Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages, which can never be swapped out. Some
21 * of them might not even exist...
22 *
23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
24 * specific data (which is normally at page->private). It can be used by
25 * private allocations for its own usage.
26 *
27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29 * is set before writeback starts and cleared when it finishes.
30 *
31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
32 * while it is held.
33 *
34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35 * to become unlocked.
36 *
37 * PG_uptodate tells whether the page's contents is valid. When a read
38 * completes, the page becomes uptodate, unless a disk I/O error happened.
39 *
40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41 * file-backed pagecache (see mm/vmscan.c).
42 *
43 * PG_error is set to indicate that an I/O error occurred on this page.
44 *
45 * PG_arch_1 is an architecture specific page state bit. The generic code
46 * guarantees that this bit is cleared for a page when it first is entered into
47 * the page cache.
48 *
49 * PG_hwpoison indicates that a page got corrupted in hardware and contains
50 * data with incorrect ECC bits that triggered a machine check. Accessing is
51 * not safe since it may cause another machine check. Don't touch!
52 */
53
54/*
55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
56 * locked- and dirty-page accounting.
57 *
58 * The page flags field is split into two parts, the main flags area
59 * which extends from the low bits upwards, and the fields area which
60 * extends from the high bits downwards.
61 *
62 * | FIELD | ... | FLAGS |
63 * N-1 ^ 0
64 * (NR_PAGEFLAGS)
65 *
66 * The fields area is reserved for fields mapping zone, node (for NUMA) and
67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
69 */
70enum pageflags {
71 PG_locked, /* Page is locked. Don't touch. */
72 PG_referenced,
73 PG_uptodate,
74 PG_dirty,
75 PG_lru,
76 PG_active,
77 PG_workingset,
78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
79 PG_error,
80 PG_slab,
81 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
82 PG_arch_1,
83 PG_reserved,
84 PG_private, /* If pagecache, has fs-private data */
85 PG_private_2, /* If pagecache, has fs aux data */
86 PG_writeback, /* Page is under writeback */
87 PG_head, /* A head page */
88 PG_mappedtodisk, /* Has blocks allocated on-disk */
89 PG_reclaim, /* To be reclaimed asap */
90 PG_swapbacked, /* Page is backed by RAM/swap */
91 PG_unevictable, /* Page is "unevictable" */
92#ifdef CONFIG_MMU
93 PG_mlocked, /* Page is vma mlocked */
94#endif
95#ifdef CONFIG_ARCH_USES_PG_UNCACHED
96 PG_uncached, /* Page has been mapped as uncached */
97#endif
98#ifdef CONFIG_MEMORY_FAILURE
99 PG_hwpoison, /* hardware poisoned page. Don't touch */
100#endif
101#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
102 PG_young,
103 PG_idle,
104#endif
105 __NR_PAGEFLAGS,
106
107 /* Filesystems */
108 PG_checked = PG_owner_priv_1,
109
110 /* SwapBacked */
111 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
112
113 /* Two page bits are conscripted by FS-Cache to maintain local caching
114 * state. These bits are set on pages belonging to the netfs's inodes
115 * when those inodes are being locally cached.
116 */
117 PG_fscache = PG_private_2, /* page backed by cache */
118
119 /* XEN */
120 /* Pinned in Xen as a read-only pagetable page. */
121 PG_pinned = PG_owner_priv_1,
122 /* Pinned as part of domain save (see xen_mm_pin_all()). */
123 PG_savepinned = PG_dirty,
124 /* Has a grant mapping of another (foreign) domain's page. */
125 PG_foreign = PG_owner_priv_1,
126
127 /* SLOB */
128 PG_slob_free = PG_private,
129
130 /* Compound pages. Stored in first tail page's flags */
131 PG_double_map = PG_private_2,
132
133 /* non-lru isolated movable page */
134 PG_isolated = PG_reclaim,
135};
136
137#ifndef __GENERATING_BOUNDS_H
138
139struct page; /* forward declaration */
140
141static inline struct page *compound_head(struct page *page)
142{
143 unsigned long head = READ_ONCE(page->compound_head);
144
145 if (unlikely(head & 1))
146 return (struct page *) (head - 1);
147 return page;
148}
149
150static __always_inline int PageTail(struct page *page)
151{
152 return READ_ONCE(page->compound_head) & 1;
153}
154
155static __always_inline int PageCompound(struct page *page)
156{
157 return test_bit(PG_head, &page->flags) || PageTail(page);
158}
159
160#define PAGE_POISON_PATTERN -1l
161static inline int PagePoisoned(const struct page *page)
162{
163 return page->flags == PAGE_POISON_PATTERN;
164}
165
166#ifdef CONFIG_DEBUG_VM
167void page_init_poison(struct page *page, size_t size);
168#else
169static inline void page_init_poison(struct page *page, size_t size)
170{
171}
172#endif
173
174/*
175 * Page flags policies wrt compound pages
176 *
177 * PF_POISONED_CHECK
178 * check if this struct page poisoned/uninitialized
179 *
180 * PF_ANY:
181 * the page flag is relevant for small, head and tail pages.
182 *
183 * PF_HEAD:
184 * for compound page all operations related to the page flag applied to
185 * head page.
186 *
187 * PF_ONLY_HEAD:
188 * for compound page, callers only ever operate on the head page.
189 *
190 * PF_NO_TAIL:
191 * modifications of the page flag must be done on small or head pages,
192 * checks can be done on tail pages too.
193 *
194 * PF_NO_COMPOUND:
195 * the page flag is not relevant for compound pages.
196 */
197#define PF_POISONED_CHECK(page) ({ \
198 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
199 page; })
200#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
201#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
202#define PF_ONLY_HEAD(page, enforce) ({ \
203 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
204 PF_POISONED_CHECK(page); })
205#define PF_NO_TAIL(page, enforce) ({ \
206 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
207 PF_POISONED_CHECK(compound_head(page)); })
208#define PF_NO_COMPOUND(page, enforce) ({ \
209 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
210 PF_POISONED_CHECK(page); })
211
212/*
213 * Macros to create function definitions for page flags
214 */
215#define TESTPAGEFLAG(uname, lname, policy) \
216static __always_inline int Page##uname(struct page *page) \
217 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
218
219#define SETPAGEFLAG(uname, lname, policy) \
220static __always_inline void SetPage##uname(struct page *page) \
221 { set_bit(PG_##lname, &policy(page, 1)->flags); }
222
223#define CLEARPAGEFLAG(uname, lname, policy) \
224static __always_inline void ClearPage##uname(struct page *page) \
225 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
226
227#define __SETPAGEFLAG(uname, lname, policy) \
228static __always_inline void __SetPage##uname(struct page *page) \
229 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
230
231#define __CLEARPAGEFLAG(uname, lname, policy) \
232static __always_inline void __ClearPage##uname(struct page *page) \
233 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
234
235#define TESTSETFLAG(uname, lname, policy) \
236static __always_inline int TestSetPage##uname(struct page *page) \
237 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
238
239#define TESTCLEARFLAG(uname, lname, policy) \
240static __always_inline int TestClearPage##uname(struct page *page) \
241 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
242
243#define PAGEFLAG(uname, lname, policy) \
244 TESTPAGEFLAG(uname, lname, policy) \
245 SETPAGEFLAG(uname, lname, policy) \
246 CLEARPAGEFLAG(uname, lname, policy)
247
248#define __PAGEFLAG(uname, lname, policy) \
249 TESTPAGEFLAG(uname, lname, policy) \
250 __SETPAGEFLAG(uname, lname, policy) \
251 __CLEARPAGEFLAG(uname, lname, policy)
252
253#define TESTSCFLAG(uname, lname, policy) \
254 TESTSETFLAG(uname, lname, policy) \
255 TESTCLEARFLAG(uname, lname, policy)
256
257#define TESTPAGEFLAG_FALSE(uname) \
258static inline int Page##uname(const struct page *page) { return 0; }
259
260#define SETPAGEFLAG_NOOP(uname) \
261static inline void SetPage##uname(struct page *page) { }
262
263#define CLEARPAGEFLAG_NOOP(uname) \
264static inline void ClearPage##uname(struct page *page) { }
265
266#define __CLEARPAGEFLAG_NOOP(uname) \
267static inline void __ClearPage##uname(struct page *page) { }
268
269#define TESTSETFLAG_FALSE(uname) \
270static inline int TestSetPage##uname(struct page *page) { return 0; }
271
272#define TESTCLEARFLAG_FALSE(uname) \
273static inline int TestClearPage##uname(struct page *page) { return 0; }
274
275#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
276 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
277
278#define TESTSCFLAG_FALSE(uname) \
279 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
280
281__PAGEFLAG(Locked, locked, PF_NO_TAIL)
282PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
283PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
284PAGEFLAG(Referenced, referenced, PF_HEAD)
285 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
286 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
287PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
288 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
289PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
290PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
291 TESTCLEARFLAG(Active, active, PF_HEAD)
292PAGEFLAG(Workingset, workingset, PF_HEAD)
293 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
294__PAGEFLAG(Slab, slab, PF_NO_TAIL)
295__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
296PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
297
298/* Xen */
299PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
300 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
301PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
302PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
303
304PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
305 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
306 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
307PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
308 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
309 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
310
311/*
312 * Private page markings that may be used by the filesystem that owns the page
313 * for its own purposes.
314 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
315 */
316PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
317 __CLEARPAGEFLAG(Private, private, PF_ANY)
318PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
319PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
320 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
321
322/*
323 * Only test-and-set exist for PG_writeback. The unconditional operators are
324 * risky: they bypass page accounting.
325 */
326TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
327 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
328PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
329
330/* PG_readahead is only used for reads; PG_reclaim is only for writes */
331PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
332 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
333PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
334 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
335
336#ifdef CONFIG_HIGHMEM
337/*
338 * Must use a macro here due to header dependency issues. page_zone() is not
339 * available at this point.
340 */
341#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
342#else
343PAGEFLAG_FALSE(HighMem)
344#endif
345
346#ifdef CONFIG_SWAP
347static __always_inline int PageSwapCache(struct page *page)
348{
349#ifdef CONFIG_THP_SWAP
350 page = compound_head(page);
351#endif
352 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
353
354}
355SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
356CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
357#else
358PAGEFLAG_FALSE(SwapCache)
359#endif
360
361PAGEFLAG(Unevictable, unevictable, PF_HEAD)
362 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
363 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
364
365#ifdef CONFIG_MMU
366PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
367 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
368 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
369#else
370PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
371 TESTSCFLAG_FALSE(Mlocked)
372#endif
373
374#ifdef CONFIG_ARCH_USES_PG_UNCACHED
375PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
376#else
377PAGEFLAG_FALSE(Uncached)
378#endif
379
380#ifdef CONFIG_MEMORY_FAILURE
381PAGEFLAG(HWPoison, hwpoison, PF_ANY)
382TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
383#define __PG_HWPOISON (1UL << PG_hwpoison)
384extern bool set_hwpoison_free_buddy_page(struct page *page);
385#else
386PAGEFLAG_FALSE(HWPoison)
387static inline bool set_hwpoison_free_buddy_page(struct page *page)
388{
389 return 0;
390}
391#define __PG_HWPOISON 0
392#endif
393
394#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
395TESTPAGEFLAG(Young, young, PF_ANY)
396SETPAGEFLAG(Young, young, PF_ANY)
397TESTCLEARFLAG(Young, young, PF_ANY)
398PAGEFLAG(Idle, idle, PF_ANY)
399#endif
400
401/*
402 * On an anonymous page mapped into a user virtual memory area,
403 * page->mapping points to its anon_vma, not to a struct address_space;
404 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
405 *
406 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
407 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
408 * bit; and then page->mapping points, not to an anon_vma, but to a private
409 * structure which KSM associates with that merged page. See ksm.h.
410 *
411 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
412 * page and then page->mapping points a struct address_space.
413 *
414 * Please note that, confusingly, "page_mapping" refers to the inode
415 * address_space which maps the page from disk; whereas "page_mapped"
416 * refers to user virtual address space into which the page is mapped.
417 */
418#define PAGE_MAPPING_ANON 0x1
419#define PAGE_MAPPING_MOVABLE 0x2
420#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
421#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
422
423static __always_inline int PageMappingFlags(struct page *page)
424{
425 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
426}
427
428static __always_inline int PageAnon(struct page *page)
429{
430 page = compound_head(page);
431 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
432}
433
434static __always_inline int __PageMovable(struct page *page)
435{
436 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
437 PAGE_MAPPING_MOVABLE;
438}
439
440#ifdef CONFIG_KSM
441/*
442 * A KSM page is one of those write-protected "shared pages" or "merged pages"
443 * which KSM maps into multiple mms, wherever identical anonymous page content
444 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
445 * anon_vma, but to that page's node of the stable tree.
446 */
447static __always_inline int PageKsm(struct page *page)
448{
449 page = compound_head(page);
450 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
451 PAGE_MAPPING_KSM;
452}
453#else
454TESTPAGEFLAG_FALSE(Ksm)
455#endif
456
457u64 stable_page_flags(struct page *page);
458
459static inline int PageUptodate(struct page *page)
460{
461 int ret;
462 page = compound_head(page);
463 ret = test_bit(PG_uptodate, &(page)->flags);
464 /*
465 * Must ensure that the data we read out of the page is loaded
466 * _after_ we've loaded page->flags to check for PageUptodate.
467 * We can skip the barrier if the page is not uptodate, because
468 * we wouldn't be reading anything from it.
469 *
470 * See SetPageUptodate() for the other side of the story.
471 */
472 if (ret)
473 smp_rmb();
474
475 return ret;
476}
477
478static __always_inline void __SetPageUptodate(struct page *page)
479{
480 VM_BUG_ON_PAGE(PageTail(page), page);
481 smp_wmb();
482 __set_bit(PG_uptodate, &page->flags);
483}
484
485static __always_inline void SetPageUptodate(struct page *page)
486{
487 VM_BUG_ON_PAGE(PageTail(page), page);
488 /*
489 * Memory barrier must be issued before setting the PG_uptodate bit,
490 * so that all previous stores issued in order to bring the page
491 * uptodate are actually visible before PageUptodate becomes true.
492 */
493 smp_wmb();
494 set_bit(PG_uptodate, &page->flags);
495}
496
497CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
498
499int test_clear_page_writeback(struct page *page);
500int __test_set_page_writeback(struct page *page, bool keep_write);
501
502#define test_set_page_writeback(page) \
503 __test_set_page_writeback(page, false)
504#define test_set_page_writeback_keepwrite(page) \
505 __test_set_page_writeback(page, true)
506
507static inline void set_page_writeback(struct page *page)
508{
509 test_set_page_writeback(page);
510}
511
512static inline void set_page_writeback_keepwrite(struct page *page)
513{
514 test_set_page_writeback_keepwrite(page);
515}
516
517__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
518
519static __always_inline void set_compound_head(struct page *page, struct page *head)
520{
521 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
522}
523
524static __always_inline void clear_compound_head(struct page *page)
525{
526 WRITE_ONCE(page->compound_head, 0);
527}
528
529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
530static inline void ClearPageCompound(struct page *page)
531{
532 BUG_ON(!PageHead(page));
533 ClearPageHead(page);
534}
535#endif
536
537#define PG_head_mask ((1UL << PG_head))
538
539#ifdef CONFIG_HUGETLB_PAGE
540int PageHuge(struct page *page);
541int PageHeadHuge(struct page *page);
542bool page_huge_active(struct page *page);
543#else
544TESTPAGEFLAG_FALSE(Huge)
545TESTPAGEFLAG_FALSE(HeadHuge)
546
547static inline bool page_huge_active(struct page *page)
548{
549 return 0;
550}
551#endif
552
553
554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
555/*
556 * PageHuge() only returns true for hugetlbfs pages, but not for
557 * normal or transparent huge pages.
558 *
559 * PageTransHuge() returns true for both transparent huge and
560 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
561 * called only in the core VM paths where hugetlbfs pages can't exist.
562 */
563static inline int PageTransHuge(struct page *page)
564{
565 VM_BUG_ON_PAGE(PageTail(page), page);
566 return PageHead(page);
567}
568
569/*
570 * PageTransCompound returns true for both transparent huge pages
571 * and hugetlbfs pages, so it should only be called when it's known
572 * that hugetlbfs pages aren't involved.
573 */
574static inline int PageTransCompound(struct page *page)
575{
576 return PageCompound(page);
577}
578
579/*
580 * PageTransCompoundMap is the same as PageTransCompound, but it also
581 * guarantees the primary MMU has the entire compound page mapped
582 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
583 * can also map the entire compound page. This allows the secondary
584 * MMUs to call get_user_pages() only once for each compound page and
585 * to immediately map the entire compound page with a single secondary
586 * MMU fault. If there will be a pmd split later, the secondary MMUs
587 * will get an update through the MMU notifier invalidation through
588 * split_huge_pmd().
589 *
590 * Unlike PageTransCompound, this is safe to be called only while
591 * split_huge_pmd() cannot run from under us, like if protected by the
592 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
593 * positives.
594 */
595static inline int PageTransCompoundMap(struct page *page)
596{
597 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
598}
599
600/*
601 * PageTransTail returns true for both transparent huge pages
602 * and hugetlbfs pages, so it should only be called when it's known
603 * that hugetlbfs pages aren't involved.
604 */
605static inline int PageTransTail(struct page *page)
606{
607 return PageTail(page);
608}
609
610/*
611 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
612 * as PMDs.
613 *
614 * This is required for optimization of rmap operations for THP: we can postpone
615 * per small page mapcount accounting (and its overhead from atomic operations)
616 * until the first PMD split.
617 *
618 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
619 * by one. This reference will go away with last compound_mapcount.
620 *
621 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
622 */
623static inline int PageDoubleMap(struct page *page)
624{
625 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
626}
627
628static inline void SetPageDoubleMap(struct page *page)
629{
630 VM_BUG_ON_PAGE(!PageHead(page), page);
631 set_bit(PG_double_map, &page[1].flags);
632}
633
634static inline void ClearPageDoubleMap(struct page *page)
635{
636 VM_BUG_ON_PAGE(!PageHead(page), page);
637 clear_bit(PG_double_map, &page[1].flags);
638}
639static inline int TestSetPageDoubleMap(struct page *page)
640{
641 VM_BUG_ON_PAGE(!PageHead(page), page);
642 return test_and_set_bit(PG_double_map, &page[1].flags);
643}
644
645static inline int TestClearPageDoubleMap(struct page *page)
646{
647 VM_BUG_ON_PAGE(!PageHead(page), page);
648 return test_and_clear_bit(PG_double_map, &page[1].flags);
649}
650
651#else
652TESTPAGEFLAG_FALSE(TransHuge)
653TESTPAGEFLAG_FALSE(TransCompound)
654TESTPAGEFLAG_FALSE(TransCompoundMap)
655TESTPAGEFLAG_FALSE(TransTail)
656PAGEFLAG_FALSE(DoubleMap)
657 TESTSETFLAG_FALSE(DoubleMap)
658 TESTCLEARFLAG_FALSE(DoubleMap)
659#endif
660
661/*
662 * For pages that are never mapped to userspace (and aren't PageSlab),
663 * page_type may be used. Because it is initialised to -1, we invert the
664 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
665 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
666 * low bits so that an underflow or overflow of page_mapcount() won't be
667 * mistaken for a page type value.
668 */
669
670#define PAGE_TYPE_BASE 0xf0000000
671/* Reserve 0x0000007f to catch underflows of page_mapcount */
672#define PG_buddy 0x00000080
673#define PG_balloon 0x00000100
674#define PG_kmemcg 0x00000200
675#define PG_table 0x00000400
676
677#define PageType(page, flag) \
678 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
679
680#define PAGE_TYPE_OPS(uname, lname) \
681static __always_inline int Page##uname(struct page *page) \
682{ \
683 return PageType(page, PG_##lname); \
684} \
685static __always_inline void __SetPage##uname(struct page *page) \
686{ \
687 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
688 page->page_type &= ~PG_##lname; \
689} \
690static __always_inline void __ClearPage##uname(struct page *page) \
691{ \
692 VM_BUG_ON_PAGE(!Page##uname(page), page); \
693 page->page_type |= PG_##lname; \
694}
695
696/*
697 * PageBuddy() indicates that the page is free and in the buddy system
698 * (see mm/page_alloc.c).
699 */
700PAGE_TYPE_OPS(Buddy, buddy)
701
702/*
703 * PageBalloon() is true for pages that are on the balloon page list
704 * (see mm/balloon_compaction.c).
705 */
706PAGE_TYPE_OPS(Balloon, balloon)
707
708/*
709 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
710 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
711 */
712PAGE_TYPE_OPS(Kmemcg, kmemcg)
713
714/*
715 * Marks pages in use as page tables.
716 */
717PAGE_TYPE_OPS(Table, table)
718
719extern bool is_free_buddy_page(struct page *page);
720
721__PAGEFLAG(Isolated, isolated, PF_ANY);
722
723/*
724 * If network-based swap is enabled, sl*b must keep track of whether pages
725 * were allocated from pfmemalloc reserves.
726 */
727static inline int PageSlabPfmemalloc(struct page *page)
728{
729 VM_BUG_ON_PAGE(!PageSlab(page), page);
730 return PageActive(page);
731}
732
733static inline void SetPageSlabPfmemalloc(struct page *page)
734{
735 VM_BUG_ON_PAGE(!PageSlab(page), page);
736 SetPageActive(page);
737}
738
739static inline void __ClearPageSlabPfmemalloc(struct page *page)
740{
741 VM_BUG_ON_PAGE(!PageSlab(page), page);
742 __ClearPageActive(page);
743}
744
745static inline void ClearPageSlabPfmemalloc(struct page *page)
746{
747 VM_BUG_ON_PAGE(!PageSlab(page), page);
748 ClearPageActive(page);
749}
750
751#ifdef CONFIG_MMU
752#define __PG_MLOCKED (1UL << PG_mlocked)
753#else
754#define __PG_MLOCKED 0
755#endif
756
757/*
758 * Flags checked when a page is freed. Pages being freed should not have
759 * these flags set. It they are, there is a problem.
760 */
761#define PAGE_FLAGS_CHECK_AT_FREE \
762 (1UL << PG_lru | 1UL << PG_locked | \
763 1UL << PG_private | 1UL << PG_private_2 | \
764 1UL << PG_writeback | 1UL << PG_reserved | \
765 1UL << PG_slab | 1UL << PG_active | \
766 1UL << PG_unevictable | __PG_MLOCKED)
767
768/*
769 * Flags checked when a page is prepped for return by the page allocator.
770 * Pages being prepped should not have these flags set. It they are set,
771 * there has been a kernel bug or struct page corruption.
772 *
773 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
774 * alloc-free cycle to prevent from reusing the page.
775 */
776#define PAGE_FLAGS_CHECK_AT_PREP \
777 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
778
779#define PAGE_FLAGS_PRIVATE \
780 (1UL << PG_private | 1UL << PG_private_2)
781/**
782 * page_has_private - Determine if page has private stuff
783 * @page: The page to be checked
784 *
785 * Determine if a page has private stuff, indicating that release routines
786 * should be invoked upon it.
787 */
788static inline int page_has_private(struct page *page)
789{
790 return !!(page->flags & PAGE_FLAGS_PRIVATE);
791}
792
793#undef PF_ANY
794#undef PF_HEAD
795#undef PF_ONLY_HEAD
796#undef PF_NO_TAIL
797#undef PF_NO_COMPOUND
798#endif /* !__GENERATING_BOUNDS_H */
799
800#endif /* PAGE_FLAGS_H */