at v4.20 89 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29 30struct mempolicy; 31struct anon_vma; 32struct anon_vma_chain; 33struct file_ra_state; 34struct user_struct; 35struct writeback_control; 36struct bdi_writeback; 37 38void init_mm_internals(void); 39 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41extern unsigned long max_mapnr; 42 43static inline void set_max_mapnr(unsigned long limit) 44{ 45 max_mapnr = limit; 46} 47#else 48static inline void set_max_mapnr(unsigned long limit) { } 49#endif 50 51extern unsigned long totalram_pages; 52extern void * high_memory; 53extern int page_cluster; 54 55#ifdef CONFIG_SYSCTL 56extern int sysctl_legacy_va_layout; 57#else 58#define sysctl_legacy_va_layout 0 59#endif 60 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62extern const int mmap_rnd_bits_min; 63extern const int mmap_rnd_bits_max; 64extern int mmap_rnd_bits __read_mostly; 65#endif 66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67extern const int mmap_rnd_compat_bits_min; 68extern const int mmap_rnd_compat_bits_max; 69extern int mmap_rnd_compat_bits __read_mostly; 70#endif 71 72#include <asm/page.h> 73#include <asm/pgtable.h> 74#include <asm/processor.h> 75 76#ifndef __pa_symbol 77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78#endif 79 80#ifndef page_to_virt 81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82#endif 83 84#ifndef lm_alias 85#define lm_alias(x) __va(__pa_symbol(x)) 86#endif 87 88/* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95#ifndef mm_forbids_zeropage 96#define mm_forbids_zeropage(X) (0) 97#endif 98 99/* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104#ifndef mm_zero_struct_page 105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106#endif 107 108/* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124#define MAPCOUNT_ELF_CORE_MARGIN (5) 125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127extern int sysctl_max_map_count; 128 129extern unsigned long sysctl_user_reserve_kbytes; 130extern unsigned long sysctl_admin_reserve_kbytes; 131 132extern int sysctl_overcommit_memory; 133extern int sysctl_overcommit_ratio; 134extern unsigned long sysctl_overcommit_kbytes; 135 136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143/* to align the pointer to the (next) page boundary */ 144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149/* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160void vm_area_free(struct vm_area_struct *); 161 162#ifndef CONFIG_MMU 163extern struct rb_root nommu_region_tree; 164extern struct rw_semaphore nommu_region_sem; 165 166extern unsigned int kobjsize(const void *objp); 167#endif 168 169/* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173#define VM_NONE 0x00000000 174 175#define VM_READ 0x00000001 /* currently active flags */ 176#define VM_WRITE 0x00000002 177#define VM_EXEC 0x00000004 178#define VM_SHARED 0x00000008 179 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182#define VM_MAYWRITE 0x00000020 183#define VM_MAYEXEC 0x00000040 184#define VM_MAYSHARE 0x00000080 185 186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192#define VM_LOCKED 0x00002000 193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205#define VM_SYNC 0x00800000 /* Synchronous page faults */ 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210#ifdef CONFIG_MEM_SOFT_DIRTY 211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212#else 213# define VM_SOFTDIRTY 0 214#endif 215 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234#ifdef CONFIG_ARCH_HAS_PKEYS 235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240#ifdef CONFIG_PPC 241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242#else 243# define VM_PKEY_BIT4 0 244#endif 245#endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247#if defined(CONFIG_X86) 248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249#elif defined(CONFIG_PPC) 250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251#elif defined(CONFIG_PARISC) 252# define VM_GROWSUP VM_ARCH_1 253#elif defined(CONFIG_IA64) 254# define VM_GROWSUP VM_ARCH_1 255#elif defined(CONFIG_SPARC64) 256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257# define VM_ARCH_CLEAR VM_SPARC_ADI 258#elif !defined(CONFIG_MMU) 259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260#endif 261 262#if defined(CONFIG_X86_INTEL_MPX) 263/* MPX specific bounds table or bounds directory */ 264# define VM_MPX VM_HIGH_ARCH_4 265#else 266# define VM_MPX VM_NONE 267#endif 268 269#ifndef VM_GROWSUP 270# define VM_GROWSUP VM_NONE 271#endif 272 273/* Bits set in the VMA until the stack is in its final location */ 274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278#endif 279 280#ifdef CONFIG_STACK_GROWSUP 281#define VM_STACK VM_GROWSUP 282#else 283#define VM_STACK VM_GROWSDOWN 284#endif 285 286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288/* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294/* This mask defines which mm->def_flags a process can inherit its parent */ 295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297/* This mask is used to clear all the VMA flags used by mlock */ 298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300/* Arch-specific flags to clear when updating VM flags on protection change */ 301#ifndef VM_ARCH_CLEAR 302# define VM_ARCH_CLEAR VM_NONE 303#endif 304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306/* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310extern pgprot_t protection_map[16]; 311 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317#define FAULT_FLAG_TRIED 0x20 /* Second try */ 318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322#define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333/* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379}; 380 381/* page entry size for vm->huge_fault() */ 382enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386}; 387 388/* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423#ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445#endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453}; 454 455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 456{ 457 static const struct vm_operations_struct dummy_vm_ops = {}; 458 459 memset(vma, 0, sizeof(*vma)); 460 vma->vm_mm = mm; 461 vma->vm_ops = &dummy_vm_ops; 462 INIT_LIST_HEAD(&vma->anon_vma_chain); 463} 464 465static inline void vma_set_anonymous(struct vm_area_struct *vma) 466{ 467 vma->vm_ops = NULL; 468} 469 470/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 471#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 472 473struct mmu_gather; 474struct inode; 475 476#define page_private(page) ((page)->private) 477#define set_page_private(page, v) ((page)->private = (v)) 478 479#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 480static inline int pmd_devmap(pmd_t pmd) 481{ 482 return 0; 483} 484static inline int pud_devmap(pud_t pud) 485{ 486 return 0; 487} 488static inline int pgd_devmap(pgd_t pgd) 489{ 490 return 0; 491} 492#endif 493 494/* 495 * FIXME: take this include out, include page-flags.h in 496 * files which need it (119 of them) 497 */ 498#include <linux/page-flags.h> 499#include <linux/huge_mm.h> 500 501/* 502 * Methods to modify the page usage count. 503 * 504 * What counts for a page usage: 505 * - cache mapping (page->mapping) 506 * - private data (page->private) 507 * - page mapped in a task's page tables, each mapping 508 * is counted separately 509 * 510 * Also, many kernel routines increase the page count before a critical 511 * routine so they can be sure the page doesn't go away from under them. 512 */ 513 514/* 515 * Drop a ref, return true if the refcount fell to zero (the page has no users) 516 */ 517static inline int put_page_testzero(struct page *page) 518{ 519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 520 return page_ref_dec_and_test(page); 521} 522 523/* 524 * Try to grab a ref unless the page has a refcount of zero, return false if 525 * that is the case. 526 * This can be called when MMU is off so it must not access 527 * any of the virtual mappings. 528 */ 529static inline int get_page_unless_zero(struct page *page) 530{ 531 return page_ref_add_unless(page, 1, 0); 532} 533 534extern int page_is_ram(unsigned long pfn); 535 536enum { 537 REGION_INTERSECTS, 538 REGION_DISJOINT, 539 REGION_MIXED, 540}; 541 542int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 543 unsigned long desc); 544 545/* Support for virtually mapped pages */ 546struct page *vmalloc_to_page(const void *addr); 547unsigned long vmalloc_to_pfn(const void *addr); 548 549/* 550 * Determine if an address is within the vmalloc range 551 * 552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 553 * is no special casing required. 554 */ 555static inline bool is_vmalloc_addr(const void *x) 556{ 557#ifdef CONFIG_MMU 558 unsigned long addr = (unsigned long)x; 559 560 return addr >= VMALLOC_START && addr < VMALLOC_END; 561#else 562 return false; 563#endif 564} 565#ifdef CONFIG_MMU 566extern int is_vmalloc_or_module_addr(const void *x); 567#else 568static inline int is_vmalloc_or_module_addr(const void *x) 569{ 570 return 0; 571} 572#endif 573 574extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 575static inline void *kvmalloc(size_t size, gfp_t flags) 576{ 577 return kvmalloc_node(size, flags, NUMA_NO_NODE); 578} 579static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 580{ 581 return kvmalloc_node(size, flags | __GFP_ZERO, node); 582} 583static inline void *kvzalloc(size_t size, gfp_t flags) 584{ 585 return kvmalloc(size, flags | __GFP_ZERO); 586} 587 588static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 589{ 590 size_t bytes; 591 592 if (unlikely(check_mul_overflow(n, size, &bytes))) 593 return NULL; 594 595 return kvmalloc(bytes, flags); 596} 597 598static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 599{ 600 return kvmalloc_array(n, size, flags | __GFP_ZERO); 601} 602 603extern void kvfree(const void *addr); 604 605static inline atomic_t *compound_mapcount_ptr(struct page *page) 606{ 607 return &page[1].compound_mapcount; 608} 609 610static inline int compound_mapcount(struct page *page) 611{ 612 VM_BUG_ON_PAGE(!PageCompound(page), page); 613 page = compound_head(page); 614 return atomic_read(compound_mapcount_ptr(page)) + 1; 615} 616 617/* 618 * The atomic page->_mapcount, starts from -1: so that transitions 619 * both from it and to it can be tracked, using atomic_inc_and_test 620 * and atomic_add_negative(-1). 621 */ 622static inline void page_mapcount_reset(struct page *page) 623{ 624 atomic_set(&(page)->_mapcount, -1); 625} 626 627int __page_mapcount(struct page *page); 628 629static inline int page_mapcount(struct page *page) 630{ 631 VM_BUG_ON_PAGE(PageSlab(page), page); 632 633 if (unlikely(PageCompound(page))) 634 return __page_mapcount(page); 635 return atomic_read(&page->_mapcount) + 1; 636} 637 638#ifdef CONFIG_TRANSPARENT_HUGEPAGE 639int total_mapcount(struct page *page); 640int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 641#else 642static inline int total_mapcount(struct page *page) 643{ 644 return page_mapcount(page); 645} 646static inline int page_trans_huge_mapcount(struct page *page, 647 int *total_mapcount) 648{ 649 int mapcount = page_mapcount(page); 650 if (total_mapcount) 651 *total_mapcount = mapcount; 652 return mapcount; 653} 654#endif 655 656static inline struct page *virt_to_head_page(const void *x) 657{ 658 struct page *page = virt_to_page(x); 659 660 return compound_head(page); 661} 662 663void __put_page(struct page *page); 664 665void put_pages_list(struct list_head *pages); 666 667void split_page(struct page *page, unsigned int order); 668 669/* 670 * Compound pages have a destructor function. Provide a 671 * prototype for that function and accessor functions. 672 * These are _only_ valid on the head of a compound page. 673 */ 674typedef void compound_page_dtor(struct page *); 675 676/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 677enum compound_dtor_id { 678 NULL_COMPOUND_DTOR, 679 COMPOUND_PAGE_DTOR, 680#ifdef CONFIG_HUGETLB_PAGE 681 HUGETLB_PAGE_DTOR, 682#endif 683#ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 TRANSHUGE_PAGE_DTOR, 685#endif 686 NR_COMPOUND_DTORS, 687}; 688extern compound_page_dtor * const compound_page_dtors[]; 689 690static inline void set_compound_page_dtor(struct page *page, 691 enum compound_dtor_id compound_dtor) 692{ 693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 694 page[1].compound_dtor = compound_dtor; 695} 696 697static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 698{ 699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 700 return compound_page_dtors[page[1].compound_dtor]; 701} 702 703static inline unsigned int compound_order(struct page *page) 704{ 705 if (!PageHead(page)) 706 return 0; 707 return page[1].compound_order; 708} 709 710static inline void set_compound_order(struct page *page, unsigned int order) 711{ 712 page[1].compound_order = order; 713} 714 715void free_compound_page(struct page *page); 716 717#ifdef CONFIG_MMU 718/* 719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 720 * servicing faults for write access. In the normal case, do always want 721 * pte_mkwrite. But get_user_pages can cause write faults for mappings 722 * that do not have writing enabled, when used by access_process_vm. 723 */ 724static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 725{ 726 if (likely(vma->vm_flags & VM_WRITE)) 727 pte = pte_mkwrite(pte); 728 return pte; 729} 730 731vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 732 struct page *page); 733vm_fault_t finish_fault(struct vm_fault *vmf); 734vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 735#endif 736 737/* 738 * Multiple processes may "see" the same page. E.g. for untouched 739 * mappings of /dev/null, all processes see the same page full of 740 * zeroes, and text pages of executables and shared libraries have 741 * only one copy in memory, at most, normally. 742 * 743 * For the non-reserved pages, page_count(page) denotes a reference count. 744 * page_count() == 0 means the page is free. page->lru is then used for 745 * freelist management in the buddy allocator. 746 * page_count() > 0 means the page has been allocated. 747 * 748 * Pages are allocated by the slab allocator in order to provide memory 749 * to kmalloc and kmem_cache_alloc. In this case, the management of the 750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 751 * unless a particular usage is carefully commented. (the responsibility of 752 * freeing the kmalloc memory is the caller's, of course). 753 * 754 * A page may be used by anyone else who does a __get_free_page(). 755 * In this case, page_count still tracks the references, and should only 756 * be used through the normal accessor functions. The top bits of page->flags 757 * and page->virtual store page management information, but all other fields 758 * are unused and could be used privately, carefully. The management of this 759 * page is the responsibility of the one who allocated it, and those who have 760 * subsequently been given references to it. 761 * 762 * The other pages (we may call them "pagecache pages") are completely 763 * managed by the Linux memory manager: I/O, buffers, swapping etc. 764 * The following discussion applies only to them. 765 * 766 * A pagecache page contains an opaque `private' member, which belongs to the 767 * page's address_space. Usually, this is the address of a circular list of 768 * the page's disk buffers. PG_private must be set to tell the VM to call 769 * into the filesystem to release these pages. 770 * 771 * A page may belong to an inode's memory mapping. In this case, page->mapping 772 * is the pointer to the inode, and page->index is the file offset of the page, 773 * in units of PAGE_SIZE. 774 * 775 * If pagecache pages are not associated with an inode, they are said to be 776 * anonymous pages. These may become associated with the swapcache, and in that 777 * case PG_swapcache is set, and page->private is an offset into the swapcache. 778 * 779 * In either case (swapcache or inode backed), the pagecache itself holds one 780 * reference to the page. Setting PG_private should also increment the 781 * refcount. The each user mapping also has a reference to the page. 782 * 783 * The pagecache pages are stored in a per-mapping radix tree, which is 784 * rooted at mapping->i_pages, and indexed by offset. 785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 786 * lists, we instead now tag pages as dirty/writeback in the radix tree. 787 * 788 * All pagecache pages may be subject to I/O: 789 * - inode pages may need to be read from disk, 790 * - inode pages which have been modified and are MAP_SHARED may need 791 * to be written back to the inode on disk, 792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 793 * modified may need to be swapped out to swap space and (later) to be read 794 * back into memory. 795 */ 796 797/* 798 * The zone field is never updated after free_area_init_core() 799 * sets it, so none of the operations on it need to be atomic. 800 */ 801 802/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 803#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 804#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 805#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 806#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 807 808/* 809 * Define the bit shifts to access each section. For non-existent 810 * sections we define the shift as 0; that plus a 0 mask ensures 811 * the compiler will optimise away reference to them. 812 */ 813#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 814#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 815#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 816#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 817 818/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 819#ifdef NODE_NOT_IN_PAGE_FLAGS 820#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 821#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 822 SECTIONS_PGOFF : ZONES_PGOFF) 823#else 824#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 825#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 826 NODES_PGOFF : ZONES_PGOFF) 827#endif 828 829#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 830 831#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 832#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 833#endif 834 835#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 836#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 837#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 838#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 839#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 840 841static inline enum zone_type page_zonenum(const struct page *page) 842{ 843 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 844} 845 846#ifdef CONFIG_ZONE_DEVICE 847static inline bool is_zone_device_page(const struct page *page) 848{ 849 return page_zonenum(page) == ZONE_DEVICE; 850} 851extern void memmap_init_zone_device(struct zone *, unsigned long, 852 unsigned long, struct dev_pagemap *); 853#else 854static inline bool is_zone_device_page(const struct page *page) 855{ 856 return false; 857} 858#endif 859 860#ifdef CONFIG_DEV_PAGEMAP_OPS 861void dev_pagemap_get_ops(void); 862void dev_pagemap_put_ops(void); 863void __put_devmap_managed_page(struct page *page); 864DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 865static inline bool put_devmap_managed_page(struct page *page) 866{ 867 if (!static_branch_unlikely(&devmap_managed_key)) 868 return false; 869 if (!is_zone_device_page(page)) 870 return false; 871 switch (page->pgmap->type) { 872 case MEMORY_DEVICE_PRIVATE: 873 case MEMORY_DEVICE_PUBLIC: 874 case MEMORY_DEVICE_FS_DAX: 875 __put_devmap_managed_page(page); 876 return true; 877 default: 878 break; 879 } 880 return false; 881} 882 883static inline bool is_device_private_page(const struct page *page) 884{ 885 return is_zone_device_page(page) && 886 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 887} 888 889static inline bool is_device_public_page(const struct page *page) 890{ 891 return is_zone_device_page(page) && 892 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 893} 894 895#ifdef CONFIG_PCI_P2PDMA 896static inline bool is_pci_p2pdma_page(const struct page *page) 897{ 898 return is_zone_device_page(page) && 899 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 900} 901#else /* CONFIG_PCI_P2PDMA */ 902static inline bool is_pci_p2pdma_page(const struct page *page) 903{ 904 return false; 905} 906#endif /* CONFIG_PCI_P2PDMA */ 907 908#else /* CONFIG_DEV_PAGEMAP_OPS */ 909static inline void dev_pagemap_get_ops(void) 910{ 911} 912 913static inline void dev_pagemap_put_ops(void) 914{ 915} 916 917static inline bool put_devmap_managed_page(struct page *page) 918{ 919 return false; 920} 921 922static inline bool is_device_private_page(const struct page *page) 923{ 924 return false; 925} 926 927static inline bool is_device_public_page(const struct page *page) 928{ 929 return false; 930} 931 932static inline bool is_pci_p2pdma_page(const struct page *page) 933{ 934 return false; 935} 936#endif /* CONFIG_DEV_PAGEMAP_OPS */ 937 938static inline void get_page(struct page *page) 939{ 940 page = compound_head(page); 941 /* 942 * Getting a normal page or the head of a compound page 943 * requires to already have an elevated page->_refcount. 944 */ 945 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 946 page_ref_inc(page); 947} 948 949static inline void put_page(struct page *page) 950{ 951 page = compound_head(page); 952 953 /* 954 * For devmap managed pages we need to catch refcount transition from 955 * 2 to 1, when refcount reach one it means the page is free and we 956 * need to inform the device driver through callback. See 957 * include/linux/memremap.h and HMM for details. 958 */ 959 if (put_devmap_managed_page(page)) 960 return; 961 962 if (put_page_testzero(page)) 963 __put_page(page); 964} 965 966#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 967#define SECTION_IN_PAGE_FLAGS 968#endif 969 970/* 971 * The identification function is mainly used by the buddy allocator for 972 * determining if two pages could be buddies. We are not really identifying 973 * the zone since we could be using the section number id if we do not have 974 * node id available in page flags. 975 * We only guarantee that it will return the same value for two combinable 976 * pages in a zone. 977 */ 978static inline int page_zone_id(struct page *page) 979{ 980 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 981} 982 983#ifdef NODE_NOT_IN_PAGE_FLAGS 984extern int page_to_nid(const struct page *page); 985#else 986static inline int page_to_nid(const struct page *page) 987{ 988 struct page *p = (struct page *)page; 989 990 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 991} 992#endif 993 994#ifdef CONFIG_NUMA_BALANCING 995static inline int cpu_pid_to_cpupid(int cpu, int pid) 996{ 997 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 998} 999 1000static inline int cpupid_to_pid(int cpupid) 1001{ 1002 return cpupid & LAST__PID_MASK; 1003} 1004 1005static inline int cpupid_to_cpu(int cpupid) 1006{ 1007 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1008} 1009 1010static inline int cpupid_to_nid(int cpupid) 1011{ 1012 return cpu_to_node(cpupid_to_cpu(cpupid)); 1013} 1014 1015static inline bool cpupid_pid_unset(int cpupid) 1016{ 1017 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1018} 1019 1020static inline bool cpupid_cpu_unset(int cpupid) 1021{ 1022 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1023} 1024 1025static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1026{ 1027 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1028} 1029 1030#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1031#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1032static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1033{ 1034 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1035} 1036 1037static inline int page_cpupid_last(struct page *page) 1038{ 1039 return page->_last_cpupid; 1040} 1041static inline void page_cpupid_reset_last(struct page *page) 1042{ 1043 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1044} 1045#else 1046static inline int page_cpupid_last(struct page *page) 1047{ 1048 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1049} 1050 1051extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1052 1053static inline void page_cpupid_reset_last(struct page *page) 1054{ 1055 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1056} 1057#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1058#else /* !CONFIG_NUMA_BALANCING */ 1059static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1060{ 1061 return page_to_nid(page); /* XXX */ 1062} 1063 1064static inline int page_cpupid_last(struct page *page) 1065{ 1066 return page_to_nid(page); /* XXX */ 1067} 1068 1069static inline int cpupid_to_nid(int cpupid) 1070{ 1071 return -1; 1072} 1073 1074static inline int cpupid_to_pid(int cpupid) 1075{ 1076 return -1; 1077} 1078 1079static inline int cpupid_to_cpu(int cpupid) 1080{ 1081 return -1; 1082} 1083 1084static inline int cpu_pid_to_cpupid(int nid, int pid) 1085{ 1086 return -1; 1087} 1088 1089static inline bool cpupid_pid_unset(int cpupid) 1090{ 1091 return 1; 1092} 1093 1094static inline void page_cpupid_reset_last(struct page *page) 1095{ 1096} 1097 1098static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1099{ 1100 return false; 1101} 1102#endif /* CONFIG_NUMA_BALANCING */ 1103 1104static inline struct zone *page_zone(const struct page *page) 1105{ 1106 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1107} 1108 1109static inline pg_data_t *page_pgdat(const struct page *page) 1110{ 1111 return NODE_DATA(page_to_nid(page)); 1112} 1113 1114#ifdef SECTION_IN_PAGE_FLAGS 1115static inline void set_page_section(struct page *page, unsigned long section) 1116{ 1117 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1118 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1119} 1120 1121static inline unsigned long page_to_section(const struct page *page) 1122{ 1123 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1124} 1125#endif 1126 1127static inline void set_page_zone(struct page *page, enum zone_type zone) 1128{ 1129 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1130 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1131} 1132 1133static inline void set_page_node(struct page *page, unsigned long node) 1134{ 1135 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1136 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1137} 1138 1139static inline void set_page_links(struct page *page, enum zone_type zone, 1140 unsigned long node, unsigned long pfn) 1141{ 1142 set_page_zone(page, zone); 1143 set_page_node(page, node); 1144#ifdef SECTION_IN_PAGE_FLAGS 1145 set_page_section(page, pfn_to_section_nr(pfn)); 1146#endif 1147} 1148 1149#ifdef CONFIG_MEMCG 1150static inline struct mem_cgroup *page_memcg(struct page *page) 1151{ 1152 return page->mem_cgroup; 1153} 1154static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1155{ 1156 WARN_ON_ONCE(!rcu_read_lock_held()); 1157 return READ_ONCE(page->mem_cgroup); 1158} 1159#else 1160static inline struct mem_cgroup *page_memcg(struct page *page) 1161{ 1162 return NULL; 1163} 1164static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1165{ 1166 WARN_ON_ONCE(!rcu_read_lock_held()); 1167 return NULL; 1168} 1169#endif 1170 1171/* 1172 * Some inline functions in vmstat.h depend on page_zone() 1173 */ 1174#include <linux/vmstat.h> 1175 1176static __always_inline void *lowmem_page_address(const struct page *page) 1177{ 1178 return page_to_virt(page); 1179} 1180 1181#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1182#define HASHED_PAGE_VIRTUAL 1183#endif 1184 1185#if defined(WANT_PAGE_VIRTUAL) 1186static inline void *page_address(const struct page *page) 1187{ 1188 return page->virtual; 1189} 1190static inline void set_page_address(struct page *page, void *address) 1191{ 1192 page->virtual = address; 1193} 1194#define page_address_init() do { } while(0) 1195#endif 1196 1197#if defined(HASHED_PAGE_VIRTUAL) 1198void *page_address(const struct page *page); 1199void set_page_address(struct page *page, void *virtual); 1200void page_address_init(void); 1201#endif 1202 1203#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1204#define page_address(page) lowmem_page_address(page) 1205#define set_page_address(page, address) do { } while(0) 1206#define page_address_init() do { } while(0) 1207#endif 1208 1209extern void *page_rmapping(struct page *page); 1210extern struct anon_vma *page_anon_vma(struct page *page); 1211extern struct address_space *page_mapping(struct page *page); 1212 1213extern struct address_space *__page_file_mapping(struct page *); 1214 1215static inline 1216struct address_space *page_file_mapping(struct page *page) 1217{ 1218 if (unlikely(PageSwapCache(page))) 1219 return __page_file_mapping(page); 1220 1221 return page->mapping; 1222} 1223 1224extern pgoff_t __page_file_index(struct page *page); 1225 1226/* 1227 * Return the pagecache index of the passed page. Regular pagecache pages 1228 * use ->index whereas swapcache pages use swp_offset(->private) 1229 */ 1230static inline pgoff_t page_index(struct page *page) 1231{ 1232 if (unlikely(PageSwapCache(page))) 1233 return __page_file_index(page); 1234 return page->index; 1235} 1236 1237bool page_mapped(struct page *page); 1238struct address_space *page_mapping(struct page *page); 1239struct address_space *page_mapping_file(struct page *page); 1240 1241/* 1242 * Return true only if the page has been allocated with 1243 * ALLOC_NO_WATERMARKS and the low watermark was not 1244 * met implying that the system is under some pressure. 1245 */ 1246static inline bool page_is_pfmemalloc(struct page *page) 1247{ 1248 /* 1249 * Page index cannot be this large so this must be 1250 * a pfmemalloc page. 1251 */ 1252 return page->index == -1UL; 1253} 1254 1255/* 1256 * Only to be called by the page allocator on a freshly allocated 1257 * page. 1258 */ 1259static inline void set_page_pfmemalloc(struct page *page) 1260{ 1261 page->index = -1UL; 1262} 1263 1264static inline void clear_page_pfmemalloc(struct page *page) 1265{ 1266 page->index = 0; 1267} 1268 1269/* 1270 * Different kinds of faults, as returned by handle_mm_fault(). 1271 * Used to decide whether a process gets delivered SIGBUS or 1272 * just gets major/minor fault counters bumped up. 1273 */ 1274 1275#define VM_FAULT_OOM 0x0001 1276#define VM_FAULT_SIGBUS 0x0002 1277#define VM_FAULT_MAJOR 0x0004 1278#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1279#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1280#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1281#define VM_FAULT_SIGSEGV 0x0040 1282 1283#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1284#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1285#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1286#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1287#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1288#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1289 * and needs fsync() to complete (for 1290 * synchronous page faults in DAX) */ 1291 1292#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1293 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1294 VM_FAULT_FALLBACK) 1295 1296#define VM_FAULT_RESULT_TRACE \ 1297 { VM_FAULT_OOM, "OOM" }, \ 1298 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1299 { VM_FAULT_MAJOR, "MAJOR" }, \ 1300 { VM_FAULT_WRITE, "WRITE" }, \ 1301 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1302 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1303 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1304 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1305 { VM_FAULT_LOCKED, "LOCKED" }, \ 1306 { VM_FAULT_RETRY, "RETRY" }, \ 1307 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1308 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1309 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1310 1311/* Encode hstate index for a hwpoisoned large page */ 1312#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1313#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1314 1315/* 1316 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1317 */ 1318extern void pagefault_out_of_memory(void); 1319 1320#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1321 1322/* 1323 * Flags passed to show_mem() and show_free_areas() to suppress output in 1324 * various contexts. 1325 */ 1326#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1327 1328extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1329 1330extern bool can_do_mlock(void); 1331extern int user_shm_lock(size_t, struct user_struct *); 1332extern void user_shm_unlock(size_t, struct user_struct *); 1333 1334/* 1335 * Parameter block passed down to zap_pte_range in exceptional cases. 1336 */ 1337struct zap_details { 1338 struct address_space *check_mapping; /* Check page->mapping if set */ 1339 pgoff_t first_index; /* Lowest page->index to unmap */ 1340 pgoff_t last_index; /* Highest page->index to unmap */ 1341}; 1342 1343struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1344 pte_t pte, bool with_public_device); 1345#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1346 1347struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1348 pmd_t pmd); 1349 1350void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1351 unsigned long size); 1352void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1353 unsigned long size); 1354void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1355 unsigned long start, unsigned long end); 1356 1357/** 1358 * mm_walk - callbacks for walk_page_range 1359 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1360 * this handler should only handle pud_trans_huge() puds. 1361 * the pmd_entry or pte_entry callbacks will be used for 1362 * regular PUDs. 1363 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1364 * this handler is required to be able to handle 1365 * pmd_trans_huge() pmds. They may simply choose to 1366 * split_huge_page() instead of handling it explicitly. 1367 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1368 * @pte_hole: if set, called for each hole at all levels 1369 * @hugetlb_entry: if set, called for each hugetlb entry 1370 * @test_walk: caller specific callback function to determine whether 1371 * we walk over the current vma or not. Returning 0 1372 * value means "do page table walk over the current vma," 1373 * and a negative one means "abort current page table walk 1374 * right now." 1 means "skip the current vma." 1375 * @mm: mm_struct representing the target process of page table walk 1376 * @vma: vma currently walked (NULL if walking outside vmas) 1377 * @private: private data for callbacks' usage 1378 * 1379 * (see the comment on walk_page_range() for more details) 1380 */ 1381struct mm_walk { 1382 int (*pud_entry)(pud_t *pud, unsigned long addr, 1383 unsigned long next, struct mm_walk *walk); 1384 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1385 unsigned long next, struct mm_walk *walk); 1386 int (*pte_entry)(pte_t *pte, unsigned long addr, 1387 unsigned long next, struct mm_walk *walk); 1388 int (*pte_hole)(unsigned long addr, unsigned long next, 1389 struct mm_walk *walk); 1390 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1391 unsigned long addr, unsigned long next, 1392 struct mm_walk *walk); 1393 int (*test_walk)(unsigned long addr, unsigned long next, 1394 struct mm_walk *walk); 1395 struct mm_struct *mm; 1396 struct vm_area_struct *vma; 1397 void *private; 1398}; 1399 1400int walk_page_range(unsigned long addr, unsigned long end, 1401 struct mm_walk *walk); 1402int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1403void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1404 unsigned long end, unsigned long floor, unsigned long ceiling); 1405int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1406 struct vm_area_struct *vma); 1407int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1408 unsigned long *start, unsigned long *end, 1409 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1410int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1411 unsigned long *pfn); 1412int follow_phys(struct vm_area_struct *vma, unsigned long address, 1413 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1414int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1415 void *buf, int len, int write); 1416 1417extern void truncate_pagecache(struct inode *inode, loff_t new); 1418extern void truncate_setsize(struct inode *inode, loff_t newsize); 1419void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1420void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1421int truncate_inode_page(struct address_space *mapping, struct page *page); 1422int generic_error_remove_page(struct address_space *mapping, struct page *page); 1423int invalidate_inode_page(struct page *page); 1424 1425#ifdef CONFIG_MMU 1426extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1427 unsigned long address, unsigned int flags); 1428extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1429 unsigned long address, unsigned int fault_flags, 1430 bool *unlocked); 1431void unmap_mapping_pages(struct address_space *mapping, 1432 pgoff_t start, pgoff_t nr, bool even_cows); 1433void unmap_mapping_range(struct address_space *mapping, 1434 loff_t const holebegin, loff_t const holelen, int even_cows); 1435#else 1436static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1437 unsigned long address, unsigned int flags) 1438{ 1439 /* should never happen if there's no MMU */ 1440 BUG(); 1441 return VM_FAULT_SIGBUS; 1442} 1443static inline int fixup_user_fault(struct task_struct *tsk, 1444 struct mm_struct *mm, unsigned long address, 1445 unsigned int fault_flags, bool *unlocked) 1446{ 1447 /* should never happen if there's no MMU */ 1448 BUG(); 1449 return -EFAULT; 1450} 1451static inline void unmap_mapping_pages(struct address_space *mapping, 1452 pgoff_t start, pgoff_t nr, bool even_cows) { } 1453static inline void unmap_mapping_range(struct address_space *mapping, 1454 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1455#endif 1456 1457static inline void unmap_shared_mapping_range(struct address_space *mapping, 1458 loff_t const holebegin, loff_t const holelen) 1459{ 1460 unmap_mapping_range(mapping, holebegin, holelen, 0); 1461} 1462 1463extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1464 void *buf, int len, unsigned int gup_flags); 1465extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1466 void *buf, int len, unsigned int gup_flags); 1467extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1468 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1469 1470long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1471 unsigned long start, unsigned long nr_pages, 1472 unsigned int gup_flags, struct page **pages, 1473 struct vm_area_struct **vmas, int *locked); 1474long get_user_pages(unsigned long start, unsigned long nr_pages, 1475 unsigned int gup_flags, struct page **pages, 1476 struct vm_area_struct **vmas); 1477long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1478 unsigned int gup_flags, struct page **pages, int *locked); 1479long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1480 struct page **pages, unsigned int gup_flags); 1481#ifdef CONFIG_FS_DAX 1482long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1483 unsigned int gup_flags, struct page **pages, 1484 struct vm_area_struct **vmas); 1485#else 1486static inline long get_user_pages_longterm(unsigned long start, 1487 unsigned long nr_pages, unsigned int gup_flags, 1488 struct page **pages, struct vm_area_struct **vmas) 1489{ 1490 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1491} 1492#endif /* CONFIG_FS_DAX */ 1493 1494int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1495 struct page **pages); 1496 1497/* Container for pinned pfns / pages */ 1498struct frame_vector { 1499 unsigned int nr_allocated; /* Number of frames we have space for */ 1500 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1501 bool got_ref; /* Did we pin pages by getting page ref? */ 1502 bool is_pfns; /* Does array contain pages or pfns? */ 1503 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1504 * pfns_vector_pages() or pfns_vector_pfns() 1505 * for access */ 1506}; 1507 1508struct frame_vector *frame_vector_create(unsigned int nr_frames); 1509void frame_vector_destroy(struct frame_vector *vec); 1510int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1511 unsigned int gup_flags, struct frame_vector *vec); 1512void put_vaddr_frames(struct frame_vector *vec); 1513int frame_vector_to_pages(struct frame_vector *vec); 1514void frame_vector_to_pfns(struct frame_vector *vec); 1515 1516static inline unsigned int frame_vector_count(struct frame_vector *vec) 1517{ 1518 return vec->nr_frames; 1519} 1520 1521static inline struct page **frame_vector_pages(struct frame_vector *vec) 1522{ 1523 if (vec->is_pfns) { 1524 int err = frame_vector_to_pages(vec); 1525 1526 if (err) 1527 return ERR_PTR(err); 1528 } 1529 return (struct page **)(vec->ptrs); 1530} 1531 1532static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1533{ 1534 if (!vec->is_pfns) 1535 frame_vector_to_pfns(vec); 1536 return (unsigned long *)(vec->ptrs); 1537} 1538 1539struct kvec; 1540int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1541 struct page **pages); 1542int get_kernel_page(unsigned long start, int write, struct page **pages); 1543struct page *get_dump_page(unsigned long addr); 1544 1545extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1546extern void do_invalidatepage(struct page *page, unsigned int offset, 1547 unsigned int length); 1548 1549void __set_page_dirty(struct page *, struct address_space *, int warn); 1550int __set_page_dirty_nobuffers(struct page *page); 1551int __set_page_dirty_no_writeback(struct page *page); 1552int redirty_page_for_writepage(struct writeback_control *wbc, 1553 struct page *page); 1554void account_page_dirtied(struct page *page, struct address_space *mapping); 1555void account_page_cleaned(struct page *page, struct address_space *mapping, 1556 struct bdi_writeback *wb); 1557int set_page_dirty(struct page *page); 1558int set_page_dirty_lock(struct page *page); 1559void __cancel_dirty_page(struct page *page); 1560static inline void cancel_dirty_page(struct page *page) 1561{ 1562 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1563 if (PageDirty(page)) 1564 __cancel_dirty_page(page); 1565} 1566int clear_page_dirty_for_io(struct page *page); 1567 1568int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1569 1570static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1571{ 1572 return !vma->vm_ops; 1573} 1574 1575#ifdef CONFIG_SHMEM 1576/* 1577 * The vma_is_shmem is not inline because it is used only by slow 1578 * paths in userfault. 1579 */ 1580bool vma_is_shmem(struct vm_area_struct *vma); 1581#else 1582static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1583#endif 1584 1585int vma_is_stack_for_current(struct vm_area_struct *vma); 1586 1587extern unsigned long move_page_tables(struct vm_area_struct *vma, 1588 unsigned long old_addr, struct vm_area_struct *new_vma, 1589 unsigned long new_addr, unsigned long len, 1590 bool need_rmap_locks); 1591extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1592 unsigned long end, pgprot_t newprot, 1593 int dirty_accountable, int prot_numa); 1594extern int mprotect_fixup(struct vm_area_struct *vma, 1595 struct vm_area_struct **pprev, unsigned long start, 1596 unsigned long end, unsigned long newflags); 1597 1598/* 1599 * doesn't attempt to fault and will return short. 1600 */ 1601int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1602 struct page **pages); 1603/* 1604 * per-process(per-mm_struct) statistics. 1605 */ 1606static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1607{ 1608 long val = atomic_long_read(&mm->rss_stat.count[member]); 1609 1610#ifdef SPLIT_RSS_COUNTING 1611 /* 1612 * counter is updated in asynchronous manner and may go to minus. 1613 * But it's never be expected number for users. 1614 */ 1615 if (val < 0) 1616 val = 0; 1617#endif 1618 return (unsigned long)val; 1619} 1620 1621static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1622{ 1623 atomic_long_add(value, &mm->rss_stat.count[member]); 1624} 1625 1626static inline void inc_mm_counter(struct mm_struct *mm, int member) 1627{ 1628 atomic_long_inc(&mm->rss_stat.count[member]); 1629} 1630 1631static inline void dec_mm_counter(struct mm_struct *mm, int member) 1632{ 1633 atomic_long_dec(&mm->rss_stat.count[member]); 1634} 1635 1636/* Optimized variant when page is already known not to be PageAnon */ 1637static inline int mm_counter_file(struct page *page) 1638{ 1639 if (PageSwapBacked(page)) 1640 return MM_SHMEMPAGES; 1641 return MM_FILEPAGES; 1642} 1643 1644static inline int mm_counter(struct page *page) 1645{ 1646 if (PageAnon(page)) 1647 return MM_ANONPAGES; 1648 return mm_counter_file(page); 1649} 1650 1651static inline unsigned long get_mm_rss(struct mm_struct *mm) 1652{ 1653 return get_mm_counter(mm, MM_FILEPAGES) + 1654 get_mm_counter(mm, MM_ANONPAGES) + 1655 get_mm_counter(mm, MM_SHMEMPAGES); 1656} 1657 1658static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1659{ 1660 return max(mm->hiwater_rss, get_mm_rss(mm)); 1661} 1662 1663static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1664{ 1665 return max(mm->hiwater_vm, mm->total_vm); 1666} 1667 1668static inline void update_hiwater_rss(struct mm_struct *mm) 1669{ 1670 unsigned long _rss = get_mm_rss(mm); 1671 1672 if ((mm)->hiwater_rss < _rss) 1673 (mm)->hiwater_rss = _rss; 1674} 1675 1676static inline void update_hiwater_vm(struct mm_struct *mm) 1677{ 1678 if (mm->hiwater_vm < mm->total_vm) 1679 mm->hiwater_vm = mm->total_vm; 1680} 1681 1682static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1683{ 1684 mm->hiwater_rss = get_mm_rss(mm); 1685} 1686 1687static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1688 struct mm_struct *mm) 1689{ 1690 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1691 1692 if (*maxrss < hiwater_rss) 1693 *maxrss = hiwater_rss; 1694} 1695 1696#if defined(SPLIT_RSS_COUNTING) 1697void sync_mm_rss(struct mm_struct *mm); 1698#else 1699static inline void sync_mm_rss(struct mm_struct *mm) 1700{ 1701} 1702#endif 1703 1704#ifndef __HAVE_ARCH_PTE_DEVMAP 1705static inline int pte_devmap(pte_t pte) 1706{ 1707 return 0; 1708} 1709#endif 1710 1711int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1712 1713extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1714 spinlock_t **ptl); 1715static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1716 spinlock_t **ptl) 1717{ 1718 pte_t *ptep; 1719 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1720 return ptep; 1721} 1722 1723#ifdef __PAGETABLE_P4D_FOLDED 1724static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1725 unsigned long address) 1726{ 1727 return 0; 1728} 1729#else 1730int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1731#endif 1732 1733#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1734static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1735 unsigned long address) 1736{ 1737 return 0; 1738} 1739static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1740static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1741 1742#else 1743int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1744 1745static inline void mm_inc_nr_puds(struct mm_struct *mm) 1746{ 1747 if (mm_pud_folded(mm)) 1748 return; 1749 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1750} 1751 1752static inline void mm_dec_nr_puds(struct mm_struct *mm) 1753{ 1754 if (mm_pud_folded(mm)) 1755 return; 1756 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1757} 1758#endif 1759 1760#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1761static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1762 unsigned long address) 1763{ 1764 return 0; 1765} 1766 1767static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1768static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1769 1770#else 1771int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1772 1773static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1774{ 1775 if (mm_pmd_folded(mm)) 1776 return; 1777 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1778} 1779 1780static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1781{ 1782 if (mm_pmd_folded(mm)) 1783 return; 1784 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1785} 1786#endif 1787 1788#ifdef CONFIG_MMU 1789static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1790{ 1791 atomic_long_set(&mm->pgtables_bytes, 0); 1792} 1793 1794static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1795{ 1796 return atomic_long_read(&mm->pgtables_bytes); 1797} 1798 1799static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1800{ 1801 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1802} 1803 1804static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1805{ 1806 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1807} 1808#else 1809 1810static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1811static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1812{ 1813 return 0; 1814} 1815 1816static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1817static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1818#endif 1819 1820int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1821int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1822 1823/* 1824 * The following ifdef needed to get the 4level-fixup.h header to work. 1825 * Remove it when 4level-fixup.h has been removed. 1826 */ 1827#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1828 1829#ifndef __ARCH_HAS_5LEVEL_HACK 1830static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1831 unsigned long address) 1832{ 1833 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1834 NULL : p4d_offset(pgd, address); 1835} 1836 1837static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1838 unsigned long address) 1839{ 1840 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1841 NULL : pud_offset(p4d, address); 1842} 1843#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1844 1845static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1846{ 1847 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1848 NULL: pmd_offset(pud, address); 1849} 1850#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1851 1852#if USE_SPLIT_PTE_PTLOCKS 1853#if ALLOC_SPLIT_PTLOCKS 1854void __init ptlock_cache_init(void); 1855extern bool ptlock_alloc(struct page *page); 1856extern void ptlock_free(struct page *page); 1857 1858static inline spinlock_t *ptlock_ptr(struct page *page) 1859{ 1860 return page->ptl; 1861} 1862#else /* ALLOC_SPLIT_PTLOCKS */ 1863static inline void ptlock_cache_init(void) 1864{ 1865} 1866 1867static inline bool ptlock_alloc(struct page *page) 1868{ 1869 return true; 1870} 1871 1872static inline void ptlock_free(struct page *page) 1873{ 1874} 1875 1876static inline spinlock_t *ptlock_ptr(struct page *page) 1877{ 1878 return &page->ptl; 1879} 1880#endif /* ALLOC_SPLIT_PTLOCKS */ 1881 1882static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1883{ 1884 return ptlock_ptr(pmd_page(*pmd)); 1885} 1886 1887static inline bool ptlock_init(struct page *page) 1888{ 1889 /* 1890 * prep_new_page() initialize page->private (and therefore page->ptl) 1891 * with 0. Make sure nobody took it in use in between. 1892 * 1893 * It can happen if arch try to use slab for page table allocation: 1894 * slab code uses page->slab_cache, which share storage with page->ptl. 1895 */ 1896 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1897 if (!ptlock_alloc(page)) 1898 return false; 1899 spin_lock_init(ptlock_ptr(page)); 1900 return true; 1901} 1902 1903/* Reset page->mapping so free_pages_check won't complain. */ 1904static inline void pte_lock_deinit(struct page *page) 1905{ 1906 page->mapping = NULL; 1907 ptlock_free(page); 1908} 1909 1910#else /* !USE_SPLIT_PTE_PTLOCKS */ 1911/* 1912 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1913 */ 1914static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1915{ 1916 return &mm->page_table_lock; 1917} 1918static inline void ptlock_cache_init(void) {} 1919static inline bool ptlock_init(struct page *page) { return true; } 1920static inline void pte_lock_deinit(struct page *page) {} 1921#endif /* USE_SPLIT_PTE_PTLOCKS */ 1922 1923static inline void pgtable_init(void) 1924{ 1925 ptlock_cache_init(); 1926 pgtable_cache_init(); 1927} 1928 1929static inline bool pgtable_page_ctor(struct page *page) 1930{ 1931 if (!ptlock_init(page)) 1932 return false; 1933 __SetPageTable(page); 1934 inc_zone_page_state(page, NR_PAGETABLE); 1935 return true; 1936} 1937 1938static inline void pgtable_page_dtor(struct page *page) 1939{ 1940 pte_lock_deinit(page); 1941 __ClearPageTable(page); 1942 dec_zone_page_state(page, NR_PAGETABLE); 1943} 1944 1945#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1946({ \ 1947 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1948 pte_t *__pte = pte_offset_map(pmd, address); \ 1949 *(ptlp) = __ptl; \ 1950 spin_lock(__ptl); \ 1951 __pte; \ 1952}) 1953 1954#define pte_unmap_unlock(pte, ptl) do { \ 1955 spin_unlock(ptl); \ 1956 pte_unmap(pte); \ 1957} while (0) 1958 1959#define pte_alloc(mm, pmd, address) \ 1960 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1961 1962#define pte_alloc_map(mm, pmd, address) \ 1963 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1964 1965#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1966 (pte_alloc(mm, pmd, address) ? \ 1967 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1968 1969#define pte_alloc_kernel(pmd, address) \ 1970 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1971 NULL: pte_offset_kernel(pmd, address)) 1972 1973#if USE_SPLIT_PMD_PTLOCKS 1974 1975static struct page *pmd_to_page(pmd_t *pmd) 1976{ 1977 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1978 return virt_to_page((void *)((unsigned long) pmd & mask)); 1979} 1980 1981static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1982{ 1983 return ptlock_ptr(pmd_to_page(pmd)); 1984} 1985 1986static inline bool pgtable_pmd_page_ctor(struct page *page) 1987{ 1988#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1989 page->pmd_huge_pte = NULL; 1990#endif 1991 return ptlock_init(page); 1992} 1993 1994static inline void pgtable_pmd_page_dtor(struct page *page) 1995{ 1996#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1997 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1998#endif 1999 ptlock_free(page); 2000} 2001 2002#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2003 2004#else 2005 2006static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2007{ 2008 return &mm->page_table_lock; 2009} 2010 2011static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2012static inline void pgtable_pmd_page_dtor(struct page *page) {} 2013 2014#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2015 2016#endif 2017 2018static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2019{ 2020 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2021 spin_lock(ptl); 2022 return ptl; 2023} 2024 2025/* 2026 * No scalability reason to split PUD locks yet, but follow the same pattern 2027 * as the PMD locks to make it easier if we decide to. The VM should not be 2028 * considered ready to switch to split PUD locks yet; there may be places 2029 * which need to be converted from page_table_lock. 2030 */ 2031static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2032{ 2033 return &mm->page_table_lock; 2034} 2035 2036static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2037{ 2038 spinlock_t *ptl = pud_lockptr(mm, pud); 2039 2040 spin_lock(ptl); 2041 return ptl; 2042} 2043 2044extern void __init pagecache_init(void); 2045extern void free_area_init(unsigned long * zones_size); 2046extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2047 unsigned long zone_start_pfn, unsigned long *zholes_size); 2048extern void free_initmem(void); 2049 2050/* 2051 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2052 * into the buddy system. The freed pages will be poisoned with pattern 2053 * "poison" if it's within range [0, UCHAR_MAX]. 2054 * Return pages freed into the buddy system. 2055 */ 2056extern unsigned long free_reserved_area(void *start, void *end, 2057 int poison, char *s); 2058 2059#ifdef CONFIG_HIGHMEM 2060/* 2061 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2062 * and totalram_pages. 2063 */ 2064extern void free_highmem_page(struct page *page); 2065#endif 2066 2067extern void adjust_managed_page_count(struct page *page, long count); 2068extern void mem_init_print_info(const char *str); 2069 2070extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2071 2072/* Free the reserved page into the buddy system, so it gets managed. */ 2073static inline void __free_reserved_page(struct page *page) 2074{ 2075 ClearPageReserved(page); 2076 init_page_count(page); 2077 __free_page(page); 2078} 2079 2080static inline void free_reserved_page(struct page *page) 2081{ 2082 __free_reserved_page(page); 2083 adjust_managed_page_count(page, 1); 2084} 2085 2086static inline void mark_page_reserved(struct page *page) 2087{ 2088 SetPageReserved(page); 2089 adjust_managed_page_count(page, -1); 2090} 2091 2092/* 2093 * Default method to free all the __init memory into the buddy system. 2094 * The freed pages will be poisoned with pattern "poison" if it's within 2095 * range [0, UCHAR_MAX]. 2096 * Return pages freed into the buddy system. 2097 */ 2098static inline unsigned long free_initmem_default(int poison) 2099{ 2100 extern char __init_begin[], __init_end[]; 2101 2102 return free_reserved_area(&__init_begin, &__init_end, 2103 poison, "unused kernel"); 2104} 2105 2106static inline unsigned long get_num_physpages(void) 2107{ 2108 int nid; 2109 unsigned long phys_pages = 0; 2110 2111 for_each_online_node(nid) 2112 phys_pages += node_present_pages(nid); 2113 2114 return phys_pages; 2115} 2116 2117#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2118/* 2119 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2120 * zones, allocate the backing mem_map and account for memory holes in a more 2121 * architecture independent manner. This is a substitute for creating the 2122 * zone_sizes[] and zholes_size[] arrays and passing them to 2123 * free_area_init_node() 2124 * 2125 * An architecture is expected to register range of page frames backed by 2126 * physical memory with memblock_add[_node]() before calling 2127 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2128 * usage, an architecture is expected to do something like 2129 * 2130 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2131 * max_highmem_pfn}; 2132 * for_each_valid_physical_page_range() 2133 * memblock_add_node(base, size, nid) 2134 * free_area_init_nodes(max_zone_pfns); 2135 * 2136 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2137 * registered physical page range. Similarly 2138 * sparse_memory_present_with_active_regions() calls memory_present() for 2139 * each range when SPARSEMEM is enabled. 2140 * 2141 * See mm/page_alloc.c for more information on each function exposed by 2142 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2143 */ 2144extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2145unsigned long node_map_pfn_alignment(void); 2146unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2147 unsigned long end_pfn); 2148extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2149 unsigned long end_pfn); 2150extern void get_pfn_range_for_nid(unsigned int nid, 2151 unsigned long *start_pfn, unsigned long *end_pfn); 2152extern unsigned long find_min_pfn_with_active_regions(void); 2153extern void free_bootmem_with_active_regions(int nid, 2154 unsigned long max_low_pfn); 2155extern void sparse_memory_present_with_active_regions(int nid); 2156 2157#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2158 2159#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2160 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2161static inline int __early_pfn_to_nid(unsigned long pfn, 2162 struct mminit_pfnnid_cache *state) 2163{ 2164 return 0; 2165} 2166#else 2167/* please see mm/page_alloc.c */ 2168extern int __meminit early_pfn_to_nid(unsigned long pfn); 2169/* there is a per-arch backend function. */ 2170extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2171 struct mminit_pfnnid_cache *state); 2172#endif 2173 2174#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2175void zero_resv_unavail(void); 2176#else 2177static inline void zero_resv_unavail(void) {} 2178#endif 2179 2180extern void set_dma_reserve(unsigned long new_dma_reserve); 2181extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2182 enum memmap_context, struct vmem_altmap *); 2183extern void setup_per_zone_wmarks(void); 2184extern int __meminit init_per_zone_wmark_min(void); 2185extern void mem_init(void); 2186extern void __init mmap_init(void); 2187extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2188extern long si_mem_available(void); 2189extern void si_meminfo(struct sysinfo * val); 2190extern void si_meminfo_node(struct sysinfo *val, int nid); 2191#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2192extern unsigned long arch_reserved_kernel_pages(void); 2193#endif 2194 2195extern __printf(3, 4) 2196void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2197 2198extern void setup_per_cpu_pageset(void); 2199 2200extern void zone_pcp_update(struct zone *zone); 2201extern void zone_pcp_reset(struct zone *zone); 2202 2203/* page_alloc.c */ 2204extern int min_free_kbytes; 2205extern int watermark_scale_factor; 2206 2207/* nommu.c */ 2208extern atomic_long_t mmap_pages_allocated; 2209extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2210 2211/* interval_tree.c */ 2212void vma_interval_tree_insert(struct vm_area_struct *node, 2213 struct rb_root_cached *root); 2214void vma_interval_tree_insert_after(struct vm_area_struct *node, 2215 struct vm_area_struct *prev, 2216 struct rb_root_cached *root); 2217void vma_interval_tree_remove(struct vm_area_struct *node, 2218 struct rb_root_cached *root); 2219struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2220 unsigned long start, unsigned long last); 2221struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2222 unsigned long start, unsigned long last); 2223 2224#define vma_interval_tree_foreach(vma, root, start, last) \ 2225 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2226 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2227 2228void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2229 struct rb_root_cached *root); 2230void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2231 struct rb_root_cached *root); 2232struct anon_vma_chain * 2233anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2234 unsigned long start, unsigned long last); 2235struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2236 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2237#ifdef CONFIG_DEBUG_VM_RB 2238void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2239#endif 2240 2241#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2242 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2243 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2244 2245/* mmap.c */ 2246extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2247extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2248 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2249 struct vm_area_struct *expand); 2250static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2251 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2252{ 2253 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2254} 2255extern struct vm_area_struct *vma_merge(struct mm_struct *, 2256 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2257 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2258 struct mempolicy *, struct vm_userfaultfd_ctx); 2259extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2260extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2261 unsigned long addr, int new_below); 2262extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2263 unsigned long addr, int new_below); 2264extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2265extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2266 struct rb_node **, struct rb_node *); 2267extern void unlink_file_vma(struct vm_area_struct *); 2268extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2269 unsigned long addr, unsigned long len, pgoff_t pgoff, 2270 bool *need_rmap_locks); 2271extern void exit_mmap(struct mm_struct *); 2272 2273static inline int check_data_rlimit(unsigned long rlim, 2274 unsigned long new, 2275 unsigned long start, 2276 unsigned long end_data, 2277 unsigned long start_data) 2278{ 2279 if (rlim < RLIM_INFINITY) { 2280 if (((new - start) + (end_data - start_data)) > rlim) 2281 return -ENOSPC; 2282 } 2283 2284 return 0; 2285} 2286 2287extern int mm_take_all_locks(struct mm_struct *mm); 2288extern void mm_drop_all_locks(struct mm_struct *mm); 2289 2290extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2291extern struct file *get_mm_exe_file(struct mm_struct *mm); 2292extern struct file *get_task_exe_file(struct task_struct *task); 2293 2294extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2295extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2296 2297extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2298 const struct vm_special_mapping *sm); 2299extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2300 unsigned long addr, unsigned long len, 2301 unsigned long flags, 2302 const struct vm_special_mapping *spec); 2303/* This is an obsolete alternative to _install_special_mapping. */ 2304extern int install_special_mapping(struct mm_struct *mm, 2305 unsigned long addr, unsigned long len, 2306 unsigned long flags, struct page **pages); 2307 2308extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2309 2310extern unsigned long mmap_region(struct file *file, unsigned long addr, 2311 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2312 struct list_head *uf); 2313extern unsigned long do_mmap(struct file *file, unsigned long addr, 2314 unsigned long len, unsigned long prot, unsigned long flags, 2315 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2316 struct list_head *uf); 2317extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2318 struct list_head *uf, bool downgrade); 2319extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2320 struct list_head *uf); 2321 2322static inline unsigned long 2323do_mmap_pgoff(struct file *file, unsigned long addr, 2324 unsigned long len, unsigned long prot, unsigned long flags, 2325 unsigned long pgoff, unsigned long *populate, 2326 struct list_head *uf) 2327{ 2328 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2329} 2330 2331#ifdef CONFIG_MMU 2332extern int __mm_populate(unsigned long addr, unsigned long len, 2333 int ignore_errors); 2334static inline void mm_populate(unsigned long addr, unsigned long len) 2335{ 2336 /* Ignore errors */ 2337 (void) __mm_populate(addr, len, 1); 2338} 2339#else 2340static inline void mm_populate(unsigned long addr, unsigned long len) {} 2341#endif 2342 2343/* These take the mm semaphore themselves */ 2344extern int __must_check vm_brk(unsigned long, unsigned long); 2345extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2346extern int vm_munmap(unsigned long, size_t); 2347extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2348 unsigned long, unsigned long, 2349 unsigned long, unsigned long); 2350 2351struct vm_unmapped_area_info { 2352#define VM_UNMAPPED_AREA_TOPDOWN 1 2353 unsigned long flags; 2354 unsigned long length; 2355 unsigned long low_limit; 2356 unsigned long high_limit; 2357 unsigned long align_mask; 2358 unsigned long align_offset; 2359}; 2360 2361extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2362extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2363 2364/* 2365 * Search for an unmapped address range. 2366 * 2367 * We are looking for a range that: 2368 * - does not intersect with any VMA; 2369 * - is contained within the [low_limit, high_limit) interval; 2370 * - is at least the desired size. 2371 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2372 */ 2373static inline unsigned long 2374vm_unmapped_area(struct vm_unmapped_area_info *info) 2375{ 2376 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2377 return unmapped_area_topdown(info); 2378 else 2379 return unmapped_area(info); 2380} 2381 2382/* truncate.c */ 2383extern void truncate_inode_pages(struct address_space *, loff_t); 2384extern void truncate_inode_pages_range(struct address_space *, 2385 loff_t lstart, loff_t lend); 2386extern void truncate_inode_pages_final(struct address_space *); 2387 2388/* generic vm_area_ops exported for stackable file systems */ 2389extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2390extern void filemap_map_pages(struct vm_fault *vmf, 2391 pgoff_t start_pgoff, pgoff_t end_pgoff); 2392extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2393 2394/* mm/page-writeback.c */ 2395int __must_check write_one_page(struct page *page); 2396void task_dirty_inc(struct task_struct *tsk); 2397 2398/* readahead.c */ 2399#define VM_MAX_READAHEAD 128 /* kbytes */ 2400#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2401 2402int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2403 pgoff_t offset, unsigned long nr_to_read); 2404 2405void page_cache_sync_readahead(struct address_space *mapping, 2406 struct file_ra_state *ra, 2407 struct file *filp, 2408 pgoff_t offset, 2409 unsigned long size); 2410 2411void page_cache_async_readahead(struct address_space *mapping, 2412 struct file_ra_state *ra, 2413 struct file *filp, 2414 struct page *pg, 2415 pgoff_t offset, 2416 unsigned long size); 2417 2418extern unsigned long stack_guard_gap; 2419/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2420extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2421 2422/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2423extern int expand_downwards(struct vm_area_struct *vma, 2424 unsigned long address); 2425#if VM_GROWSUP 2426extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2427#else 2428 #define expand_upwards(vma, address) (0) 2429#endif 2430 2431/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2432extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2433extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2434 struct vm_area_struct **pprev); 2435 2436/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2437 NULL if none. Assume start_addr < end_addr. */ 2438static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2439{ 2440 struct vm_area_struct * vma = find_vma(mm,start_addr); 2441 2442 if (vma && end_addr <= vma->vm_start) 2443 vma = NULL; 2444 return vma; 2445} 2446 2447static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2448{ 2449 unsigned long vm_start = vma->vm_start; 2450 2451 if (vma->vm_flags & VM_GROWSDOWN) { 2452 vm_start -= stack_guard_gap; 2453 if (vm_start > vma->vm_start) 2454 vm_start = 0; 2455 } 2456 return vm_start; 2457} 2458 2459static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2460{ 2461 unsigned long vm_end = vma->vm_end; 2462 2463 if (vma->vm_flags & VM_GROWSUP) { 2464 vm_end += stack_guard_gap; 2465 if (vm_end < vma->vm_end) 2466 vm_end = -PAGE_SIZE; 2467 } 2468 return vm_end; 2469} 2470 2471static inline unsigned long vma_pages(struct vm_area_struct *vma) 2472{ 2473 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2474} 2475 2476/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2477static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2478 unsigned long vm_start, unsigned long vm_end) 2479{ 2480 struct vm_area_struct *vma = find_vma(mm, vm_start); 2481 2482 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2483 vma = NULL; 2484 2485 return vma; 2486} 2487 2488static inline bool range_in_vma(struct vm_area_struct *vma, 2489 unsigned long start, unsigned long end) 2490{ 2491 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2492} 2493 2494#ifdef CONFIG_MMU 2495pgprot_t vm_get_page_prot(unsigned long vm_flags); 2496void vma_set_page_prot(struct vm_area_struct *vma); 2497#else 2498static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2499{ 2500 return __pgprot(0); 2501} 2502static inline void vma_set_page_prot(struct vm_area_struct *vma) 2503{ 2504 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2505} 2506#endif 2507 2508#ifdef CONFIG_NUMA_BALANCING 2509unsigned long change_prot_numa(struct vm_area_struct *vma, 2510 unsigned long start, unsigned long end); 2511#endif 2512 2513struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2514int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2515 unsigned long pfn, unsigned long size, pgprot_t); 2516int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2517vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2518 unsigned long pfn); 2519vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2520 unsigned long pfn, pgprot_t pgprot); 2521vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2522 pfn_t pfn); 2523vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2524 unsigned long addr, pfn_t pfn); 2525int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2526 2527static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2528 unsigned long addr, struct page *page) 2529{ 2530 int err = vm_insert_page(vma, addr, page); 2531 2532 if (err == -ENOMEM) 2533 return VM_FAULT_OOM; 2534 if (err < 0 && err != -EBUSY) 2535 return VM_FAULT_SIGBUS; 2536 2537 return VM_FAULT_NOPAGE; 2538} 2539 2540static inline vm_fault_t vmf_error(int err) 2541{ 2542 if (err == -ENOMEM) 2543 return VM_FAULT_OOM; 2544 return VM_FAULT_SIGBUS; 2545} 2546 2547struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2548 unsigned int foll_flags); 2549 2550#define FOLL_WRITE 0x01 /* check pte is writable */ 2551#define FOLL_TOUCH 0x02 /* mark page accessed */ 2552#define FOLL_GET 0x04 /* do get_page on page */ 2553#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2554#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2555#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2556 * and return without waiting upon it */ 2557#define FOLL_POPULATE 0x40 /* fault in page */ 2558#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2559#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2560#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2561#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2562#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2563#define FOLL_MLOCK 0x1000 /* lock present pages */ 2564#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2565#define FOLL_COW 0x4000 /* internal GUP flag */ 2566#define FOLL_ANON 0x8000 /* don't do file mappings */ 2567 2568static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2569{ 2570 if (vm_fault & VM_FAULT_OOM) 2571 return -ENOMEM; 2572 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2573 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2574 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2575 return -EFAULT; 2576 return 0; 2577} 2578 2579typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2580 void *data); 2581extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2582 unsigned long size, pte_fn_t fn, void *data); 2583 2584 2585#ifdef CONFIG_PAGE_POISONING 2586extern bool page_poisoning_enabled(void); 2587extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2588#else 2589static inline bool page_poisoning_enabled(void) { return false; } 2590static inline void kernel_poison_pages(struct page *page, int numpages, 2591 int enable) { } 2592#endif 2593 2594#ifdef CONFIG_DEBUG_PAGEALLOC 2595extern bool _debug_pagealloc_enabled; 2596extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2597 2598static inline bool debug_pagealloc_enabled(void) 2599{ 2600 return _debug_pagealloc_enabled; 2601} 2602 2603static inline void 2604kernel_map_pages(struct page *page, int numpages, int enable) 2605{ 2606 if (!debug_pagealloc_enabled()) 2607 return; 2608 2609 __kernel_map_pages(page, numpages, enable); 2610} 2611#ifdef CONFIG_HIBERNATION 2612extern bool kernel_page_present(struct page *page); 2613#endif /* CONFIG_HIBERNATION */ 2614#else /* CONFIG_DEBUG_PAGEALLOC */ 2615static inline void 2616kernel_map_pages(struct page *page, int numpages, int enable) {} 2617#ifdef CONFIG_HIBERNATION 2618static inline bool kernel_page_present(struct page *page) { return true; } 2619#endif /* CONFIG_HIBERNATION */ 2620static inline bool debug_pagealloc_enabled(void) 2621{ 2622 return false; 2623} 2624#endif /* CONFIG_DEBUG_PAGEALLOC */ 2625 2626#ifdef __HAVE_ARCH_GATE_AREA 2627extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2628extern int in_gate_area_no_mm(unsigned long addr); 2629extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2630#else 2631static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2632{ 2633 return NULL; 2634} 2635static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2636static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2637{ 2638 return 0; 2639} 2640#endif /* __HAVE_ARCH_GATE_AREA */ 2641 2642extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2643 2644#ifdef CONFIG_SYSCTL 2645extern int sysctl_drop_caches; 2646int drop_caches_sysctl_handler(struct ctl_table *, int, 2647 void __user *, size_t *, loff_t *); 2648#endif 2649 2650void drop_slab(void); 2651void drop_slab_node(int nid); 2652 2653#ifndef CONFIG_MMU 2654#define randomize_va_space 0 2655#else 2656extern int randomize_va_space; 2657#endif 2658 2659const char * arch_vma_name(struct vm_area_struct *vma); 2660void print_vma_addr(char *prefix, unsigned long rip); 2661 2662void *sparse_buffer_alloc(unsigned long size); 2663struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2664 struct vmem_altmap *altmap); 2665pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2666p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2667pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2668pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2669pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2670void *vmemmap_alloc_block(unsigned long size, int node); 2671struct vmem_altmap; 2672void *vmemmap_alloc_block_buf(unsigned long size, int node); 2673void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2674void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2675int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2676 int node); 2677int vmemmap_populate(unsigned long start, unsigned long end, int node, 2678 struct vmem_altmap *altmap); 2679void vmemmap_populate_print_last(void); 2680#ifdef CONFIG_MEMORY_HOTPLUG 2681void vmemmap_free(unsigned long start, unsigned long end, 2682 struct vmem_altmap *altmap); 2683#endif 2684void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2685 unsigned long nr_pages); 2686 2687enum mf_flags { 2688 MF_COUNT_INCREASED = 1 << 0, 2689 MF_ACTION_REQUIRED = 1 << 1, 2690 MF_MUST_KILL = 1 << 2, 2691 MF_SOFT_OFFLINE = 1 << 3, 2692}; 2693extern int memory_failure(unsigned long pfn, int flags); 2694extern void memory_failure_queue(unsigned long pfn, int flags); 2695extern int unpoison_memory(unsigned long pfn); 2696extern int get_hwpoison_page(struct page *page); 2697#define put_hwpoison_page(page) put_page(page) 2698extern int sysctl_memory_failure_early_kill; 2699extern int sysctl_memory_failure_recovery; 2700extern void shake_page(struct page *p, int access); 2701extern atomic_long_t num_poisoned_pages __read_mostly; 2702extern int soft_offline_page(struct page *page, int flags); 2703 2704 2705/* 2706 * Error handlers for various types of pages. 2707 */ 2708enum mf_result { 2709 MF_IGNORED, /* Error: cannot be handled */ 2710 MF_FAILED, /* Error: handling failed */ 2711 MF_DELAYED, /* Will be handled later */ 2712 MF_RECOVERED, /* Successfully recovered */ 2713}; 2714 2715enum mf_action_page_type { 2716 MF_MSG_KERNEL, 2717 MF_MSG_KERNEL_HIGH_ORDER, 2718 MF_MSG_SLAB, 2719 MF_MSG_DIFFERENT_COMPOUND, 2720 MF_MSG_POISONED_HUGE, 2721 MF_MSG_HUGE, 2722 MF_MSG_FREE_HUGE, 2723 MF_MSG_NON_PMD_HUGE, 2724 MF_MSG_UNMAP_FAILED, 2725 MF_MSG_DIRTY_SWAPCACHE, 2726 MF_MSG_CLEAN_SWAPCACHE, 2727 MF_MSG_DIRTY_MLOCKED_LRU, 2728 MF_MSG_CLEAN_MLOCKED_LRU, 2729 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2730 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2731 MF_MSG_DIRTY_LRU, 2732 MF_MSG_CLEAN_LRU, 2733 MF_MSG_TRUNCATED_LRU, 2734 MF_MSG_BUDDY, 2735 MF_MSG_BUDDY_2ND, 2736 MF_MSG_DAX, 2737 MF_MSG_UNKNOWN, 2738}; 2739 2740#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2741extern void clear_huge_page(struct page *page, 2742 unsigned long addr_hint, 2743 unsigned int pages_per_huge_page); 2744extern void copy_user_huge_page(struct page *dst, struct page *src, 2745 unsigned long addr_hint, 2746 struct vm_area_struct *vma, 2747 unsigned int pages_per_huge_page); 2748extern long copy_huge_page_from_user(struct page *dst_page, 2749 const void __user *usr_src, 2750 unsigned int pages_per_huge_page, 2751 bool allow_pagefault); 2752#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2753 2754extern struct page_ext_operations debug_guardpage_ops; 2755 2756#ifdef CONFIG_DEBUG_PAGEALLOC 2757extern unsigned int _debug_guardpage_minorder; 2758extern bool _debug_guardpage_enabled; 2759 2760static inline unsigned int debug_guardpage_minorder(void) 2761{ 2762 return _debug_guardpage_minorder; 2763} 2764 2765static inline bool debug_guardpage_enabled(void) 2766{ 2767 return _debug_guardpage_enabled; 2768} 2769 2770static inline bool page_is_guard(struct page *page) 2771{ 2772 struct page_ext *page_ext; 2773 2774 if (!debug_guardpage_enabled()) 2775 return false; 2776 2777 page_ext = lookup_page_ext(page); 2778 if (unlikely(!page_ext)) 2779 return false; 2780 2781 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2782} 2783#else 2784static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2785static inline bool debug_guardpage_enabled(void) { return false; } 2786static inline bool page_is_guard(struct page *page) { return false; } 2787#endif /* CONFIG_DEBUG_PAGEALLOC */ 2788 2789#if MAX_NUMNODES > 1 2790void __init setup_nr_node_ids(void); 2791#else 2792static inline void setup_nr_node_ids(void) {} 2793#endif 2794 2795#endif /* __KERNEL__ */ 2796#endif /* _LINUX_MM_H */