at v4.20 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_LIST_H 3#define _LINUX_LIST_H 4 5#include <linux/types.h> 6#include <linux/stddef.h> 7#include <linux/poison.h> 8#include <linux/const.h> 9#include <linux/kernel.h> 10 11/* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21#define LIST_HEAD_INIT(name) { &(name), &(name) } 22 23#define LIST_HEAD(name) \ 24 struct list_head name = LIST_HEAD_INIT(name) 25 26static inline void INIT_LIST_HEAD(struct list_head *list) 27{ 28 WRITE_ONCE(list->next, list); 29 list->prev = list; 30} 31 32#ifdef CONFIG_DEBUG_LIST 33extern bool __list_add_valid(struct list_head *new, 34 struct list_head *prev, 35 struct list_head *next); 36extern bool __list_del_entry_valid(struct list_head *entry); 37#else 38static inline bool __list_add_valid(struct list_head *new, 39 struct list_head *prev, 40 struct list_head *next) 41{ 42 return true; 43} 44static inline bool __list_del_entry_valid(struct list_head *entry) 45{ 46 return true; 47} 48#endif 49 50/* 51 * Insert a new entry between two known consecutive entries. 52 * 53 * This is only for internal list manipulation where we know 54 * the prev/next entries already! 55 */ 56static inline void __list_add(struct list_head *new, 57 struct list_head *prev, 58 struct list_head *next) 59{ 60 if (!__list_add_valid(new, prev, next)) 61 return; 62 63 next->prev = new; 64 new->next = next; 65 new->prev = prev; 66 WRITE_ONCE(prev->next, new); 67} 68 69/** 70 * list_add - add a new entry 71 * @new: new entry to be added 72 * @head: list head to add it after 73 * 74 * Insert a new entry after the specified head. 75 * This is good for implementing stacks. 76 */ 77static inline void list_add(struct list_head *new, struct list_head *head) 78{ 79 __list_add(new, head, head->next); 80} 81 82 83/** 84 * list_add_tail - add a new entry 85 * @new: new entry to be added 86 * @head: list head to add it before 87 * 88 * Insert a new entry before the specified head. 89 * This is useful for implementing queues. 90 */ 91static inline void list_add_tail(struct list_head *new, struct list_head *head) 92{ 93 __list_add(new, head->prev, head); 94} 95 96/* 97 * Delete a list entry by making the prev/next entries 98 * point to each other. 99 * 100 * This is only for internal list manipulation where we know 101 * the prev/next entries already! 102 */ 103static inline void __list_del(struct list_head * prev, struct list_head * next) 104{ 105 next->prev = prev; 106 WRITE_ONCE(prev->next, next); 107} 108 109/** 110 * list_del - deletes entry from list. 111 * @entry: the element to delete from the list. 112 * Note: list_empty() on entry does not return true after this, the entry is 113 * in an undefined state. 114 */ 115static inline void __list_del_entry(struct list_head *entry) 116{ 117 if (!__list_del_entry_valid(entry)) 118 return; 119 120 __list_del(entry->prev, entry->next); 121} 122 123static inline void list_del(struct list_head *entry) 124{ 125 __list_del_entry(entry); 126 entry->next = LIST_POISON1; 127 entry->prev = LIST_POISON2; 128} 129 130/** 131 * list_replace - replace old entry by new one 132 * @old : the element to be replaced 133 * @new : the new element to insert 134 * 135 * If @old was empty, it will be overwritten. 136 */ 137static inline void list_replace(struct list_head *old, 138 struct list_head *new) 139{ 140 new->next = old->next; 141 new->next->prev = new; 142 new->prev = old->prev; 143 new->prev->next = new; 144} 145 146static inline void list_replace_init(struct list_head *old, 147 struct list_head *new) 148{ 149 list_replace(old, new); 150 INIT_LIST_HEAD(old); 151} 152 153/** 154 * list_del_init - deletes entry from list and reinitialize it. 155 * @entry: the element to delete from the list. 156 */ 157static inline void list_del_init(struct list_head *entry) 158{ 159 __list_del_entry(entry); 160 INIT_LIST_HEAD(entry); 161} 162 163/** 164 * list_move - delete from one list and add as another's head 165 * @list: the entry to move 166 * @head: the head that will precede our entry 167 */ 168static inline void list_move(struct list_head *list, struct list_head *head) 169{ 170 __list_del_entry(list); 171 list_add(list, head); 172} 173 174/** 175 * list_move_tail - delete from one list and add as another's tail 176 * @list: the entry to move 177 * @head: the head that will follow our entry 178 */ 179static inline void list_move_tail(struct list_head *list, 180 struct list_head *head) 181{ 182 __list_del_entry(list); 183 list_add_tail(list, head); 184} 185 186/** 187 * list_bulk_move_tail - move a subsection of a list to its tail 188 * @head: the head that will follow our entry 189 * @first: first entry to move 190 * @last: last entry to move, can be the same as first 191 * 192 * Move all entries between @first and including @last before @head. 193 * All three entries must belong to the same linked list. 194 */ 195static inline void list_bulk_move_tail(struct list_head *head, 196 struct list_head *first, 197 struct list_head *last) 198{ 199 first->prev->next = last->next; 200 last->next->prev = first->prev; 201 202 head->prev->next = first; 203 first->prev = head->prev; 204 205 last->next = head; 206 head->prev = last; 207} 208 209/** 210 * list_is_last - tests whether @list is the last entry in list @head 211 * @list: the entry to test 212 * @head: the head of the list 213 */ 214static inline int list_is_last(const struct list_head *list, 215 const struct list_head *head) 216{ 217 return list->next == head; 218} 219 220/** 221 * list_empty - tests whether a list is empty 222 * @head: the list to test. 223 */ 224static inline int list_empty(const struct list_head *head) 225{ 226 return READ_ONCE(head->next) == head; 227} 228 229/** 230 * list_empty_careful - tests whether a list is empty and not being modified 231 * @head: the list to test 232 * 233 * Description: 234 * tests whether a list is empty _and_ checks that no other CPU might be 235 * in the process of modifying either member (next or prev) 236 * 237 * NOTE: using list_empty_careful() without synchronization 238 * can only be safe if the only activity that can happen 239 * to the list entry is list_del_init(). Eg. it cannot be used 240 * if another CPU could re-list_add() it. 241 */ 242static inline int list_empty_careful(const struct list_head *head) 243{ 244 struct list_head *next = head->next; 245 return (next == head) && (next == head->prev); 246} 247 248/** 249 * list_rotate_left - rotate the list to the left 250 * @head: the head of the list 251 */ 252static inline void list_rotate_left(struct list_head *head) 253{ 254 struct list_head *first; 255 256 if (!list_empty(head)) { 257 first = head->next; 258 list_move_tail(first, head); 259 } 260} 261 262/** 263 * list_is_singular - tests whether a list has just one entry. 264 * @head: the list to test. 265 */ 266static inline int list_is_singular(const struct list_head *head) 267{ 268 return !list_empty(head) && (head->next == head->prev); 269} 270 271static inline void __list_cut_position(struct list_head *list, 272 struct list_head *head, struct list_head *entry) 273{ 274 struct list_head *new_first = entry->next; 275 list->next = head->next; 276 list->next->prev = list; 277 list->prev = entry; 278 entry->next = list; 279 head->next = new_first; 280 new_first->prev = head; 281} 282 283/** 284 * list_cut_position - cut a list into two 285 * @list: a new list to add all removed entries 286 * @head: a list with entries 287 * @entry: an entry within head, could be the head itself 288 * and if so we won't cut the list 289 * 290 * This helper moves the initial part of @head, up to and 291 * including @entry, from @head to @list. You should 292 * pass on @entry an element you know is on @head. @list 293 * should be an empty list or a list you do not care about 294 * losing its data. 295 * 296 */ 297static inline void list_cut_position(struct list_head *list, 298 struct list_head *head, struct list_head *entry) 299{ 300 if (list_empty(head)) 301 return; 302 if (list_is_singular(head) && 303 (head->next != entry && head != entry)) 304 return; 305 if (entry == head) 306 INIT_LIST_HEAD(list); 307 else 308 __list_cut_position(list, head, entry); 309} 310 311/** 312 * list_cut_before - cut a list into two, before given entry 313 * @list: a new list to add all removed entries 314 * @head: a list with entries 315 * @entry: an entry within head, could be the head itself 316 * 317 * This helper moves the initial part of @head, up to but 318 * excluding @entry, from @head to @list. You should pass 319 * in @entry an element you know is on @head. @list should 320 * be an empty list or a list you do not care about losing 321 * its data. 322 * If @entry == @head, all entries on @head are moved to 323 * @list. 324 */ 325static inline void list_cut_before(struct list_head *list, 326 struct list_head *head, 327 struct list_head *entry) 328{ 329 if (head->next == entry) { 330 INIT_LIST_HEAD(list); 331 return; 332 } 333 list->next = head->next; 334 list->next->prev = list; 335 list->prev = entry->prev; 336 list->prev->next = list; 337 head->next = entry; 338 entry->prev = head; 339} 340 341static inline void __list_splice(const struct list_head *list, 342 struct list_head *prev, 343 struct list_head *next) 344{ 345 struct list_head *first = list->next; 346 struct list_head *last = list->prev; 347 348 first->prev = prev; 349 prev->next = first; 350 351 last->next = next; 352 next->prev = last; 353} 354 355/** 356 * list_splice - join two lists, this is designed for stacks 357 * @list: the new list to add. 358 * @head: the place to add it in the first list. 359 */ 360static inline void list_splice(const struct list_head *list, 361 struct list_head *head) 362{ 363 if (!list_empty(list)) 364 __list_splice(list, head, head->next); 365} 366 367/** 368 * list_splice_tail - join two lists, each list being a queue 369 * @list: the new list to add. 370 * @head: the place to add it in the first list. 371 */ 372static inline void list_splice_tail(struct list_head *list, 373 struct list_head *head) 374{ 375 if (!list_empty(list)) 376 __list_splice(list, head->prev, head); 377} 378 379/** 380 * list_splice_init - join two lists and reinitialise the emptied list. 381 * @list: the new list to add. 382 * @head: the place to add it in the first list. 383 * 384 * The list at @list is reinitialised 385 */ 386static inline void list_splice_init(struct list_head *list, 387 struct list_head *head) 388{ 389 if (!list_empty(list)) { 390 __list_splice(list, head, head->next); 391 INIT_LIST_HEAD(list); 392 } 393} 394 395/** 396 * list_splice_tail_init - join two lists and reinitialise the emptied list 397 * @list: the new list to add. 398 * @head: the place to add it in the first list. 399 * 400 * Each of the lists is a queue. 401 * The list at @list is reinitialised 402 */ 403static inline void list_splice_tail_init(struct list_head *list, 404 struct list_head *head) 405{ 406 if (!list_empty(list)) { 407 __list_splice(list, head->prev, head); 408 INIT_LIST_HEAD(list); 409 } 410} 411 412/** 413 * list_entry - get the struct for this entry 414 * @ptr: the &struct list_head pointer. 415 * @type: the type of the struct this is embedded in. 416 * @member: the name of the list_head within the struct. 417 */ 418#define list_entry(ptr, type, member) \ 419 container_of(ptr, type, member) 420 421/** 422 * list_first_entry - get the first element from a list 423 * @ptr: the list head to take the element from. 424 * @type: the type of the struct this is embedded in. 425 * @member: the name of the list_head within the struct. 426 * 427 * Note, that list is expected to be not empty. 428 */ 429#define list_first_entry(ptr, type, member) \ 430 list_entry((ptr)->next, type, member) 431 432/** 433 * list_last_entry - get the last element from a list 434 * @ptr: the list head to take the element from. 435 * @type: the type of the struct this is embedded in. 436 * @member: the name of the list_head within the struct. 437 * 438 * Note, that list is expected to be not empty. 439 */ 440#define list_last_entry(ptr, type, member) \ 441 list_entry((ptr)->prev, type, member) 442 443/** 444 * list_first_entry_or_null - get the first element from a list 445 * @ptr: the list head to take the element from. 446 * @type: the type of the struct this is embedded in. 447 * @member: the name of the list_head within the struct. 448 * 449 * Note that if the list is empty, it returns NULL. 450 */ 451#define list_first_entry_or_null(ptr, type, member) ({ \ 452 struct list_head *head__ = (ptr); \ 453 struct list_head *pos__ = READ_ONCE(head__->next); \ 454 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ 455}) 456 457/** 458 * list_next_entry - get the next element in list 459 * @pos: the type * to cursor 460 * @member: the name of the list_head within the struct. 461 */ 462#define list_next_entry(pos, member) \ 463 list_entry((pos)->member.next, typeof(*(pos)), member) 464 465/** 466 * list_prev_entry - get the prev element in list 467 * @pos: the type * to cursor 468 * @member: the name of the list_head within the struct. 469 */ 470#define list_prev_entry(pos, member) \ 471 list_entry((pos)->member.prev, typeof(*(pos)), member) 472 473/** 474 * list_for_each - iterate over a list 475 * @pos: the &struct list_head to use as a loop cursor. 476 * @head: the head for your list. 477 */ 478#define list_for_each(pos, head) \ 479 for (pos = (head)->next; pos != (head); pos = pos->next) 480 481/** 482 * list_for_each_prev - iterate over a list backwards 483 * @pos: the &struct list_head to use as a loop cursor. 484 * @head: the head for your list. 485 */ 486#define list_for_each_prev(pos, head) \ 487 for (pos = (head)->prev; pos != (head); pos = pos->prev) 488 489/** 490 * list_for_each_safe - iterate over a list safe against removal of list entry 491 * @pos: the &struct list_head to use as a loop cursor. 492 * @n: another &struct list_head to use as temporary storage 493 * @head: the head for your list. 494 */ 495#define list_for_each_safe(pos, n, head) \ 496 for (pos = (head)->next, n = pos->next; pos != (head); \ 497 pos = n, n = pos->next) 498 499/** 500 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 501 * @pos: the &struct list_head to use as a loop cursor. 502 * @n: another &struct list_head to use as temporary storage 503 * @head: the head for your list. 504 */ 505#define list_for_each_prev_safe(pos, n, head) \ 506 for (pos = (head)->prev, n = pos->prev; \ 507 pos != (head); \ 508 pos = n, n = pos->prev) 509 510/** 511 * list_for_each_entry - iterate over list of given type 512 * @pos: the type * to use as a loop cursor. 513 * @head: the head for your list. 514 * @member: the name of the list_head within the struct. 515 */ 516#define list_for_each_entry(pos, head, member) \ 517 for (pos = list_first_entry(head, typeof(*pos), member); \ 518 &pos->member != (head); \ 519 pos = list_next_entry(pos, member)) 520 521/** 522 * list_for_each_entry_reverse - iterate backwards over list of given type. 523 * @pos: the type * to use as a loop cursor. 524 * @head: the head for your list. 525 * @member: the name of the list_head within the struct. 526 */ 527#define list_for_each_entry_reverse(pos, head, member) \ 528 for (pos = list_last_entry(head, typeof(*pos), member); \ 529 &pos->member != (head); \ 530 pos = list_prev_entry(pos, member)) 531 532/** 533 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 534 * @pos: the type * to use as a start point 535 * @head: the head of the list 536 * @member: the name of the list_head within the struct. 537 * 538 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 539 */ 540#define list_prepare_entry(pos, head, member) \ 541 ((pos) ? : list_entry(head, typeof(*pos), member)) 542 543/** 544 * list_for_each_entry_continue - continue iteration over list of given type 545 * @pos: the type * to use as a loop cursor. 546 * @head: the head for your list. 547 * @member: the name of the list_head within the struct. 548 * 549 * Continue to iterate over list of given type, continuing after 550 * the current position. 551 */ 552#define list_for_each_entry_continue(pos, head, member) \ 553 for (pos = list_next_entry(pos, member); \ 554 &pos->member != (head); \ 555 pos = list_next_entry(pos, member)) 556 557/** 558 * list_for_each_entry_continue_reverse - iterate backwards from the given point 559 * @pos: the type * to use as a loop cursor. 560 * @head: the head for your list. 561 * @member: the name of the list_head within the struct. 562 * 563 * Start to iterate over list of given type backwards, continuing after 564 * the current position. 565 */ 566#define list_for_each_entry_continue_reverse(pos, head, member) \ 567 for (pos = list_prev_entry(pos, member); \ 568 &pos->member != (head); \ 569 pos = list_prev_entry(pos, member)) 570 571/** 572 * list_for_each_entry_from - iterate over list of given type from the current point 573 * @pos: the type * to use as a loop cursor. 574 * @head: the head for your list. 575 * @member: the name of the list_head within the struct. 576 * 577 * Iterate over list of given type, continuing from current position. 578 */ 579#define list_for_each_entry_from(pos, head, member) \ 580 for (; &pos->member != (head); \ 581 pos = list_next_entry(pos, member)) 582 583/** 584 * list_for_each_entry_from_reverse - iterate backwards over list of given type 585 * from the current point 586 * @pos: the type * to use as a loop cursor. 587 * @head: the head for your list. 588 * @member: the name of the list_head within the struct. 589 * 590 * Iterate backwards over list of given type, continuing from current position. 591 */ 592#define list_for_each_entry_from_reverse(pos, head, member) \ 593 for (; &pos->member != (head); \ 594 pos = list_prev_entry(pos, member)) 595 596/** 597 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 598 * @pos: the type * to use as a loop cursor. 599 * @n: another type * to use as temporary storage 600 * @head: the head for your list. 601 * @member: the name of the list_head within the struct. 602 */ 603#define list_for_each_entry_safe(pos, n, head, member) \ 604 for (pos = list_first_entry(head, typeof(*pos), member), \ 605 n = list_next_entry(pos, member); \ 606 &pos->member != (head); \ 607 pos = n, n = list_next_entry(n, member)) 608 609/** 610 * list_for_each_entry_safe_continue - continue list iteration safe against removal 611 * @pos: the type * to use as a loop cursor. 612 * @n: another type * to use as temporary storage 613 * @head: the head for your list. 614 * @member: the name of the list_head within the struct. 615 * 616 * Iterate over list of given type, continuing after current point, 617 * safe against removal of list entry. 618 */ 619#define list_for_each_entry_safe_continue(pos, n, head, member) \ 620 for (pos = list_next_entry(pos, member), \ 621 n = list_next_entry(pos, member); \ 622 &pos->member != (head); \ 623 pos = n, n = list_next_entry(n, member)) 624 625/** 626 * list_for_each_entry_safe_from - iterate over list from current point safe against removal 627 * @pos: the type * to use as a loop cursor. 628 * @n: another type * to use as temporary storage 629 * @head: the head for your list. 630 * @member: the name of the list_head within the struct. 631 * 632 * Iterate over list of given type from current point, safe against 633 * removal of list entry. 634 */ 635#define list_for_each_entry_safe_from(pos, n, head, member) \ 636 for (n = list_next_entry(pos, member); \ 637 &pos->member != (head); \ 638 pos = n, n = list_next_entry(n, member)) 639 640/** 641 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal 642 * @pos: the type * to use as a loop cursor. 643 * @n: another type * to use as temporary storage 644 * @head: the head for your list. 645 * @member: the name of the list_head within the struct. 646 * 647 * Iterate backwards over list of given type, safe against removal 648 * of list entry. 649 */ 650#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 651 for (pos = list_last_entry(head, typeof(*pos), member), \ 652 n = list_prev_entry(pos, member); \ 653 &pos->member != (head); \ 654 pos = n, n = list_prev_entry(n, member)) 655 656/** 657 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop 658 * @pos: the loop cursor used in the list_for_each_entry_safe loop 659 * @n: temporary storage used in list_for_each_entry_safe 660 * @member: the name of the list_head within the struct. 661 * 662 * list_safe_reset_next is not safe to use in general if the list may be 663 * modified concurrently (eg. the lock is dropped in the loop body). An 664 * exception to this is if the cursor element (pos) is pinned in the list, 665 * and list_safe_reset_next is called after re-taking the lock and before 666 * completing the current iteration of the loop body. 667 */ 668#define list_safe_reset_next(pos, n, member) \ 669 n = list_next_entry(pos, member) 670 671/* 672 * Double linked lists with a single pointer list head. 673 * Mostly useful for hash tables where the two pointer list head is 674 * too wasteful. 675 * You lose the ability to access the tail in O(1). 676 */ 677 678#define HLIST_HEAD_INIT { .first = NULL } 679#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 680#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 681static inline void INIT_HLIST_NODE(struct hlist_node *h) 682{ 683 h->next = NULL; 684 h->pprev = NULL; 685} 686 687static inline int hlist_unhashed(const struct hlist_node *h) 688{ 689 return !h->pprev; 690} 691 692static inline int hlist_empty(const struct hlist_head *h) 693{ 694 return !READ_ONCE(h->first); 695} 696 697static inline void __hlist_del(struct hlist_node *n) 698{ 699 struct hlist_node *next = n->next; 700 struct hlist_node **pprev = n->pprev; 701 702 WRITE_ONCE(*pprev, next); 703 if (next) 704 next->pprev = pprev; 705} 706 707static inline void hlist_del(struct hlist_node *n) 708{ 709 __hlist_del(n); 710 n->next = LIST_POISON1; 711 n->pprev = LIST_POISON2; 712} 713 714static inline void hlist_del_init(struct hlist_node *n) 715{ 716 if (!hlist_unhashed(n)) { 717 __hlist_del(n); 718 INIT_HLIST_NODE(n); 719 } 720} 721 722static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 723{ 724 struct hlist_node *first = h->first; 725 n->next = first; 726 if (first) 727 first->pprev = &n->next; 728 WRITE_ONCE(h->first, n); 729 n->pprev = &h->first; 730} 731 732/* next must be != NULL */ 733static inline void hlist_add_before(struct hlist_node *n, 734 struct hlist_node *next) 735{ 736 n->pprev = next->pprev; 737 n->next = next; 738 next->pprev = &n->next; 739 WRITE_ONCE(*(n->pprev), n); 740} 741 742static inline void hlist_add_behind(struct hlist_node *n, 743 struct hlist_node *prev) 744{ 745 n->next = prev->next; 746 WRITE_ONCE(prev->next, n); 747 n->pprev = &prev->next; 748 749 if (n->next) 750 n->next->pprev = &n->next; 751} 752 753/* after that we'll appear to be on some hlist and hlist_del will work */ 754static inline void hlist_add_fake(struct hlist_node *n) 755{ 756 n->pprev = &n->next; 757} 758 759static inline bool hlist_fake(struct hlist_node *h) 760{ 761 return h->pprev == &h->next; 762} 763 764/* 765 * Check whether the node is the only node of the head without 766 * accessing head: 767 */ 768static inline bool 769hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) 770{ 771 return !n->next && n->pprev == &h->first; 772} 773 774/* 775 * Move a list from one list head to another. Fixup the pprev 776 * reference of the first entry if it exists. 777 */ 778static inline void hlist_move_list(struct hlist_head *old, 779 struct hlist_head *new) 780{ 781 new->first = old->first; 782 if (new->first) 783 new->first->pprev = &new->first; 784 old->first = NULL; 785} 786 787#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 788 789#define hlist_for_each(pos, head) \ 790 for (pos = (head)->first; pos ; pos = pos->next) 791 792#define hlist_for_each_safe(pos, n, head) \ 793 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 794 pos = n) 795 796#define hlist_entry_safe(ptr, type, member) \ 797 ({ typeof(ptr) ____ptr = (ptr); \ 798 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ 799 }) 800 801/** 802 * hlist_for_each_entry - iterate over list of given type 803 * @pos: the type * to use as a loop cursor. 804 * @head: the head for your list. 805 * @member: the name of the hlist_node within the struct. 806 */ 807#define hlist_for_each_entry(pos, head, member) \ 808 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ 809 pos; \ 810 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 811 812/** 813 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 814 * @pos: the type * to use as a loop cursor. 815 * @member: the name of the hlist_node within the struct. 816 */ 817#define hlist_for_each_entry_continue(pos, member) \ 818 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ 819 pos; \ 820 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 821 822/** 823 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 824 * @pos: the type * to use as a loop cursor. 825 * @member: the name of the hlist_node within the struct. 826 */ 827#define hlist_for_each_entry_from(pos, member) \ 828 for (; pos; \ 829 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 830 831/** 832 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 833 * @pos: the type * to use as a loop cursor. 834 * @n: another &struct hlist_node to use as temporary storage 835 * @head: the head for your list. 836 * @member: the name of the hlist_node within the struct. 837 */ 838#define hlist_for_each_entry_safe(pos, n, head, member) \ 839 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ 840 pos && ({ n = pos->member.next; 1; }); \ 841 pos = hlist_entry_safe(n, typeof(*pos), member)) 842 843#endif