at v4.20 37 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/vmalloc.h> 23#include <linux/rcupdate.h> 24#include <linux/ratelimit.h> 25#include <linux/err.h> 26#include <linux/irqflags.h> 27#include <linux/context_tracking.h> 28#include <linux/irqbypass.h> 29#include <linux/swait.h> 30#include <linux/refcount.h> 31#include <asm/signal.h> 32 33#include <linux/kvm.h> 34#include <linux/kvm_para.h> 35 36#include <linux/kvm_types.h> 37 38#include <asm/kvm_host.h> 39 40#ifndef KVM_MAX_VCPU_ID 41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42#endif 43 44/* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49#define KVM_MEMSLOT_INVALID (1UL << 16) 50 51/* Two fragments for cross MMIO pages. */ 52#define KVM_MAX_MMIO_FRAGMENTS 2 53 54#ifndef KVM_ADDRESS_SPACE_NUM 55#define KVM_ADDRESS_SPACE_NUM 1 56#endif 57 58/* 59 * For the normal pfn, the highest 12 bits should be zero, 60 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 61 * mask bit 63 to indicate the noslot pfn. 62 */ 63#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 64#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 65#define KVM_PFN_NOSLOT (0x1ULL << 63) 66 67#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 68#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 69#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 70 71/* 72 * error pfns indicate that the gfn is in slot but faild to 73 * translate it to pfn on host. 74 */ 75static inline bool is_error_pfn(kvm_pfn_t pfn) 76{ 77 return !!(pfn & KVM_PFN_ERR_MASK); 78} 79 80/* 81 * error_noslot pfns indicate that the gfn can not be 82 * translated to pfn - it is not in slot or failed to 83 * translate it to pfn. 84 */ 85static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 86{ 87 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 88} 89 90/* noslot pfn indicates that the gfn is not in slot. */ 91static inline bool is_noslot_pfn(kvm_pfn_t pfn) 92{ 93 return pfn == KVM_PFN_NOSLOT; 94} 95 96/* 97 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 98 * provide own defines and kvm_is_error_hva 99 */ 100#ifndef KVM_HVA_ERR_BAD 101 102#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 103#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 104 105static inline bool kvm_is_error_hva(unsigned long addr) 106{ 107 return addr >= PAGE_OFFSET; 108} 109 110#endif 111 112#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 113 114static inline bool is_error_page(struct page *page) 115{ 116 return IS_ERR(page); 117} 118 119#define KVM_REQUEST_MASK GENMASK(7,0) 120#define KVM_REQUEST_NO_WAKEUP BIT(8) 121#define KVM_REQUEST_WAIT BIT(9) 122/* 123 * Architecture-independent vcpu->requests bit members 124 * Bits 4-7 are reserved for more arch-independent bits. 125 */ 126#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128#define KVM_REQ_PENDING_TIMER 2 129#define KVM_REQ_UNHALT 3 130#define KVM_REQUEST_ARCH_BASE 8 131 132#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 133 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 134 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 135}) 136#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 137 138#define KVM_USERSPACE_IRQ_SOURCE_ID 0 139#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 140 141extern struct kmem_cache *kvm_vcpu_cache; 142 143extern spinlock_t kvm_lock; 144extern struct list_head vm_list; 145 146struct kvm_io_range { 147 gpa_t addr; 148 int len; 149 struct kvm_io_device *dev; 150}; 151 152#define NR_IOBUS_DEVS 1000 153 154struct kvm_io_bus { 155 int dev_count; 156 int ioeventfd_count; 157 struct kvm_io_range range[]; 158}; 159 160enum kvm_bus { 161 KVM_MMIO_BUS, 162 KVM_PIO_BUS, 163 KVM_VIRTIO_CCW_NOTIFY_BUS, 164 KVM_FAST_MMIO_BUS, 165 KVM_NR_BUSES 166}; 167 168int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 169 int len, const void *val); 170int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 171 gpa_t addr, int len, const void *val, long cookie); 172int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 173 int len, void *val); 174int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 175 int len, struct kvm_io_device *dev); 176void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 177 struct kvm_io_device *dev); 178struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 179 gpa_t addr); 180 181#ifdef CONFIG_KVM_ASYNC_PF 182struct kvm_async_pf { 183 struct work_struct work; 184 struct list_head link; 185 struct list_head queue; 186 struct kvm_vcpu *vcpu; 187 struct mm_struct *mm; 188 gva_t gva; 189 unsigned long addr; 190 struct kvm_arch_async_pf arch; 191 bool wakeup_all; 192}; 193 194void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 195void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 196int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 197 struct kvm_arch_async_pf *arch); 198int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 199#endif 200 201enum { 202 OUTSIDE_GUEST_MODE, 203 IN_GUEST_MODE, 204 EXITING_GUEST_MODE, 205 READING_SHADOW_PAGE_TABLES, 206}; 207 208/* 209 * Sometimes a large or cross-page mmio needs to be broken up into separate 210 * exits for userspace servicing. 211 */ 212struct kvm_mmio_fragment { 213 gpa_t gpa; 214 void *data; 215 unsigned len; 216}; 217 218struct kvm_vcpu { 219 struct kvm *kvm; 220#ifdef CONFIG_PREEMPT_NOTIFIERS 221 struct preempt_notifier preempt_notifier; 222#endif 223 int cpu; 224 int vcpu_id; 225 int srcu_idx; 226 int mode; 227 u64 requests; 228 unsigned long guest_debug; 229 230 int pre_pcpu; 231 struct list_head blocked_vcpu_list; 232 233 struct mutex mutex; 234 struct kvm_run *run; 235 236 int guest_xcr0_loaded; 237 struct swait_queue_head wq; 238 struct pid __rcu *pid; 239 int sigset_active; 240 sigset_t sigset; 241 struct kvm_vcpu_stat stat; 242 unsigned int halt_poll_ns; 243 bool valid_wakeup; 244 245#ifdef CONFIG_HAS_IOMEM 246 int mmio_needed; 247 int mmio_read_completed; 248 int mmio_is_write; 249 int mmio_cur_fragment; 250 int mmio_nr_fragments; 251 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 252#endif 253 254#ifdef CONFIG_KVM_ASYNC_PF 255 struct { 256 u32 queued; 257 struct list_head queue; 258 struct list_head done; 259 spinlock_t lock; 260 } async_pf; 261#endif 262 263#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 264 /* 265 * Cpu relax intercept or pause loop exit optimization 266 * in_spin_loop: set when a vcpu does a pause loop exit 267 * or cpu relax intercepted. 268 * dy_eligible: indicates whether vcpu is eligible for directed yield. 269 */ 270 struct { 271 bool in_spin_loop; 272 bool dy_eligible; 273 } spin_loop; 274#endif 275 bool preempted; 276 struct kvm_vcpu_arch arch; 277 struct dentry *debugfs_dentry; 278}; 279 280static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 281{ 282 /* 283 * The memory barrier ensures a previous write to vcpu->requests cannot 284 * be reordered with the read of vcpu->mode. It pairs with the general 285 * memory barrier following the write of vcpu->mode in VCPU RUN. 286 */ 287 smp_mb__before_atomic(); 288 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 289} 290 291/* 292 * Some of the bitops functions do not support too long bitmaps. 293 * This number must be determined not to exceed such limits. 294 */ 295#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 296 297struct kvm_memory_slot { 298 gfn_t base_gfn; 299 unsigned long npages; 300 unsigned long *dirty_bitmap; 301 struct kvm_arch_memory_slot arch; 302 unsigned long userspace_addr; 303 u32 flags; 304 short id; 305}; 306 307static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 308{ 309 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 310} 311 312static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 313{ 314 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 315 316 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 317} 318 319struct kvm_s390_adapter_int { 320 u64 ind_addr; 321 u64 summary_addr; 322 u64 ind_offset; 323 u32 summary_offset; 324 u32 adapter_id; 325}; 326 327struct kvm_hv_sint { 328 u32 vcpu; 329 u32 sint; 330}; 331 332struct kvm_kernel_irq_routing_entry { 333 u32 gsi; 334 u32 type; 335 int (*set)(struct kvm_kernel_irq_routing_entry *e, 336 struct kvm *kvm, int irq_source_id, int level, 337 bool line_status); 338 union { 339 struct { 340 unsigned irqchip; 341 unsigned pin; 342 } irqchip; 343 struct { 344 u32 address_lo; 345 u32 address_hi; 346 u32 data; 347 u32 flags; 348 u32 devid; 349 } msi; 350 struct kvm_s390_adapter_int adapter; 351 struct kvm_hv_sint hv_sint; 352 }; 353 struct hlist_node link; 354}; 355 356#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 357struct kvm_irq_routing_table { 358 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 359 u32 nr_rt_entries; 360 /* 361 * Array indexed by gsi. Each entry contains list of irq chips 362 * the gsi is connected to. 363 */ 364 struct hlist_head map[0]; 365}; 366#endif 367 368#ifndef KVM_PRIVATE_MEM_SLOTS 369#define KVM_PRIVATE_MEM_SLOTS 0 370#endif 371 372#ifndef KVM_MEM_SLOTS_NUM 373#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 374#endif 375 376#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 377static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 378{ 379 return 0; 380} 381#endif 382 383/* 384 * Note: 385 * memslots are not sorted by id anymore, please use id_to_memslot() 386 * to get the memslot by its id. 387 */ 388struct kvm_memslots { 389 u64 generation; 390 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 391 /* The mapping table from slot id to the index in memslots[]. */ 392 short id_to_index[KVM_MEM_SLOTS_NUM]; 393 atomic_t lru_slot; 394 int used_slots; 395}; 396 397struct kvm { 398 spinlock_t mmu_lock; 399 struct mutex slots_lock; 400 struct mm_struct *mm; /* userspace tied to this vm */ 401 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 402 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 403 404 /* 405 * created_vcpus is protected by kvm->lock, and is incremented 406 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 407 * incremented after storing the kvm_vcpu pointer in vcpus, 408 * and is accessed atomically. 409 */ 410 atomic_t online_vcpus; 411 int created_vcpus; 412 int last_boosted_vcpu; 413 struct list_head vm_list; 414 struct mutex lock; 415 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 416#ifdef CONFIG_HAVE_KVM_EVENTFD 417 struct { 418 spinlock_t lock; 419 struct list_head items; 420 struct list_head resampler_list; 421 struct mutex resampler_lock; 422 } irqfds; 423 struct list_head ioeventfds; 424#endif 425 struct kvm_vm_stat stat; 426 struct kvm_arch arch; 427 refcount_t users_count; 428#ifdef CONFIG_KVM_MMIO 429 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 430 spinlock_t ring_lock; 431 struct list_head coalesced_zones; 432#endif 433 434 struct mutex irq_lock; 435#ifdef CONFIG_HAVE_KVM_IRQCHIP 436 /* 437 * Update side is protected by irq_lock. 438 */ 439 struct kvm_irq_routing_table __rcu *irq_routing; 440#endif 441#ifdef CONFIG_HAVE_KVM_IRQFD 442 struct hlist_head irq_ack_notifier_list; 443#endif 444 445#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 446 struct mmu_notifier mmu_notifier; 447 unsigned long mmu_notifier_seq; 448 long mmu_notifier_count; 449#endif 450 long tlbs_dirty; 451 struct list_head devices; 452 struct dentry *debugfs_dentry; 453 struct kvm_stat_data **debugfs_stat_data; 454 struct srcu_struct srcu; 455 struct srcu_struct irq_srcu; 456 pid_t userspace_pid; 457}; 458 459#define kvm_err(fmt, ...) \ 460 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 461#define kvm_info(fmt, ...) \ 462 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 463#define kvm_debug(fmt, ...) \ 464 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 465#define kvm_debug_ratelimited(fmt, ...) \ 466 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 467 ## __VA_ARGS__) 468#define kvm_pr_unimpl(fmt, ...) \ 469 pr_err_ratelimited("kvm [%i]: " fmt, \ 470 task_tgid_nr(current), ## __VA_ARGS__) 471 472/* The guest did something we don't support. */ 473#define vcpu_unimpl(vcpu, fmt, ...) \ 474 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 475 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 476 477#define vcpu_debug(vcpu, fmt, ...) \ 478 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 479#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 480 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 481 ## __VA_ARGS__) 482#define vcpu_err(vcpu, fmt, ...) \ 483 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 484 485static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 486{ 487 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 488 lockdep_is_held(&kvm->slots_lock) || 489 !refcount_read(&kvm->users_count)); 490} 491 492static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 493{ 494 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 495 * the caller has read kvm->online_vcpus before (as is the case 496 * for kvm_for_each_vcpu, for example). 497 */ 498 smp_rmb(); 499 return kvm->vcpus[i]; 500} 501 502#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 503 for (idx = 0; \ 504 idx < atomic_read(&kvm->online_vcpus) && \ 505 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 506 idx++) 507 508static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 509{ 510 struct kvm_vcpu *vcpu = NULL; 511 int i; 512 513 if (id < 0) 514 return NULL; 515 if (id < KVM_MAX_VCPUS) 516 vcpu = kvm_get_vcpu(kvm, id); 517 if (vcpu && vcpu->vcpu_id == id) 518 return vcpu; 519 kvm_for_each_vcpu(i, vcpu, kvm) 520 if (vcpu->vcpu_id == id) 521 return vcpu; 522 return NULL; 523} 524 525static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 526{ 527 struct kvm_vcpu *tmp; 528 int idx; 529 530 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 531 if (tmp == vcpu) 532 return idx; 533 BUG(); 534} 535 536#define kvm_for_each_memslot(memslot, slots) \ 537 for (memslot = &slots->memslots[0]; \ 538 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 539 memslot++) 540 541int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 542void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 543 544void vcpu_load(struct kvm_vcpu *vcpu); 545void vcpu_put(struct kvm_vcpu *vcpu); 546 547#ifdef __KVM_HAVE_IOAPIC 548void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 549void kvm_arch_post_irq_routing_update(struct kvm *kvm); 550#else 551static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 552{ 553} 554static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 555{ 556} 557#endif 558 559#ifdef CONFIG_HAVE_KVM_IRQFD 560int kvm_irqfd_init(void); 561void kvm_irqfd_exit(void); 562#else 563static inline int kvm_irqfd_init(void) 564{ 565 return 0; 566} 567 568static inline void kvm_irqfd_exit(void) 569{ 570} 571#endif 572int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 573 struct module *module); 574void kvm_exit(void); 575 576void kvm_get_kvm(struct kvm *kvm); 577void kvm_put_kvm(struct kvm *kvm); 578 579static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 580{ 581 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 582 lockdep_is_held(&kvm->slots_lock) || 583 !refcount_read(&kvm->users_count)); 584} 585 586static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 587{ 588 return __kvm_memslots(kvm, 0); 589} 590 591static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 592{ 593 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 594 595 return __kvm_memslots(vcpu->kvm, as_id); 596} 597 598static inline struct kvm_memory_slot * 599id_to_memslot(struct kvm_memslots *slots, int id) 600{ 601 int index = slots->id_to_index[id]; 602 struct kvm_memory_slot *slot; 603 604 slot = &slots->memslots[index]; 605 606 WARN_ON(slot->id != id); 607 return slot; 608} 609 610/* 611 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 612 * - create a new memory slot 613 * - delete an existing memory slot 614 * - modify an existing memory slot 615 * -- move it in the guest physical memory space 616 * -- just change its flags 617 * 618 * Since flags can be changed by some of these operations, the following 619 * differentiation is the best we can do for __kvm_set_memory_region(): 620 */ 621enum kvm_mr_change { 622 KVM_MR_CREATE, 623 KVM_MR_DELETE, 624 KVM_MR_MOVE, 625 KVM_MR_FLAGS_ONLY, 626}; 627 628int kvm_set_memory_region(struct kvm *kvm, 629 const struct kvm_userspace_memory_region *mem); 630int __kvm_set_memory_region(struct kvm *kvm, 631 const struct kvm_userspace_memory_region *mem); 632void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 633 struct kvm_memory_slot *dont); 634int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 635 unsigned long npages); 636void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 637int kvm_arch_prepare_memory_region(struct kvm *kvm, 638 struct kvm_memory_slot *memslot, 639 const struct kvm_userspace_memory_region *mem, 640 enum kvm_mr_change change); 641void kvm_arch_commit_memory_region(struct kvm *kvm, 642 const struct kvm_userspace_memory_region *mem, 643 const struct kvm_memory_slot *old, 644 const struct kvm_memory_slot *new, 645 enum kvm_mr_change change); 646bool kvm_largepages_enabled(void); 647void kvm_disable_largepages(void); 648/* flush all memory translations */ 649void kvm_arch_flush_shadow_all(struct kvm *kvm); 650/* flush memory translations pointing to 'slot' */ 651void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 652 struct kvm_memory_slot *slot); 653 654int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 655 struct page **pages, int nr_pages); 656 657struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 658unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 659unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 660unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 661unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 662 bool *writable); 663void kvm_release_page_clean(struct page *page); 664void kvm_release_page_dirty(struct page *page); 665void kvm_set_page_accessed(struct page *page); 666 667kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 668kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 669kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 670 bool *writable); 671kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 672kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 673kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 674 bool atomic, bool *async, bool write_fault, 675 bool *writable); 676 677void kvm_release_pfn_clean(kvm_pfn_t pfn); 678void kvm_release_pfn_dirty(kvm_pfn_t pfn); 679void kvm_set_pfn_dirty(kvm_pfn_t pfn); 680void kvm_set_pfn_accessed(kvm_pfn_t pfn); 681void kvm_get_pfn(kvm_pfn_t pfn); 682 683int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 684 int len); 685int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 686 unsigned long len); 687int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 688int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 689 void *data, unsigned long len); 690int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 691 int offset, int len); 692int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 693 unsigned long len); 694int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 695 void *data, unsigned long len); 696int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 697 void *data, int offset, unsigned long len); 698int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 699 gpa_t gpa, unsigned long len); 700int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 701int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 702struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 703bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 704unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 705void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 706 707struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 708struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 709kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 710kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 711struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 712unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 713unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 714int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 715 int len); 716int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 717 unsigned long len); 718int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 719 unsigned long len); 720int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 721 int offset, int len); 722int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 723 unsigned long len); 724void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 725 726void kvm_sigset_activate(struct kvm_vcpu *vcpu); 727void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 728 729void kvm_vcpu_block(struct kvm_vcpu *vcpu); 730void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 731void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 732bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 733void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 734int kvm_vcpu_yield_to(struct kvm_vcpu *target); 735void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 736 737void kvm_flush_remote_tlbs(struct kvm *kvm); 738void kvm_reload_remote_mmus(struct kvm *kvm); 739 740bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 741 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 742bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 743 744long kvm_arch_dev_ioctl(struct file *filp, 745 unsigned int ioctl, unsigned long arg); 746long kvm_arch_vcpu_ioctl(struct file *filp, 747 unsigned int ioctl, unsigned long arg); 748vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 749 750int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 751 752int kvm_get_dirty_log(struct kvm *kvm, 753 struct kvm_dirty_log *log, int *is_dirty); 754 755int kvm_get_dirty_log_protect(struct kvm *kvm, 756 struct kvm_dirty_log *log, bool *is_dirty); 757 758void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 759 struct kvm_memory_slot *slot, 760 gfn_t gfn_offset, 761 unsigned long mask); 762 763int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 764 struct kvm_dirty_log *log); 765 766int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 767 bool line_status); 768long kvm_arch_vm_ioctl(struct file *filp, 769 unsigned int ioctl, unsigned long arg); 770 771int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 772int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 773 774int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 775 struct kvm_translation *tr); 776 777int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 778int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 779int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 780 struct kvm_sregs *sregs); 781int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 782 struct kvm_sregs *sregs); 783int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 784 struct kvm_mp_state *mp_state); 785int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 786 struct kvm_mp_state *mp_state); 787int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 788 struct kvm_guest_debug *dbg); 789int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 790 791int kvm_arch_init(void *opaque); 792void kvm_arch_exit(void); 793 794int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 795void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 796 797void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 798 799void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 800void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 801void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 802struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 803int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 804void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 805void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 806 807bool kvm_arch_has_vcpu_debugfs(void); 808int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 809 810int kvm_arch_hardware_enable(void); 811void kvm_arch_hardware_disable(void); 812int kvm_arch_hardware_setup(void); 813void kvm_arch_hardware_unsetup(void); 814void kvm_arch_check_processor_compat(void *rtn); 815int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 816bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 817int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 818 819#ifndef __KVM_HAVE_ARCH_VM_ALLOC 820/* 821 * All architectures that want to use vzalloc currently also 822 * need their own kvm_arch_alloc_vm implementation. 823 */ 824static inline struct kvm *kvm_arch_alloc_vm(void) 825{ 826 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 827} 828 829static inline void kvm_arch_free_vm(struct kvm *kvm) 830{ 831 kfree(kvm); 832} 833#endif 834 835#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 836static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 837{ 838 return -ENOTSUPP; 839} 840#endif 841 842#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 843void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 844void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 845bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 846#else 847static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 848{ 849} 850 851static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 852{ 853} 854 855static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 856{ 857 return false; 858} 859#endif 860#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 861void kvm_arch_start_assignment(struct kvm *kvm); 862void kvm_arch_end_assignment(struct kvm *kvm); 863bool kvm_arch_has_assigned_device(struct kvm *kvm); 864#else 865static inline void kvm_arch_start_assignment(struct kvm *kvm) 866{ 867} 868 869static inline void kvm_arch_end_assignment(struct kvm *kvm) 870{ 871} 872 873static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 874{ 875 return false; 876} 877#endif 878 879static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 880{ 881#ifdef __KVM_HAVE_ARCH_WQP 882 return vcpu->arch.wqp; 883#else 884 return &vcpu->wq; 885#endif 886} 887 888#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 889/* 890 * returns true if the virtual interrupt controller is initialized and 891 * ready to accept virtual IRQ. On some architectures the virtual interrupt 892 * controller is dynamically instantiated and this is not always true. 893 */ 894bool kvm_arch_intc_initialized(struct kvm *kvm); 895#else 896static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 897{ 898 return true; 899} 900#endif 901 902int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 903void kvm_arch_destroy_vm(struct kvm *kvm); 904void kvm_arch_sync_events(struct kvm *kvm); 905 906int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 907void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 908 909bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 910 911struct kvm_irq_ack_notifier { 912 struct hlist_node link; 913 unsigned gsi; 914 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 915}; 916 917int kvm_irq_map_gsi(struct kvm *kvm, 918 struct kvm_kernel_irq_routing_entry *entries, int gsi); 919int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 920 921int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 922 bool line_status); 923int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 924 int irq_source_id, int level, bool line_status); 925int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 926 struct kvm *kvm, int irq_source_id, 927 int level, bool line_status); 928bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 929void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 930void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 931void kvm_register_irq_ack_notifier(struct kvm *kvm, 932 struct kvm_irq_ack_notifier *kian); 933void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 934 struct kvm_irq_ack_notifier *kian); 935int kvm_request_irq_source_id(struct kvm *kvm); 936void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 937 938/* 939 * search_memslots() and __gfn_to_memslot() are here because they are 940 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 941 * gfn_to_memslot() itself isn't here as an inline because that would 942 * bloat other code too much. 943 */ 944static inline struct kvm_memory_slot * 945search_memslots(struct kvm_memslots *slots, gfn_t gfn) 946{ 947 int start = 0, end = slots->used_slots; 948 int slot = atomic_read(&slots->lru_slot); 949 struct kvm_memory_slot *memslots = slots->memslots; 950 951 if (gfn >= memslots[slot].base_gfn && 952 gfn < memslots[slot].base_gfn + memslots[slot].npages) 953 return &memslots[slot]; 954 955 while (start < end) { 956 slot = start + (end - start) / 2; 957 958 if (gfn >= memslots[slot].base_gfn) 959 end = slot; 960 else 961 start = slot + 1; 962 } 963 964 if (gfn >= memslots[start].base_gfn && 965 gfn < memslots[start].base_gfn + memslots[start].npages) { 966 atomic_set(&slots->lru_slot, start); 967 return &memslots[start]; 968 } 969 970 return NULL; 971} 972 973static inline struct kvm_memory_slot * 974__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 975{ 976 return search_memslots(slots, gfn); 977} 978 979static inline unsigned long 980__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 981{ 982 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 983} 984 985static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 986{ 987 return gfn_to_memslot(kvm, gfn)->id; 988} 989 990static inline gfn_t 991hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 992{ 993 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 994 995 return slot->base_gfn + gfn_offset; 996} 997 998static inline gpa_t gfn_to_gpa(gfn_t gfn) 999{ 1000 return (gpa_t)gfn << PAGE_SHIFT; 1001} 1002 1003static inline gfn_t gpa_to_gfn(gpa_t gpa) 1004{ 1005 return (gfn_t)(gpa >> PAGE_SHIFT); 1006} 1007 1008static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1009{ 1010 return (hpa_t)pfn << PAGE_SHIFT; 1011} 1012 1013static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1014 gpa_t gpa) 1015{ 1016 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1017} 1018 1019static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1020{ 1021 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1022 1023 return kvm_is_error_hva(hva); 1024} 1025 1026enum kvm_stat_kind { 1027 KVM_STAT_VM, 1028 KVM_STAT_VCPU, 1029}; 1030 1031struct kvm_stat_data { 1032 int offset; 1033 struct kvm *kvm; 1034}; 1035 1036struct kvm_stats_debugfs_item { 1037 const char *name; 1038 int offset; 1039 enum kvm_stat_kind kind; 1040}; 1041extern struct kvm_stats_debugfs_item debugfs_entries[]; 1042extern struct dentry *kvm_debugfs_dir; 1043 1044#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1045static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1046{ 1047 if (unlikely(kvm->mmu_notifier_count)) 1048 return 1; 1049 /* 1050 * Ensure the read of mmu_notifier_count happens before the read 1051 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1052 * mmu_notifier_invalidate_range_end to make sure that the caller 1053 * either sees the old (non-zero) value of mmu_notifier_count or 1054 * the new (incremented) value of mmu_notifier_seq. 1055 * PowerPC Book3s HV KVM calls this under a per-page lock 1056 * rather than under kvm->mmu_lock, for scalability, so 1057 * can't rely on kvm->mmu_lock to keep things ordered. 1058 */ 1059 smp_rmb(); 1060 if (kvm->mmu_notifier_seq != mmu_seq) 1061 return 1; 1062 return 0; 1063} 1064#endif 1065 1066#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1067 1068#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1069 1070bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1071int kvm_set_irq_routing(struct kvm *kvm, 1072 const struct kvm_irq_routing_entry *entries, 1073 unsigned nr, 1074 unsigned flags); 1075int kvm_set_routing_entry(struct kvm *kvm, 1076 struct kvm_kernel_irq_routing_entry *e, 1077 const struct kvm_irq_routing_entry *ue); 1078void kvm_free_irq_routing(struct kvm *kvm); 1079 1080#else 1081 1082static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1083 1084#endif 1085 1086int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1087 1088#ifdef CONFIG_HAVE_KVM_EVENTFD 1089 1090void kvm_eventfd_init(struct kvm *kvm); 1091int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1092 1093#ifdef CONFIG_HAVE_KVM_IRQFD 1094int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1095void kvm_irqfd_release(struct kvm *kvm); 1096void kvm_irq_routing_update(struct kvm *); 1097#else 1098static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1099{ 1100 return -EINVAL; 1101} 1102 1103static inline void kvm_irqfd_release(struct kvm *kvm) {} 1104#endif 1105 1106#else 1107 1108static inline void kvm_eventfd_init(struct kvm *kvm) {} 1109 1110static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1111{ 1112 return -EINVAL; 1113} 1114 1115static inline void kvm_irqfd_release(struct kvm *kvm) {} 1116 1117#ifdef CONFIG_HAVE_KVM_IRQCHIP 1118static inline void kvm_irq_routing_update(struct kvm *kvm) 1119{ 1120} 1121#endif 1122 1123static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1124{ 1125 return -ENOSYS; 1126} 1127 1128#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1129 1130void kvm_arch_irq_routing_update(struct kvm *kvm); 1131 1132static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1133{ 1134 /* 1135 * Ensure the rest of the request is published to kvm_check_request's 1136 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1137 */ 1138 smp_wmb(); 1139 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1140} 1141 1142static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1143{ 1144 return READ_ONCE(vcpu->requests); 1145} 1146 1147static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1148{ 1149 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1150} 1151 1152static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1153{ 1154 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1155} 1156 1157static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1158{ 1159 if (kvm_test_request(req, vcpu)) { 1160 kvm_clear_request(req, vcpu); 1161 1162 /* 1163 * Ensure the rest of the request is visible to kvm_check_request's 1164 * caller. Paired with the smp_wmb in kvm_make_request. 1165 */ 1166 smp_mb__after_atomic(); 1167 return true; 1168 } else { 1169 return false; 1170 } 1171} 1172 1173extern bool kvm_rebooting; 1174 1175extern unsigned int halt_poll_ns; 1176extern unsigned int halt_poll_ns_grow; 1177extern unsigned int halt_poll_ns_shrink; 1178 1179struct kvm_device { 1180 struct kvm_device_ops *ops; 1181 struct kvm *kvm; 1182 void *private; 1183 struct list_head vm_node; 1184}; 1185 1186/* create, destroy, and name are mandatory */ 1187struct kvm_device_ops { 1188 const char *name; 1189 1190 /* 1191 * create is called holding kvm->lock and any operations not suitable 1192 * to do while holding the lock should be deferred to init (see 1193 * below). 1194 */ 1195 int (*create)(struct kvm_device *dev, u32 type); 1196 1197 /* 1198 * init is called after create if create is successful and is called 1199 * outside of holding kvm->lock. 1200 */ 1201 void (*init)(struct kvm_device *dev); 1202 1203 /* 1204 * Destroy is responsible for freeing dev. 1205 * 1206 * Destroy may be called before or after destructors are called 1207 * on emulated I/O regions, depending on whether a reference is 1208 * held by a vcpu or other kvm component that gets destroyed 1209 * after the emulated I/O. 1210 */ 1211 void (*destroy)(struct kvm_device *dev); 1212 1213 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1214 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1215 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1216 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1217 unsigned long arg); 1218}; 1219 1220void kvm_device_get(struct kvm_device *dev); 1221void kvm_device_put(struct kvm_device *dev); 1222struct kvm_device *kvm_device_from_filp(struct file *filp); 1223int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1224void kvm_unregister_device_ops(u32 type); 1225 1226extern struct kvm_device_ops kvm_mpic_ops; 1227extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1228extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1229 1230#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1231 1232static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1233{ 1234 vcpu->spin_loop.in_spin_loop = val; 1235} 1236static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1237{ 1238 vcpu->spin_loop.dy_eligible = val; 1239} 1240 1241#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1242 1243static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1244{ 1245} 1246 1247static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1248{ 1249} 1250#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1251 1252#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1253bool kvm_arch_has_irq_bypass(void); 1254int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1255 struct irq_bypass_producer *); 1256void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1257 struct irq_bypass_producer *); 1258void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1259void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1260int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1261 uint32_t guest_irq, bool set); 1262#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1263 1264#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1265/* If we wakeup during the poll time, was it a sucessful poll? */ 1266static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1267{ 1268 return vcpu->valid_wakeup; 1269} 1270 1271#else 1272static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1273{ 1274 return true; 1275} 1276#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1277 1278#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1279long kvm_arch_vcpu_async_ioctl(struct file *filp, 1280 unsigned int ioctl, unsigned long arg); 1281#else 1282static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1283 unsigned int ioctl, 1284 unsigned long arg) 1285{ 1286 return -ENOIOCTLCMD; 1287} 1288#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1289 1290int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1291 unsigned long start, unsigned long end, bool blockable); 1292 1293#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1294int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1295#else 1296static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1297{ 1298 return 0; 1299} 1300#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1301 1302#endif