init(dev->qdisc_hash);
8981#endif
8982 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8983 setup(dev);
8984
8985 if (!dev->tx_queue_len) {
8986 dev->priv_flags |= IFF_NO_QUEUE;
8987 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8988 }
8989
8990 dev->num_tx_queues = txqs;
8991 dev->real_num_tx_queues = txqs;
8992 if (netif_alloc_netdev_queues(dev))
8993 goto free_all;
8994
8995 dev->num_rx_queues = rxqs;
8996 dev->real_num_rx_queues = rxqs;
8997 if (netif_alloc_rx_queues(dev))
8998 goto free_all;
8999
9000 strcpy(dev->name, name);
9001 dev->name_assign_type = name_assign_type;
9002 dev->group = INIT_NETDEV_GROUP;
9003 if (!dev->ethtool_ops)
9004 dev->ethtool_ops = &default_ethtool_ops;
9005
9006 nf_hook_ingress_init(dev);
9007
9008 return dev;
9009
9010free_all:
9011 free_netdev(dev);
9012 return NULL;
9013
9014free_pcpu:
9015 free_percpu(dev->pcpu_refcnt);
9016free_dev:
9017 netdev_freemem(dev);
9018 return NULL;
9019}
9020EXPORT_SYMBOL(alloc_netdev_mqs);
9021
9022/**
9023 * free_netdev - free network device
9024 * @dev: device
9025 *
9026 * This function does the last stage of destroying an allocated device
9027 * interface. The reference to the device object is released. If this
9028 * is the last reference then it will be freed.Must be called in process
9029 * context.
9030 */
9031void free_netdev(struct net_device *dev)
9032{
9033 struct napi_struct *p, *n;
9034
9035 might_sleep();
9036 netif_free_tx_queues(dev);
9037 netif_free_rx_queues(dev);
9038
9039 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9040
9041 /* Flush device addresses */
9042 dev_addr_flush(dev);
9043
9044 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9045 netif_napi_del(p);
9046
9047 free_percpu(dev->pcpu_refcnt);
9048 dev->pcpu_refcnt = NULL;
9049
9050 /* Compatibility with error handling in drivers */
9051 if (dev->reg_state == NETREG_UNINITIALIZED) {
9052 netdev_freemem(dev);
9053 return;
9054 }
9055
9056 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9057 dev->reg_state = NETREG_RELEASED;
9058
9059 /* will free via device release */
9060 put_device(&dev->dev);
9061}
9062EXPORT_SYMBOL(free_netdev);
9063
9064/**
9065 * synchronize_net - Synchronize with packet receive processing
9066 *
9067 * Wait for packets currently being received to be done.
9068 * Does not block later packets from starting.
9069 */
9070void synchronize_net(void)
9071{
9072 might_sleep();
9073 if (rtnl_is_locked())
9074 synchronize_rcu_expedited();
9075 else
9076 synchronize_rcu();
9077}
9078EXPORT_SYMBOL(synchronize_net);
9079
9080/**
9081 * unregister_netdevice_queue - remove device from the kernel
9082 * @dev: device
9083 * @head: list
9084 *
9085 * This function shuts down a device interface and removes it
9086 * from the kernel tables.
9087 * If head not NULL, device is queued to be unregistered later.
9088 *
9089 * Callers must hold the rtnl semaphore. You may want
9090 * unregister_netdev() instead of this.
9091 */
9092
9093void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9094{
9095 ASSERT_RTNL();
9096
9097 if (head) {
9098 list_move_tail(&dev->unreg_list, head);
9099 } else {
9100 rollback_registered(dev);
9101 /* Finish processing unregister after unlock */
9102 net_set_todo(dev);
9103 }
9104}
9105EXPORT_SYMBOL(unregister_netdevice_queue);
9106
9107/**
9108 * unregister_netdevice_many - unregister many devices
9109 * @head: list of devices
9110 *
9111 * Note: As most callers use a stack allocated list_head,
9112 * we force a list_del() to make sure stack wont be corrupted later.
9113 */
9114void unregister_netdevice_many(struct list_head *head)
9115{
9116 struct net_device *dev;
9117
9118 if (!list_empty(head)) {
9119 rollback_registered_many(head);
9120 list_for_each_entry(dev, head, unreg_list)
9121 net_set_todo(dev);
9122 list_del(head);
9123 }
9124}
9125EXPORT_SYMBOL(unregister_netdevice_many);
9126
9127/**
9128 * unregister_netdev - remove device from the kernel
9129 * @dev: device
9130 *
9131 * This function shuts down a device interface and removes it
9132 * from the kernel tables.
9133 *
9134 * This is just a wrapper for unregister_netdevice that takes
9135 * the rtnl semaphore. In general you want to use this and not
9136 * unregister_netdevice.
9137 */
9138void unregister_netdev(struct net_device *dev)
9139{
9140 rtnl_lock();
9141 unregister_netdevice(dev);
9142 rtnl_unlock();
9143}
9144EXPORT_SYMBOL(unregister_netdev);
9145
9146/**
9147 * dev_change_net_namespace - move device to different nethost namespace
9148 * @dev: device
9149 * @net: network namespace
9150 * @pat: If not NULL name pattern to try if the current device name
9151 * is already taken in the destination network namespace.
9152 *
9153 * This function shuts down a device interface and moves it
9154 * to a new network namespace. On success 0 is returned, on
9155 * a failure a netagive errno code is returned.
9156 *
9157 * Callers must hold the rtnl semaphore.
9158 */
9159
9160int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9161{
9162 int err, new_nsid, new_ifindex;
9163
9164 ASSERT_RTNL();
9165
9166 /* Don't allow namespace local devices to be moved. */
9167 err = -EINVAL;
9168 if (dev->features & NETIF_F_NETNS_LOCAL)
9169 goto out;
9170
9171 /* Ensure the device has been registrered */
9172 if (dev->reg_state != NETREG_REGISTERED)
9173 goto out;
9174
9175 /* Get out if there is nothing todo */
9176 err = 0;
9177 if (net_eq(dev_net(dev), net))
9178 goto out;
9179
9180 /* Pick the destination device name, and ensure
9181 * we can use it in the destination network namespace.
9182 */
9183 err = -EEXIST;
9184 if (__dev_get_by_name(net, dev->name)) {
9185 /* We get here if we can't use the current device name */
9186 if (!pat)
9187 goto out;
9188 err = dev_get_valid_name(net, dev, pat);
9189 if (err < 0)
9190 goto out;
9191 }
9192
9193 /*
9194 * And now a mini version of register_netdevice unregister_netdevice.
9195 */
9196
9197 /* If device is running close it first. */
9198 dev_close(dev);
9199
9200 /* And unlink it from device chain */
9201 unlist_netdevice(dev);
9202
9203 synchronize_net();
9204
9205 /* Shutdown queueing discipline. */
9206 dev_shutdown(dev);
9207
9208 /* Notify protocols, that we are about to destroy
9209 * this device. They should clean all the things.
9210 *
9211 * Note that dev->reg_state stays at NETREG_REGISTERED.
9212 * This is wanted because this way 8021q and macvlan know
9213 * the device is just moving and can keep their slaves up.
9214 */
9215 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9216 rcu_barrier();
9217
9218 new_nsid = peernet2id_alloc(dev_net(dev), net);
9219 /* If there is an ifindex conflict assign a new one */
9220 if (__dev_get_by_index(net, dev->ifindex))
9221 new_ifindex = dev_new_index(net);
9222 else
9223 new_ifindex = dev->ifindex;
9224
9225 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9226 new_ifindex);
9227
9228 /*
9229 * Flush the unicast and multicast chains
9230 */
9231 dev_uc_flush(dev);
9232 dev_mc_flush(dev);
9233
9234 /* Send a netdev-removed uevent to the old namespace */
9235 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9236 netdev_adjacent_del_links(dev);
9237
9238 /* Actually switch the network namespace */
9239 dev_net_set(dev, net);
9240 dev->ifindex = new_ifindex;
9241
9242 /* Send a netdev-add uevent to the new namespace */
9243 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9244 netdev_adjacent_add_links(dev);
9245
9246 /* Fixup kobjects */
9247 err = device_rename(&dev->dev, dev->name);
9248 WARN_ON(err);
9249
9250 /* Add the device back in the hashes */
9251 list_netdevice(dev);
9252
9253 /* Notify protocols, that a new device appeared. */
9254 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9255
9256 /*
9257 * Prevent userspace races by waiting until the network
9258 * device is fully setup before sending notifications.
9259 */
9260 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9261
9262 synchronize_net();
9263 err = 0;
9264out:
9265 return err;
9266}
9267EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9268
9269static int dev_cpu_dead(unsigned int oldcpu)
9270{
9271 struct sk_buff **list_skb;
9272 struct sk_buff *skb;
9273 unsigned int cpu;
9274 struct softnet_data *sd, *oldsd, *remsd = NULL;
9275
9276 local_irq_disable();
9277 cpu = smp_processor_id();
9278 sd = &per_cpu(softnet_data, cpu);
9279 oldsd = &per_cpu(softnet_data, oldcpu);
9280
9281 /* Find end of our completion_queue. */
9282 list_skb = &sd->completion_queue;
9283 while (*list_skb)
9284 list_skb = &(*list_skb)->next;
9285 /* Append completion queue from offline CPU. */
9286 *list_skb = oldsd->completion_queue;
9287 oldsd->completion_queue = NULL;
9288
9289 /* Append output queue from offline CPU. */
9290 if (oldsd->output_queue) {
9291 *sd->output_queue_tailp = oldsd->output_queue;
9292 sd->output_queue_tailp = oldsd->output_queue_tailp;
9293 oldsd->output_queue = NULL;
9294 oldsd->output_queue_tailp = &oldsd->output_queue;
9295 }
9296 /* Append NAPI poll list from offline CPU, with one exception :
9297 * process_backlog() must be called by cpu owning percpu backlog.
9298 * We properly handle process_queue & input_pkt_queue later.
9299 */
9300 while (!list_empty(&oldsd->poll_list)) {
9301 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9302 struct napi_struct,
9303 poll_list);
9304
9305 list_del_init(&napi->poll_list);
9306 if (napi->poll == process_backlog)
9307 napi->state = 0;
9308 else
9309 ____napi_schedule(sd, napi);
9310 }
9311
9312 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9313 local_irq_enable();
9314
9315#ifdef CONFIG_RPS
9316 remsd = oldsd->rps_ipi_list;
9317 oldsd->rps_ipi_list = NULL;
9318#endif
9319 /* send out pending IPI's on offline CPU */
9320 net_rps_send_ipi(remsd);
9321
9322 /* Process offline CPU's input_pkt_queue */
9323 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9324 netif_rx_ni(skb);
9325 input_queue_head_incr(oldsd);
9326 }
9327 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9328 netif_rx_ni(skb);
9329 input_queue_head_incr(oldsd);
9330 }
9331
9332 return 0;
9333}
9334
9335/**
9336 * netdev_increment_features - increment feature set by one
9337 * @all: current feature set
9338 * @one: new feature set
9339 * @mask: mask feature set
9340 *
9341 * Computes a new feature set after adding a device with feature set
9342 * @one to the master device with current feature set @all. Will not
9343 * enable anything that is off in @mask. Returns the new feature set.
9344 */
9345netdev_features_t netdev_increment_features(netdev_features_t all,
9346 netdev_features_t one, netdev_features_t mask)
9347{
9348 if (mask & NETIF_F_HW_CSUM)
9349 mask |= NETIF_F_CSUM_MASK;
9350 mask |= NETIF_F_VLAN_CHALLENGED;
9351
9352 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9353 all &= one | ~NETIF_F_ALL_FOR_ALL;
9354
9355 /* If one device supports hw checksumming, set for all. */
9356 if (all & NETIF_F_HW_CSUM)
9357 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9358
9359 return all;
9360}
9361EXPORT_SYMBOL(netdev_increment_features);
9362
9363static struct hlist_head * __net_init netdev_create_hash(void)
9364{
9365 int i;
9366 struct hlist_head *hash;
9367
9368 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9369 if (hash != NULL)
9370 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9371 INIT_HLIST_HEAD(&hash[i]);
9372
9373 return hash;
9374}
9375
9376/* Initialize per network namespace state */
9377static int __net_init netdev_init(struct net *net)
9378{
9379 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9380 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9381
9382 if (net != &init_net)
9383 INIT_LIST_HEAD(&net->dev_base_head);
9384
9385 net->dev_name_head = netdev_create_hash();
9386 if (net->dev_name_head == NULL)
9387 goto err_name;
9388
9389 net->dev_index_head = netdev_create_hash();
9390 if (net->dev_index_head == NULL)
9391 goto err_idx;
9392
9393 return 0;
9394
9395err_idx:
9396 kfree(net->dev_name_head);
9397err_name:
9398 return -ENOMEM;
9399}
9400
9401/**
9402 * netdev_drivername - network driver for the device
9403 * @dev: network device
9404 *
9405 * Determine network driver for device.
9406 */
9407const char *netdev_drivername(const struct net_device *dev)
9408{
9409 const struct device_driver *driver;
9410 const struct device *parent;
9411 const char *empty = "";
9412
9413 parent = dev->dev.parent;
9414 if (!parent)
9415 return empty;
9416
9417 driver = parent->driver;
9418 if (driver && driver->name)
9419 return driver->name;
9420 return empty;
9421}
9422
9423static void __netdev_printk(const char *level, const struct net_device *dev,
9424 struct va_format *vaf)
9425{
9426 if (dev && dev->dev.parent) {
9427 dev_printk_emit(level[1] - '0',
9428 dev->dev.parent,
9429 "%s %s %s%s: %pV",
9430 dev_driver_string(dev->dev.parent),
9431 dev_name(dev->dev.parent),
9432 netdev_name(dev), netdev_reg_state(dev),
9433 vaf);
9434 } else if (dev) {
9435 printk("%s%s%s: %pV",
9436 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9437 } else {
9438 printk("%s(NULL net_device): %pV", level, vaf);
9439 }
9440}
9441
9442void netdev_printk(const char *level, const struct net_device *dev,
9443 const char *format, ...)
9444{
9445 struct va_format vaf;
9446 va_list args;
9447
9448 va_start(args, format);
9449
9450 vaf.fmt = format;
9451 vaf.va = &args;
9452
9453 __netdev_printk(level, dev, &vaf);
9454
9455 va_end(args);
9456}
9457EXPORT_SYMBOL(netdev_printk);
9458
9459#define define_netdev_printk_level(func, level) \
9460void func(const struct net_device *dev, const char *fmt, ...) \
9461{ \
9462 struct va_format vaf; \
9463 va_list args; \
9464 \
9465 va_start(args, fmt); \
9466 \
9467 vaf.fmt = fmt; \
9468 vaf.va = &args; \
9469 \
9470 __netdev_printk(level, dev, &vaf); \
9471 \
9472 va_end(args); \
9473} \
9474EXPORT_SYMBOL(func);
9475
9476define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9477define_netdev_printk_level(netdev_alert, KERN_ALERT);
9478define_netdev_printk_level(netdev_crit, KERN_CRIT);
9479define_netdev_printk_level(netdev_err, KERN_ERR);
9480define_netdev_printk_level(netdev_warn, KERN_WARNING);
9481define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9482define_netdev_printk_level(netdev_info, KERN_INFO);
9483
9484static void __net_exit netdev_exit(struct net *net)
9485{
9486 kfree(net->dev_name_head);
9487 kfree(net->dev_index_head);
9488 if (net != &init_net)
9489 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9490}
9491
9492static struct pernet_operations __net_initdata netdev_net_ops = {
9493 .init = netdev_init,
9494 .exit = netdev_exit,
9495};
9496
9497static void __net_exit default_device_exit(struct net *net)
9498{
9499 struct net_device *dev, *aux;
9500 /*
9501 * Push all migratable network devices back to the
9502 * initial network namespace
9503 */
9504 rtnl_lock();
9505 for_each_netdev_safe(net, dev, aux) {
9506 int err;
9507 char fb_name[IFNAMSIZ];
9508
9509 /* Ignore unmoveable devices (i.e. loopback) */
9510 if (dev->features & NETIF_F_NETNS_LOCAL)
9511 continue;
9512
9513 /* Leave virtual devices for the generic cleanup */
9514 if (dev->rtnl_link_ops)
9515 continue;
9516
9517 /* Push remaining network devices to init_net */
9518 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9519 err = dev_change_net_namespace(dev, &init_net, fb_name);
9520 if (err) {
9521 pr_emerg("%s: failed to move %s to init_net: %d\n",
9522 __func__, dev->name, err);
9523 BUG();
9524 }
9525 }
9526 rtnl_unlock();
9527}
9528
9529static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9530{
9531 /* Return with the rtnl_lock held when there are no network
9532 * devices unregistering in any network namespace in net_list.
9533 */
9534 struct net *net;
9535 bool unregistering;
9536 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9537
9538 add_wait_queue(&netdev_unregistering_wq, &wait);
9539 for (;;) {
9540 unregistering = false;
9541 rtnl_lock();
9542 list_for_each_entry(net, net_list, exit_list) {
9543 if (net->dev_unreg_count > 0) {
9544 unregistering = true;
9545 break;
9546 }
9547 }
9548 if (!unregistering)
9549 break;
9550 __rtnl_unlock();
9551
9552 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9553 }
9554 remove_wait_queue(&netdev_unregistering_wq, &wait);
9555}
9556
9557static void __net_exit default_device_exit_batch(struct list_head *net_list)
9558{
9559 /* At exit all network devices most be removed from a network
9560 * namespace. Do this in the reverse order of registration.
9561 * Do this across as many network namespaces as possible to
9562 * improve batching efficiency.
9563 */
9564 struct net_device *dev;
9565 struct net *net;
9566 LIST_HEAD(dev_kill_list);
9567
9568 /* To prevent network device cleanup code from dereferencing
9569 * loopback devices or network devices that have been freed
9570 * wait here for all pending unregistrations to complete,
9571 * before unregistring the loopback device and allowing the
9572 * network namespace be freed.
9573 *
9574 * The netdev todo list containing all network devices
9575 * unregistrations that happen in default_device_exit_batch
9576 * will run in the rtnl_unlock() at the end of
9577 * default_device_exit_batch.
9578 */
9579 rtnl_lock_unregistering(net_list);
9580 list_for_each_entry(net, net_list, exit_list) {
9581 for_each_netdev_reverse(net, dev) {
9582 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9583 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9584 else
9585 unregister_netdevice_queue(dev, &dev_kill_list);
9586 }
9587 }
9588 unregister_netdevice_many(&dev_kill_list);
9589 rtnl_unlock();
9590}
9591
9592static struct pernet_operations __net_initdata default_device_ops = {
9593 .exit = default_device_exit,
9594 .exit_batch = default_device_exit_batch,
9595};
9596
9597/*
9598 * Initialize the DEV module. At boot time this walks the device list and
9599 * unhooks any devices that fail to initialise (normally hardware not
9600 * present) and leaves us with a valid list of present and active devices.
9601 *
9602 */
9603
9604/*
9605 * This is called single threaded during boot, so no need
9606 * to take the rtnl semaphore.
9607 */
9608static int __init net_dev_init(void)
9609{
9610 int i, rc = -ENOMEM;
9611
9612 BUG_ON(!dev_boot_phase);
9613
9614 if (dev_proc_init())
9615 goto out;
9616
9617 if (netdev_kobject_init())
9618 goto out;
9619
9620 INIT_LIST_HEAD(&ptype_all);
9621 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9622 INIT_LIST_HEAD(&ptype_base[i]);
9623
9624 INIT_LIST_HEAD(&offload_base);
9625
9626 if (register_pernet_subsys(&netdev_net_ops))
9627 goto out;
9628
9629 /*
9630 * Initialise the packet receive queues.
9631 */
9632
9633 for_each_possible_cpu(i) {
9634 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9635 struct softnet_data *sd = &per_cpu(softnet_data, i);
9636
9637 INIT_WORK(flush, flush_backlog);
9638
9639 skb_queue_head_init(&sd->input_pkt_queue);
9640 skb_queue_head_init(&sd->process_queue);
9641#ifdef CONFIG_XFRM_OFFLOAD
9642 skb_queue_head_init(&sd->xfrm_backlog);
9643#endif
9644 INIT_LIST_HEAD(&sd->poll_list);
9645 sd->output_queue_tailp = &sd->output_queue;
9646#ifdef CONFIG_RPS
9647 sd->csd.func = rps_trigger_softirq;
9648 sd->csd.info = sd;
9649 sd->cpu = i;
9650#endif
9651
9652 init_gro_hash(&sd->backlog);
9653 sd->backlog.poll = process_backlog;
9654 sd->backlog.weight = weight_p;
9655 }
9656
9657 dev_boot_phase = 0;
9658
9659 /* The loopback device is special if any other network devices
9660 * is present in a network namespace the loopback device must
9661 * be present. Since we now dynamically allocate and free the
9662 * loopback device ensure this invariant is maintained by
9663 * keeping the loopback device as the first device on the
9664 * list of network devices. Ensuring the loopback devices
9665 * is the first device that appears and the last network device
9666 * that disappears.
9667 */
9668 if (register_pernet_device(&loopback_net_ops))
9669 goto out;
9670
9671 if (register_pernet_device(&default_device_ops))
9672 goto out;
9673
9674 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9675 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9676
9677 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9678 NULL, dev_cpu_dead);
9679 WARN_ON(rc < 0);
9680 rc = 0;
9681out:
9682 return rc;
9683}
9684
9685subsys_initcall(net_dev_init);