at v4.20 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/overflow.h> 17#include <linux/types.h> 18#include <linux/workqueue.h> 19 20 21/* 22 * Flags to pass to kmem_cache_create(). 23 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 24 */ 25/* DEBUG: Perform (expensive) checks on alloc/free */ 26#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 27/* DEBUG: Red zone objs in a cache */ 28#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 29/* DEBUG: Poison objects */ 30#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 31/* Align objs on cache lines */ 32#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 33/* Use GFP_DMA memory */ 34#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 35/* DEBUG: Store the last owner for bug hunting */ 36#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 37/* Panic if kmem_cache_create() fails */ 38#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 39/* 40 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 41 * 42 * This delays freeing the SLAB page by a grace period, it does _NOT_ 43 * delay object freeing. This means that if you do kmem_cache_free() 44 * that memory location is free to be reused at any time. Thus it may 45 * be possible to see another object there in the same RCU grace period. 46 * 47 * This feature only ensures the memory location backing the object 48 * stays valid, the trick to using this is relying on an independent 49 * object validation pass. Something like: 50 * 51 * rcu_read_lock() 52 * again: 53 * obj = lockless_lookup(key); 54 * if (obj) { 55 * if (!try_get_ref(obj)) // might fail for free objects 56 * goto again; 57 * 58 * if (obj->key != key) { // not the object we expected 59 * put_ref(obj); 60 * goto again; 61 * } 62 * } 63 * rcu_read_unlock(); 64 * 65 * This is useful if we need to approach a kernel structure obliquely, 66 * from its address obtained without the usual locking. We can lock 67 * the structure to stabilize it and check it's still at the given address, 68 * only if we can be sure that the memory has not been meanwhile reused 69 * for some other kind of object (which our subsystem's lock might corrupt). 70 * 71 * rcu_read_lock before reading the address, then rcu_read_unlock after 72 * taking the spinlock within the structure expected at that address. 73 * 74 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 75 */ 76/* Defer freeing slabs to RCU */ 77#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 78/* Spread some memory over cpuset */ 79#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 80/* Trace allocations and frees */ 81#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 82 83/* Flag to prevent checks on free */ 84#ifdef CONFIG_DEBUG_OBJECTS 85# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 86#else 87# define SLAB_DEBUG_OBJECTS 0 88#endif 89 90/* Avoid kmemleak tracing */ 91#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 92 93/* Fault injection mark */ 94#ifdef CONFIG_FAILSLAB 95# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 96#else 97# define SLAB_FAILSLAB 0 98#endif 99/* Account to memcg */ 100#ifdef CONFIG_MEMCG_KMEM 101# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 102#else 103# define SLAB_ACCOUNT 0 104#endif 105 106#ifdef CONFIG_KASAN 107#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 108#else 109#define SLAB_KASAN 0 110#endif 111 112/* The following flags affect the page allocator grouping pages by mobility */ 113/* Objects are reclaimable */ 114#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 115#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 116/* 117 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 118 * 119 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 120 * 121 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 122 * Both make kfree a no-op. 123 */ 124#define ZERO_SIZE_PTR ((void *)16) 125 126#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 127 (unsigned long)ZERO_SIZE_PTR) 128 129#include <linux/kasan.h> 130 131struct mem_cgroup; 132/* 133 * struct kmem_cache related prototypes 134 */ 135void __init kmem_cache_init(void); 136bool slab_is_available(void); 137 138extern bool usercopy_fallback; 139 140struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 141 unsigned int align, slab_flags_t flags, 142 void (*ctor)(void *)); 143struct kmem_cache *kmem_cache_create_usercopy(const char *name, 144 unsigned int size, unsigned int align, 145 slab_flags_t flags, 146 unsigned int useroffset, unsigned int usersize, 147 void (*ctor)(void *)); 148void kmem_cache_destroy(struct kmem_cache *); 149int kmem_cache_shrink(struct kmem_cache *); 150 151void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 152void memcg_deactivate_kmem_caches(struct mem_cgroup *); 153void memcg_destroy_kmem_caches(struct mem_cgroup *); 154 155/* 156 * Please use this macro to create slab caches. Simply specify the 157 * name of the structure and maybe some flags that are listed above. 158 * 159 * The alignment of the struct determines object alignment. If you 160 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 161 * then the objects will be properly aligned in SMP configurations. 162 */ 163#define KMEM_CACHE(__struct, __flags) \ 164 kmem_cache_create(#__struct, sizeof(struct __struct), \ 165 __alignof__(struct __struct), (__flags), NULL) 166 167/* 168 * To whitelist a single field for copying to/from usercopy, use this 169 * macro instead for KMEM_CACHE() above. 170 */ 171#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 172 kmem_cache_create_usercopy(#__struct, \ 173 sizeof(struct __struct), \ 174 __alignof__(struct __struct), (__flags), \ 175 offsetof(struct __struct, __field), \ 176 sizeof_field(struct __struct, __field), NULL) 177 178/* 179 * Common kmalloc functions provided by all allocators 180 */ 181void * __must_check __krealloc(const void *, size_t, gfp_t); 182void * __must_check krealloc(const void *, size_t, gfp_t); 183void kfree(const void *); 184void kzfree(const void *); 185size_t ksize(const void *); 186 187#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 188void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 189 bool to_user); 190#else 191static inline void __check_heap_object(const void *ptr, unsigned long n, 192 struct page *page, bool to_user) { } 193#endif 194 195/* 196 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 197 * alignment larger than the alignment of a 64-bit integer. 198 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 199 */ 200#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 201#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 202#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 203#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 204#else 205#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 206#endif 207 208/* 209 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 210 * Intended for arches that get misalignment faults even for 64 bit integer 211 * aligned buffers. 212 */ 213#ifndef ARCH_SLAB_MINALIGN 214#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 215#endif 216 217/* 218 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 219 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 220 * aligned pointers. 221 */ 222#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 223#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 224#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 225 226/* 227 * Kmalloc array related definitions 228 */ 229 230#ifdef CONFIG_SLAB 231/* 232 * The largest kmalloc size supported by the SLAB allocators is 233 * 32 megabyte (2^25) or the maximum allocatable page order if that is 234 * less than 32 MB. 235 * 236 * WARNING: Its not easy to increase this value since the allocators have 237 * to do various tricks to work around compiler limitations in order to 238 * ensure proper constant folding. 239 */ 240#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 241 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 242#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 243#ifndef KMALLOC_SHIFT_LOW 244#define KMALLOC_SHIFT_LOW 5 245#endif 246#endif 247 248#ifdef CONFIG_SLUB 249/* 250 * SLUB directly allocates requests fitting in to an order-1 page 251 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 252 */ 253#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 254#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 255#ifndef KMALLOC_SHIFT_LOW 256#define KMALLOC_SHIFT_LOW 3 257#endif 258#endif 259 260#ifdef CONFIG_SLOB 261/* 262 * SLOB passes all requests larger than one page to the page allocator. 263 * No kmalloc array is necessary since objects of different sizes can 264 * be allocated from the same page. 265 */ 266#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 267#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 268#ifndef KMALLOC_SHIFT_LOW 269#define KMALLOC_SHIFT_LOW 3 270#endif 271#endif 272 273/* Maximum allocatable size */ 274#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 275/* Maximum size for which we actually use a slab cache */ 276#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 277/* Maximum order allocatable via the slab allocagtor */ 278#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 279 280/* 281 * Kmalloc subsystem. 282 */ 283#ifndef KMALLOC_MIN_SIZE 284#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 285#endif 286 287/* 288 * This restriction comes from byte sized index implementation. 289 * Page size is normally 2^12 bytes and, in this case, if we want to use 290 * byte sized index which can represent 2^8 entries, the size of the object 291 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 292 * If minimum size of kmalloc is less than 16, we use it as minimum object 293 * size and give up to use byte sized index. 294 */ 295#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 296 (KMALLOC_MIN_SIZE) : 16) 297 298/* 299 * Whenever changing this, take care of that kmalloc_type() and 300 * create_kmalloc_caches() still work as intended. 301 */ 302enum kmalloc_cache_type { 303 KMALLOC_NORMAL = 0, 304 KMALLOC_RECLAIM, 305#ifdef CONFIG_ZONE_DMA 306 KMALLOC_DMA, 307#endif 308 NR_KMALLOC_TYPES 309}; 310 311#ifndef CONFIG_SLOB 312extern struct kmem_cache * 313kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 314 315static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 316{ 317 int is_dma = 0; 318 int type_dma = 0; 319 int is_reclaimable; 320 321#ifdef CONFIG_ZONE_DMA 322 is_dma = !!(flags & __GFP_DMA); 323 type_dma = is_dma * KMALLOC_DMA; 324#endif 325 326 is_reclaimable = !!(flags & __GFP_RECLAIMABLE); 327 328 /* 329 * If an allocation is both __GFP_DMA and __GFP_RECLAIMABLE, return 330 * KMALLOC_DMA and effectively ignore __GFP_RECLAIMABLE 331 */ 332 return type_dma + (is_reclaimable & !is_dma) * KMALLOC_RECLAIM; 333} 334 335/* 336 * Figure out which kmalloc slab an allocation of a certain size 337 * belongs to. 338 * 0 = zero alloc 339 * 1 = 65 .. 96 bytes 340 * 2 = 129 .. 192 bytes 341 * n = 2^(n-1)+1 .. 2^n 342 */ 343static __always_inline unsigned int kmalloc_index(size_t size) 344{ 345 if (!size) 346 return 0; 347 348 if (size <= KMALLOC_MIN_SIZE) 349 return KMALLOC_SHIFT_LOW; 350 351 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 352 return 1; 353 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 354 return 2; 355 if (size <= 8) return 3; 356 if (size <= 16) return 4; 357 if (size <= 32) return 5; 358 if (size <= 64) return 6; 359 if (size <= 128) return 7; 360 if (size <= 256) return 8; 361 if (size <= 512) return 9; 362 if (size <= 1024) return 10; 363 if (size <= 2 * 1024) return 11; 364 if (size <= 4 * 1024) return 12; 365 if (size <= 8 * 1024) return 13; 366 if (size <= 16 * 1024) return 14; 367 if (size <= 32 * 1024) return 15; 368 if (size <= 64 * 1024) return 16; 369 if (size <= 128 * 1024) return 17; 370 if (size <= 256 * 1024) return 18; 371 if (size <= 512 * 1024) return 19; 372 if (size <= 1024 * 1024) return 20; 373 if (size <= 2 * 1024 * 1024) return 21; 374 if (size <= 4 * 1024 * 1024) return 22; 375 if (size <= 8 * 1024 * 1024) return 23; 376 if (size <= 16 * 1024 * 1024) return 24; 377 if (size <= 32 * 1024 * 1024) return 25; 378 if (size <= 64 * 1024 * 1024) return 26; 379 BUG(); 380 381 /* Will never be reached. Needed because the compiler may complain */ 382 return -1; 383} 384#endif /* !CONFIG_SLOB */ 385 386void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 387void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 388void kmem_cache_free(struct kmem_cache *, void *); 389 390/* 391 * Bulk allocation and freeing operations. These are accelerated in an 392 * allocator specific way to avoid taking locks repeatedly or building 393 * metadata structures unnecessarily. 394 * 395 * Note that interrupts must be enabled when calling these functions. 396 */ 397void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 398int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 399 400/* 401 * Caller must not use kfree_bulk() on memory not originally allocated 402 * by kmalloc(), because the SLOB allocator cannot handle this. 403 */ 404static __always_inline void kfree_bulk(size_t size, void **p) 405{ 406 kmem_cache_free_bulk(NULL, size, p); 407} 408 409#ifdef CONFIG_NUMA 410void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 411void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 412#else 413static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 414{ 415 return __kmalloc(size, flags); 416} 417 418static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 419{ 420 return kmem_cache_alloc(s, flags); 421} 422#endif 423 424#ifdef CONFIG_TRACING 425extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 426 427#ifdef CONFIG_NUMA 428extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 429 gfp_t gfpflags, 430 int node, size_t size) __assume_slab_alignment __malloc; 431#else 432static __always_inline void * 433kmem_cache_alloc_node_trace(struct kmem_cache *s, 434 gfp_t gfpflags, 435 int node, size_t size) 436{ 437 return kmem_cache_alloc_trace(s, gfpflags, size); 438} 439#endif /* CONFIG_NUMA */ 440 441#else /* CONFIG_TRACING */ 442static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 443 gfp_t flags, size_t size) 444{ 445 void *ret = kmem_cache_alloc(s, flags); 446 447 kasan_kmalloc(s, ret, size, flags); 448 return ret; 449} 450 451static __always_inline void * 452kmem_cache_alloc_node_trace(struct kmem_cache *s, 453 gfp_t gfpflags, 454 int node, size_t size) 455{ 456 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 457 458 kasan_kmalloc(s, ret, size, gfpflags); 459 return ret; 460} 461#endif /* CONFIG_TRACING */ 462 463extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 464 465#ifdef CONFIG_TRACING 466extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 467#else 468static __always_inline void * 469kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 470{ 471 return kmalloc_order(size, flags, order); 472} 473#endif 474 475static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 476{ 477 unsigned int order = get_order(size); 478 return kmalloc_order_trace(size, flags, order); 479} 480 481/** 482 * kmalloc - allocate memory 483 * @size: how many bytes of memory are required. 484 * @flags: the type of memory to allocate. 485 * 486 * kmalloc is the normal method of allocating memory 487 * for objects smaller than page size in the kernel. 488 * 489 * The @flags argument may be one of: 490 * 491 * %GFP_USER - Allocate memory on behalf of user. May sleep. 492 * 493 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 494 * 495 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 496 * For example, use this inside interrupt handlers. 497 * 498 * %GFP_HIGHUSER - Allocate pages from high memory. 499 * 500 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 501 * 502 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 503 * 504 * %GFP_NOWAIT - Allocation will not sleep. 505 * 506 * %__GFP_THISNODE - Allocate node-local memory only. 507 * 508 * %GFP_DMA - Allocation suitable for DMA. 509 * Should only be used for kmalloc() caches. Otherwise, use a 510 * slab created with SLAB_DMA. 511 * 512 * Also it is possible to set different flags by OR'ing 513 * in one or more of the following additional @flags: 514 * 515 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 516 * 517 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 518 * (think twice before using). 519 * 520 * %__GFP_NORETRY - If memory is not immediately available, 521 * then give up at once. 522 * 523 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 524 * 525 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail 526 * eventually. 527 * 528 * There are other flags available as well, but these are not intended 529 * for general use, and so are not documented here. For a full list of 530 * potential flags, always refer to linux/gfp.h. 531 */ 532static __always_inline void *kmalloc(size_t size, gfp_t flags) 533{ 534 if (__builtin_constant_p(size)) { 535#ifndef CONFIG_SLOB 536 unsigned int index; 537#endif 538 if (size > KMALLOC_MAX_CACHE_SIZE) 539 return kmalloc_large(size, flags); 540#ifndef CONFIG_SLOB 541 index = kmalloc_index(size); 542 543 if (!index) 544 return ZERO_SIZE_PTR; 545 546 return kmem_cache_alloc_trace( 547 kmalloc_caches[kmalloc_type(flags)][index], 548 flags, size); 549#endif 550 } 551 return __kmalloc(size, flags); 552} 553 554/* 555 * Determine size used for the nth kmalloc cache. 556 * return size or 0 if a kmalloc cache for that 557 * size does not exist 558 */ 559static __always_inline unsigned int kmalloc_size(unsigned int n) 560{ 561#ifndef CONFIG_SLOB 562 if (n > 2) 563 return 1U << n; 564 565 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 566 return 96; 567 568 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 569 return 192; 570#endif 571 return 0; 572} 573 574static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 575{ 576#ifndef CONFIG_SLOB 577 if (__builtin_constant_p(size) && 578 size <= KMALLOC_MAX_CACHE_SIZE) { 579 unsigned int i = kmalloc_index(size); 580 581 if (!i) 582 return ZERO_SIZE_PTR; 583 584 return kmem_cache_alloc_node_trace( 585 kmalloc_caches[kmalloc_type(flags)][i], 586 flags, node, size); 587 } 588#endif 589 return __kmalloc_node(size, flags, node); 590} 591 592struct memcg_cache_array { 593 struct rcu_head rcu; 594 struct kmem_cache *entries[0]; 595}; 596 597/* 598 * This is the main placeholder for memcg-related information in kmem caches. 599 * Both the root cache and the child caches will have it. For the root cache, 600 * this will hold a dynamically allocated array large enough to hold 601 * information about the currently limited memcgs in the system. To allow the 602 * array to be accessed without taking any locks, on relocation we free the old 603 * version only after a grace period. 604 * 605 * Root and child caches hold different metadata. 606 * 607 * @root_cache: Common to root and child caches. NULL for root, pointer to 608 * the root cache for children. 609 * 610 * The following fields are specific to root caches. 611 * 612 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 613 * used to index child cachces during allocation and cleared 614 * early during shutdown. 615 * 616 * @root_caches_node: List node for slab_root_caches list. 617 * 618 * @children: List of all child caches. While the child caches are also 619 * reachable through @memcg_caches, a child cache remains on 620 * this list until it is actually destroyed. 621 * 622 * The following fields are specific to child caches. 623 * 624 * @memcg: Pointer to the memcg this cache belongs to. 625 * 626 * @children_node: List node for @root_cache->children list. 627 * 628 * @kmem_caches_node: List node for @memcg->kmem_caches list. 629 */ 630struct memcg_cache_params { 631 struct kmem_cache *root_cache; 632 union { 633 struct { 634 struct memcg_cache_array __rcu *memcg_caches; 635 struct list_head __root_caches_node; 636 struct list_head children; 637 bool dying; 638 }; 639 struct { 640 struct mem_cgroup *memcg; 641 struct list_head children_node; 642 struct list_head kmem_caches_node; 643 644 void (*deact_fn)(struct kmem_cache *); 645 union { 646 struct rcu_head deact_rcu_head; 647 struct work_struct deact_work; 648 }; 649 }; 650 }; 651}; 652 653int memcg_update_all_caches(int num_memcgs); 654 655/** 656 * kmalloc_array - allocate memory for an array. 657 * @n: number of elements. 658 * @size: element size. 659 * @flags: the type of memory to allocate (see kmalloc). 660 */ 661static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 662{ 663 size_t bytes; 664 665 if (unlikely(check_mul_overflow(n, size, &bytes))) 666 return NULL; 667 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 668 return kmalloc(bytes, flags); 669 return __kmalloc(bytes, flags); 670} 671 672/** 673 * kcalloc - allocate memory for an array. The memory is set to zero. 674 * @n: number of elements. 675 * @size: element size. 676 * @flags: the type of memory to allocate (see kmalloc). 677 */ 678static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 679{ 680 return kmalloc_array(n, size, flags | __GFP_ZERO); 681} 682 683/* 684 * kmalloc_track_caller is a special version of kmalloc that records the 685 * calling function of the routine calling it for slab leak tracking instead 686 * of just the calling function (confusing, eh?). 687 * It's useful when the call to kmalloc comes from a widely-used standard 688 * allocator where we care about the real place the memory allocation 689 * request comes from. 690 */ 691extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 692#define kmalloc_track_caller(size, flags) \ 693 __kmalloc_track_caller(size, flags, _RET_IP_) 694 695static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 696 int node) 697{ 698 size_t bytes; 699 700 if (unlikely(check_mul_overflow(n, size, &bytes))) 701 return NULL; 702 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 703 return kmalloc_node(bytes, flags, node); 704 return __kmalloc_node(bytes, flags, node); 705} 706 707static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 708{ 709 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 710} 711 712 713#ifdef CONFIG_NUMA 714extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 715#define kmalloc_node_track_caller(size, flags, node) \ 716 __kmalloc_node_track_caller(size, flags, node, \ 717 _RET_IP_) 718 719#else /* CONFIG_NUMA */ 720 721#define kmalloc_node_track_caller(size, flags, node) \ 722 kmalloc_track_caller(size, flags) 723 724#endif /* CONFIG_NUMA */ 725 726/* 727 * Shortcuts 728 */ 729static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 730{ 731 return kmem_cache_alloc(k, flags | __GFP_ZERO); 732} 733 734/** 735 * kzalloc - allocate memory. The memory is set to zero. 736 * @size: how many bytes of memory are required. 737 * @flags: the type of memory to allocate (see kmalloc). 738 */ 739static inline void *kzalloc(size_t size, gfp_t flags) 740{ 741 return kmalloc(size, flags | __GFP_ZERO); 742} 743 744/** 745 * kzalloc_node - allocate zeroed memory from a particular memory node. 746 * @size: how many bytes of memory are required. 747 * @flags: the type of memory to allocate (see kmalloc). 748 * @node: memory node from which to allocate 749 */ 750static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 751{ 752 return kmalloc_node(size, flags | __GFP_ZERO, node); 753} 754 755unsigned int kmem_cache_size(struct kmem_cache *s); 756void __init kmem_cache_init_late(void); 757 758#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 759int slab_prepare_cpu(unsigned int cpu); 760int slab_dead_cpu(unsigned int cpu); 761#else 762#define slab_prepare_cpu NULL 763#define slab_dead_cpu NULL 764#endif 765 766#endif /* _LINUX_SLAB_H */