at v4.20 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <asm/page.h> 22 23/* Free memory management - zoned buddy allocator. */ 24#ifndef CONFIG_FORCE_MAX_ZONEORDER 25#define MAX_ORDER 11 26#else 27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 28#endif 29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 30 31/* 32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 33 * costly to service. That is between allocation orders which should 34 * coalesce naturally under reasonable reclaim pressure and those which 35 * will not. 36 */ 37#define PAGE_ALLOC_COSTLY_ORDER 3 38 39enum migratetype { 40 MIGRATE_UNMOVABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_RECLAIMABLE, 43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 45#ifdef CONFIG_CMA 46 /* 47 * MIGRATE_CMA migration type is designed to mimic the way 48 * ZONE_MOVABLE works. Only movable pages can be allocated 49 * from MIGRATE_CMA pageblocks and page allocator never 50 * implicitly change migration type of MIGRATE_CMA pageblock. 51 * 52 * The way to use it is to change migratetype of a range of 53 * pageblocks to MIGRATE_CMA which can be done by 54 * __free_pageblock_cma() function. What is important though 55 * is that a range of pageblocks must be aligned to 56 * MAX_ORDER_NR_PAGES should biggest page be bigger then 57 * a single pageblock. 58 */ 59 MIGRATE_CMA, 60#endif 61#ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63#endif 64 MIGRATE_TYPES 65}; 66 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68extern char * const migratetype_names[MIGRATE_TYPES]; 69 70#ifdef CONFIG_CMA 71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73#else 74# define is_migrate_cma(migratetype) false 75# define is_migrate_cma_page(_page) false 76#endif 77 78static inline bool is_migrate_movable(int mt) 79{ 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81} 82 83#define for_each_migratetype_order(order, type) \ 84 for (order = 0; order < MAX_ORDER; order++) \ 85 for (type = 0; type < MIGRATE_TYPES; type++) 86 87extern int page_group_by_mobility_disabled; 88 89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 91 92#define get_pageblock_migratetype(page) \ 93 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 94 PB_migrate_end, MIGRATETYPE_MASK) 95 96struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99}; 100 101struct pglist_data; 102 103/* 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 105 * So add a wild amount of padding here to ensure that they fall into separate 106 * cachelines. There are very few zone structures in the machine, so space 107 * consumption is not a concern here. 108 */ 109#if defined(CONFIG_SMP) 110struct zone_padding { 111 char x[0]; 112} ____cacheline_internodealigned_in_smp; 113#define ZONE_PADDING(name) struct zone_padding name; 114#else 115#define ZONE_PADDING(name) 116#endif 117 118#ifdef CONFIG_NUMA 119enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_STAT_ITEMS 127}; 128#else 129#define NR_VM_NUMA_STAT_ITEMS 0 130#endif 131 132enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 NR_PAGETABLE, /* used for pagetables */ 144 NR_KERNEL_STACK_KB, /* measured in KiB */ 145 /* Second 128 byte cacheline */ 146 NR_BOUNCE, 147#if IS_ENABLED(CONFIG_ZSMALLOC) 148 NR_ZSPAGES, /* allocated in zsmalloc */ 149#endif 150 NR_FREE_CMA_PAGES, 151 NR_VM_ZONE_STAT_ITEMS }; 152 153enum node_stat_item { 154 NR_LRU_BASE, 155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 156 NR_ACTIVE_ANON, /* " " " " " */ 157 NR_INACTIVE_FILE, /* " " " " " */ 158 NR_ACTIVE_FILE, /* " " " " " */ 159 NR_UNEVICTABLE, /* " " " " " */ 160 NR_SLAB_RECLAIMABLE, 161 NR_SLAB_UNRECLAIMABLE, 162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 164 WORKINGSET_NODES, 165 WORKINGSET_REFAULT, 166 WORKINGSET_ACTIVATE, 167 WORKINGSET_RESTORE, 168 WORKINGSET_NODERECLAIM, 169 NR_ANON_MAPPED, /* Mapped anonymous pages */ 170 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 171 only modified from process context */ 172 NR_FILE_PAGES, 173 NR_FILE_DIRTY, 174 NR_WRITEBACK, 175 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 176 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 177 NR_SHMEM_THPS, 178 NR_SHMEM_PMDMAPPED, 179 NR_ANON_THPS, 180 NR_UNSTABLE_NFS, /* NFS unstable pages */ 181 NR_VMSCAN_WRITE, 182 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 183 NR_DIRTIED, /* page dirtyings since bootup */ 184 NR_WRITTEN, /* page writings since bootup */ 185 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 186 NR_VM_NODE_STAT_ITEMS 187}; 188 189/* 190 * We do arithmetic on the LRU lists in various places in the code, 191 * so it is important to keep the active lists LRU_ACTIVE higher in 192 * the array than the corresponding inactive lists, and to keep 193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 194 * 195 * This has to be kept in sync with the statistics in zone_stat_item 196 * above and the descriptions in vmstat_text in mm/vmstat.c 197 */ 198#define LRU_BASE 0 199#define LRU_ACTIVE 1 200#define LRU_FILE 2 201 202enum lru_list { 203 LRU_INACTIVE_ANON = LRU_BASE, 204 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 205 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 206 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 207 LRU_UNEVICTABLE, 208 NR_LRU_LISTS 209}; 210 211#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 212 213#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 214 215static inline int is_file_lru(enum lru_list lru) 216{ 217 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 218} 219 220static inline int is_active_lru(enum lru_list lru) 221{ 222 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 223} 224 225struct zone_reclaim_stat { 226 /* 227 * The pageout code in vmscan.c keeps track of how many of the 228 * mem/swap backed and file backed pages are referenced. 229 * The higher the rotated/scanned ratio, the more valuable 230 * that cache is. 231 * 232 * The anon LRU stats live in [0], file LRU stats in [1] 233 */ 234 unsigned long recent_rotated[2]; 235 unsigned long recent_scanned[2]; 236}; 237 238struct lruvec { 239 struct list_head lists[NR_LRU_LISTS]; 240 struct zone_reclaim_stat reclaim_stat; 241 /* Evictions & activations on the inactive file list */ 242 atomic_long_t inactive_age; 243 /* Refaults at the time of last reclaim cycle */ 244 unsigned long refaults; 245#ifdef CONFIG_MEMCG 246 struct pglist_data *pgdat; 247#endif 248}; 249 250/* Mask used at gathering information at once (see memcontrol.c) */ 251#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 252#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 253#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 254 255/* Isolate unmapped file */ 256#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 257/* Isolate for asynchronous migration */ 258#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 259/* Isolate unevictable pages */ 260#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 261 262/* LRU Isolation modes. */ 263typedef unsigned __bitwise isolate_mode_t; 264 265enum zone_watermarks { 266 WMARK_MIN, 267 WMARK_LOW, 268 WMARK_HIGH, 269 NR_WMARK 270}; 271 272#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 273#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 274#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 275 276struct per_cpu_pages { 277 int count; /* number of pages in the list */ 278 int high; /* high watermark, emptying needed */ 279 int batch; /* chunk size for buddy add/remove */ 280 281 /* Lists of pages, one per migrate type stored on the pcp-lists */ 282 struct list_head lists[MIGRATE_PCPTYPES]; 283}; 284 285struct per_cpu_pageset { 286 struct per_cpu_pages pcp; 287#ifdef CONFIG_NUMA 288 s8 expire; 289 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 290#endif 291#ifdef CONFIG_SMP 292 s8 stat_threshold; 293 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 294#endif 295}; 296 297struct per_cpu_nodestat { 298 s8 stat_threshold; 299 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 300}; 301 302#endif /* !__GENERATING_BOUNDS.H */ 303 304enum zone_type { 305#ifdef CONFIG_ZONE_DMA 306 /* 307 * ZONE_DMA is used when there are devices that are not able 308 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 309 * carve out the portion of memory that is needed for these devices. 310 * The range is arch specific. 311 * 312 * Some examples 313 * 314 * Architecture Limit 315 * --------------------------- 316 * parisc, ia64, sparc <4G 317 * s390 <2G 318 * arm Various 319 * alpha Unlimited or 0-16MB. 320 * 321 * i386, x86_64 and multiple other arches 322 * <16M. 323 */ 324 ZONE_DMA, 325#endif 326#ifdef CONFIG_ZONE_DMA32 327 /* 328 * x86_64 needs two ZONE_DMAs because it supports devices that are 329 * only able to do DMA to the lower 16M but also 32 bit devices that 330 * can only do DMA areas below 4G. 331 */ 332 ZONE_DMA32, 333#endif 334 /* 335 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 336 * performed on pages in ZONE_NORMAL if the DMA devices support 337 * transfers to all addressable memory. 338 */ 339 ZONE_NORMAL, 340#ifdef CONFIG_HIGHMEM 341 /* 342 * A memory area that is only addressable by the kernel through 343 * mapping portions into its own address space. This is for example 344 * used by i386 to allow the kernel to address the memory beyond 345 * 900MB. The kernel will set up special mappings (page 346 * table entries on i386) for each page that the kernel needs to 347 * access. 348 */ 349 ZONE_HIGHMEM, 350#endif 351 ZONE_MOVABLE, 352#ifdef CONFIG_ZONE_DEVICE 353 ZONE_DEVICE, 354#endif 355 __MAX_NR_ZONES 356 357}; 358 359#ifndef __GENERATING_BOUNDS_H 360 361struct zone { 362 /* Read-mostly fields */ 363 364 /* zone watermarks, access with *_wmark_pages(zone) macros */ 365 unsigned long watermark[NR_WMARK]; 366 367 unsigned long nr_reserved_highatomic; 368 369 /* 370 * We don't know if the memory that we're going to allocate will be 371 * freeable or/and it will be released eventually, so to avoid totally 372 * wasting several GB of ram we must reserve some of the lower zone 373 * memory (otherwise we risk to run OOM on the lower zones despite 374 * there being tons of freeable ram on the higher zones). This array is 375 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 376 * changes. 377 */ 378 long lowmem_reserve[MAX_NR_ZONES]; 379 380#ifdef CONFIG_NUMA 381 int node; 382#endif 383 struct pglist_data *zone_pgdat; 384 struct per_cpu_pageset __percpu *pageset; 385 386#ifndef CONFIG_SPARSEMEM 387 /* 388 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 389 * In SPARSEMEM, this map is stored in struct mem_section 390 */ 391 unsigned long *pageblock_flags; 392#endif /* CONFIG_SPARSEMEM */ 393 394 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 395 unsigned long zone_start_pfn; 396 397 /* 398 * spanned_pages is the total pages spanned by the zone, including 399 * holes, which is calculated as: 400 * spanned_pages = zone_end_pfn - zone_start_pfn; 401 * 402 * present_pages is physical pages existing within the zone, which 403 * is calculated as: 404 * present_pages = spanned_pages - absent_pages(pages in holes); 405 * 406 * managed_pages is present pages managed by the buddy system, which 407 * is calculated as (reserved_pages includes pages allocated by the 408 * bootmem allocator): 409 * managed_pages = present_pages - reserved_pages; 410 * 411 * So present_pages may be used by memory hotplug or memory power 412 * management logic to figure out unmanaged pages by checking 413 * (present_pages - managed_pages). And managed_pages should be used 414 * by page allocator and vm scanner to calculate all kinds of watermarks 415 * and thresholds. 416 * 417 * Locking rules: 418 * 419 * zone_start_pfn and spanned_pages are protected by span_seqlock. 420 * It is a seqlock because it has to be read outside of zone->lock, 421 * and it is done in the main allocator path. But, it is written 422 * quite infrequently. 423 * 424 * The span_seq lock is declared along with zone->lock because it is 425 * frequently read in proximity to zone->lock. It's good to 426 * give them a chance of being in the same cacheline. 427 * 428 * Write access to present_pages at runtime should be protected by 429 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 430 * present_pages should get_online_mems() to get a stable value. 431 * 432 * Read access to managed_pages should be safe because it's unsigned 433 * long. Write access to zone->managed_pages and totalram_pages are 434 * protected by managed_page_count_lock at runtime. Idealy only 435 * adjust_managed_page_count() should be used instead of directly 436 * touching zone->managed_pages and totalram_pages. 437 */ 438 unsigned long managed_pages; 439 unsigned long spanned_pages; 440 unsigned long present_pages; 441 442 const char *name; 443 444#ifdef CONFIG_MEMORY_ISOLATION 445 /* 446 * Number of isolated pageblock. It is used to solve incorrect 447 * freepage counting problem due to racy retrieving migratetype 448 * of pageblock. Protected by zone->lock. 449 */ 450 unsigned long nr_isolate_pageblock; 451#endif 452 453#ifdef CONFIG_MEMORY_HOTPLUG 454 /* see spanned/present_pages for more description */ 455 seqlock_t span_seqlock; 456#endif 457 458 int initialized; 459 460 /* Write-intensive fields used from the page allocator */ 461 ZONE_PADDING(_pad1_) 462 463 /* free areas of different sizes */ 464 struct free_area free_area[MAX_ORDER]; 465 466 /* zone flags, see below */ 467 unsigned long flags; 468 469 /* Primarily protects free_area */ 470 spinlock_t lock; 471 472 /* Write-intensive fields used by compaction and vmstats. */ 473 ZONE_PADDING(_pad2_) 474 475 /* 476 * When free pages are below this point, additional steps are taken 477 * when reading the number of free pages to avoid per-cpu counter 478 * drift allowing watermarks to be breached 479 */ 480 unsigned long percpu_drift_mark; 481 482#if defined CONFIG_COMPACTION || defined CONFIG_CMA 483 /* pfn where compaction free scanner should start */ 484 unsigned long compact_cached_free_pfn; 485 /* pfn where async and sync compaction migration scanner should start */ 486 unsigned long compact_cached_migrate_pfn[2]; 487#endif 488 489#ifdef CONFIG_COMPACTION 490 /* 491 * On compaction failure, 1<<compact_defer_shift compactions 492 * are skipped before trying again. The number attempted since 493 * last failure is tracked with compact_considered. 494 */ 495 unsigned int compact_considered; 496 unsigned int compact_defer_shift; 497 int compact_order_failed; 498#endif 499 500#if defined CONFIG_COMPACTION || defined CONFIG_CMA 501 /* Set to true when the PG_migrate_skip bits should be cleared */ 502 bool compact_blockskip_flush; 503#endif 504 505 bool contiguous; 506 507 ZONE_PADDING(_pad3_) 508 /* Zone statistics */ 509 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 510 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 511} ____cacheline_internodealigned_in_smp; 512 513enum pgdat_flags { 514 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 515 * a congested BDI 516 */ 517 PGDAT_DIRTY, /* reclaim scanning has recently found 518 * many dirty file pages at the tail 519 * of the LRU. 520 */ 521 PGDAT_WRITEBACK, /* reclaim scanning has recently found 522 * many pages under writeback 523 */ 524 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 525}; 526 527static inline unsigned long zone_end_pfn(const struct zone *zone) 528{ 529 return zone->zone_start_pfn + zone->spanned_pages; 530} 531 532static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 533{ 534 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 535} 536 537static inline bool zone_is_initialized(struct zone *zone) 538{ 539 return zone->initialized; 540} 541 542static inline bool zone_is_empty(struct zone *zone) 543{ 544 return zone->spanned_pages == 0; 545} 546 547/* 548 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 549 * intersection with the given zone 550 */ 551static inline bool zone_intersects(struct zone *zone, 552 unsigned long start_pfn, unsigned long nr_pages) 553{ 554 if (zone_is_empty(zone)) 555 return false; 556 if (start_pfn >= zone_end_pfn(zone) || 557 start_pfn + nr_pages <= zone->zone_start_pfn) 558 return false; 559 560 return true; 561} 562 563/* 564 * The "priority" of VM scanning is how much of the queues we will scan in one 565 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 566 * queues ("queue_length >> 12") during an aging round. 567 */ 568#define DEF_PRIORITY 12 569 570/* Maximum number of zones on a zonelist */ 571#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 572 573enum { 574 ZONELIST_FALLBACK, /* zonelist with fallback */ 575#ifdef CONFIG_NUMA 576 /* 577 * The NUMA zonelists are doubled because we need zonelists that 578 * restrict the allocations to a single node for __GFP_THISNODE. 579 */ 580 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 581#endif 582 MAX_ZONELISTS 583}; 584 585/* 586 * This struct contains information about a zone in a zonelist. It is stored 587 * here to avoid dereferences into large structures and lookups of tables 588 */ 589struct zoneref { 590 struct zone *zone; /* Pointer to actual zone */ 591 int zone_idx; /* zone_idx(zoneref->zone) */ 592}; 593 594/* 595 * One allocation request operates on a zonelist. A zonelist 596 * is a list of zones, the first one is the 'goal' of the 597 * allocation, the other zones are fallback zones, in decreasing 598 * priority. 599 * 600 * To speed the reading of the zonelist, the zonerefs contain the zone index 601 * of the entry being read. Helper functions to access information given 602 * a struct zoneref are 603 * 604 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 605 * zonelist_zone_idx() - Return the index of the zone for an entry 606 * zonelist_node_idx() - Return the index of the node for an entry 607 */ 608struct zonelist { 609 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 610}; 611 612#ifndef CONFIG_DISCONTIGMEM 613/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 614extern struct page *mem_map; 615#endif 616 617/* 618 * On NUMA machines, each NUMA node would have a pg_data_t to describe 619 * it's memory layout. On UMA machines there is a single pglist_data which 620 * describes the whole memory. 621 * 622 * Memory statistics and page replacement data structures are maintained on a 623 * per-zone basis. 624 */ 625struct bootmem_data; 626typedef struct pglist_data { 627 struct zone node_zones[MAX_NR_ZONES]; 628 struct zonelist node_zonelists[MAX_ZONELISTS]; 629 int nr_zones; 630#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 631 struct page *node_mem_map; 632#ifdef CONFIG_PAGE_EXTENSION 633 struct page_ext *node_page_ext; 634#endif 635#endif 636#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 637 /* 638 * Must be held any time you expect node_start_pfn, node_present_pages 639 * or node_spanned_pages stay constant. Holding this will also 640 * guarantee that any pfn_valid() stays that way. 641 * 642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 644 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 645 * 646 * Nests above zone->lock and zone->span_seqlock 647 */ 648 spinlock_t node_size_lock; 649#endif 650 unsigned long node_start_pfn; 651 unsigned long node_present_pages; /* total number of physical pages */ 652 unsigned long node_spanned_pages; /* total size of physical page 653 range, including holes */ 654 int node_id; 655 wait_queue_head_t kswapd_wait; 656 wait_queue_head_t pfmemalloc_wait; 657 struct task_struct *kswapd; /* Protected by 658 mem_hotplug_begin/end() */ 659 int kswapd_order; 660 enum zone_type kswapd_classzone_idx; 661 662 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 663 664#ifdef CONFIG_COMPACTION 665 int kcompactd_max_order; 666 enum zone_type kcompactd_classzone_idx; 667 wait_queue_head_t kcompactd_wait; 668 struct task_struct *kcompactd; 669#endif 670 /* 671 * This is a per-node reserve of pages that are not available 672 * to userspace allocations. 673 */ 674 unsigned long totalreserve_pages; 675 676#ifdef CONFIG_NUMA 677 /* 678 * zone reclaim becomes active if more unmapped pages exist. 679 */ 680 unsigned long min_unmapped_pages; 681 unsigned long min_slab_pages; 682#endif /* CONFIG_NUMA */ 683 684 /* Write-intensive fields used by page reclaim */ 685 ZONE_PADDING(_pad1_) 686 spinlock_t lru_lock; 687 688#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 689 /* 690 * If memory initialisation on large machines is deferred then this 691 * is the first PFN that needs to be initialised. 692 */ 693 unsigned long first_deferred_pfn; 694 /* Number of non-deferred pages */ 695 unsigned long static_init_pgcnt; 696#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 697 698#ifdef CONFIG_TRANSPARENT_HUGEPAGE 699 spinlock_t split_queue_lock; 700 struct list_head split_queue; 701 unsigned long split_queue_len; 702#endif 703 704 /* Fields commonly accessed by the page reclaim scanner */ 705 struct lruvec lruvec; 706 707 unsigned long flags; 708 709 ZONE_PADDING(_pad2_) 710 711 /* Per-node vmstats */ 712 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 713 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 714} pg_data_t; 715 716#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 717#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 718#ifdef CONFIG_FLAT_NODE_MEM_MAP 719#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 720#else 721#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 722#endif 723#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 724 725#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 726#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 727static inline spinlock_t *zone_lru_lock(struct zone *zone) 728{ 729 return &zone->zone_pgdat->lru_lock; 730} 731 732static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 733{ 734 return &pgdat->lruvec; 735} 736 737static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 738{ 739 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 740} 741 742static inline bool pgdat_is_empty(pg_data_t *pgdat) 743{ 744 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 745} 746 747#include <linux/memory_hotplug.h> 748 749void build_all_zonelists(pg_data_t *pgdat); 750void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 751 enum zone_type classzone_idx); 752bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 753 int classzone_idx, unsigned int alloc_flags, 754 long free_pages); 755bool zone_watermark_ok(struct zone *z, unsigned int order, 756 unsigned long mark, int classzone_idx, 757 unsigned int alloc_flags); 758bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 759 unsigned long mark, int classzone_idx); 760enum memmap_context { 761 MEMMAP_EARLY, 762 MEMMAP_HOTPLUG, 763}; 764extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 765 unsigned long size); 766 767extern void lruvec_init(struct lruvec *lruvec); 768 769static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 770{ 771#ifdef CONFIG_MEMCG 772 return lruvec->pgdat; 773#else 774 return container_of(lruvec, struct pglist_data, lruvec); 775#endif 776} 777 778extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 779 780#ifdef CONFIG_HAVE_MEMORY_PRESENT 781void memory_present(int nid, unsigned long start, unsigned long end); 782#else 783static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 784#endif 785 786#if defined(CONFIG_SPARSEMEM) 787void memblocks_present(void); 788#else 789static inline void memblocks_present(void) {} 790#endif 791 792#ifdef CONFIG_HAVE_MEMORYLESS_NODES 793int local_memory_node(int node_id); 794#else 795static inline int local_memory_node(int node_id) { return node_id; }; 796#endif 797 798/* 799 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 800 */ 801#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 802 803#ifdef CONFIG_ZONE_DEVICE 804static inline bool is_dev_zone(const struct zone *zone) 805{ 806 return zone_idx(zone) == ZONE_DEVICE; 807} 808#else 809static inline bool is_dev_zone(const struct zone *zone) 810{ 811 return false; 812} 813#endif 814 815/* 816 * Returns true if a zone has pages managed by the buddy allocator. 817 * All the reclaim decisions have to use this function rather than 818 * populated_zone(). If the whole zone is reserved then we can easily 819 * end up with populated_zone() && !managed_zone(). 820 */ 821static inline bool managed_zone(struct zone *zone) 822{ 823 return zone->managed_pages; 824} 825 826/* Returns true if a zone has memory */ 827static inline bool populated_zone(struct zone *zone) 828{ 829 return zone->present_pages; 830} 831 832#ifdef CONFIG_NUMA 833static inline int zone_to_nid(struct zone *zone) 834{ 835 return zone->node; 836} 837 838static inline void zone_set_nid(struct zone *zone, int nid) 839{ 840 zone->node = nid; 841} 842#else 843static inline int zone_to_nid(struct zone *zone) 844{ 845 return 0; 846} 847 848static inline void zone_set_nid(struct zone *zone, int nid) {} 849#endif 850 851extern int movable_zone; 852 853#ifdef CONFIG_HIGHMEM 854static inline int zone_movable_is_highmem(void) 855{ 856#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 857 return movable_zone == ZONE_HIGHMEM; 858#else 859 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 860#endif 861} 862#endif 863 864static inline int is_highmem_idx(enum zone_type idx) 865{ 866#ifdef CONFIG_HIGHMEM 867 return (idx == ZONE_HIGHMEM || 868 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 869#else 870 return 0; 871#endif 872} 873 874/** 875 * is_highmem - helper function to quickly check if a struct zone is a 876 * highmem zone or not. This is an attempt to keep references 877 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 878 * @zone - pointer to struct zone variable 879 */ 880static inline int is_highmem(struct zone *zone) 881{ 882#ifdef CONFIG_HIGHMEM 883 return is_highmem_idx(zone_idx(zone)); 884#else 885 return 0; 886#endif 887} 888 889/* These two functions are used to setup the per zone pages min values */ 890struct ctl_table; 891int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 892 void __user *, size_t *, loff_t *); 893int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 894 void __user *, size_t *, loff_t *); 895extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 896int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 897 void __user *, size_t *, loff_t *); 898int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 899 void __user *, size_t *, loff_t *); 900int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 901 void __user *, size_t *, loff_t *); 902int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 903 void __user *, size_t *, loff_t *); 904 905extern int numa_zonelist_order_handler(struct ctl_table *, int, 906 void __user *, size_t *, loff_t *); 907extern char numa_zonelist_order[]; 908#define NUMA_ZONELIST_ORDER_LEN 16 909 910#ifndef CONFIG_NEED_MULTIPLE_NODES 911 912extern struct pglist_data contig_page_data; 913#define NODE_DATA(nid) (&contig_page_data) 914#define NODE_MEM_MAP(nid) mem_map 915 916#else /* CONFIG_NEED_MULTIPLE_NODES */ 917 918#include <asm/mmzone.h> 919 920#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 921 922extern struct pglist_data *first_online_pgdat(void); 923extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 924extern struct zone *next_zone(struct zone *zone); 925 926/** 927 * for_each_online_pgdat - helper macro to iterate over all online nodes 928 * @pgdat - pointer to a pg_data_t variable 929 */ 930#define for_each_online_pgdat(pgdat) \ 931 for (pgdat = first_online_pgdat(); \ 932 pgdat; \ 933 pgdat = next_online_pgdat(pgdat)) 934/** 935 * for_each_zone - helper macro to iterate over all memory zones 936 * @zone - pointer to struct zone variable 937 * 938 * The user only needs to declare the zone variable, for_each_zone 939 * fills it in. 940 */ 941#define for_each_zone(zone) \ 942 for (zone = (first_online_pgdat())->node_zones; \ 943 zone; \ 944 zone = next_zone(zone)) 945 946#define for_each_populated_zone(zone) \ 947 for (zone = (first_online_pgdat())->node_zones; \ 948 zone; \ 949 zone = next_zone(zone)) \ 950 if (!populated_zone(zone)) \ 951 ; /* do nothing */ \ 952 else 953 954static inline struct zone *zonelist_zone(struct zoneref *zoneref) 955{ 956 return zoneref->zone; 957} 958 959static inline int zonelist_zone_idx(struct zoneref *zoneref) 960{ 961 return zoneref->zone_idx; 962} 963 964static inline int zonelist_node_idx(struct zoneref *zoneref) 965{ 966 return zone_to_nid(zoneref->zone); 967} 968 969struct zoneref *__next_zones_zonelist(struct zoneref *z, 970 enum zone_type highest_zoneidx, 971 nodemask_t *nodes); 972 973/** 974 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 975 * @z - The cursor used as a starting point for the search 976 * @highest_zoneidx - The zone index of the highest zone to return 977 * @nodes - An optional nodemask to filter the zonelist with 978 * 979 * This function returns the next zone at or below a given zone index that is 980 * within the allowed nodemask using a cursor as the starting point for the 981 * search. The zoneref returned is a cursor that represents the current zone 982 * being examined. It should be advanced by one before calling 983 * next_zones_zonelist again. 984 */ 985static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 986 enum zone_type highest_zoneidx, 987 nodemask_t *nodes) 988{ 989 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 990 return z; 991 return __next_zones_zonelist(z, highest_zoneidx, nodes); 992} 993 994/** 995 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 996 * @zonelist - The zonelist to search for a suitable zone 997 * @highest_zoneidx - The zone index of the highest zone to return 998 * @nodes - An optional nodemask to filter the zonelist with 999 * @return - Zoneref pointer for the first suitable zone found (see below) 1000 * 1001 * This function returns the first zone at or below a given zone index that is 1002 * within the allowed nodemask. The zoneref returned is a cursor that can be 1003 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1004 * one before calling. 1005 * 1006 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1007 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1008 * update due to cpuset modification. 1009 */ 1010static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1011 enum zone_type highest_zoneidx, 1012 nodemask_t *nodes) 1013{ 1014 return next_zones_zonelist(zonelist->_zonerefs, 1015 highest_zoneidx, nodes); 1016} 1017 1018/** 1019 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1020 * @zone - The current zone in the iterator 1021 * @z - The current pointer within zonelist->zones being iterated 1022 * @zlist - The zonelist being iterated 1023 * @highidx - The zone index of the highest zone to return 1024 * @nodemask - Nodemask allowed by the allocator 1025 * 1026 * This iterator iterates though all zones at or below a given zone index and 1027 * within a given nodemask 1028 */ 1029#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1030 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1031 zone; \ 1032 z = next_zones_zonelist(++z, highidx, nodemask), \ 1033 zone = zonelist_zone(z)) 1034 1035#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1036 for (zone = z->zone; \ 1037 zone; \ 1038 z = next_zones_zonelist(++z, highidx, nodemask), \ 1039 zone = zonelist_zone(z)) 1040 1041 1042/** 1043 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1044 * @zone - The current zone in the iterator 1045 * @z - The current pointer within zonelist->zones being iterated 1046 * @zlist - The zonelist being iterated 1047 * @highidx - The zone index of the highest zone to return 1048 * 1049 * This iterator iterates though all zones at or below a given zone index. 1050 */ 1051#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1052 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1053 1054#ifdef CONFIG_SPARSEMEM 1055#include <asm/sparsemem.h> 1056#endif 1057 1058#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1059 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1060static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1061{ 1062 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1063 return 0; 1064} 1065#endif 1066 1067#ifdef CONFIG_FLATMEM 1068#define pfn_to_nid(pfn) (0) 1069#endif 1070 1071#ifdef CONFIG_SPARSEMEM 1072 1073/* 1074 * SECTION_SHIFT #bits space required to store a section # 1075 * 1076 * PA_SECTION_SHIFT physical address to/from section number 1077 * PFN_SECTION_SHIFT pfn to/from section number 1078 */ 1079#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1080#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1081 1082#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1083 1084#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1085#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1086 1087#define SECTION_BLOCKFLAGS_BITS \ 1088 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1089 1090#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1091#error Allocator MAX_ORDER exceeds SECTION_SIZE 1092#endif 1093 1094static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1095{ 1096 return pfn >> PFN_SECTION_SHIFT; 1097} 1098static inline unsigned long section_nr_to_pfn(unsigned long sec) 1099{ 1100 return sec << PFN_SECTION_SHIFT; 1101} 1102 1103#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1104#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1105 1106struct page; 1107struct page_ext; 1108struct mem_section { 1109 /* 1110 * This is, logically, a pointer to an array of struct 1111 * pages. However, it is stored with some other magic. 1112 * (see sparse.c::sparse_init_one_section()) 1113 * 1114 * Additionally during early boot we encode node id of 1115 * the location of the section here to guide allocation. 1116 * (see sparse.c::memory_present()) 1117 * 1118 * Making it a UL at least makes someone do a cast 1119 * before using it wrong. 1120 */ 1121 unsigned long section_mem_map; 1122 1123 /* See declaration of similar field in struct zone */ 1124 unsigned long *pageblock_flags; 1125#ifdef CONFIG_PAGE_EXTENSION 1126 /* 1127 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1128 * section. (see page_ext.h about this.) 1129 */ 1130 struct page_ext *page_ext; 1131 unsigned long pad; 1132#endif 1133 /* 1134 * WARNING: mem_section must be a power-of-2 in size for the 1135 * calculation and use of SECTION_ROOT_MASK to make sense. 1136 */ 1137}; 1138 1139#ifdef CONFIG_SPARSEMEM_EXTREME 1140#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1141#else 1142#define SECTIONS_PER_ROOT 1 1143#endif 1144 1145#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1146#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1147#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1148 1149#ifdef CONFIG_SPARSEMEM_EXTREME 1150extern struct mem_section **mem_section; 1151#else 1152extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1153#endif 1154 1155static inline struct mem_section *__nr_to_section(unsigned long nr) 1156{ 1157#ifdef CONFIG_SPARSEMEM_EXTREME 1158 if (!mem_section) 1159 return NULL; 1160#endif 1161 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1162 return NULL; 1163 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1164} 1165extern int __section_nr(struct mem_section* ms); 1166extern unsigned long usemap_size(void); 1167 1168/* 1169 * We use the lower bits of the mem_map pointer to store 1170 * a little bit of information. The pointer is calculated 1171 * as mem_map - section_nr_to_pfn(pnum). The result is 1172 * aligned to the minimum alignment of the two values: 1173 * 1. All mem_map arrays are page-aligned. 1174 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1175 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1176 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1177 * worst combination is powerpc with 256k pages, 1178 * which results in PFN_SECTION_SHIFT equal 6. 1179 * To sum it up, at least 6 bits are available. 1180 */ 1181#define SECTION_MARKED_PRESENT (1UL<<0) 1182#define SECTION_HAS_MEM_MAP (1UL<<1) 1183#define SECTION_IS_ONLINE (1UL<<2) 1184#define SECTION_MAP_LAST_BIT (1UL<<3) 1185#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1186#define SECTION_NID_SHIFT 3 1187 1188static inline struct page *__section_mem_map_addr(struct mem_section *section) 1189{ 1190 unsigned long map = section->section_mem_map; 1191 map &= SECTION_MAP_MASK; 1192 return (struct page *)map; 1193} 1194 1195static inline int present_section(struct mem_section *section) 1196{ 1197 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1198} 1199 1200static inline int present_section_nr(unsigned long nr) 1201{ 1202 return present_section(__nr_to_section(nr)); 1203} 1204 1205static inline int valid_section(struct mem_section *section) 1206{ 1207 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1208} 1209 1210static inline int valid_section_nr(unsigned long nr) 1211{ 1212 return valid_section(__nr_to_section(nr)); 1213} 1214 1215static inline int online_section(struct mem_section *section) 1216{ 1217 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1218} 1219 1220static inline int online_section_nr(unsigned long nr) 1221{ 1222 return online_section(__nr_to_section(nr)); 1223} 1224 1225#ifdef CONFIG_MEMORY_HOTPLUG 1226void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1227#ifdef CONFIG_MEMORY_HOTREMOVE 1228void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1229#endif 1230#endif 1231 1232static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1233{ 1234 return __nr_to_section(pfn_to_section_nr(pfn)); 1235} 1236 1237extern int __highest_present_section_nr; 1238 1239#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1240static inline int pfn_valid(unsigned long pfn) 1241{ 1242 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1243 return 0; 1244 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1245} 1246#endif 1247 1248static inline int pfn_present(unsigned long pfn) 1249{ 1250 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1251 return 0; 1252 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1253} 1254 1255/* 1256 * These are _only_ used during initialisation, therefore they 1257 * can use __initdata ... They could have names to indicate 1258 * this restriction. 1259 */ 1260#ifdef CONFIG_NUMA 1261#define pfn_to_nid(pfn) \ 1262({ \ 1263 unsigned long __pfn_to_nid_pfn = (pfn); \ 1264 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1265}) 1266#else 1267#define pfn_to_nid(pfn) (0) 1268#endif 1269 1270#define early_pfn_valid(pfn) pfn_valid(pfn) 1271void sparse_init(void); 1272#else 1273#define sparse_init() do {} while (0) 1274#define sparse_index_init(_sec, _nid) do {} while (0) 1275#endif /* CONFIG_SPARSEMEM */ 1276 1277/* 1278 * During memory init memblocks map pfns to nids. The search is expensive and 1279 * this caches recent lookups. The implementation of __early_pfn_to_nid 1280 * may treat start/end as pfns or sections. 1281 */ 1282struct mminit_pfnnid_cache { 1283 unsigned long last_start; 1284 unsigned long last_end; 1285 int last_nid; 1286}; 1287 1288#ifndef early_pfn_valid 1289#define early_pfn_valid(pfn) (1) 1290#endif 1291 1292void memory_present(int nid, unsigned long start, unsigned long end); 1293 1294/* 1295 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1296 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1297 * pfn_valid_within() should be used in this case; we optimise this away 1298 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1299 */ 1300#ifdef CONFIG_HOLES_IN_ZONE 1301#define pfn_valid_within(pfn) pfn_valid(pfn) 1302#else 1303#define pfn_valid_within(pfn) (1) 1304#endif 1305 1306#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1307/* 1308 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1309 * associated with it or not. This means that a struct page exists for this 1310 * pfn. The caller cannot assume the page is fully initialized in general. 1311 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1312 * will ensure the struct page is fully online and initialized. Special pages 1313 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1314 * 1315 * In FLATMEM, it is expected that holes always have valid memmap as long as 1316 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1317 * that a valid section has a memmap for the entire section. 1318 * 1319 * However, an ARM, and maybe other embedded architectures in the future 1320 * free memmap backing holes to save memory on the assumption the memmap is 1321 * never used. The page_zone linkages are then broken even though pfn_valid() 1322 * returns true. A walker of the full memmap must then do this additional 1323 * check to ensure the memmap they are looking at is sane by making sure 1324 * the zone and PFN linkages are still valid. This is expensive, but walkers 1325 * of the full memmap are extremely rare. 1326 */ 1327bool memmap_valid_within(unsigned long pfn, 1328 struct page *page, struct zone *zone); 1329#else 1330static inline bool memmap_valid_within(unsigned long pfn, 1331 struct page *page, struct zone *zone) 1332{ 1333 return true; 1334} 1335#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1336 1337#endif /* !__GENERATING_BOUNDS.H */ 1338#endif /* !__ASSEMBLY__ */ 1339#endif /* _LINUX_MMZONE_H */