at v4.20 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/kcov.h> 18#include <linux/mutex.h> 19#include <linux/plist.h> 20#include <linux/hrtimer.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/resource.h> 25#include <linux/latencytop.h> 26#include <linux/sched/prio.h> 27#include <linux/signal_types.h> 28#include <linux/psi_types.h> 29#include <linux/mm_types_task.h> 30#include <linux/task_io_accounting.h> 31#include <linux/rseq.h> 32 33/* task_struct member predeclarations (sorted alphabetically): */ 34struct audit_context; 35struct backing_dev_info; 36struct bio_list; 37struct blk_plug; 38struct cfs_rq; 39struct fs_struct; 40struct futex_pi_state; 41struct io_context; 42struct mempolicy; 43struct nameidata; 44struct nsproxy; 45struct perf_event_context; 46struct pid_namespace; 47struct pipe_inode_info; 48struct rcu_node; 49struct reclaim_state; 50struct robust_list_head; 51struct sched_attr; 52struct sched_param; 53struct seq_file; 54struct sighand_struct; 55struct signal_struct; 56struct task_delay_info; 57struct task_group; 58 59/* 60 * Task state bitmask. NOTE! These bits are also 61 * encoded in fs/proc/array.c: get_task_state(). 62 * 63 * We have two separate sets of flags: task->state 64 * is about runnability, while task->exit_state are 65 * about the task exiting. Confusing, but this way 66 * modifying one set can't modify the other one by 67 * mistake. 68 */ 69 70/* Used in tsk->state: */ 71#define TASK_RUNNING 0x0000 72#define TASK_INTERRUPTIBLE 0x0001 73#define TASK_UNINTERRUPTIBLE 0x0002 74#define __TASK_STOPPED 0x0004 75#define __TASK_TRACED 0x0008 76/* Used in tsk->exit_state: */ 77#define EXIT_DEAD 0x0010 78#define EXIT_ZOMBIE 0x0020 79#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 80/* Used in tsk->state again: */ 81#define TASK_PARKED 0x0040 82#define TASK_DEAD 0x0080 83#define TASK_WAKEKILL 0x0100 84#define TASK_WAKING 0x0200 85#define TASK_NOLOAD 0x0400 86#define TASK_NEW 0x0800 87#define TASK_STATE_MAX 0x1000 88 89/* Convenience macros for the sake of set_current_state: */ 90#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 91#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 92#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 93 94#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 95 96/* Convenience macros for the sake of wake_up(): */ 97#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 98 99/* get_task_state(): */ 100#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 103 TASK_PARKED) 104 105#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 106 107#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 108 109#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 110 111#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 112 (task->flags & PF_FROZEN) == 0 && \ 113 (task->state & TASK_NOLOAD) == 0) 114 115#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 116 117/* 118 * Special states are those that do not use the normal wait-loop pattern. See 119 * the comment with set_special_state(). 120 */ 121#define is_special_task_state(state) \ 122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 123 124#define __set_current_state(state_value) \ 125 do { \ 126 WARN_ON_ONCE(is_special_task_state(state_value));\ 127 current->task_state_change = _THIS_IP_; \ 128 current->state = (state_value); \ 129 } while (0) 130 131#define set_current_state(state_value) \ 132 do { \ 133 WARN_ON_ONCE(is_special_task_state(state_value));\ 134 current->task_state_change = _THIS_IP_; \ 135 smp_store_mb(current->state, (state_value)); \ 136 } while (0) 137 138#define set_special_state(state_value) \ 139 do { \ 140 unsigned long flags; /* may shadow */ \ 141 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 142 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 143 current->task_state_change = _THIS_IP_; \ 144 current->state = (state_value); \ 145 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 146 } while (0) 147#else 148/* 149 * set_current_state() includes a barrier so that the write of current->state 150 * is correctly serialised wrt the caller's subsequent test of whether to 151 * actually sleep: 152 * 153 * for (;;) { 154 * set_current_state(TASK_UNINTERRUPTIBLE); 155 * if (!need_sleep) 156 * break; 157 * 158 * schedule(); 159 * } 160 * __set_current_state(TASK_RUNNING); 161 * 162 * If the caller does not need such serialisation (because, for instance, the 163 * condition test and condition change and wakeup are under the same lock) then 164 * use __set_current_state(). 165 * 166 * The above is typically ordered against the wakeup, which does: 167 * 168 * need_sleep = false; 169 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 170 * 171 * where wake_up_state() executes a full memory barrier before accessing the 172 * task state. 173 * 174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 177 * 178 * However, with slightly different timing the wakeup TASK_RUNNING store can 179 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not 180 * a problem either because that will result in one extra go around the loop 181 * and our @cond test will save the day. 182 * 183 * Also see the comments of try_to_wake_up(). 184 */ 185#define __set_current_state(state_value) \ 186 current->state = (state_value) 187 188#define set_current_state(state_value) \ 189 smp_store_mb(current->state, (state_value)) 190 191/* 192 * set_special_state() should be used for those states when the blocking task 193 * can not use the regular condition based wait-loop. In that case we must 194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 195 * will not collide with our state change. 196 */ 197#define set_special_state(state_value) \ 198 do { \ 199 unsigned long flags; /* may shadow */ \ 200 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 201 current->state = (state_value); \ 202 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 203 } while (0) 204 205#endif 206 207/* Task command name length: */ 208#define TASK_COMM_LEN 16 209 210extern void scheduler_tick(void); 211 212#define MAX_SCHEDULE_TIMEOUT LONG_MAX 213 214extern long schedule_timeout(long timeout); 215extern long schedule_timeout_interruptible(long timeout); 216extern long schedule_timeout_killable(long timeout); 217extern long schedule_timeout_uninterruptible(long timeout); 218extern long schedule_timeout_idle(long timeout); 219asmlinkage void schedule(void); 220extern void schedule_preempt_disabled(void); 221 222extern int __must_check io_schedule_prepare(void); 223extern void io_schedule_finish(int token); 224extern long io_schedule_timeout(long timeout); 225extern void io_schedule(void); 226 227/** 228 * struct prev_cputime - snapshot of system and user cputime 229 * @utime: time spent in user mode 230 * @stime: time spent in system mode 231 * @lock: protects the above two fields 232 * 233 * Stores previous user/system time values such that we can guarantee 234 * monotonicity. 235 */ 236struct prev_cputime { 237#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 238 u64 utime; 239 u64 stime; 240 raw_spinlock_t lock; 241#endif 242}; 243 244/** 245 * struct task_cputime - collected CPU time counts 246 * @utime: time spent in user mode, in nanoseconds 247 * @stime: time spent in kernel mode, in nanoseconds 248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 249 * 250 * This structure groups together three kinds of CPU time that are tracked for 251 * threads and thread groups. Most things considering CPU time want to group 252 * these counts together and treat all three of them in parallel. 253 */ 254struct task_cputime { 255 u64 utime; 256 u64 stime; 257 unsigned long long sum_exec_runtime; 258}; 259 260/* Alternate field names when used on cache expirations: */ 261#define virt_exp utime 262#define prof_exp stime 263#define sched_exp sum_exec_runtime 264 265enum vtime_state { 266 /* Task is sleeping or running in a CPU with VTIME inactive: */ 267 VTIME_INACTIVE = 0, 268 /* Task runs in userspace in a CPU with VTIME active: */ 269 VTIME_USER, 270 /* Task runs in kernelspace in a CPU with VTIME active: */ 271 VTIME_SYS, 272}; 273 274struct vtime { 275 seqcount_t seqcount; 276 unsigned long long starttime; 277 enum vtime_state state; 278 u64 utime; 279 u64 stime; 280 u64 gtime; 281}; 282 283struct sched_info { 284#ifdef CONFIG_SCHED_INFO 285 /* Cumulative counters: */ 286 287 /* # of times we have run on this CPU: */ 288 unsigned long pcount; 289 290 /* Time spent waiting on a runqueue: */ 291 unsigned long long run_delay; 292 293 /* Timestamps: */ 294 295 /* When did we last run on a CPU? */ 296 unsigned long long last_arrival; 297 298 /* When were we last queued to run? */ 299 unsigned long long last_queued; 300 301#endif /* CONFIG_SCHED_INFO */ 302}; 303 304/* 305 * Integer metrics need fixed point arithmetic, e.g., sched/fair 306 * has a few: load, load_avg, util_avg, freq, and capacity. 307 * 308 * We define a basic fixed point arithmetic range, and then formalize 309 * all these metrics based on that basic range. 310 */ 311# define SCHED_FIXEDPOINT_SHIFT 10 312# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 313 314struct load_weight { 315 unsigned long weight; 316 u32 inv_weight; 317}; 318 319/** 320 * struct util_est - Estimation utilization of FAIR tasks 321 * @enqueued: instantaneous estimated utilization of a task/cpu 322 * @ewma: the Exponential Weighted Moving Average (EWMA) 323 * utilization of a task 324 * 325 * Support data structure to track an Exponential Weighted Moving Average 326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 327 * average each time a task completes an activation. Sample's weight is chosen 328 * so that the EWMA will be relatively insensitive to transient changes to the 329 * task's workload. 330 * 331 * The enqueued attribute has a slightly different meaning for tasks and cpus: 332 * - task: the task's util_avg at last task dequeue time 333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 334 * Thus, the util_est.enqueued of a task represents the contribution on the 335 * estimated utilization of the CPU where that task is currently enqueued. 336 * 337 * Only for tasks we track a moving average of the past instantaneous 338 * estimated utilization. This allows to absorb sporadic drops in utilization 339 * of an otherwise almost periodic task. 340 */ 341struct util_est { 342 unsigned int enqueued; 343 unsigned int ewma; 344#define UTIL_EST_WEIGHT_SHIFT 2 345} __attribute__((__aligned__(sizeof(u64)))); 346 347/* 348 * The load_avg/util_avg accumulates an infinite geometric series 349 * (see __update_load_avg() in kernel/sched/fair.c). 350 * 351 * [load_avg definition] 352 * 353 * load_avg = runnable% * scale_load_down(load) 354 * 355 * where runnable% is the time ratio that a sched_entity is runnable. 356 * For cfs_rq, it is the aggregated load_avg of all runnable and 357 * blocked sched_entities. 358 * 359 * load_avg may also take frequency scaling into account: 360 * 361 * load_avg = runnable% * scale_load_down(load) * freq% 362 * 363 * where freq% is the CPU frequency normalized to the highest frequency. 364 * 365 * [util_avg definition] 366 * 367 * util_avg = running% * SCHED_CAPACITY_SCALE 368 * 369 * where running% is the time ratio that a sched_entity is running on 370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 371 * and blocked sched_entities. 372 * 373 * util_avg may also factor frequency scaling and CPU capacity scaling: 374 * 375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 376 * 377 * where freq% is the same as above, and capacity% is the CPU capacity 378 * normalized to the greatest capacity (due to uarch differences, etc). 379 * 380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 381 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 382 * we therefore scale them to as large a range as necessary. This is for 383 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 384 * 385 * [Overflow issue] 386 * 387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 388 * with the highest load (=88761), always runnable on a single cfs_rq, 389 * and should not overflow as the number already hits PID_MAX_LIMIT. 390 * 391 * For all other cases (including 32-bit kernels), struct load_weight's 392 * weight will overflow first before we do, because: 393 * 394 * Max(load_avg) <= Max(load.weight) 395 * 396 * Then it is the load_weight's responsibility to consider overflow 397 * issues. 398 */ 399struct sched_avg { 400 u64 last_update_time; 401 u64 load_sum; 402 u64 runnable_load_sum; 403 u32 util_sum; 404 u32 period_contrib; 405 unsigned long load_avg; 406 unsigned long runnable_load_avg; 407 unsigned long util_avg; 408 struct util_est util_est; 409} ____cacheline_aligned; 410 411struct sched_statistics { 412#ifdef CONFIG_SCHEDSTATS 413 u64 wait_start; 414 u64 wait_max; 415 u64 wait_count; 416 u64 wait_sum; 417 u64 iowait_count; 418 u64 iowait_sum; 419 420 u64 sleep_start; 421 u64 sleep_max; 422 s64 sum_sleep_runtime; 423 424 u64 block_start; 425 u64 block_max; 426 u64 exec_max; 427 u64 slice_max; 428 429 u64 nr_migrations_cold; 430 u64 nr_failed_migrations_affine; 431 u64 nr_failed_migrations_running; 432 u64 nr_failed_migrations_hot; 433 u64 nr_forced_migrations; 434 435 u64 nr_wakeups; 436 u64 nr_wakeups_sync; 437 u64 nr_wakeups_migrate; 438 u64 nr_wakeups_local; 439 u64 nr_wakeups_remote; 440 u64 nr_wakeups_affine; 441 u64 nr_wakeups_affine_attempts; 442 u64 nr_wakeups_passive; 443 u64 nr_wakeups_idle; 444#endif 445}; 446 447struct sched_entity { 448 /* For load-balancing: */ 449 struct load_weight load; 450 unsigned long runnable_weight; 451 struct rb_node run_node; 452 struct list_head group_node; 453 unsigned int on_rq; 454 455 u64 exec_start; 456 u64 sum_exec_runtime; 457 u64 vruntime; 458 u64 prev_sum_exec_runtime; 459 460 u64 nr_migrations; 461 462 struct sched_statistics statistics; 463 464#ifdef CONFIG_FAIR_GROUP_SCHED 465 int depth; 466 struct sched_entity *parent; 467 /* rq on which this entity is (to be) queued: */ 468 struct cfs_rq *cfs_rq; 469 /* rq "owned" by this entity/group: */ 470 struct cfs_rq *my_q; 471#endif 472 473#ifdef CONFIG_SMP 474 /* 475 * Per entity load average tracking. 476 * 477 * Put into separate cache line so it does not 478 * collide with read-mostly values above. 479 */ 480 struct sched_avg avg; 481#endif 482}; 483 484struct sched_rt_entity { 485 struct list_head run_list; 486 unsigned long timeout; 487 unsigned long watchdog_stamp; 488 unsigned int time_slice; 489 unsigned short on_rq; 490 unsigned short on_list; 491 492 struct sched_rt_entity *back; 493#ifdef CONFIG_RT_GROUP_SCHED 494 struct sched_rt_entity *parent; 495 /* rq on which this entity is (to be) queued: */ 496 struct rt_rq *rt_rq; 497 /* rq "owned" by this entity/group: */ 498 struct rt_rq *my_q; 499#endif 500} __randomize_layout; 501 502struct sched_dl_entity { 503 struct rb_node rb_node; 504 505 /* 506 * Original scheduling parameters. Copied here from sched_attr 507 * during sched_setattr(), they will remain the same until 508 * the next sched_setattr(). 509 */ 510 u64 dl_runtime; /* Maximum runtime for each instance */ 511 u64 dl_deadline; /* Relative deadline of each instance */ 512 u64 dl_period; /* Separation of two instances (period) */ 513 u64 dl_bw; /* dl_runtime / dl_period */ 514 u64 dl_density; /* dl_runtime / dl_deadline */ 515 516 /* 517 * Actual scheduling parameters. Initialized with the values above, 518 * they are continously updated during task execution. Note that 519 * the remaining runtime could be < 0 in case we are in overrun. 520 */ 521 s64 runtime; /* Remaining runtime for this instance */ 522 u64 deadline; /* Absolute deadline for this instance */ 523 unsigned int flags; /* Specifying the scheduler behaviour */ 524 525 /* 526 * Some bool flags: 527 * 528 * @dl_throttled tells if we exhausted the runtime. If so, the 529 * task has to wait for a replenishment to be performed at the 530 * next firing of dl_timer. 531 * 532 * @dl_boosted tells if we are boosted due to DI. If so we are 533 * outside bandwidth enforcement mechanism (but only until we 534 * exit the critical section); 535 * 536 * @dl_yielded tells if task gave up the CPU before consuming 537 * all its available runtime during the last job. 538 * 539 * @dl_non_contending tells if the task is inactive while still 540 * contributing to the active utilization. In other words, it 541 * indicates if the inactive timer has been armed and its handler 542 * has not been executed yet. This flag is useful to avoid race 543 * conditions between the inactive timer handler and the wakeup 544 * code. 545 * 546 * @dl_overrun tells if the task asked to be informed about runtime 547 * overruns. 548 */ 549 unsigned int dl_throttled : 1; 550 unsigned int dl_boosted : 1; 551 unsigned int dl_yielded : 1; 552 unsigned int dl_non_contending : 1; 553 unsigned int dl_overrun : 1; 554 555 /* 556 * Bandwidth enforcement timer. Each -deadline task has its 557 * own bandwidth to be enforced, thus we need one timer per task. 558 */ 559 struct hrtimer dl_timer; 560 561 /* 562 * Inactive timer, responsible for decreasing the active utilization 563 * at the "0-lag time". When a -deadline task blocks, it contributes 564 * to GRUB's active utilization until the "0-lag time", hence a 565 * timer is needed to decrease the active utilization at the correct 566 * time. 567 */ 568 struct hrtimer inactive_timer; 569}; 570 571union rcu_special { 572 struct { 573 u8 blocked; 574 u8 need_qs; 575 } b; /* Bits. */ 576 u16 s; /* Set of bits. */ 577}; 578 579enum perf_event_task_context { 580 perf_invalid_context = -1, 581 perf_hw_context = 0, 582 perf_sw_context, 583 perf_nr_task_contexts, 584}; 585 586struct wake_q_node { 587 struct wake_q_node *next; 588}; 589 590struct task_struct { 591#ifdef CONFIG_THREAD_INFO_IN_TASK 592 /* 593 * For reasons of header soup (see current_thread_info()), this 594 * must be the first element of task_struct. 595 */ 596 struct thread_info thread_info; 597#endif 598 /* -1 unrunnable, 0 runnable, >0 stopped: */ 599 volatile long state; 600 601 /* 602 * This begins the randomizable portion of task_struct. Only 603 * scheduling-critical items should be added above here. 604 */ 605 randomized_struct_fields_start 606 607 void *stack; 608 atomic_t usage; 609 /* Per task flags (PF_*), defined further below: */ 610 unsigned int flags; 611 unsigned int ptrace; 612 613#ifdef CONFIG_SMP 614 struct llist_node wake_entry; 615 int on_cpu; 616#ifdef CONFIG_THREAD_INFO_IN_TASK 617 /* Current CPU: */ 618 unsigned int cpu; 619#endif 620 unsigned int wakee_flips; 621 unsigned long wakee_flip_decay_ts; 622 struct task_struct *last_wakee; 623 624 /* 625 * recent_used_cpu is initially set as the last CPU used by a task 626 * that wakes affine another task. Waker/wakee relationships can 627 * push tasks around a CPU where each wakeup moves to the next one. 628 * Tracking a recently used CPU allows a quick search for a recently 629 * used CPU that may be idle. 630 */ 631 int recent_used_cpu; 632 int wake_cpu; 633#endif 634 int on_rq; 635 636 int prio; 637 int static_prio; 638 int normal_prio; 639 unsigned int rt_priority; 640 641 const struct sched_class *sched_class; 642 struct sched_entity se; 643 struct sched_rt_entity rt; 644#ifdef CONFIG_CGROUP_SCHED 645 struct task_group *sched_task_group; 646#endif 647 struct sched_dl_entity dl; 648 649#ifdef CONFIG_PREEMPT_NOTIFIERS 650 /* List of struct preempt_notifier: */ 651 struct hlist_head preempt_notifiers; 652#endif 653 654#ifdef CONFIG_BLK_DEV_IO_TRACE 655 unsigned int btrace_seq; 656#endif 657 658 unsigned int policy; 659 int nr_cpus_allowed; 660 cpumask_t cpus_allowed; 661 662#ifdef CONFIG_PREEMPT_RCU 663 int rcu_read_lock_nesting; 664 union rcu_special rcu_read_unlock_special; 665 struct list_head rcu_node_entry; 666 struct rcu_node *rcu_blocked_node; 667#endif /* #ifdef CONFIG_PREEMPT_RCU */ 668 669#ifdef CONFIG_TASKS_RCU 670 unsigned long rcu_tasks_nvcsw; 671 u8 rcu_tasks_holdout; 672 u8 rcu_tasks_idx; 673 int rcu_tasks_idle_cpu; 674 struct list_head rcu_tasks_holdout_list; 675#endif /* #ifdef CONFIG_TASKS_RCU */ 676 677 struct sched_info sched_info; 678 679 struct list_head tasks; 680#ifdef CONFIG_SMP 681 struct plist_node pushable_tasks; 682 struct rb_node pushable_dl_tasks; 683#endif 684 685 struct mm_struct *mm; 686 struct mm_struct *active_mm; 687 688 /* Per-thread vma caching: */ 689 struct vmacache vmacache; 690 691#ifdef SPLIT_RSS_COUNTING 692 struct task_rss_stat rss_stat; 693#endif 694 int exit_state; 695 int exit_code; 696 int exit_signal; 697 /* The signal sent when the parent dies: */ 698 int pdeath_signal; 699 /* JOBCTL_*, siglock protected: */ 700 unsigned long jobctl; 701 702 /* Used for emulating ABI behavior of previous Linux versions: */ 703 unsigned int personality; 704 705 /* Scheduler bits, serialized by scheduler locks: */ 706 unsigned sched_reset_on_fork:1; 707 unsigned sched_contributes_to_load:1; 708 unsigned sched_migrated:1; 709 unsigned sched_remote_wakeup:1; 710#ifdef CONFIG_PSI 711 unsigned sched_psi_wake_requeue:1; 712#endif 713 714 /* Force alignment to the next boundary: */ 715 unsigned :0; 716 717 /* Unserialized, strictly 'current' */ 718 719 /* Bit to tell LSMs we're in execve(): */ 720 unsigned in_execve:1; 721 unsigned in_iowait:1; 722#ifndef TIF_RESTORE_SIGMASK 723 unsigned restore_sigmask:1; 724#endif 725#ifdef CONFIG_MEMCG 726 unsigned in_user_fault:1; 727#endif 728#ifdef CONFIG_COMPAT_BRK 729 unsigned brk_randomized:1; 730#endif 731#ifdef CONFIG_CGROUPS 732 /* disallow userland-initiated cgroup migration */ 733 unsigned no_cgroup_migration:1; 734#endif 735#ifdef CONFIG_BLK_CGROUP 736 /* to be used once the psi infrastructure lands upstream. */ 737 unsigned use_memdelay:1; 738#endif 739 740 /* 741 * May usercopy functions fault on kernel addresses? 742 * This is not just a single bit because this can potentially nest. 743 */ 744 unsigned int kernel_uaccess_faults_ok; 745 746 unsigned long atomic_flags; /* Flags requiring atomic access. */ 747 748 struct restart_block restart_block; 749 750 pid_t pid; 751 pid_t tgid; 752 753#ifdef CONFIG_STACKPROTECTOR 754 /* Canary value for the -fstack-protector GCC feature: */ 755 unsigned long stack_canary; 756#endif 757 /* 758 * Pointers to the (original) parent process, youngest child, younger sibling, 759 * older sibling, respectively. (p->father can be replaced with 760 * p->real_parent->pid) 761 */ 762 763 /* Real parent process: */ 764 struct task_struct __rcu *real_parent; 765 766 /* Recipient of SIGCHLD, wait4() reports: */ 767 struct task_struct __rcu *parent; 768 769 /* 770 * Children/sibling form the list of natural children: 771 */ 772 struct list_head children; 773 struct list_head sibling; 774 struct task_struct *group_leader; 775 776 /* 777 * 'ptraced' is the list of tasks this task is using ptrace() on. 778 * 779 * This includes both natural children and PTRACE_ATTACH targets. 780 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 781 */ 782 struct list_head ptraced; 783 struct list_head ptrace_entry; 784 785 /* PID/PID hash table linkage. */ 786 struct pid *thread_pid; 787 struct hlist_node pid_links[PIDTYPE_MAX]; 788 struct list_head thread_group; 789 struct list_head thread_node; 790 791 struct completion *vfork_done; 792 793 /* CLONE_CHILD_SETTID: */ 794 int __user *set_child_tid; 795 796 /* CLONE_CHILD_CLEARTID: */ 797 int __user *clear_child_tid; 798 799 u64 utime; 800 u64 stime; 801#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 802 u64 utimescaled; 803 u64 stimescaled; 804#endif 805 u64 gtime; 806 struct prev_cputime prev_cputime; 807#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 808 struct vtime vtime; 809#endif 810 811#ifdef CONFIG_NO_HZ_FULL 812 atomic_t tick_dep_mask; 813#endif 814 /* Context switch counts: */ 815 unsigned long nvcsw; 816 unsigned long nivcsw; 817 818 /* Monotonic time in nsecs: */ 819 u64 start_time; 820 821 /* Boot based time in nsecs: */ 822 u64 real_start_time; 823 824 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 825 unsigned long min_flt; 826 unsigned long maj_flt; 827 828#ifdef CONFIG_POSIX_TIMERS 829 struct task_cputime cputime_expires; 830 struct list_head cpu_timers[3]; 831#endif 832 833 /* Process credentials: */ 834 835 /* Tracer's credentials at attach: */ 836 const struct cred __rcu *ptracer_cred; 837 838 /* Objective and real subjective task credentials (COW): */ 839 const struct cred __rcu *real_cred; 840 841 /* Effective (overridable) subjective task credentials (COW): */ 842 const struct cred __rcu *cred; 843 844 /* 845 * executable name, excluding path. 846 * 847 * - normally initialized setup_new_exec() 848 * - access it with [gs]et_task_comm() 849 * - lock it with task_lock() 850 */ 851 char comm[TASK_COMM_LEN]; 852 853 struct nameidata *nameidata; 854 855#ifdef CONFIG_SYSVIPC 856 struct sysv_sem sysvsem; 857 struct sysv_shm sysvshm; 858#endif 859#ifdef CONFIG_DETECT_HUNG_TASK 860 unsigned long last_switch_count; 861 unsigned long last_switch_time; 862#endif 863 /* Filesystem information: */ 864 struct fs_struct *fs; 865 866 /* Open file information: */ 867 struct files_struct *files; 868 869 /* Namespaces: */ 870 struct nsproxy *nsproxy; 871 872 /* Signal handlers: */ 873 struct signal_struct *signal; 874 struct sighand_struct *sighand; 875 sigset_t blocked; 876 sigset_t real_blocked; 877 /* Restored if set_restore_sigmask() was used: */ 878 sigset_t saved_sigmask; 879 struct sigpending pending; 880 unsigned long sas_ss_sp; 881 size_t sas_ss_size; 882 unsigned int sas_ss_flags; 883 884 struct callback_head *task_works; 885 886 struct audit_context *audit_context; 887#ifdef CONFIG_AUDITSYSCALL 888 kuid_t loginuid; 889 unsigned int sessionid; 890#endif 891 struct seccomp seccomp; 892 893 /* Thread group tracking: */ 894 u32 parent_exec_id; 895 u32 self_exec_id; 896 897 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 898 spinlock_t alloc_lock; 899 900 /* Protection of the PI data structures: */ 901 raw_spinlock_t pi_lock; 902 903 struct wake_q_node wake_q; 904 905#ifdef CONFIG_RT_MUTEXES 906 /* PI waiters blocked on a rt_mutex held by this task: */ 907 struct rb_root_cached pi_waiters; 908 /* Updated under owner's pi_lock and rq lock */ 909 struct task_struct *pi_top_task; 910 /* Deadlock detection and priority inheritance handling: */ 911 struct rt_mutex_waiter *pi_blocked_on; 912#endif 913 914#ifdef CONFIG_DEBUG_MUTEXES 915 /* Mutex deadlock detection: */ 916 struct mutex_waiter *blocked_on; 917#endif 918 919#ifdef CONFIG_TRACE_IRQFLAGS 920 unsigned int irq_events; 921 unsigned long hardirq_enable_ip; 922 unsigned long hardirq_disable_ip; 923 unsigned int hardirq_enable_event; 924 unsigned int hardirq_disable_event; 925 int hardirqs_enabled; 926 int hardirq_context; 927 unsigned long softirq_disable_ip; 928 unsigned long softirq_enable_ip; 929 unsigned int softirq_disable_event; 930 unsigned int softirq_enable_event; 931 int softirqs_enabled; 932 int softirq_context; 933#endif 934 935#ifdef CONFIG_LOCKDEP 936# define MAX_LOCK_DEPTH 48UL 937 u64 curr_chain_key; 938 int lockdep_depth; 939 unsigned int lockdep_recursion; 940 struct held_lock held_locks[MAX_LOCK_DEPTH]; 941#endif 942 943#ifdef CONFIG_UBSAN 944 unsigned int in_ubsan; 945#endif 946 947 /* Journalling filesystem info: */ 948 void *journal_info; 949 950 /* Stacked block device info: */ 951 struct bio_list *bio_list; 952 953#ifdef CONFIG_BLOCK 954 /* Stack plugging: */ 955 struct blk_plug *plug; 956#endif 957 958 /* VM state: */ 959 struct reclaim_state *reclaim_state; 960 961 struct backing_dev_info *backing_dev_info; 962 963 struct io_context *io_context; 964 965 /* Ptrace state: */ 966 unsigned long ptrace_message; 967 kernel_siginfo_t *last_siginfo; 968 969 struct task_io_accounting ioac; 970#ifdef CONFIG_PSI 971 /* Pressure stall state */ 972 unsigned int psi_flags; 973#endif 974#ifdef CONFIG_TASK_XACCT 975 /* Accumulated RSS usage: */ 976 u64 acct_rss_mem1; 977 /* Accumulated virtual memory usage: */ 978 u64 acct_vm_mem1; 979 /* stime + utime since last update: */ 980 u64 acct_timexpd; 981#endif 982#ifdef CONFIG_CPUSETS 983 /* Protected by ->alloc_lock: */ 984 nodemask_t mems_allowed; 985 /* Seqence number to catch updates: */ 986 seqcount_t mems_allowed_seq; 987 int cpuset_mem_spread_rotor; 988 int cpuset_slab_spread_rotor; 989#endif 990#ifdef CONFIG_CGROUPS 991 /* Control Group info protected by css_set_lock: */ 992 struct css_set __rcu *cgroups; 993 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 994 struct list_head cg_list; 995#endif 996#ifdef CONFIG_INTEL_RDT 997 u32 closid; 998 u32 rmid; 999#endif 1000#ifdef CONFIG_FUTEX 1001 struct robust_list_head __user *robust_list; 1002#ifdef CONFIG_COMPAT 1003 struct compat_robust_list_head __user *compat_robust_list; 1004#endif 1005 struct list_head pi_state_list; 1006 struct futex_pi_state *pi_state_cache; 1007#endif 1008#ifdef CONFIG_PERF_EVENTS 1009 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1010 struct mutex perf_event_mutex; 1011 struct list_head perf_event_list; 1012#endif 1013#ifdef CONFIG_DEBUG_PREEMPT 1014 unsigned long preempt_disable_ip; 1015#endif 1016#ifdef CONFIG_NUMA 1017 /* Protected by alloc_lock: */ 1018 struct mempolicy *mempolicy; 1019 short il_prev; 1020 short pref_node_fork; 1021#endif 1022#ifdef CONFIG_NUMA_BALANCING 1023 int numa_scan_seq; 1024 unsigned int numa_scan_period; 1025 unsigned int numa_scan_period_max; 1026 int numa_preferred_nid; 1027 unsigned long numa_migrate_retry; 1028 /* Migration stamp: */ 1029 u64 node_stamp; 1030 u64 last_task_numa_placement; 1031 u64 last_sum_exec_runtime; 1032 struct callback_head numa_work; 1033 1034 struct numa_group *numa_group; 1035 1036 /* 1037 * numa_faults is an array split into four regions: 1038 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1039 * in this precise order. 1040 * 1041 * faults_memory: Exponential decaying average of faults on a per-node 1042 * basis. Scheduling placement decisions are made based on these 1043 * counts. The values remain static for the duration of a PTE scan. 1044 * faults_cpu: Track the nodes the process was running on when a NUMA 1045 * hinting fault was incurred. 1046 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1047 * during the current scan window. When the scan completes, the counts 1048 * in faults_memory and faults_cpu decay and these values are copied. 1049 */ 1050 unsigned long *numa_faults; 1051 unsigned long total_numa_faults; 1052 1053 /* 1054 * numa_faults_locality tracks if faults recorded during the last 1055 * scan window were remote/local or failed to migrate. The task scan 1056 * period is adapted based on the locality of the faults with different 1057 * weights depending on whether they were shared or private faults 1058 */ 1059 unsigned long numa_faults_locality[3]; 1060 1061 unsigned long numa_pages_migrated; 1062#endif /* CONFIG_NUMA_BALANCING */ 1063 1064#ifdef CONFIG_RSEQ 1065 struct rseq __user *rseq; 1066 u32 rseq_len; 1067 u32 rseq_sig; 1068 /* 1069 * RmW on rseq_event_mask must be performed atomically 1070 * with respect to preemption. 1071 */ 1072 unsigned long rseq_event_mask; 1073#endif 1074 1075 struct tlbflush_unmap_batch tlb_ubc; 1076 1077 struct rcu_head rcu; 1078 1079 /* Cache last used pipe for splice(): */ 1080 struct pipe_inode_info *splice_pipe; 1081 1082 struct page_frag task_frag; 1083 1084#ifdef CONFIG_TASK_DELAY_ACCT 1085 struct task_delay_info *delays; 1086#endif 1087 1088#ifdef CONFIG_FAULT_INJECTION 1089 int make_it_fail; 1090 unsigned int fail_nth; 1091#endif 1092 /* 1093 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1094 * balance_dirty_pages() for a dirty throttling pause: 1095 */ 1096 int nr_dirtied; 1097 int nr_dirtied_pause; 1098 /* Start of a write-and-pause period: */ 1099 unsigned long dirty_paused_when; 1100 1101#ifdef CONFIG_LATENCYTOP 1102 int latency_record_count; 1103 struct latency_record latency_record[LT_SAVECOUNT]; 1104#endif 1105 /* 1106 * Time slack values; these are used to round up poll() and 1107 * select() etc timeout values. These are in nanoseconds. 1108 */ 1109 u64 timer_slack_ns; 1110 u64 default_timer_slack_ns; 1111 1112#ifdef CONFIG_KASAN 1113 unsigned int kasan_depth; 1114#endif 1115 1116#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1117 /* Index of current stored address in ret_stack: */ 1118 int curr_ret_stack; 1119 int curr_ret_depth; 1120 1121 /* Stack of return addresses for return function tracing: */ 1122 struct ftrace_ret_stack *ret_stack; 1123 1124 /* Timestamp for last schedule: */ 1125 unsigned long long ftrace_timestamp; 1126 1127 /* 1128 * Number of functions that haven't been traced 1129 * because of depth overrun: 1130 */ 1131 atomic_t trace_overrun; 1132 1133 /* Pause tracing: */ 1134 atomic_t tracing_graph_pause; 1135#endif 1136 1137#ifdef CONFIG_TRACING 1138 /* State flags for use by tracers: */ 1139 unsigned long trace; 1140 1141 /* Bitmask and counter of trace recursion: */ 1142 unsigned long trace_recursion; 1143#endif /* CONFIG_TRACING */ 1144 1145#ifdef CONFIG_KCOV 1146 /* Coverage collection mode enabled for this task (0 if disabled): */ 1147 unsigned int kcov_mode; 1148 1149 /* Size of the kcov_area: */ 1150 unsigned int kcov_size; 1151 1152 /* Buffer for coverage collection: */ 1153 void *kcov_area; 1154 1155 /* KCOV descriptor wired with this task or NULL: */ 1156 struct kcov *kcov; 1157#endif 1158 1159#ifdef CONFIG_MEMCG 1160 struct mem_cgroup *memcg_in_oom; 1161 gfp_t memcg_oom_gfp_mask; 1162 int memcg_oom_order; 1163 1164 /* Number of pages to reclaim on returning to userland: */ 1165 unsigned int memcg_nr_pages_over_high; 1166 1167 /* Used by memcontrol for targeted memcg charge: */ 1168 struct mem_cgroup *active_memcg; 1169#endif 1170 1171#ifdef CONFIG_BLK_CGROUP 1172 struct request_queue *throttle_queue; 1173#endif 1174 1175#ifdef CONFIG_UPROBES 1176 struct uprobe_task *utask; 1177#endif 1178#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1179 unsigned int sequential_io; 1180 unsigned int sequential_io_avg; 1181#endif 1182#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1183 unsigned long task_state_change; 1184#endif 1185 int pagefault_disabled; 1186#ifdef CONFIG_MMU 1187 struct task_struct *oom_reaper_list; 1188#endif 1189#ifdef CONFIG_VMAP_STACK 1190 struct vm_struct *stack_vm_area; 1191#endif 1192#ifdef CONFIG_THREAD_INFO_IN_TASK 1193 /* A live task holds one reference: */ 1194 atomic_t stack_refcount; 1195#endif 1196#ifdef CONFIG_LIVEPATCH 1197 int patch_state; 1198#endif 1199#ifdef CONFIG_SECURITY 1200 /* Used by LSM modules for access restriction: */ 1201 void *security; 1202#endif 1203 1204#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1205 unsigned long lowest_stack; 1206 unsigned long prev_lowest_stack; 1207#endif 1208 1209 /* 1210 * New fields for task_struct should be added above here, so that 1211 * they are included in the randomized portion of task_struct. 1212 */ 1213 randomized_struct_fields_end 1214 1215 /* CPU-specific state of this task: */ 1216 struct thread_struct thread; 1217 1218 /* 1219 * WARNING: on x86, 'thread_struct' contains a variable-sized 1220 * structure. It *MUST* be at the end of 'task_struct'. 1221 * 1222 * Do not put anything below here! 1223 */ 1224}; 1225 1226static inline struct pid *task_pid(struct task_struct *task) 1227{ 1228 return task->thread_pid; 1229} 1230 1231/* 1232 * the helpers to get the task's different pids as they are seen 1233 * from various namespaces 1234 * 1235 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1236 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1237 * current. 1238 * task_xid_nr_ns() : id seen from the ns specified; 1239 * 1240 * see also pid_nr() etc in include/linux/pid.h 1241 */ 1242pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1243 1244static inline pid_t task_pid_nr(struct task_struct *tsk) 1245{ 1246 return tsk->pid; 1247} 1248 1249static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1250{ 1251 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1252} 1253 1254static inline pid_t task_pid_vnr(struct task_struct *tsk) 1255{ 1256 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1257} 1258 1259 1260static inline pid_t task_tgid_nr(struct task_struct *tsk) 1261{ 1262 return tsk->tgid; 1263} 1264 1265/** 1266 * pid_alive - check that a task structure is not stale 1267 * @p: Task structure to be checked. 1268 * 1269 * Test if a process is not yet dead (at most zombie state) 1270 * If pid_alive fails, then pointers within the task structure 1271 * can be stale and must not be dereferenced. 1272 * 1273 * Return: 1 if the process is alive. 0 otherwise. 1274 */ 1275static inline int pid_alive(const struct task_struct *p) 1276{ 1277 return p->thread_pid != NULL; 1278} 1279 1280static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1281{ 1282 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1283} 1284 1285static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1286{ 1287 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1288} 1289 1290 1291static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1292{ 1293 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1294} 1295 1296static inline pid_t task_session_vnr(struct task_struct *tsk) 1297{ 1298 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1299} 1300 1301static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1302{ 1303 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1304} 1305 1306static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1307{ 1308 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1309} 1310 1311static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1312{ 1313 pid_t pid = 0; 1314 1315 rcu_read_lock(); 1316 if (pid_alive(tsk)) 1317 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1318 rcu_read_unlock(); 1319 1320 return pid; 1321} 1322 1323static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1324{ 1325 return task_ppid_nr_ns(tsk, &init_pid_ns); 1326} 1327 1328/* Obsolete, do not use: */ 1329static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1330{ 1331 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1332} 1333 1334#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1335#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1336 1337static inline unsigned int task_state_index(struct task_struct *tsk) 1338{ 1339 unsigned int tsk_state = READ_ONCE(tsk->state); 1340 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1341 1342 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1343 1344 if (tsk_state == TASK_IDLE) 1345 state = TASK_REPORT_IDLE; 1346 1347 return fls(state); 1348} 1349 1350static inline char task_index_to_char(unsigned int state) 1351{ 1352 static const char state_char[] = "RSDTtXZPI"; 1353 1354 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1355 1356 return state_char[state]; 1357} 1358 1359static inline char task_state_to_char(struct task_struct *tsk) 1360{ 1361 return task_index_to_char(task_state_index(tsk)); 1362} 1363 1364/** 1365 * is_global_init - check if a task structure is init. Since init 1366 * is free to have sub-threads we need to check tgid. 1367 * @tsk: Task structure to be checked. 1368 * 1369 * Check if a task structure is the first user space task the kernel created. 1370 * 1371 * Return: 1 if the task structure is init. 0 otherwise. 1372 */ 1373static inline int is_global_init(struct task_struct *tsk) 1374{ 1375 return task_tgid_nr(tsk) == 1; 1376} 1377 1378extern struct pid *cad_pid; 1379 1380/* 1381 * Per process flags 1382 */ 1383#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1384#define PF_EXITING 0x00000004 /* Getting shut down */ 1385#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1386#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1387#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1388#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1389#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1390#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1391#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1392#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1393#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1394#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1395#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1396#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1397#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1398#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1399#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1400#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1401#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1402#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1403#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1404#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1405#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1406#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1407#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1408#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1409#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1410#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1411#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1412 1413/* 1414 * Only the _current_ task can read/write to tsk->flags, but other 1415 * tasks can access tsk->flags in readonly mode for example 1416 * with tsk_used_math (like during threaded core dumping). 1417 * There is however an exception to this rule during ptrace 1418 * or during fork: the ptracer task is allowed to write to the 1419 * child->flags of its traced child (same goes for fork, the parent 1420 * can write to the child->flags), because we're guaranteed the 1421 * child is not running and in turn not changing child->flags 1422 * at the same time the parent does it. 1423 */ 1424#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1425#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1426#define clear_used_math() clear_stopped_child_used_math(current) 1427#define set_used_math() set_stopped_child_used_math(current) 1428 1429#define conditional_stopped_child_used_math(condition, child) \ 1430 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1431 1432#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1433 1434#define copy_to_stopped_child_used_math(child) \ 1435 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1436 1437/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1438#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1439#define used_math() tsk_used_math(current) 1440 1441static inline bool is_percpu_thread(void) 1442{ 1443#ifdef CONFIG_SMP 1444 return (current->flags & PF_NO_SETAFFINITY) && 1445 (current->nr_cpus_allowed == 1); 1446#else 1447 return true; 1448#endif 1449} 1450 1451/* Per-process atomic flags. */ 1452#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1453#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1454#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1455#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1456#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1457#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1458#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1459 1460#define TASK_PFA_TEST(name, func) \ 1461 static inline bool task_##func(struct task_struct *p) \ 1462 { return test_bit(PFA_##name, &p->atomic_flags); } 1463 1464#define TASK_PFA_SET(name, func) \ 1465 static inline void task_set_##func(struct task_struct *p) \ 1466 { set_bit(PFA_##name, &p->atomic_flags); } 1467 1468#define TASK_PFA_CLEAR(name, func) \ 1469 static inline void task_clear_##func(struct task_struct *p) \ 1470 { clear_bit(PFA_##name, &p->atomic_flags); } 1471 1472TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1473TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1474 1475TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1476TASK_PFA_SET(SPREAD_PAGE, spread_page) 1477TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1478 1479TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1480TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1481TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1482 1483TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1484TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1485TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1486 1487TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1488TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1489 1490TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1491TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1492TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1493 1494TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1495TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1496 1497static inline void 1498current_restore_flags(unsigned long orig_flags, unsigned long flags) 1499{ 1500 current->flags &= ~flags; 1501 current->flags |= orig_flags & flags; 1502} 1503 1504extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1505extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1506#ifdef CONFIG_SMP 1507extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1508extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1509#else 1510static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1511{ 1512} 1513static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1514{ 1515 if (!cpumask_test_cpu(0, new_mask)) 1516 return -EINVAL; 1517 return 0; 1518} 1519#endif 1520 1521#ifndef cpu_relax_yield 1522#define cpu_relax_yield() cpu_relax() 1523#endif 1524 1525extern int yield_to(struct task_struct *p, bool preempt); 1526extern void set_user_nice(struct task_struct *p, long nice); 1527extern int task_prio(const struct task_struct *p); 1528 1529/** 1530 * task_nice - return the nice value of a given task. 1531 * @p: the task in question. 1532 * 1533 * Return: The nice value [ -20 ... 0 ... 19 ]. 1534 */ 1535static inline int task_nice(const struct task_struct *p) 1536{ 1537 return PRIO_TO_NICE((p)->static_prio); 1538} 1539 1540extern int can_nice(const struct task_struct *p, const int nice); 1541extern int task_curr(const struct task_struct *p); 1542extern int idle_cpu(int cpu); 1543extern int available_idle_cpu(int cpu); 1544extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1545extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1546extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1547extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1548extern struct task_struct *idle_task(int cpu); 1549 1550/** 1551 * is_idle_task - is the specified task an idle task? 1552 * @p: the task in question. 1553 * 1554 * Return: 1 if @p is an idle task. 0 otherwise. 1555 */ 1556static inline bool is_idle_task(const struct task_struct *p) 1557{ 1558 return !!(p->flags & PF_IDLE); 1559} 1560 1561extern struct task_struct *curr_task(int cpu); 1562extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1563 1564void yield(void); 1565 1566union thread_union { 1567#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1568 struct task_struct task; 1569#endif 1570#ifndef CONFIG_THREAD_INFO_IN_TASK 1571 struct thread_info thread_info; 1572#endif 1573 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1574}; 1575 1576#ifndef CONFIG_THREAD_INFO_IN_TASK 1577extern struct thread_info init_thread_info; 1578#endif 1579 1580extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1581 1582#ifdef CONFIG_THREAD_INFO_IN_TASK 1583static inline struct thread_info *task_thread_info(struct task_struct *task) 1584{ 1585 return &task->thread_info; 1586} 1587#elif !defined(__HAVE_THREAD_FUNCTIONS) 1588# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1589#endif 1590 1591/* 1592 * find a task by one of its numerical ids 1593 * 1594 * find_task_by_pid_ns(): 1595 * finds a task by its pid in the specified namespace 1596 * find_task_by_vpid(): 1597 * finds a task by its virtual pid 1598 * 1599 * see also find_vpid() etc in include/linux/pid.h 1600 */ 1601 1602extern struct task_struct *find_task_by_vpid(pid_t nr); 1603extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1604 1605/* 1606 * find a task by its virtual pid and get the task struct 1607 */ 1608extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1609 1610extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1611extern int wake_up_process(struct task_struct *tsk); 1612extern void wake_up_new_task(struct task_struct *tsk); 1613 1614#ifdef CONFIG_SMP 1615extern void kick_process(struct task_struct *tsk); 1616#else 1617static inline void kick_process(struct task_struct *tsk) { } 1618#endif 1619 1620extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1621 1622static inline void set_task_comm(struct task_struct *tsk, const char *from) 1623{ 1624 __set_task_comm(tsk, from, false); 1625} 1626 1627extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1628#define get_task_comm(buf, tsk) ({ \ 1629 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1630 __get_task_comm(buf, sizeof(buf), tsk); \ 1631}) 1632 1633#ifdef CONFIG_SMP 1634void scheduler_ipi(void); 1635extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1636#else 1637static inline void scheduler_ipi(void) { } 1638static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1639{ 1640 return 1; 1641} 1642#endif 1643 1644/* 1645 * Set thread flags in other task's structures. 1646 * See asm/thread_info.h for TIF_xxxx flags available: 1647 */ 1648static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1649{ 1650 set_ti_thread_flag(task_thread_info(tsk), flag); 1651} 1652 1653static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1654{ 1655 clear_ti_thread_flag(task_thread_info(tsk), flag); 1656} 1657 1658static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1659 bool value) 1660{ 1661 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1662} 1663 1664static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1665{ 1666 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1667} 1668 1669static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1670{ 1671 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1672} 1673 1674static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1675{ 1676 return test_ti_thread_flag(task_thread_info(tsk), flag); 1677} 1678 1679static inline void set_tsk_need_resched(struct task_struct *tsk) 1680{ 1681 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1682} 1683 1684static inline void clear_tsk_need_resched(struct task_struct *tsk) 1685{ 1686 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1687} 1688 1689static inline int test_tsk_need_resched(struct task_struct *tsk) 1690{ 1691 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1692} 1693 1694/* 1695 * cond_resched() and cond_resched_lock(): latency reduction via 1696 * explicit rescheduling in places that are safe. The return 1697 * value indicates whether a reschedule was done in fact. 1698 * cond_resched_lock() will drop the spinlock before scheduling, 1699 */ 1700#ifndef CONFIG_PREEMPT 1701extern int _cond_resched(void); 1702#else 1703static inline int _cond_resched(void) { return 0; } 1704#endif 1705 1706#define cond_resched() ({ \ 1707 ___might_sleep(__FILE__, __LINE__, 0); \ 1708 _cond_resched(); \ 1709}) 1710 1711extern int __cond_resched_lock(spinlock_t *lock); 1712 1713#define cond_resched_lock(lock) ({ \ 1714 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1715 __cond_resched_lock(lock); \ 1716}) 1717 1718static inline void cond_resched_rcu(void) 1719{ 1720#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1721 rcu_read_unlock(); 1722 cond_resched(); 1723 rcu_read_lock(); 1724#endif 1725} 1726 1727/* 1728 * Does a critical section need to be broken due to another 1729 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1730 * but a general need for low latency) 1731 */ 1732static inline int spin_needbreak(spinlock_t *lock) 1733{ 1734#ifdef CONFIG_PREEMPT 1735 return spin_is_contended(lock); 1736#else 1737 return 0; 1738#endif 1739} 1740 1741static __always_inline bool need_resched(void) 1742{ 1743 return unlikely(tif_need_resched()); 1744} 1745 1746/* 1747 * Wrappers for p->thread_info->cpu access. No-op on UP. 1748 */ 1749#ifdef CONFIG_SMP 1750 1751static inline unsigned int task_cpu(const struct task_struct *p) 1752{ 1753#ifdef CONFIG_THREAD_INFO_IN_TASK 1754 return p->cpu; 1755#else 1756 return task_thread_info(p)->cpu; 1757#endif 1758} 1759 1760extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1761 1762#else 1763 1764static inline unsigned int task_cpu(const struct task_struct *p) 1765{ 1766 return 0; 1767} 1768 1769static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1770{ 1771} 1772 1773#endif /* CONFIG_SMP */ 1774 1775/* 1776 * In order to reduce various lock holder preemption latencies provide an 1777 * interface to see if a vCPU is currently running or not. 1778 * 1779 * This allows us to terminate optimistic spin loops and block, analogous to 1780 * the native optimistic spin heuristic of testing if the lock owner task is 1781 * running or not. 1782 */ 1783#ifndef vcpu_is_preempted 1784# define vcpu_is_preempted(cpu) false 1785#endif 1786 1787extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1788extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1789 1790#ifndef TASK_SIZE_OF 1791#define TASK_SIZE_OF(tsk) TASK_SIZE 1792#endif 1793 1794#ifdef CONFIG_RSEQ 1795 1796/* 1797 * Map the event mask on the user-space ABI enum rseq_cs_flags 1798 * for direct mask checks. 1799 */ 1800enum rseq_event_mask_bits { 1801 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1802 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1803 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1804}; 1805 1806enum rseq_event_mask { 1807 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1808 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1809 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1810}; 1811 1812static inline void rseq_set_notify_resume(struct task_struct *t) 1813{ 1814 if (t->rseq) 1815 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1816} 1817 1818void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1819 1820static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1821 struct pt_regs *regs) 1822{ 1823 if (current->rseq) 1824 __rseq_handle_notify_resume(ksig, regs); 1825} 1826 1827static inline void rseq_signal_deliver(struct ksignal *ksig, 1828 struct pt_regs *regs) 1829{ 1830 preempt_disable(); 1831 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 1832 preempt_enable(); 1833 rseq_handle_notify_resume(ksig, regs); 1834} 1835 1836/* rseq_preempt() requires preemption to be disabled. */ 1837static inline void rseq_preempt(struct task_struct *t) 1838{ 1839 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1840 rseq_set_notify_resume(t); 1841} 1842 1843/* rseq_migrate() requires preemption to be disabled. */ 1844static inline void rseq_migrate(struct task_struct *t) 1845{ 1846 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1847 rseq_set_notify_resume(t); 1848} 1849 1850/* 1851 * If parent process has a registered restartable sequences area, the 1852 * child inherits. Only applies when forking a process, not a thread. 1853 */ 1854static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1855{ 1856 if (clone_flags & CLONE_THREAD) { 1857 t->rseq = NULL; 1858 t->rseq_len = 0; 1859 t->rseq_sig = 0; 1860 t->rseq_event_mask = 0; 1861 } else { 1862 t->rseq = current->rseq; 1863 t->rseq_len = current->rseq_len; 1864 t->rseq_sig = current->rseq_sig; 1865 t->rseq_event_mask = current->rseq_event_mask; 1866 } 1867} 1868 1869static inline void rseq_execve(struct task_struct *t) 1870{ 1871 t->rseq = NULL; 1872 t->rseq_len = 0; 1873 t->rseq_sig = 0; 1874 t->rseq_event_mask = 0; 1875} 1876 1877#else 1878 1879static inline void rseq_set_notify_resume(struct task_struct *t) 1880{ 1881} 1882static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1883 struct pt_regs *regs) 1884{ 1885} 1886static inline void rseq_signal_deliver(struct ksignal *ksig, 1887 struct pt_regs *regs) 1888{ 1889} 1890static inline void rseq_preempt(struct task_struct *t) 1891{ 1892} 1893static inline void rseq_migrate(struct task_struct *t) 1894{ 1895} 1896static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1897{ 1898} 1899static inline void rseq_execve(struct task_struct *t) 1900{ 1901} 1902 1903#endif 1904 1905#ifdef CONFIG_DEBUG_RSEQ 1906 1907void rseq_syscall(struct pt_regs *regs); 1908 1909#else 1910 1911static inline void rseq_syscall(struct pt_regs *regs) 1912{ 1913} 1914 1915#endif 1916 1917#endif