Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29
30struct mempolicy;
31struct anon_vma;
32struct anon_vma_chain;
33struct file_ra_state;
34struct user_struct;
35struct writeback_control;
36struct bdi_writeback;
37
38void init_mm_internals(void);
39
40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41extern unsigned long max_mapnr;
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
49#endif
50
51extern unsigned long totalram_pages;
52extern void * high_memory;
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
75
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
129extern unsigned long sysctl_user_reserve_kbytes;
130extern unsigned long sysctl_admin_reserve_kbytes;
131
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160void vm_area_free(struct vm_area_struct *);
161
162#ifndef CONFIG_MMU
163extern struct rb_root nommu_region_tree;
164extern struct rw_semaphore nommu_region_sem;
165
166extern unsigned int kobjsize(const void *objp);
167#endif
168
169/*
170 * vm_flags in vm_area_struct, see mm_types.h.
171 * When changing, update also include/trace/events/mmflags.h
172 */
173#define VM_NONE 0x00000000
174
175#define VM_READ 0x00000001 /* currently active flags */
176#define VM_WRITE 0x00000002
177#define VM_EXEC 0x00000004
178#define VM_SHARED 0x00000008
179
180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182#define VM_MAYWRITE 0x00000020
183#define VM_MAYEXEC 0x00000040
184#define VM_MAYSHARE 0x00000080
185
186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
191
192#define VM_LOCKED 0x00002000
193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
205#define VM_SYNC 0x00800000 /* Synchronous page faults */
206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
209
210#ifdef CONFIG_MEM_SOFT_DIRTY
211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212#else
213# define VM_SOFTDIRTY 0
214#endif
215
216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
220
221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
234#ifdef CONFIG_ARCH_HAS_PKEYS
235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
240#ifdef CONFIG_PPC
241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242#else
243# define VM_PKEY_BIT4 0
244#endif
245#endif /* CONFIG_ARCH_HAS_PKEYS */
246
247#if defined(CONFIG_X86)
248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
249#elif defined(CONFIG_PPC)
250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251#elif defined(CONFIG_PARISC)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_IA64)
254# define VM_GROWSUP VM_ARCH_1
255#elif defined(CONFIG_SPARC64)
256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257# define VM_ARCH_CLEAR VM_SPARC_ADI
258#elif !defined(CONFIG_MMU)
259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260#endif
261
262#if defined(CONFIG_X86_INTEL_MPX)
263/* MPX specific bounds table or bounds directory */
264# define VM_MPX VM_HIGH_ARCH_4
265#else
266# define VM_MPX VM_NONE
267#endif
268
269#ifndef VM_GROWSUP
270# define VM_GROWSUP VM_NONE
271#endif
272
273/* Bits set in the VMA until the stack is in its final location */
274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278#endif
279
280#ifdef CONFIG_STACK_GROWSUP
281#define VM_STACK VM_GROWSUP
282#else
283#define VM_STACK VM_GROWSDOWN
284#endif
285
286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
288/*
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291 */
292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293
294/* This mask defines which mm->def_flags a process can inherit its parent */
295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
297/* This mask is used to clear all the VMA flags used by mlock */
298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
300/* Arch-specific flags to clear when updating VM flags on protection change */
301#ifndef VM_ARCH_CLEAR
302# define VM_ARCH_CLEAR VM_NONE
303#endif
304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
306/*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310extern pgprot_t protection_map[16];
311
312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317#define FAULT_FLAG_TRIED 0x20 /* Second try */
318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
321
322#define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
333/*
334 * vm_fault is filled by the the pagefault handler and passed to the vma's
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
337 *
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
341 * pgoff should be used in favour of virtual_address, if possible.
342 */
343struct vm_fault {
344 struct vm_area_struct *vma; /* Target VMA */
345 unsigned int flags; /* FAULT_FLAG_xxx flags */
346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
347 pgoff_t pgoff; /* Logical page offset based on vma */
348 unsigned long address; /* Faulting virtual address */
349 pmd_t *pmd; /* Pointer to pmd entry matching
350 * the 'address' */
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
354 pte_t orig_pte; /* Value of PTE at the time of fault */
355
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
358 struct page *page; /* ->fault handlers should return a
359 * page here, unless VM_FAULT_NOPAGE
360 * is set (which is also implied by
361 * VM_FAULT_ERROR).
362 */
363 /* These three entries are valid only while holding ptl lock */
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
379};
380
381/* page entry size for vm->huge_fault() */
382enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386};
387
388/*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
391 * to the functions called when a no-page or a wp-page exception occurs.
392 */
393struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
396 int (*split)(struct vm_area_struct * area, unsigned long addr);
397 int (*mremap)(struct vm_area_struct * area);
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
401 void (*map_pages)(struct vm_fault *vmf,
402 pgoff_t start_pgoff, pgoff_t end_pgoff);
403 unsigned long (*pagesize)(struct vm_area_struct * area);
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408
409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
423#ifdef CONFIG_NUMA
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445#endif
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
453};
454
455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456{
457 static const struct vm_operations_struct dummy_vm_ops = {};
458
459 memset(vma, 0, sizeof(*vma));
460 vma->vm_mm = mm;
461 vma->vm_ops = &dummy_vm_ops;
462 INIT_LIST_HEAD(&vma->anon_vma_chain);
463}
464
465static inline void vma_set_anonymous(struct vm_area_struct *vma)
466{
467 vma->vm_ops = NULL;
468}
469
470/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
471#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
472
473struct mmu_gather;
474struct inode;
475
476#define page_private(page) ((page)->private)
477#define set_page_private(page, v) ((page)->private = (v))
478
479#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
480static inline int pmd_devmap(pmd_t pmd)
481{
482 return 0;
483}
484static inline int pud_devmap(pud_t pud)
485{
486 return 0;
487}
488static inline int pgd_devmap(pgd_t pgd)
489{
490 return 0;
491}
492#endif
493
494/*
495 * FIXME: take this include out, include page-flags.h in
496 * files which need it (119 of them)
497 */
498#include <linux/page-flags.h>
499#include <linux/huge_mm.h>
500
501/*
502 * Methods to modify the page usage count.
503 *
504 * What counts for a page usage:
505 * - cache mapping (page->mapping)
506 * - private data (page->private)
507 * - page mapped in a task's page tables, each mapping
508 * is counted separately
509 *
510 * Also, many kernel routines increase the page count before a critical
511 * routine so they can be sure the page doesn't go away from under them.
512 */
513
514/*
515 * Drop a ref, return true if the refcount fell to zero (the page has no users)
516 */
517static inline int put_page_testzero(struct page *page)
518{
519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
520 return page_ref_dec_and_test(page);
521}
522
523/*
524 * Try to grab a ref unless the page has a refcount of zero, return false if
525 * that is the case.
526 * This can be called when MMU is off so it must not access
527 * any of the virtual mappings.
528 */
529static inline int get_page_unless_zero(struct page *page)
530{
531 return page_ref_add_unless(page, 1, 0);
532}
533
534extern int page_is_ram(unsigned long pfn);
535
536enum {
537 REGION_INTERSECTS,
538 REGION_DISJOINT,
539 REGION_MIXED,
540};
541
542int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
543 unsigned long desc);
544
545/* Support for virtually mapped pages */
546struct page *vmalloc_to_page(const void *addr);
547unsigned long vmalloc_to_pfn(const void *addr);
548
549/*
550 * Determine if an address is within the vmalloc range
551 *
552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
553 * is no special casing required.
554 */
555static inline bool is_vmalloc_addr(const void *x)
556{
557#ifdef CONFIG_MMU
558 unsigned long addr = (unsigned long)x;
559
560 return addr >= VMALLOC_START && addr < VMALLOC_END;
561#else
562 return false;
563#endif
564}
565#ifdef CONFIG_MMU
566extern int is_vmalloc_or_module_addr(const void *x);
567#else
568static inline int is_vmalloc_or_module_addr(const void *x)
569{
570 return 0;
571}
572#endif
573
574extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
575static inline void *kvmalloc(size_t size, gfp_t flags)
576{
577 return kvmalloc_node(size, flags, NUMA_NO_NODE);
578}
579static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580{
581 return kvmalloc_node(size, flags | __GFP_ZERO, node);
582}
583static inline void *kvzalloc(size_t size, gfp_t flags)
584{
585 return kvmalloc(size, flags | __GFP_ZERO);
586}
587
588static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
589{
590 size_t bytes;
591
592 if (unlikely(check_mul_overflow(n, size, &bytes)))
593 return NULL;
594
595 return kvmalloc(bytes, flags);
596}
597
598static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599{
600 return kvmalloc_array(n, size, flags | __GFP_ZERO);
601}
602
603extern void kvfree(const void *addr);
604
605static inline atomic_t *compound_mapcount_ptr(struct page *page)
606{
607 return &page[1].compound_mapcount;
608}
609
610static inline int compound_mapcount(struct page *page)
611{
612 VM_BUG_ON_PAGE(!PageCompound(page), page);
613 page = compound_head(page);
614 return atomic_read(compound_mapcount_ptr(page)) + 1;
615}
616
617/*
618 * The atomic page->_mapcount, starts from -1: so that transitions
619 * both from it and to it can be tracked, using atomic_inc_and_test
620 * and atomic_add_negative(-1).
621 */
622static inline void page_mapcount_reset(struct page *page)
623{
624 atomic_set(&(page)->_mapcount, -1);
625}
626
627int __page_mapcount(struct page *page);
628
629static inline int page_mapcount(struct page *page)
630{
631 VM_BUG_ON_PAGE(PageSlab(page), page);
632
633 if (unlikely(PageCompound(page)))
634 return __page_mapcount(page);
635 return atomic_read(&page->_mapcount) + 1;
636}
637
638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
639int total_mapcount(struct page *page);
640int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
641#else
642static inline int total_mapcount(struct page *page)
643{
644 return page_mapcount(page);
645}
646static inline int page_trans_huge_mapcount(struct page *page,
647 int *total_mapcount)
648{
649 int mapcount = page_mapcount(page);
650 if (total_mapcount)
651 *total_mapcount = mapcount;
652 return mapcount;
653}
654#endif
655
656static inline struct page *virt_to_head_page(const void *x)
657{
658 struct page *page = virt_to_page(x);
659
660 return compound_head(page);
661}
662
663void __put_page(struct page *page);
664
665void put_pages_list(struct list_head *pages);
666
667void split_page(struct page *page, unsigned int order);
668
669/*
670 * Compound pages have a destructor function. Provide a
671 * prototype for that function and accessor functions.
672 * These are _only_ valid on the head of a compound page.
673 */
674typedef void compound_page_dtor(struct page *);
675
676/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
677enum compound_dtor_id {
678 NULL_COMPOUND_DTOR,
679 COMPOUND_PAGE_DTOR,
680#ifdef CONFIG_HUGETLB_PAGE
681 HUGETLB_PAGE_DTOR,
682#endif
683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 TRANSHUGE_PAGE_DTOR,
685#endif
686 NR_COMPOUND_DTORS,
687};
688extern compound_page_dtor * const compound_page_dtors[];
689
690static inline void set_compound_page_dtor(struct page *page,
691 enum compound_dtor_id compound_dtor)
692{
693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
694 page[1].compound_dtor = compound_dtor;
695}
696
697static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
698{
699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
700 return compound_page_dtors[page[1].compound_dtor];
701}
702
703static inline unsigned int compound_order(struct page *page)
704{
705 if (!PageHead(page))
706 return 0;
707 return page[1].compound_order;
708}
709
710static inline void set_compound_order(struct page *page, unsigned int order)
711{
712 page[1].compound_order = order;
713}
714
715void free_compound_page(struct page *page);
716
717#ifdef CONFIG_MMU
718/*
719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
720 * servicing faults for write access. In the normal case, do always want
721 * pte_mkwrite. But get_user_pages can cause write faults for mappings
722 * that do not have writing enabled, when used by access_process_vm.
723 */
724static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
725{
726 if (likely(vma->vm_flags & VM_WRITE))
727 pte = pte_mkwrite(pte);
728 return pte;
729}
730
731vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
732 struct page *page);
733vm_fault_t finish_fault(struct vm_fault *vmf);
734vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
735#endif
736
737/*
738 * Multiple processes may "see" the same page. E.g. for untouched
739 * mappings of /dev/null, all processes see the same page full of
740 * zeroes, and text pages of executables and shared libraries have
741 * only one copy in memory, at most, normally.
742 *
743 * For the non-reserved pages, page_count(page) denotes a reference count.
744 * page_count() == 0 means the page is free. page->lru is then used for
745 * freelist management in the buddy allocator.
746 * page_count() > 0 means the page has been allocated.
747 *
748 * Pages are allocated by the slab allocator in order to provide memory
749 * to kmalloc and kmem_cache_alloc. In this case, the management of the
750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
751 * unless a particular usage is carefully commented. (the responsibility of
752 * freeing the kmalloc memory is the caller's, of course).
753 *
754 * A page may be used by anyone else who does a __get_free_page().
755 * In this case, page_count still tracks the references, and should only
756 * be used through the normal accessor functions. The top bits of page->flags
757 * and page->virtual store page management information, but all other fields
758 * are unused and could be used privately, carefully. The management of this
759 * page is the responsibility of the one who allocated it, and those who have
760 * subsequently been given references to it.
761 *
762 * The other pages (we may call them "pagecache pages") are completely
763 * managed by the Linux memory manager: I/O, buffers, swapping etc.
764 * The following discussion applies only to them.
765 *
766 * A pagecache page contains an opaque `private' member, which belongs to the
767 * page's address_space. Usually, this is the address of a circular list of
768 * the page's disk buffers. PG_private must be set to tell the VM to call
769 * into the filesystem to release these pages.
770 *
771 * A page may belong to an inode's memory mapping. In this case, page->mapping
772 * is the pointer to the inode, and page->index is the file offset of the page,
773 * in units of PAGE_SIZE.
774 *
775 * If pagecache pages are not associated with an inode, they are said to be
776 * anonymous pages. These may become associated with the swapcache, and in that
777 * case PG_swapcache is set, and page->private is an offset into the swapcache.
778 *
779 * In either case (swapcache or inode backed), the pagecache itself holds one
780 * reference to the page. Setting PG_private should also increment the
781 * refcount. The each user mapping also has a reference to the page.
782 *
783 * The pagecache pages are stored in a per-mapping radix tree, which is
784 * rooted at mapping->i_pages, and indexed by offset.
785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
786 * lists, we instead now tag pages as dirty/writeback in the radix tree.
787 *
788 * All pagecache pages may be subject to I/O:
789 * - inode pages may need to be read from disk,
790 * - inode pages which have been modified and are MAP_SHARED may need
791 * to be written back to the inode on disk,
792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
793 * modified may need to be swapped out to swap space and (later) to be read
794 * back into memory.
795 */
796
797/*
798 * The zone field is never updated after free_area_init_core()
799 * sets it, so none of the operations on it need to be atomic.
800 */
801
802/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
803#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
804#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
805#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
806#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
807
808/*
809 * Define the bit shifts to access each section. For non-existent
810 * sections we define the shift as 0; that plus a 0 mask ensures
811 * the compiler will optimise away reference to them.
812 */
813#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
814#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
815#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
816#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
817
818/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
819#ifdef NODE_NOT_IN_PAGE_FLAGS
820#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
821#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
822 SECTIONS_PGOFF : ZONES_PGOFF)
823#else
824#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
825#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
826 NODES_PGOFF : ZONES_PGOFF)
827#endif
828
829#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
830
831#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
832#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
833#endif
834
835#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
836#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
837#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
838#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
839#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
840
841static inline enum zone_type page_zonenum(const struct page *page)
842{
843 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
844}
845
846#ifdef CONFIG_ZONE_DEVICE
847static inline bool is_zone_device_page(const struct page *page)
848{
849 return page_zonenum(page) == ZONE_DEVICE;
850}
851extern void memmap_init_zone_device(struct zone *, unsigned long,
852 unsigned long, struct dev_pagemap *);
853#else
854static inline bool is_zone_device_page(const struct page *page)
855{
856 return false;
857}
858#endif
859
860#ifdef CONFIG_DEV_PAGEMAP_OPS
861void dev_pagemap_get_ops(void);
862void dev_pagemap_put_ops(void);
863void __put_devmap_managed_page(struct page *page);
864DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
865static inline bool put_devmap_managed_page(struct page *page)
866{
867 if (!static_branch_unlikely(&devmap_managed_key))
868 return false;
869 if (!is_zone_device_page(page))
870 return false;
871 switch (page->pgmap->type) {
872 case MEMORY_DEVICE_PRIVATE:
873 case MEMORY_DEVICE_PUBLIC:
874 case MEMORY_DEVICE_FS_DAX:
875 __put_devmap_managed_page(page);
876 return true;
877 default:
878 break;
879 }
880 return false;
881}
882
883static inline bool is_device_private_page(const struct page *page)
884{
885 return is_zone_device_page(page) &&
886 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
887}
888
889static inline bool is_device_public_page(const struct page *page)
890{
891 return is_zone_device_page(page) &&
892 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
893}
894
895#ifdef CONFIG_PCI_P2PDMA
896static inline bool is_pci_p2pdma_page(const struct page *page)
897{
898 return is_zone_device_page(page) &&
899 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
900}
901#else /* CONFIG_PCI_P2PDMA */
902static inline bool is_pci_p2pdma_page(const struct page *page)
903{
904 return false;
905}
906#endif /* CONFIG_PCI_P2PDMA */
907
908#else /* CONFIG_DEV_PAGEMAP_OPS */
909static inline void dev_pagemap_get_ops(void)
910{
911}
912
913static inline void dev_pagemap_put_ops(void)
914{
915}
916
917static inline bool put_devmap_managed_page(struct page *page)
918{
919 return false;
920}
921
922static inline bool is_device_private_page(const struct page *page)
923{
924 return false;
925}
926
927static inline bool is_device_public_page(const struct page *page)
928{
929 return false;
930}
931
932static inline bool is_pci_p2pdma_page(const struct page *page)
933{
934 return false;
935}
936#endif /* CONFIG_DEV_PAGEMAP_OPS */
937
938static inline void get_page(struct page *page)
939{
940 page = compound_head(page);
941 /*
942 * Getting a normal page or the head of a compound page
943 * requires to already have an elevated page->_refcount.
944 */
945 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
946 page_ref_inc(page);
947}
948
949static inline void put_page(struct page *page)
950{
951 page = compound_head(page);
952
953 /*
954 * For devmap managed pages we need to catch refcount transition from
955 * 2 to 1, when refcount reach one it means the page is free and we
956 * need to inform the device driver through callback. See
957 * include/linux/memremap.h and HMM for details.
958 */
959 if (put_devmap_managed_page(page))
960 return;
961
962 if (put_page_testzero(page))
963 __put_page(page);
964}
965
966#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
967#define SECTION_IN_PAGE_FLAGS
968#endif
969
970/*
971 * The identification function is mainly used by the buddy allocator for
972 * determining if two pages could be buddies. We are not really identifying
973 * the zone since we could be using the section number id if we do not have
974 * node id available in page flags.
975 * We only guarantee that it will return the same value for two combinable
976 * pages in a zone.
977 */
978static inline int page_zone_id(struct page *page)
979{
980 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
981}
982
983#ifdef NODE_NOT_IN_PAGE_FLAGS
984extern int page_to_nid(const struct page *page);
985#else
986static inline int page_to_nid(const struct page *page)
987{
988 struct page *p = (struct page *)page;
989
990 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
991}
992#endif
993
994#ifdef CONFIG_NUMA_BALANCING
995static inline int cpu_pid_to_cpupid(int cpu, int pid)
996{
997 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
998}
999
1000static inline int cpupid_to_pid(int cpupid)
1001{
1002 return cpupid & LAST__PID_MASK;
1003}
1004
1005static inline int cpupid_to_cpu(int cpupid)
1006{
1007 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1008}
1009
1010static inline int cpupid_to_nid(int cpupid)
1011{
1012 return cpu_to_node(cpupid_to_cpu(cpupid));
1013}
1014
1015static inline bool cpupid_pid_unset(int cpupid)
1016{
1017 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1018}
1019
1020static inline bool cpupid_cpu_unset(int cpupid)
1021{
1022 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1023}
1024
1025static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1026{
1027 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1028}
1029
1030#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1031#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1032static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1033{
1034 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1035}
1036
1037static inline int page_cpupid_last(struct page *page)
1038{
1039 return page->_last_cpupid;
1040}
1041static inline void page_cpupid_reset_last(struct page *page)
1042{
1043 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1044}
1045#else
1046static inline int page_cpupid_last(struct page *page)
1047{
1048 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1049}
1050
1051extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1052
1053static inline void page_cpupid_reset_last(struct page *page)
1054{
1055 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1056}
1057#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1058#else /* !CONFIG_NUMA_BALANCING */
1059static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1060{
1061 return page_to_nid(page); /* XXX */
1062}
1063
1064static inline int page_cpupid_last(struct page *page)
1065{
1066 return page_to_nid(page); /* XXX */
1067}
1068
1069static inline int cpupid_to_nid(int cpupid)
1070{
1071 return -1;
1072}
1073
1074static inline int cpupid_to_pid(int cpupid)
1075{
1076 return -1;
1077}
1078
1079static inline int cpupid_to_cpu(int cpupid)
1080{
1081 return -1;
1082}
1083
1084static inline int cpu_pid_to_cpupid(int nid, int pid)
1085{
1086 return -1;
1087}
1088
1089static inline bool cpupid_pid_unset(int cpupid)
1090{
1091 return 1;
1092}
1093
1094static inline void page_cpupid_reset_last(struct page *page)
1095{
1096}
1097
1098static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1099{
1100 return false;
1101}
1102#endif /* CONFIG_NUMA_BALANCING */
1103
1104static inline struct zone *page_zone(const struct page *page)
1105{
1106 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1107}
1108
1109static inline pg_data_t *page_pgdat(const struct page *page)
1110{
1111 return NODE_DATA(page_to_nid(page));
1112}
1113
1114#ifdef SECTION_IN_PAGE_FLAGS
1115static inline void set_page_section(struct page *page, unsigned long section)
1116{
1117 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1118 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1119}
1120
1121static inline unsigned long page_to_section(const struct page *page)
1122{
1123 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1124}
1125#endif
1126
1127static inline void set_page_zone(struct page *page, enum zone_type zone)
1128{
1129 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1130 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1131}
1132
1133static inline void set_page_node(struct page *page, unsigned long node)
1134{
1135 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1136 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1137}
1138
1139static inline void set_page_links(struct page *page, enum zone_type zone,
1140 unsigned long node, unsigned long pfn)
1141{
1142 set_page_zone(page, zone);
1143 set_page_node(page, node);
1144#ifdef SECTION_IN_PAGE_FLAGS
1145 set_page_section(page, pfn_to_section_nr(pfn));
1146#endif
1147}
1148
1149#ifdef CONFIG_MEMCG
1150static inline struct mem_cgroup *page_memcg(struct page *page)
1151{
1152 return page->mem_cgroup;
1153}
1154static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1155{
1156 WARN_ON_ONCE(!rcu_read_lock_held());
1157 return READ_ONCE(page->mem_cgroup);
1158}
1159#else
1160static inline struct mem_cgroup *page_memcg(struct page *page)
1161{
1162 return NULL;
1163}
1164static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1165{
1166 WARN_ON_ONCE(!rcu_read_lock_held());
1167 return NULL;
1168}
1169#endif
1170
1171/*
1172 * Some inline functions in vmstat.h depend on page_zone()
1173 */
1174#include <linux/vmstat.h>
1175
1176static __always_inline void *lowmem_page_address(const struct page *page)
1177{
1178 return page_to_virt(page);
1179}
1180
1181#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1182#define HASHED_PAGE_VIRTUAL
1183#endif
1184
1185#if defined(WANT_PAGE_VIRTUAL)
1186static inline void *page_address(const struct page *page)
1187{
1188 return page->virtual;
1189}
1190static inline void set_page_address(struct page *page, void *address)
1191{
1192 page->virtual = address;
1193}
1194#define page_address_init() do { } while(0)
1195#endif
1196
1197#if defined(HASHED_PAGE_VIRTUAL)
1198void *page_address(const struct page *page);
1199void set_page_address(struct page *page, void *virtual);
1200void page_address_init(void);
1201#endif
1202
1203#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1204#define page_address(page) lowmem_page_address(page)
1205#define set_page_address(page, address) do { } while(0)
1206#define page_address_init() do { } while(0)
1207#endif
1208
1209extern void *page_rmapping(struct page *page);
1210extern struct anon_vma *page_anon_vma(struct page *page);
1211extern struct address_space *page_mapping(struct page *page);
1212
1213extern struct address_space *__page_file_mapping(struct page *);
1214
1215static inline
1216struct address_space *page_file_mapping(struct page *page)
1217{
1218 if (unlikely(PageSwapCache(page)))
1219 return __page_file_mapping(page);
1220
1221 return page->mapping;
1222}
1223
1224extern pgoff_t __page_file_index(struct page *page);
1225
1226/*
1227 * Return the pagecache index of the passed page. Regular pagecache pages
1228 * use ->index whereas swapcache pages use swp_offset(->private)
1229 */
1230static inline pgoff_t page_index(struct page *page)
1231{
1232 if (unlikely(PageSwapCache(page)))
1233 return __page_file_index(page);
1234 return page->index;
1235}
1236
1237bool page_mapped(struct page *page);
1238struct address_space *page_mapping(struct page *page);
1239struct address_space *page_mapping_file(struct page *page);
1240
1241/*
1242 * Return true only if the page has been allocated with
1243 * ALLOC_NO_WATERMARKS and the low watermark was not
1244 * met implying that the system is under some pressure.
1245 */
1246static inline bool page_is_pfmemalloc(struct page *page)
1247{
1248 /*
1249 * Page index cannot be this large so this must be
1250 * a pfmemalloc page.
1251 */
1252 return page->index == -1UL;
1253}
1254
1255/*
1256 * Only to be called by the page allocator on a freshly allocated
1257 * page.
1258 */
1259static inline void set_page_pfmemalloc(struct page *page)
1260{
1261 page->index = -1UL;
1262}
1263
1264static inline void clear_page_pfmemalloc(struct page *page)
1265{
1266 page->index = 0;
1267}
1268
1269/*
1270 * Different kinds of faults, as returned by handle_mm_fault().
1271 * Used to decide whether a process gets delivered SIGBUS or
1272 * just gets major/minor fault counters bumped up.
1273 */
1274
1275#define VM_FAULT_OOM 0x0001
1276#define VM_FAULT_SIGBUS 0x0002
1277#define VM_FAULT_MAJOR 0x0004
1278#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1279#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1280#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1281#define VM_FAULT_SIGSEGV 0x0040
1282
1283#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1284#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1285#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1286#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1287#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1288#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1289 * and needs fsync() to complete (for
1290 * synchronous page faults in DAX) */
1291
1292#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1293 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1294 VM_FAULT_FALLBACK)
1295
1296#define VM_FAULT_RESULT_TRACE \
1297 { VM_FAULT_OOM, "OOM" }, \
1298 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1299 { VM_FAULT_MAJOR, "MAJOR" }, \
1300 { VM_FAULT_WRITE, "WRITE" }, \
1301 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1302 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1303 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1304 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1305 { VM_FAULT_LOCKED, "LOCKED" }, \
1306 { VM_FAULT_RETRY, "RETRY" }, \
1307 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1308 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1309 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1310
1311/* Encode hstate index for a hwpoisoned large page */
1312#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1313#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1314
1315/*
1316 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1317 */
1318extern void pagefault_out_of_memory(void);
1319
1320#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1321
1322/*
1323 * Flags passed to show_mem() and show_free_areas() to suppress output in
1324 * various contexts.
1325 */
1326#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1327
1328extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1329
1330extern bool can_do_mlock(void);
1331extern int user_shm_lock(size_t, struct user_struct *);
1332extern void user_shm_unlock(size_t, struct user_struct *);
1333
1334/*
1335 * Parameter block passed down to zap_pte_range in exceptional cases.
1336 */
1337struct zap_details {
1338 struct address_space *check_mapping; /* Check page->mapping if set */
1339 pgoff_t first_index; /* Lowest page->index to unmap */
1340 pgoff_t last_index; /* Highest page->index to unmap */
1341};
1342
1343struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1344 pte_t pte, bool with_public_device);
1345#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1346
1347struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1348 pmd_t pmd);
1349
1350void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1351 unsigned long size);
1352void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1353 unsigned long size);
1354void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1355 unsigned long start, unsigned long end);
1356
1357/**
1358 * mm_walk - callbacks for walk_page_range
1359 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1360 * this handler should only handle pud_trans_huge() puds.
1361 * the pmd_entry or pte_entry callbacks will be used for
1362 * regular PUDs.
1363 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1364 * this handler is required to be able to handle
1365 * pmd_trans_huge() pmds. They may simply choose to
1366 * split_huge_page() instead of handling it explicitly.
1367 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1368 * @pte_hole: if set, called for each hole at all levels
1369 * @hugetlb_entry: if set, called for each hugetlb entry
1370 * @test_walk: caller specific callback function to determine whether
1371 * we walk over the current vma or not. Returning 0
1372 * value means "do page table walk over the current vma,"
1373 * and a negative one means "abort current page table walk
1374 * right now." 1 means "skip the current vma."
1375 * @mm: mm_struct representing the target process of page table walk
1376 * @vma: vma currently walked (NULL if walking outside vmas)
1377 * @private: private data for callbacks' usage
1378 *
1379 * (see the comment on walk_page_range() for more details)
1380 */
1381struct mm_walk {
1382 int (*pud_entry)(pud_t *pud, unsigned long addr,
1383 unsigned long next, struct mm_walk *walk);
1384 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1385 unsigned long next, struct mm_walk *walk);
1386 int (*pte_entry)(pte_t *pte, unsigned long addr,
1387 unsigned long next, struct mm_walk *walk);
1388 int (*pte_hole)(unsigned long addr, unsigned long next,
1389 struct mm_walk *walk);
1390 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1391 unsigned long addr, unsigned long next,
1392 struct mm_walk *walk);
1393 int (*test_walk)(unsigned long addr, unsigned long next,
1394 struct mm_walk *walk);
1395 struct mm_struct *mm;
1396 struct vm_area_struct *vma;
1397 void *private;
1398};
1399
1400int walk_page_range(unsigned long addr, unsigned long end,
1401 struct mm_walk *walk);
1402int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1403void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1404 unsigned long end, unsigned long floor, unsigned long ceiling);
1405int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1406 struct vm_area_struct *vma);
1407int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1408 unsigned long *start, unsigned long *end,
1409 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1410int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long *pfn);
1412int follow_phys(struct vm_area_struct *vma, unsigned long address,
1413 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1414int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1415 void *buf, int len, int write);
1416
1417extern void truncate_pagecache(struct inode *inode, loff_t new);
1418extern void truncate_setsize(struct inode *inode, loff_t newsize);
1419void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1420void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1421int truncate_inode_page(struct address_space *mapping, struct page *page);
1422int generic_error_remove_page(struct address_space *mapping, struct page *page);
1423int invalidate_inode_page(struct page *page);
1424
1425#ifdef CONFIG_MMU
1426extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1427 unsigned long address, unsigned int flags);
1428extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1429 unsigned long address, unsigned int fault_flags,
1430 bool *unlocked);
1431void unmap_mapping_pages(struct address_space *mapping,
1432 pgoff_t start, pgoff_t nr, bool even_cows);
1433void unmap_mapping_range(struct address_space *mapping,
1434 loff_t const holebegin, loff_t const holelen, int even_cows);
1435#else
1436static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1437 unsigned long address, unsigned int flags)
1438{
1439 /* should never happen if there's no MMU */
1440 BUG();
1441 return VM_FAULT_SIGBUS;
1442}
1443static inline int fixup_user_fault(struct task_struct *tsk,
1444 struct mm_struct *mm, unsigned long address,
1445 unsigned int fault_flags, bool *unlocked)
1446{
1447 /* should never happen if there's no MMU */
1448 BUG();
1449 return -EFAULT;
1450}
1451static inline void unmap_mapping_pages(struct address_space *mapping,
1452 pgoff_t start, pgoff_t nr, bool even_cows) { }
1453static inline void unmap_mapping_range(struct address_space *mapping,
1454 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1455#endif
1456
1457static inline void unmap_shared_mapping_range(struct address_space *mapping,
1458 loff_t const holebegin, loff_t const holelen)
1459{
1460 unmap_mapping_range(mapping, holebegin, holelen, 0);
1461}
1462
1463extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1464 void *buf, int len, unsigned int gup_flags);
1465extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1466 void *buf, int len, unsigned int gup_flags);
1467extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1468 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1469
1470long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1471 unsigned long start, unsigned long nr_pages,
1472 unsigned int gup_flags, struct page **pages,
1473 struct vm_area_struct **vmas, int *locked);
1474long get_user_pages(unsigned long start, unsigned long nr_pages,
1475 unsigned int gup_flags, struct page **pages,
1476 struct vm_area_struct **vmas);
1477long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1478 unsigned int gup_flags, struct page **pages, int *locked);
1479long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1480 struct page **pages, unsigned int gup_flags);
1481#ifdef CONFIG_FS_DAX
1482long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1483 unsigned int gup_flags, struct page **pages,
1484 struct vm_area_struct **vmas);
1485#else
1486static inline long get_user_pages_longterm(unsigned long start,
1487 unsigned long nr_pages, unsigned int gup_flags,
1488 struct page **pages, struct vm_area_struct **vmas)
1489{
1490 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1491}
1492#endif /* CONFIG_FS_DAX */
1493
1494int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1495 struct page **pages);
1496
1497/* Container for pinned pfns / pages */
1498struct frame_vector {
1499 unsigned int nr_allocated; /* Number of frames we have space for */
1500 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1501 bool got_ref; /* Did we pin pages by getting page ref? */
1502 bool is_pfns; /* Does array contain pages or pfns? */
1503 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1504 * pfns_vector_pages() or pfns_vector_pfns()
1505 * for access */
1506};
1507
1508struct frame_vector *frame_vector_create(unsigned int nr_frames);
1509void frame_vector_destroy(struct frame_vector *vec);
1510int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1511 unsigned int gup_flags, struct frame_vector *vec);
1512void put_vaddr_frames(struct frame_vector *vec);
1513int frame_vector_to_pages(struct frame_vector *vec);
1514void frame_vector_to_pfns(struct frame_vector *vec);
1515
1516static inline unsigned int frame_vector_count(struct frame_vector *vec)
1517{
1518 return vec->nr_frames;
1519}
1520
1521static inline struct page **frame_vector_pages(struct frame_vector *vec)
1522{
1523 if (vec->is_pfns) {
1524 int err = frame_vector_to_pages(vec);
1525
1526 if (err)
1527 return ERR_PTR(err);
1528 }
1529 return (struct page **)(vec->ptrs);
1530}
1531
1532static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1533{
1534 if (!vec->is_pfns)
1535 frame_vector_to_pfns(vec);
1536 return (unsigned long *)(vec->ptrs);
1537}
1538
1539struct kvec;
1540int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1541 struct page **pages);
1542int get_kernel_page(unsigned long start, int write, struct page **pages);
1543struct page *get_dump_page(unsigned long addr);
1544
1545extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1546extern void do_invalidatepage(struct page *page, unsigned int offset,
1547 unsigned int length);
1548
1549void __set_page_dirty(struct page *, struct address_space *, int warn);
1550int __set_page_dirty_nobuffers(struct page *page);
1551int __set_page_dirty_no_writeback(struct page *page);
1552int redirty_page_for_writepage(struct writeback_control *wbc,
1553 struct page *page);
1554void account_page_dirtied(struct page *page, struct address_space *mapping);
1555void account_page_cleaned(struct page *page, struct address_space *mapping,
1556 struct bdi_writeback *wb);
1557int set_page_dirty(struct page *page);
1558int set_page_dirty_lock(struct page *page);
1559void __cancel_dirty_page(struct page *page);
1560static inline void cancel_dirty_page(struct page *page)
1561{
1562 /* Avoid atomic ops, locking, etc. when not actually needed. */
1563 if (PageDirty(page))
1564 __cancel_dirty_page(page);
1565}
1566int clear_page_dirty_for_io(struct page *page);
1567
1568int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1569
1570static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1571{
1572 return !vma->vm_ops;
1573}
1574
1575#ifdef CONFIG_SHMEM
1576/*
1577 * The vma_is_shmem is not inline because it is used only by slow
1578 * paths in userfault.
1579 */
1580bool vma_is_shmem(struct vm_area_struct *vma);
1581#else
1582static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1583#endif
1584
1585int vma_is_stack_for_current(struct vm_area_struct *vma);
1586
1587extern unsigned long move_page_tables(struct vm_area_struct *vma,
1588 unsigned long old_addr, struct vm_area_struct *new_vma,
1589 unsigned long new_addr, unsigned long len,
1590 bool need_rmap_locks);
1591extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1592 unsigned long end, pgprot_t newprot,
1593 int dirty_accountable, int prot_numa);
1594extern int mprotect_fixup(struct vm_area_struct *vma,
1595 struct vm_area_struct **pprev, unsigned long start,
1596 unsigned long end, unsigned long newflags);
1597
1598/*
1599 * doesn't attempt to fault and will return short.
1600 */
1601int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1602 struct page **pages);
1603/*
1604 * per-process(per-mm_struct) statistics.
1605 */
1606static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1607{
1608 long val = atomic_long_read(&mm->rss_stat.count[member]);
1609
1610#ifdef SPLIT_RSS_COUNTING
1611 /*
1612 * counter is updated in asynchronous manner and may go to minus.
1613 * But it's never be expected number for users.
1614 */
1615 if (val < 0)
1616 val = 0;
1617#endif
1618 return (unsigned long)val;
1619}
1620
1621static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1622{
1623 atomic_long_add(value, &mm->rss_stat.count[member]);
1624}
1625
1626static inline void inc_mm_counter(struct mm_struct *mm, int member)
1627{
1628 atomic_long_inc(&mm->rss_stat.count[member]);
1629}
1630
1631static inline void dec_mm_counter(struct mm_struct *mm, int member)
1632{
1633 atomic_long_dec(&mm->rss_stat.count[member]);
1634}
1635
1636/* Optimized variant when page is already known not to be PageAnon */
1637static inline int mm_counter_file(struct page *page)
1638{
1639 if (PageSwapBacked(page))
1640 return MM_SHMEMPAGES;
1641 return MM_FILEPAGES;
1642}
1643
1644static inline int mm_counter(struct page *page)
1645{
1646 if (PageAnon(page))
1647 return MM_ANONPAGES;
1648 return mm_counter_file(page);
1649}
1650
1651static inline unsigned long get_mm_rss(struct mm_struct *mm)
1652{
1653 return get_mm_counter(mm, MM_FILEPAGES) +
1654 get_mm_counter(mm, MM_ANONPAGES) +
1655 get_mm_counter(mm, MM_SHMEMPAGES);
1656}
1657
1658static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1659{
1660 return max(mm->hiwater_rss, get_mm_rss(mm));
1661}
1662
1663static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1664{
1665 return max(mm->hiwater_vm, mm->total_vm);
1666}
1667
1668static inline void update_hiwater_rss(struct mm_struct *mm)
1669{
1670 unsigned long _rss = get_mm_rss(mm);
1671
1672 if ((mm)->hiwater_rss < _rss)
1673 (mm)->hiwater_rss = _rss;
1674}
1675
1676static inline void update_hiwater_vm(struct mm_struct *mm)
1677{
1678 if (mm->hiwater_vm < mm->total_vm)
1679 mm->hiwater_vm = mm->total_vm;
1680}
1681
1682static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1683{
1684 mm->hiwater_rss = get_mm_rss(mm);
1685}
1686
1687static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1688 struct mm_struct *mm)
1689{
1690 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1691
1692 if (*maxrss < hiwater_rss)
1693 *maxrss = hiwater_rss;
1694}
1695
1696#if defined(SPLIT_RSS_COUNTING)
1697void sync_mm_rss(struct mm_struct *mm);
1698#else
1699static inline void sync_mm_rss(struct mm_struct *mm)
1700{
1701}
1702#endif
1703
1704#ifndef __HAVE_ARCH_PTE_DEVMAP
1705static inline int pte_devmap(pte_t pte)
1706{
1707 return 0;
1708}
1709#endif
1710
1711int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1712
1713extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1714 spinlock_t **ptl);
1715static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716 spinlock_t **ptl)
1717{
1718 pte_t *ptep;
1719 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1720 return ptep;
1721}
1722
1723#ifdef __PAGETABLE_P4D_FOLDED
1724static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1725 unsigned long address)
1726{
1727 return 0;
1728}
1729#else
1730int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1731#endif
1732
1733#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1734static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1735 unsigned long address)
1736{
1737 return 0;
1738}
1739static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1740static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1741
1742#else
1743int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1744
1745static inline void mm_inc_nr_puds(struct mm_struct *mm)
1746{
1747 if (mm_pud_folded(mm))
1748 return;
1749 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1750}
1751
1752static inline void mm_dec_nr_puds(struct mm_struct *mm)
1753{
1754 if (mm_pud_folded(mm))
1755 return;
1756 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1757}
1758#endif
1759
1760#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1761static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1762 unsigned long address)
1763{
1764 return 0;
1765}
1766
1767static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1768static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1769
1770#else
1771int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1772
1773static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1774{
1775 if (mm_pmd_folded(mm))
1776 return;
1777 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1778}
1779
1780static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1781{
1782 if (mm_pmd_folded(mm))
1783 return;
1784 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1785}
1786#endif
1787
1788#ifdef CONFIG_MMU
1789static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1790{
1791 atomic_long_set(&mm->pgtables_bytes, 0);
1792}
1793
1794static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1795{
1796 return atomic_long_read(&mm->pgtables_bytes);
1797}
1798
1799static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1800{
1801 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1802}
1803
1804static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1805{
1806 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1807}
1808#else
1809
1810static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1811static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1812{
1813 return 0;
1814}
1815
1816static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1817static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1818#endif
1819
1820int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1821int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1822
1823/*
1824 * The following ifdef needed to get the 4level-fixup.h header to work.
1825 * Remove it when 4level-fixup.h has been removed.
1826 */
1827#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1828
1829#ifndef __ARCH_HAS_5LEVEL_HACK
1830static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1831 unsigned long address)
1832{
1833 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1834 NULL : p4d_offset(pgd, address);
1835}
1836
1837static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1838 unsigned long address)
1839{
1840 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1841 NULL : pud_offset(p4d, address);
1842}
1843#endif /* !__ARCH_HAS_5LEVEL_HACK */
1844
1845static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1846{
1847 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1848 NULL: pmd_offset(pud, address);
1849}
1850#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1851
1852#if USE_SPLIT_PTE_PTLOCKS
1853#if ALLOC_SPLIT_PTLOCKS
1854void __init ptlock_cache_init(void);
1855extern bool ptlock_alloc(struct page *page);
1856extern void ptlock_free(struct page *page);
1857
1858static inline spinlock_t *ptlock_ptr(struct page *page)
1859{
1860 return page->ptl;
1861}
1862#else /* ALLOC_SPLIT_PTLOCKS */
1863static inline void ptlock_cache_init(void)
1864{
1865}
1866
1867static inline bool ptlock_alloc(struct page *page)
1868{
1869 return true;
1870}
1871
1872static inline void ptlock_free(struct page *page)
1873{
1874}
1875
1876static inline spinlock_t *ptlock_ptr(struct page *page)
1877{
1878 return &page->ptl;
1879}
1880#endif /* ALLOC_SPLIT_PTLOCKS */
1881
1882static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1883{
1884 return ptlock_ptr(pmd_page(*pmd));
1885}
1886
1887static inline bool ptlock_init(struct page *page)
1888{
1889 /*
1890 * prep_new_page() initialize page->private (and therefore page->ptl)
1891 * with 0. Make sure nobody took it in use in between.
1892 *
1893 * It can happen if arch try to use slab for page table allocation:
1894 * slab code uses page->slab_cache, which share storage with page->ptl.
1895 */
1896 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1897 if (!ptlock_alloc(page))
1898 return false;
1899 spin_lock_init(ptlock_ptr(page));
1900 return true;
1901}
1902
1903/* Reset page->mapping so free_pages_check won't complain. */
1904static inline void pte_lock_deinit(struct page *page)
1905{
1906 page->mapping = NULL;
1907 ptlock_free(page);
1908}
1909
1910#else /* !USE_SPLIT_PTE_PTLOCKS */
1911/*
1912 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1913 */
1914static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1915{
1916 return &mm->page_table_lock;
1917}
1918static inline void ptlock_cache_init(void) {}
1919static inline bool ptlock_init(struct page *page) { return true; }
1920static inline void pte_lock_deinit(struct page *page) {}
1921#endif /* USE_SPLIT_PTE_PTLOCKS */
1922
1923static inline void pgtable_init(void)
1924{
1925 ptlock_cache_init();
1926 pgtable_cache_init();
1927}
1928
1929static inline bool pgtable_page_ctor(struct page *page)
1930{
1931 if (!ptlock_init(page))
1932 return false;
1933 __SetPageTable(page);
1934 inc_zone_page_state(page, NR_PAGETABLE);
1935 return true;
1936}
1937
1938static inline void pgtable_page_dtor(struct page *page)
1939{
1940 pte_lock_deinit(page);
1941 __ClearPageTable(page);
1942 dec_zone_page_state(page, NR_PAGETABLE);
1943}
1944
1945#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1946({ \
1947 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1948 pte_t *__pte = pte_offset_map(pmd, address); \
1949 *(ptlp) = __ptl; \
1950 spin_lock(__ptl); \
1951 __pte; \
1952})
1953
1954#define pte_unmap_unlock(pte, ptl) do { \
1955 spin_unlock(ptl); \
1956 pte_unmap(pte); \
1957} while (0)
1958
1959#define pte_alloc(mm, pmd, address) \
1960 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1961
1962#define pte_alloc_map(mm, pmd, address) \
1963 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1964
1965#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1966 (pte_alloc(mm, pmd, address) ? \
1967 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1968
1969#define pte_alloc_kernel(pmd, address) \
1970 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1971 NULL: pte_offset_kernel(pmd, address))
1972
1973#if USE_SPLIT_PMD_PTLOCKS
1974
1975static struct page *pmd_to_page(pmd_t *pmd)
1976{
1977 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1978 return virt_to_page((void *)((unsigned long) pmd & mask));
1979}
1980
1981static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1982{
1983 return ptlock_ptr(pmd_to_page(pmd));
1984}
1985
1986static inline bool pgtable_pmd_page_ctor(struct page *page)
1987{
1988#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1989 page->pmd_huge_pte = NULL;
1990#endif
1991 return ptlock_init(page);
1992}
1993
1994static inline void pgtable_pmd_page_dtor(struct page *page)
1995{
1996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1997 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1998#endif
1999 ptlock_free(page);
2000}
2001
2002#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2003
2004#else
2005
2006static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2007{
2008 return &mm->page_table_lock;
2009}
2010
2011static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2012static inline void pgtable_pmd_page_dtor(struct page *page) {}
2013
2014#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2015
2016#endif
2017
2018static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2019{
2020 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2021 spin_lock(ptl);
2022 return ptl;
2023}
2024
2025/*
2026 * No scalability reason to split PUD locks yet, but follow the same pattern
2027 * as the PMD locks to make it easier if we decide to. The VM should not be
2028 * considered ready to switch to split PUD locks yet; there may be places
2029 * which need to be converted from page_table_lock.
2030 */
2031static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2032{
2033 return &mm->page_table_lock;
2034}
2035
2036static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2037{
2038 spinlock_t *ptl = pud_lockptr(mm, pud);
2039
2040 spin_lock(ptl);
2041 return ptl;
2042}
2043
2044extern void __init pagecache_init(void);
2045extern void free_area_init(unsigned long * zones_size);
2046extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2047 unsigned long zone_start_pfn, unsigned long *zholes_size);
2048extern void free_initmem(void);
2049
2050/*
2051 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2052 * into the buddy system. The freed pages will be poisoned with pattern
2053 * "poison" if it's within range [0, UCHAR_MAX].
2054 * Return pages freed into the buddy system.
2055 */
2056extern unsigned long free_reserved_area(void *start, void *end,
2057 int poison, char *s);
2058
2059#ifdef CONFIG_HIGHMEM
2060/*
2061 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2062 * and totalram_pages.
2063 */
2064extern void free_highmem_page(struct page *page);
2065#endif
2066
2067extern void adjust_managed_page_count(struct page *page, long count);
2068extern void mem_init_print_info(const char *str);
2069
2070extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2071
2072/* Free the reserved page into the buddy system, so it gets managed. */
2073static inline void __free_reserved_page(struct page *page)
2074{
2075 ClearPageReserved(page);
2076 init_page_count(page);
2077 __free_page(page);
2078}
2079
2080static inline void free_reserved_page(struct page *page)
2081{
2082 __free_reserved_page(page);
2083 adjust_managed_page_count(page, 1);
2084}
2085
2086static inline void mark_page_reserved(struct page *page)
2087{
2088 SetPageReserved(page);
2089 adjust_managed_page_count(page, -1);
2090}
2091
2092/*
2093 * Default method to free all the __init memory into the buddy system.
2094 * The freed pages will be poisoned with pattern "poison" if it's within
2095 * range [0, UCHAR_MAX].
2096 * Return pages freed into the buddy system.
2097 */
2098static inline unsigned long free_initmem_default(int poison)
2099{
2100 extern char __init_begin[], __init_end[];
2101
2102 return free_reserved_area(&__init_begin, &__init_end,
2103 poison, "unused kernel");
2104}
2105
2106static inline unsigned long get_num_physpages(void)
2107{
2108 int nid;
2109 unsigned long phys_pages = 0;
2110
2111 for_each_online_node(nid)
2112 phys_pages += node_present_pages(nid);
2113
2114 return phys_pages;
2115}
2116
2117#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2118/*
2119 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2120 * zones, allocate the backing mem_map and account for memory holes in a more
2121 * architecture independent manner. This is a substitute for creating the
2122 * zone_sizes[] and zholes_size[] arrays and passing them to
2123 * free_area_init_node()
2124 *
2125 * An architecture is expected to register range of page frames backed by
2126 * physical memory with memblock_add[_node]() before calling
2127 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2128 * usage, an architecture is expected to do something like
2129 *
2130 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2131 * max_highmem_pfn};
2132 * for_each_valid_physical_page_range()
2133 * memblock_add_node(base, size, nid)
2134 * free_area_init_nodes(max_zone_pfns);
2135 *
2136 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2137 * registered physical page range. Similarly
2138 * sparse_memory_present_with_active_regions() calls memory_present() for
2139 * each range when SPARSEMEM is enabled.
2140 *
2141 * See mm/page_alloc.c for more information on each function exposed by
2142 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2143 */
2144extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2145unsigned long node_map_pfn_alignment(void);
2146unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2147 unsigned long end_pfn);
2148extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2149 unsigned long end_pfn);
2150extern void get_pfn_range_for_nid(unsigned int nid,
2151 unsigned long *start_pfn, unsigned long *end_pfn);
2152extern unsigned long find_min_pfn_with_active_regions(void);
2153extern void free_bootmem_with_active_regions(int nid,
2154 unsigned long max_low_pfn);
2155extern void sparse_memory_present_with_active_regions(int nid);
2156
2157#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2158
2159#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2160 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2161static inline int __early_pfn_to_nid(unsigned long pfn,
2162 struct mminit_pfnnid_cache *state)
2163{
2164 return 0;
2165}
2166#else
2167/* please see mm/page_alloc.c */
2168extern int __meminit early_pfn_to_nid(unsigned long pfn);
2169/* there is a per-arch backend function. */
2170extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2171 struct mminit_pfnnid_cache *state);
2172#endif
2173
2174#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2175void zero_resv_unavail(void);
2176#else
2177static inline void zero_resv_unavail(void) {}
2178#endif
2179
2180extern void set_dma_reserve(unsigned long new_dma_reserve);
2181extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2182 enum memmap_context, struct vmem_altmap *);
2183extern void setup_per_zone_wmarks(void);
2184extern int __meminit init_per_zone_wmark_min(void);
2185extern void mem_init(void);
2186extern void __init mmap_init(void);
2187extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2188extern long si_mem_available(void);
2189extern void si_meminfo(struct sysinfo * val);
2190extern void si_meminfo_node(struct sysinfo *val, int nid);
2191#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2192extern unsigned long arch_reserved_kernel_pages(void);
2193#endif
2194
2195extern __printf(3, 4)
2196void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2197
2198extern void setup_per_cpu_pageset(void);
2199
2200extern void zone_pcp_update(struct zone *zone);
2201extern void zone_pcp_reset(struct zone *zone);
2202
2203/* page_alloc.c */
2204extern int min_free_kbytes;
2205extern int watermark_scale_factor;
2206
2207/* nommu.c */
2208extern atomic_long_t mmap_pages_allocated;
2209extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2210
2211/* interval_tree.c */
2212void vma_interval_tree_insert(struct vm_area_struct *node,
2213 struct rb_root_cached *root);
2214void vma_interval_tree_insert_after(struct vm_area_struct *node,
2215 struct vm_area_struct *prev,
2216 struct rb_root_cached *root);
2217void vma_interval_tree_remove(struct vm_area_struct *node,
2218 struct rb_root_cached *root);
2219struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2220 unsigned long start, unsigned long last);
2221struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2222 unsigned long start, unsigned long last);
2223
2224#define vma_interval_tree_foreach(vma, root, start, last) \
2225 for (vma = vma_interval_tree_iter_first(root, start, last); \
2226 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2227
2228void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2229 struct rb_root_cached *root);
2230void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2231 struct rb_root_cached *root);
2232struct anon_vma_chain *
2233anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2234 unsigned long start, unsigned long last);
2235struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2236 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2237#ifdef CONFIG_DEBUG_VM_RB
2238void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2239#endif
2240
2241#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2242 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2243 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2244
2245/* mmap.c */
2246extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2247extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2248 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2249 struct vm_area_struct *expand);
2250static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2251 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2252{
2253 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2254}
2255extern struct vm_area_struct *vma_merge(struct mm_struct *,
2256 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2257 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2258 struct mempolicy *, struct vm_userfaultfd_ctx);
2259extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2260extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2261 unsigned long addr, int new_below);
2262extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2263 unsigned long addr, int new_below);
2264extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2265extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2266 struct rb_node **, struct rb_node *);
2267extern void unlink_file_vma(struct vm_area_struct *);
2268extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2269 unsigned long addr, unsigned long len, pgoff_t pgoff,
2270 bool *need_rmap_locks);
2271extern void exit_mmap(struct mm_struct *);
2272
2273static inline int check_data_rlimit(unsigned long rlim,
2274 unsigned long new,
2275 unsigned long start,
2276 unsigned long end_data,
2277 unsigned long start_data)
2278{
2279 if (rlim < RLIM_INFINITY) {
2280 if (((new - start) + (end_data - start_data)) > rlim)
2281 return -ENOSPC;
2282 }
2283
2284 return 0;
2285}
2286
2287extern int mm_take_all_locks(struct mm_struct *mm);
2288extern void mm_drop_all_locks(struct mm_struct *mm);
2289
2290extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2291extern struct file *get_mm_exe_file(struct mm_struct *mm);
2292extern struct file *get_task_exe_file(struct task_struct *task);
2293
2294extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2295extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2296
2297extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2298 const struct vm_special_mapping *sm);
2299extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2300 unsigned long addr, unsigned long len,
2301 unsigned long flags,
2302 const struct vm_special_mapping *spec);
2303/* This is an obsolete alternative to _install_special_mapping. */
2304extern int install_special_mapping(struct mm_struct *mm,
2305 unsigned long addr, unsigned long len,
2306 unsigned long flags, struct page **pages);
2307
2308extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2309
2310extern unsigned long mmap_region(struct file *file, unsigned long addr,
2311 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2312 struct list_head *uf);
2313extern unsigned long do_mmap(struct file *file, unsigned long addr,
2314 unsigned long len, unsigned long prot, unsigned long flags,
2315 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2316 struct list_head *uf);
2317extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2318 struct list_head *uf, bool downgrade);
2319extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2320 struct list_head *uf);
2321
2322static inline unsigned long
2323do_mmap_pgoff(struct file *file, unsigned long addr,
2324 unsigned long len, unsigned long prot, unsigned long flags,
2325 unsigned long pgoff, unsigned long *populate,
2326 struct list_head *uf)
2327{
2328 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2329}
2330
2331#ifdef CONFIG_MMU
2332extern int __mm_populate(unsigned long addr, unsigned long len,
2333 int ignore_errors);
2334static inline void mm_populate(unsigned long addr, unsigned long len)
2335{
2336 /* Ignore errors */
2337 (void) __mm_populate(addr, len, 1);
2338}
2339#else
2340static inline void mm_populate(unsigned long addr, unsigned long len) {}
2341#endif
2342
2343/* These take the mm semaphore themselves */
2344extern int __must_check vm_brk(unsigned long, unsigned long);
2345extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2346extern int vm_munmap(unsigned long, size_t);
2347extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2348 unsigned long, unsigned long,
2349 unsigned long, unsigned long);
2350
2351struct vm_unmapped_area_info {
2352#define VM_UNMAPPED_AREA_TOPDOWN 1
2353 unsigned long flags;
2354 unsigned long length;
2355 unsigned long low_limit;
2356 unsigned long high_limit;
2357 unsigned long align_mask;
2358 unsigned long align_offset;
2359};
2360
2361extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2362extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2363
2364/*
2365 * Search for an unmapped address range.
2366 *
2367 * We are looking for a range that:
2368 * - does not intersect with any VMA;
2369 * - is contained within the [low_limit, high_limit) interval;
2370 * - is at least the desired size.
2371 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2372 */
2373static inline unsigned long
2374vm_unmapped_area(struct vm_unmapped_area_info *info)
2375{
2376 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2377 return unmapped_area_topdown(info);
2378 else
2379 return unmapped_area(info);
2380}
2381
2382/* truncate.c */
2383extern void truncate_inode_pages(struct address_space *, loff_t);
2384extern void truncate_inode_pages_range(struct address_space *,
2385 loff_t lstart, loff_t lend);
2386extern void truncate_inode_pages_final(struct address_space *);
2387
2388/* generic vm_area_ops exported for stackable file systems */
2389extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2390extern void filemap_map_pages(struct vm_fault *vmf,
2391 pgoff_t start_pgoff, pgoff_t end_pgoff);
2392extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2393
2394/* mm/page-writeback.c */
2395int __must_check write_one_page(struct page *page);
2396void task_dirty_inc(struct task_struct *tsk);
2397
2398/* readahead.c */
2399#define VM_MAX_READAHEAD 128 /* kbytes */
2400#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2401
2402int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2403 pgoff_t offset, unsigned long nr_to_read);
2404
2405void page_cache_sync_readahead(struct address_space *mapping,
2406 struct file_ra_state *ra,
2407 struct file *filp,
2408 pgoff_t offset,
2409 unsigned long size);
2410
2411void page_cache_async_readahead(struct address_space *mapping,
2412 struct file_ra_state *ra,
2413 struct file *filp,
2414 struct page *pg,
2415 pgoff_t offset,
2416 unsigned long size);
2417
2418extern unsigned long stack_guard_gap;
2419/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2420extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2421
2422/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2423extern int expand_downwards(struct vm_area_struct *vma,
2424 unsigned long address);
2425#if VM_GROWSUP
2426extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2427#else
2428 #define expand_upwards(vma, address) (0)
2429#endif
2430
2431/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2432extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2433extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2434 struct vm_area_struct **pprev);
2435
2436/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2437 NULL if none. Assume start_addr < end_addr. */
2438static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2439{
2440 struct vm_area_struct * vma = find_vma(mm,start_addr);
2441
2442 if (vma && end_addr <= vma->vm_start)
2443 vma = NULL;
2444 return vma;
2445}
2446
2447static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2448{
2449 unsigned long vm_start = vma->vm_start;
2450
2451 if (vma->vm_flags & VM_GROWSDOWN) {
2452 vm_start -= stack_guard_gap;
2453 if (vm_start > vma->vm_start)
2454 vm_start = 0;
2455 }
2456 return vm_start;
2457}
2458
2459static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2460{
2461 unsigned long vm_end = vma->vm_end;
2462
2463 if (vma->vm_flags & VM_GROWSUP) {
2464 vm_end += stack_guard_gap;
2465 if (vm_end < vma->vm_end)
2466 vm_end = -PAGE_SIZE;
2467 }
2468 return vm_end;
2469}
2470
2471static inline unsigned long vma_pages(struct vm_area_struct *vma)
2472{
2473 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2474}
2475
2476/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2477static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2478 unsigned long vm_start, unsigned long vm_end)
2479{
2480 struct vm_area_struct *vma = find_vma(mm, vm_start);
2481
2482 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2483 vma = NULL;
2484
2485 return vma;
2486}
2487
2488static inline bool range_in_vma(struct vm_area_struct *vma,
2489 unsigned long start, unsigned long end)
2490{
2491 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2492}
2493
2494#ifdef CONFIG_MMU
2495pgprot_t vm_get_page_prot(unsigned long vm_flags);
2496void vma_set_page_prot(struct vm_area_struct *vma);
2497#else
2498static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2499{
2500 return __pgprot(0);
2501}
2502static inline void vma_set_page_prot(struct vm_area_struct *vma)
2503{
2504 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2505}
2506#endif
2507
2508#ifdef CONFIG_NUMA_BALANCING
2509unsigned long change_prot_numa(struct vm_area_struct *vma,
2510 unsigned long start, unsigned long end);
2511#endif
2512
2513struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2514int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2515 unsigned long pfn, unsigned long size, pgprot_t);
2516int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2517vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2518 unsigned long pfn);
2519vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2520 unsigned long pfn, pgprot_t pgprot);
2521vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2522 pfn_t pfn);
2523vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2524 unsigned long addr, pfn_t pfn);
2525int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2526
2527static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2528 unsigned long addr, struct page *page)
2529{
2530 int err = vm_insert_page(vma, addr, page);
2531
2532 if (err == -ENOMEM)
2533 return VM_FAULT_OOM;
2534 if (err < 0 && err != -EBUSY)
2535 return VM_FAULT_SIGBUS;
2536
2537 return VM_FAULT_NOPAGE;
2538}
2539
2540static inline vm_fault_t vmf_error(int err)
2541{
2542 if (err == -ENOMEM)
2543 return VM_FAULT_OOM;
2544 return VM_FAULT_SIGBUS;
2545}
2546
2547struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2548 unsigned int foll_flags);
2549
2550#define FOLL_WRITE 0x01 /* check pte is writable */
2551#define FOLL_TOUCH 0x02 /* mark page accessed */
2552#define FOLL_GET 0x04 /* do get_page on page */
2553#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2554#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2555#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2556 * and return without waiting upon it */
2557#define FOLL_POPULATE 0x40 /* fault in page */
2558#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2559#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2560#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2561#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2562#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2563#define FOLL_MLOCK 0x1000 /* lock present pages */
2564#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2565#define FOLL_COW 0x4000 /* internal GUP flag */
2566#define FOLL_ANON 0x8000 /* don't do file mappings */
2567
2568static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2569{
2570 if (vm_fault & VM_FAULT_OOM)
2571 return -ENOMEM;
2572 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2573 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2574 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2575 return -EFAULT;
2576 return 0;
2577}
2578
2579typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2580 void *data);
2581extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2582 unsigned long size, pte_fn_t fn, void *data);
2583
2584
2585#ifdef CONFIG_PAGE_POISONING
2586extern bool page_poisoning_enabled(void);
2587extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2588#else
2589static inline bool page_poisoning_enabled(void) { return false; }
2590static inline void kernel_poison_pages(struct page *page, int numpages,
2591 int enable) { }
2592#endif
2593
2594#ifdef CONFIG_DEBUG_PAGEALLOC
2595extern bool _debug_pagealloc_enabled;
2596extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2597
2598static inline bool debug_pagealloc_enabled(void)
2599{
2600 return _debug_pagealloc_enabled;
2601}
2602
2603static inline void
2604kernel_map_pages(struct page *page, int numpages, int enable)
2605{
2606 if (!debug_pagealloc_enabled())
2607 return;
2608
2609 __kernel_map_pages(page, numpages, enable);
2610}
2611#ifdef CONFIG_HIBERNATION
2612extern bool kernel_page_present(struct page *page);
2613#endif /* CONFIG_HIBERNATION */
2614#else /* CONFIG_DEBUG_PAGEALLOC */
2615static inline void
2616kernel_map_pages(struct page *page, int numpages, int enable) {}
2617#ifdef CONFIG_HIBERNATION
2618static inline bool kernel_page_present(struct page *page) { return true; }
2619#endif /* CONFIG_HIBERNATION */
2620static inline bool debug_pagealloc_enabled(void)
2621{
2622 return false;
2623}
2624#endif /* CONFIG_DEBUG_PAGEALLOC */
2625
2626#ifdef __HAVE_ARCH_GATE_AREA
2627extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2628extern int in_gate_area_no_mm(unsigned long addr);
2629extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2630#else
2631static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2632{
2633 return NULL;
2634}
2635static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2636static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2637{
2638 return 0;
2639}
2640#endif /* __HAVE_ARCH_GATE_AREA */
2641
2642extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2643
2644#ifdef CONFIG_SYSCTL
2645extern int sysctl_drop_caches;
2646int drop_caches_sysctl_handler(struct ctl_table *, int,
2647 void __user *, size_t *, loff_t *);
2648#endif
2649
2650void drop_slab(void);
2651void drop_slab_node(int nid);
2652
2653#ifndef CONFIG_MMU
2654#define randomize_va_space 0
2655#else
2656extern int randomize_va_space;
2657#endif
2658
2659const char * arch_vma_name(struct vm_area_struct *vma);
2660void print_vma_addr(char *prefix, unsigned long rip);
2661
2662void *sparse_buffer_alloc(unsigned long size);
2663struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2664 struct vmem_altmap *altmap);
2665pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2666p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2667pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2668pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2669pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2670void *vmemmap_alloc_block(unsigned long size, int node);
2671struct vmem_altmap;
2672void *vmemmap_alloc_block_buf(unsigned long size, int node);
2673void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2674void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2675int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2676 int node);
2677int vmemmap_populate(unsigned long start, unsigned long end, int node,
2678 struct vmem_altmap *altmap);
2679void vmemmap_populate_print_last(void);
2680#ifdef CONFIG_MEMORY_HOTPLUG
2681void vmemmap_free(unsigned long start, unsigned long end,
2682 struct vmem_altmap *altmap);
2683#endif
2684void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2685 unsigned long nr_pages);
2686
2687enum mf_flags {
2688 MF_COUNT_INCREASED = 1 << 0,
2689 MF_ACTION_REQUIRED = 1 << 1,
2690 MF_MUST_KILL = 1 << 2,
2691 MF_SOFT_OFFLINE = 1 << 3,
2692};
2693extern int memory_failure(unsigned long pfn, int flags);
2694extern void memory_failure_queue(unsigned long pfn, int flags);
2695extern int unpoison_memory(unsigned long pfn);
2696extern int get_hwpoison_page(struct page *page);
2697#define put_hwpoison_page(page) put_page(page)
2698extern int sysctl_memory_failure_early_kill;
2699extern int sysctl_memory_failure_recovery;
2700extern void shake_page(struct page *p, int access);
2701extern atomic_long_t num_poisoned_pages __read_mostly;
2702extern int soft_offline_page(struct page *page, int flags);
2703
2704
2705/*
2706 * Error handlers for various types of pages.
2707 */
2708enum mf_result {
2709 MF_IGNORED, /* Error: cannot be handled */
2710 MF_FAILED, /* Error: handling failed */
2711 MF_DELAYED, /* Will be handled later */
2712 MF_RECOVERED, /* Successfully recovered */
2713};
2714
2715enum mf_action_page_type {
2716 MF_MSG_KERNEL,
2717 MF_MSG_KERNEL_HIGH_ORDER,
2718 MF_MSG_SLAB,
2719 MF_MSG_DIFFERENT_COMPOUND,
2720 MF_MSG_POISONED_HUGE,
2721 MF_MSG_HUGE,
2722 MF_MSG_FREE_HUGE,
2723 MF_MSG_NON_PMD_HUGE,
2724 MF_MSG_UNMAP_FAILED,
2725 MF_MSG_DIRTY_SWAPCACHE,
2726 MF_MSG_CLEAN_SWAPCACHE,
2727 MF_MSG_DIRTY_MLOCKED_LRU,
2728 MF_MSG_CLEAN_MLOCKED_LRU,
2729 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2730 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2731 MF_MSG_DIRTY_LRU,
2732 MF_MSG_CLEAN_LRU,
2733 MF_MSG_TRUNCATED_LRU,
2734 MF_MSG_BUDDY,
2735 MF_MSG_BUDDY_2ND,
2736 MF_MSG_DAX,
2737 MF_MSG_UNKNOWN,
2738};
2739
2740#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2741extern void clear_huge_page(struct page *page,
2742 unsigned long addr_hint,
2743 unsigned int pages_per_huge_page);
2744extern void copy_user_huge_page(struct page *dst, struct page *src,
2745 unsigned long addr_hint,
2746 struct vm_area_struct *vma,
2747 unsigned int pages_per_huge_page);
2748extern long copy_huge_page_from_user(struct page *dst_page,
2749 const void __user *usr_src,
2750 unsigned int pages_per_huge_page,
2751 bool allow_pagefault);
2752#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2753
2754extern struct page_ext_operations debug_guardpage_ops;
2755
2756#ifdef CONFIG_DEBUG_PAGEALLOC
2757extern unsigned int _debug_guardpage_minorder;
2758extern bool _debug_guardpage_enabled;
2759
2760static inline unsigned int debug_guardpage_minorder(void)
2761{
2762 return _debug_guardpage_minorder;
2763}
2764
2765static inline bool debug_guardpage_enabled(void)
2766{
2767 return _debug_guardpage_enabled;
2768}
2769
2770static inline bool page_is_guard(struct page *page)
2771{
2772 struct page_ext *page_ext;
2773
2774 if (!debug_guardpage_enabled())
2775 return false;
2776
2777 page_ext = lookup_page_ext(page);
2778 if (unlikely(!page_ext))
2779 return false;
2780
2781 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2782}
2783#else
2784static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2785static inline bool debug_guardpage_enabled(void) { return false; }
2786static inline bool page_is_guard(struct page *page) { return false; }
2787#endif /* CONFIG_DEBUG_PAGEALLOC */
2788
2789#if MAX_NUMNODES > 1
2790void __init setup_nr_node_ids(void);
2791#else
2792static inline void setup_nr_node_ids(void) {}
2793#endif
2794
2795#endif /* __KERNEL__ */
2796#endif /* _LINUX_MM_H */