at v4.20 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages, which can never be swapped out. Some 21 * of them might not even exist... 22 * 23 * The PG_private bitflag is set on pagecache pages if they contain filesystem 24 * specific data (which is normally at page->private). It can be used by 25 * private allocations for its own usage. 26 * 27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 29 * is set before writeback starts and cleared when it finishes. 30 * 31 * PG_locked also pins a page in pagecache, and blocks truncation of the file 32 * while it is held. 33 * 34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 35 * to become unlocked. 36 * 37 * PG_uptodate tells whether the page's contents is valid. When a read 38 * completes, the page becomes uptodate, unless a disk I/O error happened. 39 * 40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 41 * file-backed pagecache (see mm/vmscan.c). 42 * 43 * PG_error is set to indicate that an I/O error occurred on this page. 44 * 45 * PG_arch_1 is an architecture specific page state bit. The generic code 46 * guarantees that this bit is cleared for a page when it first is entered into 47 * the page cache. 48 * 49 * PG_hwpoison indicates that a page got corrupted in hardware and contains 50 * data with incorrect ECC bits that triggered a machine check. Accessing is 51 * not safe since it may cause another machine check. Don't touch! 52 */ 53 54/* 55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 56 * locked- and dirty-page accounting. 57 * 58 * The page flags field is split into two parts, the main flags area 59 * which extends from the low bits upwards, and the fields area which 60 * extends from the high bits downwards. 61 * 62 * | FIELD | ... | FLAGS | 63 * N-1 ^ 0 64 * (NR_PAGEFLAGS) 65 * 66 * The fields area is reserved for fields mapping zone, node (for NUMA) and 67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 69 */ 70enum pageflags { 71 PG_locked, /* Page is locked. Don't touch. */ 72 PG_referenced, 73 PG_uptodate, 74 PG_dirty, 75 PG_lru, 76 PG_active, 77 PG_workingset, 78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 79 PG_error, 80 PG_slab, 81 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 82 PG_arch_1, 83 PG_reserved, 84 PG_private, /* If pagecache, has fs-private data */ 85 PG_private_2, /* If pagecache, has fs aux data */ 86 PG_writeback, /* Page is under writeback */ 87 PG_head, /* A head page */ 88 PG_mappedtodisk, /* Has blocks allocated on-disk */ 89 PG_reclaim, /* To be reclaimed asap */ 90 PG_swapbacked, /* Page is backed by RAM/swap */ 91 PG_unevictable, /* Page is "unevictable" */ 92#ifdef CONFIG_MMU 93 PG_mlocked, /* Page is vma mlocked */ 94#endif 95#ifdef CONFIG_ARCH_USES_PG_UNCACHED 96 PG_uncached, /* Page has been mapped as uncached */ 97#endif 98#ifdef CONFIG_MEMORY_FAILURE 99 PG_hwpoison, /* hardware poisoned page. Don't touch */ 100#endif 101#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 102 PG_young, 103 PG_idle, 104#endif 105 __NR_PAGEFLAGS, 106 107 /* Filesystems */ 108 PG_checked = PG_owner_priv_1, 109 110 /* SwapBacked */ 111 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132 133 /* non-lru isolated movable page */ 134 PG_isolated = PG_reclaim, 135}; 136 137#ifndef __GENERATING_BOUNDS_H 138 139struct page; /* forward declaration */ 140 141static inline struct page *compound_head(struct page *page) 142{ 143 unsigned long head = READ_ONCE(page->compound_head); 144 145 if (unlikely(head & 1)) 146 return (struct page *) (head - 1); 147 return page; 148} 149 150static __always_inline int PageTail(struct page *page) 151{ 152 return READ_ONCE(page->compound_head) & 1; 153} 154 155static __always_inline int PageCompound(struct page *page) 156{ 157 return test_bit(PG_head, &page->flags) || PageTail(page); 158} 159 160#define PAGE_POISON_PATTERN -1l 161static inline int PagePoisoned(const struct page *page) 162{ 163 return page->flags == PAGE_POISON_PATTERN; 164} 165 166#ifdef CONFIG_DEBUG_VM 167void page_init_poison(struct page *page, size_t size); 168#else 169static inline void page_init_poison(struct page *page, size_t size) 170{ 171} 172#endif 173 174/* 175 * Page flags policies wrt compound pages 176 * 177 * PF_POISONED_CHECK 178 * check if this struct page poisoned/uninitialized 179 * 180 * PF_ANY: 181 * the page flag is relevant for small, head and tail pages. 182 * 183 * PF_HEAD: 184 * for compound page all operations related to the page flag applied to 185 * head page. 186 * 187 * PF_ONLY_HEAD: 188 * for compound page, callers only ever operate on the head page. 189 * 190 * PF_NO_TAIL: 191 * modifications of the page flag must be done on small or head pages, 192 * checks can be done on tail pages too. 193 * 194 * PF_NO_COMPOUND: 195 * the page flag is not relevant for compound pages. 196 */ 197#define PF_POISONED_CHECK(page) ({ \ 198 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 199 page; }) 200#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 201#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 202#define PF_ONLY_HEAD(page, enforce) ({ \ 203 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 204 PF_POISONED_CHECK(page); }) 205#define PF_NO_TAIL(page, enforce) ({ \ 206 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 207 PF_POISONED_CHECK(compound_head(page)); }) 208#define PF_NO_COMPOUND(page, enforce) ({ \ 209 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 210 PF_POISONED_CHECK(page); }) 211 212/* 213 * Macros to create function definitions for page flags 214 */ 215#define TESTPAGEFLAG(uname, lname, policy) \ 216static __always_inline int Page##uname(struct page *page) \ 217 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 218 219#define SETPAGEFLAG(uname, lname, policy) \ 220static __always_inline void SetPage##uname(struct page *page) \ 221 { set_bit(PG_##lname, &policy(page, 1)->flags); } 222 223#define CLEARPAGEFLAG(uname, lname, policy) \ 224static __always_inline void ClearPage##uname(struct page *page) \ 225 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 226 227#define __SETPAGEFLAG(uname, lname, policy) \ 228static __always_inline void __SetPage##uname(struct page *page) \ 229 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 230 231#define __CLEARPAGEFLAG(uname, lname, policy) \ 232static __always_inline void __ClearPage##uname(struct page *page) \ 233 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 234 235#define TESTSETFLAG(uname, lname, policy) \ 236static __always_inline int TestSetPage##uname(struct page *page) \ 237 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 238 239#define TESTCLEARFLAG(uname, lname, policy) \ 240static __always_inline int TestClearPage##uname(struct page *page) \ 241 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 242 243#define PAGEFLAG(uname, lname, policy) \ 244 TESTPAGEFLAG(uname, lname, policy) \ 245 SETPAGEFLAG(uname, lname, policy) \ 246 CLEARPAGEFLAG(uname, lname, policy) 247 248#define __PAGEFLAG(uname, lname, policy) \ 249 TESTPAGEFLAG(uname, lname, policy) \ 250 __SETPAGEFLAG(uname, lname, policy) \ 251 __CLEARPAGEFLAG(uname, lname, policy) 252 253#define TESTSCFLAG(uname, lname, policy) \ 254 TESTSETFLAG(uname, lname, policy) \ 255 TESTCLEARFLAG(uname, lname, policy) 256 257#define TESTPAGEFLAG_FALSE(uname) \ 258static inline int Page##uname(const struct page *page) { return 0; } 259 260#define SETPAGEFLAG_NOOP(uname) \ 261static inline void SetPage##uname(struct page *page) { } 262 263#define CLEARPAGEFLAG_NOOP(uname) \ 264static inline void ClearPage##uname(struct page *page) { } 265 266#define __CLEARPAGEFLAG_NOOP(uname) \ 267static inline void __ClearPage##uname(struct page *page) { } 268 269#define TESTSETFLAG_FALSE(uname) \ 270static inline int TestSetPage##uname(struct page *page) { return 0; } 271 272#define TESTCLEARFLAG_FALSE(uname) \ 273static inline int TestClearPage##uname(struct page *page) { return 0; } 274 275#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 276 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 277 278#define TESTSCFLAG_FALSE(uname) \ 279 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 280 281__PAGEFLAG(Locked, locked, PF_NO_TAIL) 282PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 283PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 284PAGEFLAG(Referenced, referenced, PF_HEAD) 285 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 286 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 287PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 288 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 289PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 290PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 291 TESTCLEARFLAG(Active, active, PF_HEAD) 292PAGEFLAG(Workingset, workingset, PF_HEAD) 293 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 294__PAGEFLAG(Slab, slab, PF_NO_TAIL) 295__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 296PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 297 298/* Xen */ 299PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 300 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 301PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 302PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 303 304PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 305 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 306 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 307PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 308 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 309 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 310 311/* 312 * Private page markings that may be used by the filesystem that owns the page 313 * for its own purposes. 314 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 315 */ 316PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 317 __CLEARPAGEFLAG(Private, private, PF_ANY) 318PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 319PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 320 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 321 322/* 323 * Only test-and-set exist for PG_writeback. The unconditional operators are 324 * risky: they bypass page accounting. 325 */ 326TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 327 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 328PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 329 330/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 331PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 332 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 333PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 334 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 335 336#ifdef CONFIG_HIGHMEM 337/* 338 * Must use a macro here due to header dependency issues. page_zone() is not 339 * available at this point. 340 */ 341#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 342#else 343PAGEFLAG_FALSE(HighMem) 344#endif 345 346#ifdef CONFIG_SWAP 347static __always_inline int PageSwapCache(struct page *page) 348{ 349#ifdef CONFIG_THP_SWAP 350 page = compound_head(page); 351#endif 352 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 353 354} 355SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 356CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 357#else 358PAGEFLAG_FALSE(SwapCache) 359#endif 360 361PAGEFLAG(Unevictable, unevictable, PF_HEAD) 362 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 363 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 364 365#ifdef CONFIG_MMU 366PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 367 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 368 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 369#else 370PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 371 TESTSCFLAG_FALSE(Mlocked) 372#endif 373 374#ifdef CONFIG_ARCH_USES_PG_UNCACHED 375PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 376#else 377PAGEFLAG_FALSE(Uncached) 378#endif 379 380#ifdef CONFIG_MEMORY_FAILURE 381PAGEFLAG(HWPoison, hwpoison, PF_ANY) 382TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 383#define __PG_HWPOISON (1UL << PG_hwpoison) 384extern bool set_hwpoison_free_buddy_page(struct page *page); 385#else 386PAGEFLAG_FALSE(HWPoison) 387static inline bool set_hwpoison_free_buddy_page(struct page *page) 388{ 389 return 0; 390} 391#define __PG_HWPOISON 0 392#endif 393 394#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 395TESTPAGEFLAG(Young, young, PF_ANY) 396SETPAGEFLAG(Young, young, PF_ANY) 397TESTCLEARFLAG(Young, young, PF_ANY) 398PAGEFLAG(Idle, idle, PF_ANY) 399#endif 400 401/* 402 * On an anonymous page mapped into a user virtual memory area, 403 * page->mapping points to its anon_vma, not to a struct address_space; 404 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 405 * 406 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 407 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 408 * bit; and then page->mapping points, not to an anon_vma, but to a private 409 * structure which KSM associates with that merged page. See ksm.h. 410 * 411 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 412 * page and then page->mapping points a struct address_space. 413 * 414 * Please note that, confusingly, "page_mapping" refers to the inode 415 * address_space which maps the page from disk; whereas "page_mapped" 416 * refers to user virtual address space into which the page is mapped. 417 */ 418#define PAGE_MAPPING_ANON 0x1 419#define PAGE_MAPPING_MOVABLE 0x2 420#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 421#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 422 423static __always_inline int PageMappingFlags(struct page *page) 424{ 425 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 426} 427 428static __always_inline int PageAnon(struct page *page) 429{ 430 page = compound_head(page); 431 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 432} 433 434static __always_inline int __PageMovable(struct page *page) 435{ 436 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 437 PAGE_MAPPING_MOVABLE; 438} 439 440#ifdef CONFIG_KSM 441/* 442 * A KSM page is one of those write-protected "shared pages" or "merged pages" 443 * which KSM maps into multiple mms, wherever identical anonymous page content 444 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 445 * anon_vma, but to that page's node of the stable tree. 446 */ 447static __always_inline int PageKsm(struct page *page) 448{ 449 page = compound_head(page); 450 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 451 PAGE_MAPPING_KSM; 452} 453#else 454TESTPAGEFLAG_FALSE(Ksm) 455#endif 456 457u64 stable_page_flags(struct page *page); 458 459static inline int PageUptodate(struct page *page) 460{ 461 int ret; 462 page = compound_head(page); 463 ret = test_bit(PG_uptodate, &(page)->flags); 464 /* 465 * Must ensure that the data we read out of the page is loaded 466 * _after_ we've loaded page->flags to check for PageUptodate. 467 * We can skip the barrier if the page is not uptodate, because 468 * we wouldn't be reading anything from it. 469 * 470 * See SetPageUptodate() for the other side of the story. 471 */ 472 if (ret) 473 smp_rmb(); 474 475 return ret; 476} 477 478static __always_inline void __SetPageUptodate(struct page *page) 479{ 480 VM_BUG_ON_PAGE(PageTail(page), page); 481 smp_wmb(); 482 __set_bit(PG_uptodate, &page->flags); 483} 484 485static __always_inline void SetPageUptodate(struct page *page) 486{ 487 VM_BUG_ON_PAGE(PageTail(page), page); 488 /* 489 * Memory barrier must be issued before setting the PG_uptodate bit, 490 * so that all previous stores issued in order to bring the page 491 * uptodate are actually visible before PageUptodate becomes true. 492 */ 493 smp_wmb(); 494 set_bit(PG_uptodate, &page->flags); 495} 496 497CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 498 499int test_clear_page_writeback(struct page *page); 500int __test_set_page_writeback(struct page *page, bool keep_write); 501 502#define test_set_page_writeback(page) \ 503 __test_set_page_writeback(page, false) 504#define test_set_page_writeback_keepwrite(page) \ 505 __test_set_page_writeback(page, true) 506 507static inline void set_page_writeback(struct page *page) 508{ 509 test_set_page_writeback(page); 510} 511 512static inline void set_page_writeback_keepwrite(struct page *page) 513{ 514 test_set_page_writeback_keepwrite(page); 515} 516 517__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 518 519static __always_inline void set_compound_head(struct page *page, struct page *head) 520{ 521 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 522} 523 524static __always_inline void clear_compound_head(struct page *page) 525{ 526 WRITE_ONCE(page->compound_head, 0); 527} 528 529#ifdef CONFIG_TRANSPARENT_HUGEPAGE 530static inline void ClearPageCompound(struct page *page) 531{ 532 BUG_ON(!PageHead(page)); 533 ClearPageHead(page); 534} 535#endif 536 537#define PG_head_mask ((1UL << PG_head)) 538 539#ifdef CONFIG_HUGETLB_PAGE 540int PageHuge(struct page *page); 541int PageHeadHuge(struct page *page); 542bool page_huge_active(struct page *page); 543#else 544TESTPAGEFLAG_FALSE(Huge) 545TESTPAGEFLAG_FALSE(HeadHuge) 546 547static inline bool page_huge_active(struct page *page) 548{ 549 return 0; 550} 551#endif 552 553 554#ifdef CONFIG_TRANSPARENT_HUGEPAGE 555/* 556 * PageHuge() only returns true for hugetlbfs pages, but not for 557 * normal or transparent huge pages. 558 * 559 * PageTransHuge() returns true for both transparent huge and 560 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 561 * called only in the core VM paths where hugetlbfs pages can't exist. 562 */ 563static inline int PageTransHuge(struct page *page) 564{ 565 VM_BUG_ON_PAGE(PageTail(page), page); 566 return PageHead(page); 567} 568 569/* 570 * PageTransCompound returns true for both transparent huge pages 571 * and hugetlbfs pages, so it should only be called when it's known 572 * that hugetlbfs pages aren't involved. 573 */ 574static inline int PageTransCompound(struct page *page) 575{ 576 return PageCompound(page); 577} 578 579/* 580 * PageTransCompoundMap is the same as PageTransCompound, but it also 581 * guarantees the primary MMU has the entire compound page mapped 582 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 583 * can also map the entire compound page. This allows the secondary 584 * MMUs to call get_user_pages() only once for each compound page and 585 * to immediately map the entire compound page with a single secondary 586 * MMU fault. If there will be a pmd split later, the secondary MMUs 587 * will get an update through the MMU notifier invalidation through 588 * split_huge_pmd(). 589 * 590 * Unlike PageTransCompound, this is safe to be called only while 591 * split_huge_pmd() cannot run from under us, like if protected by the 592 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 593 * positives. 594 */ 595static inline int PageTransCompoundMap(struct page *page) 596{ 597 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 598} 599 600/* 601 * PageTransTail returns true for both transparent huge pages 602 * and hugetlbfs pages, so it should only be called when it's known 603 * that hugetlbfs pages aren't involved. 604 */ 605static inline int PageTransTail(struct page *page) 606{ 607 return PageTail(page); 608} 609 610/* 611 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 612 * as PMDs. 613 * 614 * This is required for optimization of rmap operations for THP: we can postpone 615 * per small page mapcount accounting (and its overhead from atomic operations) 616 * until the first PMD split. 617 * 618 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 619 * by one. This reference will go away with last compound_mapcount. 620 * 621 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 622 */ 623static inline int PageDoubleMap(struct page *page) 624{ 625 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 626} 627 628static inline void SetPageDoubleMap(struct page *page) 629{ 630 VM_BUG_ON_PAGE(!PageHead(page), page); 631 set_bit(PG_double_map, &page[1].flags); 632} 633 634static inline void ClearPageDoubleMap(struct page *page) 635{ 636 VM_BUG_ON_PAGE(!PageHead(page), page); 637 clear_bit(PG_double_map, &page[1].flags); 638} 639static inline int TestSetPageDoubleMap(struct page *page) 640{ 641 VM_BUG_ON_PAGE(!PageHead(page), page); 642 return test_and_set_bit(PG_double_map, &page[1].flags); 643} 644 645static inline int TestClearPageDoubleMap(struct page *page) 646{ 647 VM_BUG_ON_PAGE(!PageHead(page), page); 648 return test_and_clear_bit(PG_double_map, &page[1].flags); 649} 650 651#else 652TESTPAGEFLAG_FALSE(TransHuge) 653TESTPAGEFLAG_FALSE(TransCompound) 654TESTPAGEFLAG_FALSE(TransCompoundMap) 655TESTPAGEFLAG_FALSE(TransTail) 656PAGEFLAG_FALSE(DoubleMap) 657 TESTSETFLAG_FALSE(DoubleMap) 658 TESTCLEARFLAG_FALSE(DoubleMap) 659#endif 660 661/* 662 * For pages that are never mapped to userspace (and aren't PageSlab), 663 * page_type may be used. Because it is initialised to -1, we invert the 664 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 665 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 666 * low bits so that an underflow or overflow of page_mapcount() won't be 667 * mistaken for a page type value. 668 */ 669 670#define PAGE_TYPE_BASE 0xf0000000 671/* Reserve 0x0000007f to catch underflows of page_mapcount */ 672#define PG_buddy 0x00000080 673#define PG_balloon 0x00000100 674#define PG_kmemcg 0x00000200 675#define PG_table 0x00000400 676 677#define PageType(page, flag) \ 678 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 679 680#define PAGE_TYPE_OPS(uname, lname) \ 681static __always_inline int Page##uname(struct page *page) \ 682{ \ 683 return PageType(page, PG_##lname); \ 684} \ 685static __always_inline void __SetPage##uname(struct page *page) \ 686{ \ 687 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 688 page->page_type &= ~PG_##lname; \ 689} \ 690static __always_inline void __ClearPage##uname(struct page *page) \ 691{ \ 692 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 693 page->page_type |= PG_##lname; \ 694} 695 696/* 697 * PageBuddy() indicates that the page is free and in the buddy system 698 * (see mm/page_alloc.c). 699 */ 700PAGE_TYPE_OPS(Buddy, buddy) 701 702/* 703 * PageBalloon() is true for pages that are on the balloon page list 704 * (see mm/balloon_compaction.c). 705 */ 706PAGE_TYPE_OPS(Balloon, balloon) 707 708/* 709 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 710 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 711 */ 712PAGE_TYPE_OPS(Kmemcg, kmemcg) 713 714/* 715 * Marks pages in use as page tables. 716 */ 717PAGE_TYPE_OPS(Table, table) 718 719extern bool is_free_buddy_page(struct page *page); 720 721__PAGEFLAG(Isolated, isolated, PF_ANY); 722 723/* 724 * If network-based swap is enabled, sl*b must keep track of whether pages 725 * were allocated from pfmemalloc reserves. 726 */ 727static inline int PageSlabPfmemalloc(struct page *page) 728{ 729 VM_BUG_ON_PAGE(!PageSlab(page), page); 730 return PageActive(page); 731} 732 733static inline void SetPageSlabPfmemalloc(struct page *page) 734{ 735 VM_BUG_ON_PAGE(!PageSlab(page), page); 736 SetPageActive(page); 737} 738 739static inline void __ClearPageSlabPfmemalloc(struct page *page) 740{ 741 VM_BUG_ON_PAGE(!PageSlab(page), page); 742 __ClearPageActive(page); 743} 744 745static inline void ClearPageSlabPfmemalloc(struct page *page) 746{ 747 VM_BUG_ON_PAGE(!PageSlab(page), page); 748 ClearPageActive(page); 749} 750 751#ifdef CONFIG_MMU 752#define __PG_MLOCKED (1UL << PG_mlocked) 753#else 754#define __PG_MLOCKED 0 755#endif 756 757/* 758 * Flags checked when a page is freed. Pages being freed should not have 759 * these flags set. It they are, there is a problem. 760 */ 761#define PAGE_FLAGS_CHECK_AT_FREE \ 762 (1UL << PG_lru | 1UL << PG_locked | \ 763 1UL << PG_private | 1UL << PG_private_2 | \ 764 1UL << PG_writeback | 1UL << PG_reserved | \ 765 1UL << PG_slab | 1UL << PG_active | \ 766 1UL << PG_unevictable | __PG_MLOCKED) 767 768/* 769 * Flags checked when a page is prepped for return by the page allocator. 770 * Pages being prepped should not have these flags set. It they are set, 771 * there has been a kernel bug or struct page corruption. 772 * 773 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 774 * alloc-free cycle to prevent from reusing the page. 775 */ 776#define PAGE_FLAGS_CHECK_AT_PREP \ 777 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 778 779#define PAGE_FLAGS_PRIVATE \ 780 (1UL << PG_private | 1UL << PG_private_2) 781/** 782 * page_has_private - Determine if page has private stuff 783 * @page: The page to be checked 784 * 785 * Determine if a page has private stuff, indicating that release routines 786 * should be invoked upon it. 787 */ 788static inline int page_has_private(struct page *page) 789{ 790 return !!(page->flags & PAGE_FLAGS_PRIVATE); 791} 792 793#undef PF_ANY 794#undef PF_HEAD 795#undef PF_ONLY_HEAD 796#undef PF_NO_TAIL 797#undef PF_NO_COMPOUND 798#endif /* !__GENERATING_BOUNDS_H */ 799 800#endif /* PAGE_FLAGS_H */