at v4.20 35 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/compiler.h> 38#include <linux/atomic.h> 39#include <linux/irqflags.h> 40#include <linux/preempt.h> 41#include <linux/bottom_half.h> 42#include <linux/lockdep.h> 43#include <asm/processor.h> 44#include <linux/cpumask.h> 45 46#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 47#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 48#define ulong2long(a) (*(long *)(&(a))) 49 50/* Exported common interfaces */ 51void call_rcu(struct rcu_head *head, rcu_callback_t func); 52void rcu_barrier_tasks(void); 53void synchronize_rcu(void); 54 55#ifdef CONFIG_PREEMPT_RCU 56 57void __rcu_read_lock(void); 58void __rcu_read_unlock(void); 59 60/* 61 * Defined as a macro as it is a very low level header included from 62 * areas that don't even know about current. This gives the rcu_read_lock() 63 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 64 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 65 */ 66#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 67 68#else /* #ifdef CONFIG_PREEMPT_RCU */ 69 70static inline void __rcu_read_lock(void) 71{ 72 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 73 preempt_disable(); 74} 75 76static inline void __rcu_read_unlock(void) 77{ 78 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 79 preempt_enable(); 80} 81 82static inline int rcu_preempt_depth(void) 83{ 84 return 0; 85} 86 87#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 88 89/* Internal to kernel */ 90void rcu_init(void); 91extern int rcu_scheduler_active __read_mostly; 92void rcu_check_callbacks(int user); 93void rcu_report_dead(unsigned int cpu); 94void rcutree_migrate_callbacks(int cpu); 95 96#ifdef CONFIG_RCU_STALL_COMMON 97void rcu_sysrq_start(void); 98void rcu_sysrq_end(void); 99#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 100static inline void rcu_sysrq_start(void) { } 101static inline void rcu_sysrq_end(void) { } 102#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 103 104#ifdef CONFIG_NO_HZ_FULL 105void rcu_user_enter(void); 106void rcu_user_exit(void); 107#else 108static inline void rcu_user_enter(void) { } 109static inline void rcu_user_exit(void) { } 110#endif /* CONFIG_NO_HZ_FULL */ 111 112#ifdef CONFIG_RCU_NOCB_CPU 113void rcu_init_nohz(void); 114#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 115static inline void rcu_init_nohz(void) { } 116#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 117 118/** 119 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 120 * @a: Code that RCU needs to pay attention to. 121 * 122 * RCU read-side critical sections are forbidden in the inner idle loop, 123 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 124 * will happily ignore any such read-side critical sections. However, 125 * things like powertop need tracepoints in the inner idle loop. 126 * 127 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 128 * will tell RCU that it needs to pay attention, invoke its argument 129 * (in this example, calling the do_something_with_RCU() function), 130 * and then tell RCU to go back to ignoring this CPU. It is permissible 131 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 132 * on the order of a million or so, even on 32-bit systems). It is 133 * not legal to block within RCU_NONIDLE(), nor is it permissible to 134 * transfer control either into or out of RCU_NONIDLE()'s statement. 135 */ 136#define RCU_NONIDLE(a) \ 137 do { \ 138 rcu_irq_enter_irqson(); \ 139 do { a; } while (0); \ 140 rcu_irq_exit_irqson(); \ 141 } while (0) 142 143/* 144 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 145 * This is a macro rather than an inline function to avoid #include hell. 146 */ 147#ifdef CONFIG_TASKS_RCU 148#define rcu_tasks_qs(t) \ 149 do { \ 150 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 151 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 152 } while (0) 153#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t) 154void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 155void synchronize_rcu_tasks(void); 156void exit_tasks_rcu_start(void); 157void exit_tasks_rcu_finish(void); 158#else /* #ifdef CONFIG_TASKS_RCU */ 159#define rcu_tasks_qs(t) do { } while (0) 160#define rcu_note_voluntary_context_switch(t) do { } while (0) 161#define call_rcu_tasks call_rcu 162#define synchronize_rcu_tasks synchronize_rcu 163static inline void exit_tasks_rcu_start(void) { } 164static inline void exit_tasks_rcu_finish(void) { } 165#endif /* #else #ifdef CONFIG_TASKS_RCU */ 166 167/** 168 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 169 * 170 * This macro resembles cond_resched(), except that it is defined to 171 * report potential quiescent states to RCU-tasks even if the cond_resched() 172 * machinery were to be shut off, as some advocate for PREEMPT kernels. 173 */ 174#define cond_resched_tasks_rcu_qs() \ 175do { \ 176 rcu_tasks_qs(current); \ 177 cond_resched(); \ 178} while (0) 179 180/* 181 * Infrastructure to implement the synchronize_() primitives in 182 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 183 */ 184 185#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 186#include <linux/rcutree.h> 187#elif defined(CONFIG_TINY_RCU) 188#include <linux/rcutiny.h> 189#else 190#error "Unknown RCU implementation specified to kernel configuration" 191#endif 192 193/* 194 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 195 * are needed for dynamic initialization and destruction of rcu_head 196 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 197 * dynamic initialization and destruction of statically allocated rcu_head 198 * structures. However, rcu_head structures allocated dynamically in the 199 * heap don't need any initialization. 200 */ 201#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 202void init_rcu_head(struct rcu_head *head); 203void destroy_rcu_head(struct rcu_head *head); 204void init_rcu_head_on_stack(struct rcu_head *head); 205void destroy_rcu_head_on_stack(struct rcu_head *head); 206#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 207static inline void init_rcu_head(struct rcu_head *head) { } 208static inline void destroy_rcu_head(struct rcu_head *head) { } 209static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 210static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 211#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 212 213#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 214bool rcu_lockdep_current_cpu_online(void); 215#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 216static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 217#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 218 219#ifdef CONFIG_DEBUG_LOCK_ALLOC 220 221static inline void rcu_lock_acquire(struct lockdep_map *map) 222{ 223 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 224} 225 226static inline void rcu_lock_release(struct lockdep_map *map) 227{ 228 lock_release(map, 1, _THIS_IP_); 229} 230 231extern struct lockdep_map rcu_lock_map; 232extern struct lockdep_map rcu_bh_lock_map; 233extern struct lockdep_map rcu_sched_lock_map; 234extern struct lockdep_map rcu_callback_map; 235int debug_lockdep_rcu_enabled(void); 236int rcu_read_lock_held(void); 237int rcu_read_lock_bh_held(void); 238int rcu_read_lock_sched_held(void); 239 240#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 241 242# define rcu_lock_acquire(a) do { } while (0) 243# define rcu_lock_release(a) do { } while (0) 244 245static inline int rcu_read_lock_held(void) 246{ 247 return 1; 248} 249 250static inline int rcu_read_lock_bh_held(void) 251{ 252 return 1; 253} 254 255static inline int rcu_read_lock_sched_held(void) 256{ 257 return !preemptible(); 258} 259#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 260 261#ifdef CONFIG_PROVE_RCU 262 263/** 264 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 265 * @c: condition to check 266 * @s: informative message 267 */ 268#define RCU_LOCKDEP_WARN(c, s) \ 269 do { \ 270 static bool __section(.data.unlikely) __warned; \ 271 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 272 __warned = true; \ 273 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 274 } \ 275 } while (0) 276 277#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 278static inline void rcu_preempt_sleep_check(void) 279{ 280 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 281 "Illegal context switch in RCU read-side critical section"); 282} 283#else /* #ifdef CONFIG_PROVE_RCU */ 284static inline void rcu_preempt_sleep_check(void) { } 285#endif /* #else #ifdef CONFIG_PROVE_RCU */ 286 287#define rcu_sleep_check() \ 288 do { \ 289 rcu_preempt_sleep_check(); \ 290 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 291 "Illegal context switch in RCU-bh read-side critical section"); \ 292 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 293 "Illegal context switch in RCU-sched read-side critical section"); \ 294 } while (0) 295 296#else /* #ifdef CONFIG_PROVE_RCU */ 297 298#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 299#define rcu_sleep_check() do { } while (0) 300 301#endif /* #else #ifdef CONFIG_PROVE_RCU */ 302 303/* 304 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 305 * and rcu_assign_pointer(). Some of these could be folded into their 306 * callers, but they are left separate in order to ease introduction of 307 * multiple pointers markings to match different RCU implementations 308 * (e.g., __srcu), should this make sense in the future. 309 */ 310 311#ifdef __CHECKER__ 312#define rcu_dereference_sparse(p, space) \ 313 ((void)(((typeof(*p) space *)p) == p)) 314#else /* #ifdef __CHECKER__ */ 315#define rcu_dereference_sparse(p, space) 316#endif /* #else #ifdef __CHECKER__ */ 317 318#define __rcu_access_pointer(p, space) \ 319({ \ 320 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 321 rcu_dereference_sparse(p, space); \ 322 ((typeof(*p) __force __kernel *)(_________p1)); \ 323}) 324#define __rcu_dereference_check(p, c, space) \ 325({ \ 326 /* Dependency order vs. p above. */ \ 327 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 328 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 329 rcu_dereference_sparse(p, space); \ 330 ((typeof(*p) __force __kernel *)(________p1)); \ 331}) 332#define __rcu_dereference_protected(p, c, space) \ 333({ \ 334 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 335 rcu_dereference_sparse(p, space); \ 336 ((typeof(*p) __force __kernel *)(p)); \ 337}) 338#define rcu_dereference_raw(p) \ 339({ \ 340 /* Dependency order vs. p above. */ \ 341 typeof(p) ________p1 = READ_ONCE(p); \ 342 ((typeof(*p) __force __kernel *)(________p1)); \ 343}) 344 345/** 346 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 347 * @v: The value to statically initialize with. 348 */ 349#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 350 351/** 352 * rcu_assign_pointer() - assign to RCU-protected pointer 353 * @p: pointer to assign to 354 * @v: value to assign (publish) 355 * 356 * Assigns the specified value to the specified RCU-protected 357 * pointer, ensuring that any concurrent RCU readers will see 358 * any prior initialization. 359 * 360 * Inserts memory barriers on architectures that require them 361 * (which is most of them), and also prevents the compiler from 362 * reordering the code that initializes the structure after the pointer 363 * assignment. More importantly, this call documents which pointers 364 * will be dereferenced by RCU read-side code. 365 * 366 * In some special cases, you may use RCU_INIT_POINTER() instead 367 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 368 * to the fact that it does not constrain either the CPU or the compiler. 369 * That said, using RCU_INIT_POINTER() when you should have used 370 * rcu_assign_pointer() is a very bad thing that results in 371 * impossible-to-diagnose memory corruption. So please be careful. 372 * See the RCU_INIT_POINTER() comment header for details. 373 * 374 * Note that rcu_assign_pointer() evaluates each of its arguments only 375 * once, appearances notwithstanding. One of the "extra" evaluations 376 * is in typeof() and the other visible only to sparse (__CHECKER__), 377 * neither of which actually execute the argument. As with most cpp 378 * macros, this execute-arguments-only-once property is important, so 379 * please be careful when making changes to rcu_assign_pointer() and the 380 * other macros that it invokes. 381 */ 382#define rcu_assign_pointer(p, v) \ 383({ \ 384 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 385 \ 386 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 387 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 388 else \ 389 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 390 _r_a_p__v; \ 391}) 392 393/** 394 * rcu_swap_protected() - swap an RCU and a regular pointer 395 * @rcu_ptr: RCU pointer 396 * @ptr: regular pointer 397 * @c: the conditions under which the dereference will take place 398 * 399 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and 400 * @c is the argument that is passed to the rcu_dereference_protected() call 401 * used to read that pointer. 402 */ 403#define rcu_swap_protected(rcu_ptr, ptr, c) do { \ 404 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 405 rcu_assign_pointer((rcu_ptr), (ptr)); \ 406 (ptr) = __tmp; \ 407} while (0) 408 409/** 410 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 411 * @p: The pointer to read 412 * 413 * Return the value of the specified RCU-protected pointer, but omit the 414 * lockdep checks for being in an RCU read-side critical section. This is 415 * useful when the value of this pointer is accessed, but the pointer is 416 * not dereferenced, for example, when testing an RCU-protected pointer 417 * against NULL. Although rcu_access_pointer() may also be used in cases 418 * where update-side locks prevent the value of the pointer from changing, 419 * you should instead use rcu_dereference_protected() for this use case. 420 * 421 * It is also permissible to use rcu_access_pointer() when read-side 422 * access to the pointer was removed at least one grace period ago, as 423 * is the case in the context of the RCU callback that is freeing up 424 * the data, or after a synchronize_rcu() returns. This can be useful 425 * when tearing down multi-linked structures after a grace period 426 * has elapsed. 427 */ 428#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 429 430/** 431 * rcu_dereference_check() - rcu_dereference with debug checking 432 * @p: The pointer to read, prior to dereferencing 433 * @c: The conditions under which the dereference will take place 434 * 435 * Do an rcu_dereference(), but check that the conditions under which the 436 * dereference will take place are correct. Typically the conditions 437 * indicate the various locking conditions that should be held at that 438 * point. The check should return true if the conditions are satisfied. 439 * An implicit check for being in an RCU read-side critical section 440 * (rcu_read_lock()) is included. 441 * 442 * For example: 443 * 444 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 445 * 446 * could be used to indicate to lockdep that foo->bar may only be dereferenced 447 * if either rcu_read_lock() is held, or that the lock required to replace 448 * the bar struct at foo->bar is held. 449 * 450 * Note that the list of conditions may also include indications of when a lock 451 * need not be held, for example during initialisation or destruction of the 452 * target struct: 453 * 454 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 455 * atomic_read(&foo->usage) == 0); 456 * 457 * Inserts memory barriers on architectures that require them 458 * (currently only the Alpha), prevents the compiler from refetching 459 * (and from merging fetches), and, more importantly, documents exactly 460 * which pointers are protected by RCU and checks that the pointer is 461 * annotated as __rcu. 462 */ 463#define rcu_dereference_check(p, c) \ 464 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 465 466/** 467 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 468 * @p: The pointer to read, prior to dereferencing 469 * @c: The conditions under which the dereference will take place 470 * 471 * This is the RCU-bh counterpart to rcu_dereference_check(). 472 */ 473#define rcu_dereference_bh_check(p, c) \ 474 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 475 476/** 477 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 478 * @p: The pointer to read, prior to dereferencing 479 * @c: The conditions under which the dereference will take place 480 * 481 * This is the RCU-sched counterpart to rcu_dereference_check(). 482 */ 483#define rcu_dereference_sched_check(p, c) \ 484 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 485 __rcu) 486 487/* 488 * The tracing infrastructure traces RCU (we want that), but unfortunately 489 * some of the RCU checks causes tracing to lock up the system. 490 * 491 * The no-tracing version of rcu_dereference_raw() must not call 492 * rcu_read_lock_held(). 493 */ 494#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 495 496/** 497 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 498 * @p: The pointer to read, prior to dereferencing 499 * @c: The conditions under which the dereference will take place 500 * 501 * Return the value of the specified RCU-protected pointer, but omit 502 * the READ_ONCE(). This is useful in cases where update-side locks 503 * prevent the value of the pointer from changing. Please note that this 504 * primitive does *not* prevent the compiler from repeating this reference 505 * or combining it with other references, so it should not be used without 506 * protection of appropriate locks. 507 * 508 * This function is only for update-side use. Using this function 509 * when protected only by rcu_read_lock() will result in infrequent 510 * but very ugly failures. 511 */ 512#define rcu_dereference_protected(p, c) \ 513 __rcu_dereference_protected((p), (c), __rcu) 514 515 516/** 517 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 518 * @p: The pointer to read, prior to dereferencing 519 * 520 * This is a simple wrapper around rcu_dereference_check(). 521 */ 522#define rcu_dereference(p) rcu_dereference_check(p, 0) 523 524/** 525 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 526 * @p: The pointer to read, prior to dereferencing 527 * 528 * Makes rcu_dereference_check() do the dirty work. 529 */ 530#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 531 532/** 533 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 534 * @p: The pointer to read, prior to dereferencing 535 * 536 * Makes rcu_dereference_check() do the dirty work. 537 */ 538#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 539 540/** 541 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 542 * @p: The pointer to hand off 543 * 544 * This is simply an identity function, but it documents where a pointer 545 * is handed off from RCU to some other synchronization mechanism, for 546 * example, reference counting or locking. In C11, it would map to 547 * kill_dependency(). It could be used as follows:: 548 * 549 * rcu_read_lock(); 550 * p = rcu_dereference(gp); 551 * long_lived = is_long_lived(p); 552 * if (long_lived) { 553 * if (!atomic_inc_not_zero(p->refcnt)) 554 * long_lived = false; 555 * else 556 * p = rcu_pointer_handoff(p); 557 * } 558 * rcu_read_unlock(); 559 */ 560#define rcu_pointer_handoff(p) (p) 561 562/** 563 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 564 * 565 * When synchronize_rcu() is invoked on one CPU while other CPUs 566 * are within RCU read-side critical sections, then the 567 * synchronize_rcu() is guaranteed to block until after all the other 568 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 569 * on one CPU while other CPUs are within RCU read-side critical 570 * sections, invocation of the corresponding RCU callback is deferred 571 * until after the all the other CPUs exit their critical sections. 572 * 573 * Note, however, that RCU callbacks are permitted to run concurrently 574 * with new RCU read-side critical sections. One way that this can happen 575 * is via the following sequence of events: (1) CPU 0 enters an RCU 576 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 577 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 578 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 579 * callback is invoked. This is legal, because the RCU read-side critical 580 * section that was running concurrently with the call_rcu() (and which 581 * therefore might be referencing something that the corresponding RCU 582 * callback would free up) has completed before the corresponding 583 * RCU callback is invoked. 584 * 585 * RCU read-side critical sections may be nested. Any deferred actions 586 * will be deferred until the outermost RCU read-side critical section 587 * completes. 588 * 589 * You can avoid reading and understanding the next paragraph by 590 * following this rule: don't put anything in an rcu_read_lock() RCU 591 * read-side critical section that would block in a !PREEMPT kernel. 592 * But if you want the full story, read on! 593 * 594 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 595 * it is illegal to block while in an RCU read-side critical section. 596 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 597 * kernel builds, RCU read-side critical sections may be preempted, 598 * but explicit blocking is illegal. Finally, in preemptible RCU 599 * implementations in real-time (with -rt patchset) kernel builds, RCU 600 * read-side critical sections may be preempted and they may also block, but 601 * only when acquiring spinlocks that are subject to priority inheritance. 602 */ 603static inline void rcu_read_lock(void) 604{ 605 __rcu_read_lock(); 606 __acquire(RCU); 607 rcu_lock_acquire(&rcu_lock_map); 608 RCU_LOCKDEP_WARN(!rcu_is_watching(), 609 "rcu_read_lock() used illegally while idle"); 610} 611 612/* 613 * So where is rcu_write_lock()? It does not exist, as there is no 614 * way for writers to lock out RCU readers. This is a feature, not 615 * a bug -- this property is what provides RCU's performance benefits. 616 * Of course, writers must coordinate with each other. The normal 617 * spinlock primitives work well for this, but any other technique may be 618 * used as well. RCU does not care how the writers keep out of each 619 * others' way, as long as they do so. 620 */ 621 622/** 623 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 624 * 625 * In most situations, rcu_read_unlock() is immune from deadlock. 626 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 627 * is responsible for deboosting, which it does via rt_mutex_unlock(). 628 * Unfortunately, this function acquires the scheduler's runqueue and 629 * priority-inheritance spinlocks. This means that deadlock could result 630 * if the caller of rcu_read_unlock() already holds one of these locks or 631 * any lock that is ever acquired while holding them. 632 * 633 * That said, RCU readers are never priority boosted unless they were 634 * preempted. Therefore, one way to avoid deadlock is to make sure 635 * that preemption never happens within any RCU read-side critical 636 * section whose outermost rcu_read_unlock() is called with one of 637 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 638 * a number of ways, for example, by invoking preempt_disable() before 639 * critical section's outermost rcu_read_lock(). 640 * 641 * Given that the set of locks acquired by rt_mutex_unlock() might change 642 * at any time, a somewhat more future-proofed approach is to make sure 643 * that that preemption never happens within any RCU read-side critical 644 * section whose outermost rcu_read_unlock() is called with irqs disabled. 645 * This approach relies on the fact that rt_mutex_unlock() currently only 646 * acquires irq-disabled locks. 647 * 648 * The second of these two approaches is best in most situations, 649 * however, the first approach can also be useful, at least to those 650 * developers willing to keep abreast of the set of locks acquired by 651 * rt_mutex_unlock(). 652 * 653 * See rcu_read_lock() for more information. 654 */ 655static inline void rcu_read_unlock(void) 656{ 657 RCU_LOCKDEP_WARN(!rcu_is_watching(), 658 "rcu_read_unlock() used illegally while idle"); 659 __release(RCU); 660 __rcu_read_unlock(); 661 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 662} 663 664/** 665 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 666 * 667 * This is equivalent of rcu_read_lock(), but also disables softirqs. 668 * Note that anything else that disables softirqs can also serve as 669 * an RCU read-side critical section. 670 * 671 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 672 * must occur in the same context, for example, it is illegal to invoke 673 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 674 * was invoked from some other task. 675 */ 676static inline void rcu_read_lock_bh(void) 677{ 678 local_bh_disable(); 679 __acquire(RCU_BH); 680 rcu_lock_acquire(&rcu_bh_lock_map); 681 RCU_LOCKDEP_WARN(!rcu_is_watching(), 682 "rcu_read_lock_bh() used illegally while idle"); 683} 684 685/* 686 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 687 * 688 * See rcu_read_lock_bh() for more information. 689 */ 690static inline void rcu_read_unlock_bh(void) 691{ 692 RCU_LOCKDEP_WARN(!rcu_is_watching(), 693 "rcu_read_unlock_bh() used illegally while idle"); 694 rcu_lock_release(&rcu_bh_lock_map); 695 __release(RCU_BH); 696 local_bh_enable(); 697} 698 699/** 700 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 701 * 702 * This is equivalent of rcu_read_lock(), but disables preemption. 703 * Read-side critical sections can also be introduced by anything else 704 * that disables preemption, including local_irq_disable() and friends. 705 * 706 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 707 * must occur in the same context, for example, it is illegal to invoke 708 * rcu_read_unlock_sched() from process context if the matching 709 * rcu_read_lock_sched() was invoked from an NMI handler. 710 */ 711static inline void rcu_read_lock_sched(void) 712{ 713 preempt_disable(); 714 __acquire(RCU_SCHED); 715 rcu_lock_acquire(&rcu_sched_lock_map); 716 RCU_LOCKDEP_WARN(!rcu_is_watching(), 717 "rcu_read_lock_sched() used illegally while idle"); 718} 719 720/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 721static inline notrace void rcu_read_lock_sched_notrace(void) 722{ 723 preempt_disable_notrace(); 724 __acquire(RCU_SCHED); 725} 726 727/* 728 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 729 * 730 * See rcu_read_lock_sched for more information. 731 */ 732static inline void rcu_read_unlock_sched(void) 733{ 734 RCU_LOCKDEP_WARN(!rcu_is_watching(), 735 "rcu_read_unlock_sched() used illegally while idle"); 736 rcu_lock_release(&rcu_sched_lock_map); 737 __release(RCU_SCHED); 738 preempt_enable(); 739} 740 741/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 742static inline notrace void rcu_read_unlock_sched_notrace(void) 743{ 744 __release(RCU_SCHED); 745 preempt_enable_notrace(); 746} 747 748/** 749 * RCU_INIT_POINTER() - initialize an RCU protected pointer 750 * @p: The pointer to be initialized. 751 * @v: The value to initialized the pointer to. 752 * 753 * Initialize an RCU-protected pointer in special cases where readers 754 * do not need ordering constraints on the CPU or the compiler. These 755 * special cases are: 756 * 757 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 758 * 2. The caller has taken whatever steps are required to prevent 759 * RCU readers from concurrently accessing this pointer *or* 760 * 3. The referenced data structure has already been exposed to 761 * readers either at compile time or via rcu_assign_pointer() *and* 762 * 763 * a. You have not made *any* reader-visible changes to 764 * this structure since then *or* 765 * b. It is OK for readers accessing this structure from its 766 * new location to see the old state of the structure. (For 767 * example, the changes were to statistical counters or to 768 * other state where exact synchronization is not required.) 769 * 770 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 771 * result in impossible-to-diagnose memory corruption. As in the structures 772 * will look OK in crash dumps, but any concurrent RCU readers might 773 * see pre-initialized values of the referenced data structure. So 774 * please be very careful how you use RCU_INIT_POINTER()!!! 775 * 776 * If you are creating an RCU-protected linked structure that is accessed 777 * by a single external-to-structure RCU-protected pointer, then you may 778 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 779 * pointers, but you must use rcu_assign_pointer() to initialize the 780 * external-to-structure pointer *after* you have completely initialized 781 * the reader-accessible portions of the linked structure. 782 * 783 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 784 * ordering guarantees for either the CPU or the compiler. 785 */ 786#define RCU_INIT_POINTER(p, v) \ 787 do { \ 788 rcu_dereference_sparse(p, __rcu); \ 789 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 790 } while (0) 791 792/** 793 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 794 * @p: The pointer to be initialized. 795 * @v: The value to initialized the pointer to. 796 * 797 * GCC-style initialization for an RCU-protected pointer in a structure field. 798 */ 799#define RCU_POINTER_INITIALIZER(p, v) \ 800 .p = RCU_INITIALIZER(v) 801 802/* 803 * Does the specified offset indicate that the corresponding rcu_head 804 * structure can be handled by kfree_rcu()? 805 */ 806#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 807 808/* 809 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 810 */ 811#define __kfree_rcu(head, offset) \ 812 do { \ 813 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 814 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 815 } while (0) 816 817/** 818 * kfree_rcu() - kfree an object after a grace period. 819 * @ptr: pointer to kfree 820 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 821 * 822 * Many rcu callbacks functions just call kfree() on the base structure. 823 * These functions are trivial, but their size adds up, and furthermore 824 * when they are used in a kernel module, that module must invoke the 825 * high-latency rcu_barrier() function at module-unload time. 826 * 827 * The kfree_rcu() function handles this issue. Rather than encoding a 828 * function address in the embedded rcu_head structure, kfree_rcu() instead 829 * encodes the offset of the rcu_head structure within the base structure. 830 * Because the functions are not allowed in the low-order 4096 bytes of 831 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 832 * If the offset is larger than 4095 bytes, a compile-time error will 833 * be generated in __kfree_rcu(). If this error is triggered, you can 834 * either fall back to use of call_rcu() or rearrange the structure to 835 * position the rcu_head structure into the first 4096 bytes. 836 * 837 * Note that the allowable offset might decrease in the future, for example, 838 * to allow something like kmem_cache_free_rcu(). 839 * 840 * The BUILD_BUG_ON check must not involve any function calls, hence the 841 * checks are done in macros here. 842 */ 843#define kfree_rcu(ptr, rcu_head) \ 844 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 845 846 847/* 848 * Place this after a lock-acquisition primitive to guarantee that 849 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 850 * if the UNLOCK and LOCK are executed by the same CPU or if the 851 * UNLOCK and LOCK operate on the same lock variable. 852 */ 853#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 854#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 855#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 856#define smp_mb__after_unlock_lock() do { } while (0) 857#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 858 859 860/* Has the specified rcu_head structure been handed to call_rcu()? */ 861 862/* 863 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 864 * @rhp: The rcu_head structure to initialize. 865 * 866 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 867 * given rcu_head structure has already been passed to call_rcu(), then 868 * you must also invoke this rcu_head_init() function on it just after 869 * allocating that structure. Calls to this function must not race with 870 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 871 */ 872static inline void rcu_head_init(struct rcu_head *rhp) 873{ 874 rhp->func = (rcu_callback_t)~0L; 875} 876 877/* 878 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()? 879 * @rhp: The rcu_head structure to test. 880 * @func: The function passed to call_rcu() along with @rhp. 881 * 882 * Returns @true if the @rhp has been passed to call_rcu() with @func, 883 * and @false otherwise. Emits a warning in any other case, including 884 * the case where @rhp has already been invoked after a grace period. 885 * Calls to this function must not race with callback invocation. One way 886 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 887 * in an RCU read-side critical section that includes a read-side fetch 888 * of the pointer to the structure containing @rhp. 889 */ 890static inline bool 891rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 892{ 893 if (READ_ONCE(rhp->func) == f) 894 return true; 895 WARN_ON_ONCE(READ_ONCE(rhp->func) != (rcu_callback_t)~0L); 896 return false; 897} 898 899 900/* Transitional pre-consolidation compatibility definitions. */ 901 902static inline void synchronize_rcu_bh(void) 903{ 904 synchronize_rcu(); 905} 906 907static inline void synchronize_rcu_bh_expedited(void) 908{ 909 synchronize_rcu_expedited(); 910} 911 912static inline void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 913{ 914 call_rcu(head, func); 915} 916 917static inline void rcu_barrier_bh(void) 918{ 919 rcu_barrier(); 920} 921 922static inline void synchronize_sched(void) 923{ 924 synchronize_rcu(); 925} 926 927static inline void synchronize_sched_expedited(void) 928{ 929 synchronize_rcu_expedited(); 930} 931 932static inline void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 933{ 934 call_rcu(head, func); 935} 936 937static inline void rcu_barrier_sched(void) 938{ 939 rcu_barrier(); 940} 941 942static inline unsigned long get_state_synchronize_sched(void) 943{ 944 return get_state_synchronize_rcu(); 945} 946 947static inline void cond_synchronize_sched(unsigned long oldstate) 948{ 949 cond_synchronize_rcu(oldstate); 950} 951 952#endif /* __LINUX_RCUPDATE_H */