at v4.20 61 kB view raw
1/* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 5 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17#ifndef _LINUX_CRYPTO_H 18#define _LINUX_CRYPTO_H 19 20#include <linux/atomic.h> 21#include <linux/kernel.h> 22#include <linux/list.h> 23#include <linux/bug.h> 24#include <linux/slab.h> 25#include <linux/string.h> 26#include <linux/uaccess.h> 27#include <linux/completion.h> 28 29/* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38#define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42/* 43 * Algorithm masks and types. 44 */ 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48#define CRYPTO_ALG_TYPE_AEAD 0x00000003 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 53#define CRYPTO_ALG_TYPE_KPP 0x00000008 54#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 55#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 56#define CRYPTO_ALG_TYPE_RNG 0x0000000c 57#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 58#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 59#define CRYPTO_ALG_TYPE_HASH 0x0000000e 60#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 61#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 62 63#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 64#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 67 68#define CRYPTO_ALG_LARVAL 0x00000010 69#define CRYPTO_ALG_DEAD 0x00000020 70#define CRYPTO_ALG_DYING 0x00000040 71#define CRYPTO_ALG_ASYNC 0x00000080 72 73/* 74 * Set this bit if and only if the algorithm requires another algorithm of 75 * the same type to handle corner cases. 76 */ 77#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 78 79/* 80 * This bit is set for symmetric key ciphers that have already been wrapped 81 * with a generic IV generator to prevent them from being wrapped again. 82 */ 83#define CRYPTO_ALG_GENIV 0x00000200 84 85/* 86 * Set if the algorithm has passed automated run-time testing. Note that 87 * if there is no run-time testing for a given algorithm it is considered 88 * to have passed. 89 */ 90 91#define CRYPTO_ALG_TESTED 0x00000400 92 93/* 94 * Set if the algorithm is an instance that is built from templates. 95 */ 96#define CRYPTO_ALG_INSTANCE 0x00000800 97 98/* Set this bit if the algorithm provided is hardware accelerated but 99 * not available to userspace via instruction set or so. 100 */ 101#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 102 103/* 104 * Mark a cipher as a service implementation only usable by another 105 * cipher and never by a normal user of the kernel crypto API 106 */ 107#define CRYPTO_ALG_INTERNAL 0x00002000 108 109/* 110 * Set if the algorithm has a ->setkey() method but can be used without 111 * calling it first, i.e. there is a default key. 112 */ 113#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 114 115/* 116 * Don't trigger module loading 117 */ 118#define CRYPTO_NOLOAD 0x00008000 119 120/* 121 * Transform masks and values (for crt_flags). 122 */ 123#define CRYPTO_TFM_NEED_KEY 0x00000001 124 125#define CRYPTO_TFM_REQ_MASK 0x000fff00 126#define CRYPTO_TFM_RES_MASK 0xfff00000 127 128#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 129#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 130#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 131#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 132#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 133#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 134#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 135#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 136 137/* 138 * Miscellaneous stuff. 139 */ 140#define CRYPTO_MAX_ALG_NAME 128 141 142/* 143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 144 * declaration) is used to ensure that the crypto_tfm context structure is 145 * aligned correctly for the given architecture so that there are no alignment 146 * faults for C data types. In particular, this is required on platforms such 147 * as arm where pointers are 32-bit aligned but there are data types such as 148 * u64 which require 64-bit alignment. 149 */ 150#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 151 152#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 153 154struct scatterlist; 155struct crypto_ablkcipher; 156struct crypto_async_request; 157struct crypto_blkcipher; 158struct crypto_tfm; 159struct crypto_type; 160struct skcipher_givcrypt_request; 161 162typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 163 164/** 165 * DOC: Block Cipher Context Data Structures 166 * 167 * These data structures define the operating context for each block cipher 168 * type. 169 */ 170 171struct crypto_async_request { 172 struct list_head list; 173 crypto_completion_t complete; 174 void *data; 175 struct crypto_tfm *tfm; 176 177 u32 flags; 178}; 179 180struct ablkcipher_request { 181 struct crypto_async_request base; 182 183 unsigned int nbytes; 184 185 void *info; 186 187 struct scatterlist *src; 188 struct scatterlist *dst; 189 190 void *__ctx[] CRYPTO_MINALIGN_ATTR; 191}; 192 193struct blkcipher_desc { 194 struct crypto_blkcipher *tfm; 195 void *info; 196 u32 flags; 197}; 198 199struct cipher_desc { 200 struct crypto_tfm *tfm; 201 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 202 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 203 const u8 *src, unsigned int nbytes); 204 void *info; 205}; 206 207/** 208 * DOC: Block Cipher Algorithm Definitions 209 * 210 * These data structures define modular crypto algorithm implementations, 211 * managed via crypto_register_alg() and crypto_unregister_alg(). 212 */ 213 214/** 215 * struct ablkcipher_alg - asynchronous block cipher definition 216 * @min_keysize: Minimum key size supported by the transformation. This is the 217 * smallest key length supported by this transformation algorithm. 218 * This must be set to one of the pre-defined values as this is 219 * not hardware specific. Possible values for this field can be 220 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 221 * @max_keysize: Maximum key size supported by the transformation. This is the 222 * largest key length supported by this transformation algorithm. 223 * This must be set to one of the pre-defined values as this is 224 * not hardware specific. Possible values for this field can be 225 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 226 * @setkey: Set key for the transformation. This function is used to either 227 * program a supplied key into the hardware or store the key in the 228 * transformation context for programming it later. Note that this 229 * function does modify the transformation context. This function can 230 * be called multiple times during the existence of the transformation 231 * object, so one must make sure the key is properly reprogrammed into 232 * the hardware. This function is also responsible for checking the key 233 * length for validity. In case a software fallback was put in place in 234 * the @cra_init call, this function might need to use the fallback if 235 * the algorithm doesn't support all of the key sizes. 236 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 237 * the supplied scatterlist containing the blocks of data. The crypto 238 * API consumer is responsible for aligning the entries of the 239 * scatterlist properly and making sure the chunks are correctly 240 * sized. In case a software fallback was put in place in the 241 * @cra_init call, this function might need to use the fallback if 242 * the algorithm doesn't support all of the key sizes. In case the 243 * key was stored in transformation context, the key might need to be 244 * re-programmed into the hardware in this function. This function 245 * shall not modify the transformation context, as this function may 246 * be called in parallel with the same transformation object. 247 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 248 * and the conditions are exactly the same. 249 * @givencrypt: Update the IV for encryption. With this function, a cipher 250 * implementation may provide the function on how to update the IV 251 * for encryption. 252 * @givdecrypt: Update the IV for decryption. This is the reverse of 253 * @givencrypt . 254 * @geniv: The transformation implementation may use an "IV generator" provided 255 * by the kernel crypto API. Several use cases have a predefined 256 * approach how IVs are to be updated. For such use cases, the kernel 257 * crypto API provides ready-to-use implementations that can be 258 * referenced with this variable. 259 * @ivsize: IV size applicable for transformation. The consumer must provide an 260 * IV of exactly that size to perform the encrypt or decrypt operation. 261 * 262 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are 263 * mandatory and must be filled. 264 */ 265struct ablkcipher_alg { 266 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 267 unsigned int keylen); 268 int (*encrypt)(struct ablkcipher_request *req); 269 int (*decrypt)(struct ablkcipher_request *req); 270 int (*givencrypt)(struct skcipher_givcrypt_request *req); 271 int (*givdecrypt)(struct skcipher_givcrypt_request *req); 272 273 const char *geniv; 274 275 unsigned int min_keysize; 276 unsigned int max_keysize; 277 unsigned int ivsize; 278}; 279 280/** 281 * struct blkcipher_alg - synchronous block cipher definition 282 * @min_keysize: see struct ablkcipher_alg 283 * @max_keysize: see struct ablkcipher_alg 284 * @setkey: see struct ablkcipher_alg 285 * @encrypt: see struct ablkcipher_alg 286 * @decrypt: see struct ablkcipher_alg 287 * @geniv: see struct ablkcipher_alg 288 * @ivsize: see struct ablkcipher_alg 289 * 290 * All fields except @geniv and @ivsize are mandatory and must be filled. 291 */ 292struct blkcipher_alg { 293 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 294 unsigned int keylen); 295 int (*encrypt)(struct blkcipher_desc *desc, 296 struct scatterlist *dst, struct scatterlist *src, 297 unsigned int nbytes); 298 int (*decrypt)(struct blkcipher_desc *desc, 299 struct scatterlist *dst, struct scatterlist *src, 300 unsigned int nbytes); 301 302 const char *geniv; 303 304 unsigned int min_keysize; 305 unsigned int max_keysize; 306 unsigned int ivsize; 307}; 308 309/** 310 * struct cipher_alg - single-block symmetric ciphers definition 311 * @cia_min_keysize: Minimum key size supported by the transformation. This is 312 * the smallest key length supported by this transformation 313 * algorithm. This must be set to one of the pre-defined 314 * values as this is not hardware specific. Possible values 315 * for this field can be found via git grep "_MIN_KEY_SIZE" 316 * include/crypto/ 317 * @cia_max_keysize: Maximum key size supported by the transformation. This is 318 * the largest key length supported by this transformation 319 * algorithm. This must be set to one of the pre-defined values 320 * as this is not hardware specific. Possible values for this 321 * field can be found via git grep "_MAX_KEY_SIZE" 322 * include/crypto/ 323 * @cia_setkey: Set key for the transformation. This function is used to either 324 * program a supplied key into the hardware or store the key in the 325 * transformation context for programming it later. Note that this 326 * function does modify the transformation context. This function 327 * can be called multiple times during the existence of the 328 * transformation object, so one must make sure the key is properly 329 * reprogrammed into the hardware. This function is also 330 * responsible for checking the key length for validity. 331 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 332 * single block of data, which must be @cra_blocksize big. This 333 * always operates on a full @cra_blocksize and it is not possible 334 * to encrypt a block of smaller size. The supplied buffers must 335 * therefore also be at least of @cra_blocksize size. Both the 336 * input and output buffers are always aligned to @cra_alignmask. 337 * In case either of the input or output buffer supplied by user 338 * of the crypto API is not aligned to @cra_alignmask, the crypto 339 * API will re-align the buffers. The re-alignment means that a 340 * new buffer will be allocated, the data will be copied into the 341 * new buffer, then the processing will happen on the new buffer, 342 * then the data will be copied back into the original buffer and 343 * finally the new buffer will be freed. In case a software 344 * fallback was put in place in the @cra_init call, this function 345 * might need to use the fallback if the algorithm doesn't support 346 * all of the key sizes. In case the key was stored in 347 * transformation context, the key might need to be re-programmed 348 * into the hardware in this function. This function shall not 349 * modify the transformation context, as this function may be 350 * called in parallel with the same transformation object. 351 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 352 * @cia_encrypt, and the conditions are exactly the same. 353 * 354 * All fields are mandatory and must be filled. 355 */ 356struct cipher_alg { 357 unsigned int cia_min_keysize; 358 unsigned int cia_max_keysize; 359 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 360 unsigned int keylen); 361 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 362 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 363}; 364 365struct compress_alg { 366 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 367 unsigned int slen, u8 *dst, unsigned int *dlen); 368 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 369 unsigned int slen, u8 *dst, unsigned int *dlen); 370}; 371 372 373#define cra_ablkcipher cra_u.ablkcipher 374#define cra_blkcipher cra_u.blkcipher 375#define cra_cipher cra_u.cipher 376#define cra_compress cra_u.compress 377 378/** 379 * struct crypto_alg - definition of a cryptograpic cipher algorithm 380 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 381 * CRYPTO_ALG_* flags for the flags which go in here. Those are 382 * used for fine-tuning the description of the transformation 383 * algorithm. 384 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 385 * of the smallest possible unit which can be transformed with 386 * this algorithm. The users must respect this value. 387 * In case of HASH transformation, it is possible for a smaller 388 * block than @cra_blocksize to be passed to the crypto API for 389 * transformation, in case of any other transformation type, an 390 * error will be returned upon any attempt to transform smaller 391 * than @cra_blocksize chunks. 392 * @cra_ctxsize: Size of the operational context of the transformation. This 393 * value informs the kernel crypto API about the memory size 394 * needed to be allocated for the transformation context. 395 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 396 * buffer containing the input data for the algorithm must be 397 * aligned to this alignment mask. The data buffer for the 398 * output data must be aligned to this alignment mask. Note that 399 * the Crypto API will do the re-alignment in software, but 400 * only under special conditions and there is a performance hit. 401 * The re-alignment happens at these occasions for different 402 * @cra_u types: cipher -- For both input data and output data 403 * buffer; ahash -- For output hash destination buf; shash -- 404 * For output hash destination buf. 405 * This is needed on hardware which is flawed by design and 406 * cannot pick data from arbitrary addresses. 407 * @cra_priority: Priority of this transformation implementation. In case 408 * multiple transformations with same @cra_name are available to 409 * the Crypto API, the kernel will use the one with highest 410 * @cra_priority. 411 * @cra_name: Generic name (usable by multiple implementations) of the 412 * transformation algorithm. This is the name of the transformation 413 * itself. This field is used by the kernel when looking up the 414 * providers of particular transformation. 415 * @cra_driver_name: Unique name of the transformation provider. This is the 416 * name of the provider of the transformation. This can be any 417 * arbitrary value, but in the usual case, this contains the 418 * name of the chip or provider and the name of the 419 * transformation algorithm. 420 * @cra_type: Type of the cryptographic transformation. This is a pointer to 421 * struct crypto_type, which implements callbacks common for all 422 * transformation types. There are multiple options: 423 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 424 * &crypto_ahash_type, &crypto_rng_type. 425 * This field might be empty. In that case, there are no common 426 * callbacks. This is the case for: cipher, compress, shash. 427 * @cra_u: Callbacks implementing the transformation. This is a union of 428 * multiple structures. Depending on the type of transformation selected 429 * by @cra_type and @cra_flags above, the associated structure must be 430 * filled with callbacks. This field might be empty. This is the case 431 * for ahash, shash. 432 * @cra_init: Initialize the cryptographic transformation object. This function 433 * is used to initialize the cryptographic transformation object. 434 * This function is called only once at the instantiation time, right 435 * after the transformation context was allocated. In case the 436 * cryptographic hardware has some special requirements which need to 437 * be handled by software, this function shall check for the precise 438 * requirement of the transformation and put any software fallbacks 439 * in place. 440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 441 * counterpart to @cra_init, used to remove various changes set in 442 * @cra_init. 443 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 444 * definition. See @struct @ablkcipher_alg. 445 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 446 * definition See @struct @blkcipher_alg. 447 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 448 * definition. See @struct @cipher_alg. 449 * @cra_u.compress: Union member which contains a (de)compression algorithm. 450 * See @struct @compress_alg. 451 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 452 * @cra_list: internally used 453 * @cra_users: internally used 454 * @cra_refcnt: internally used 455 * @cra_destroy: internally used 456 * 457 * All following statistics are for this crypto_alg 458 * @encrypt_cnt: number of encrypt requests 459 * @decrypt_cnt: number of decrypt requests 460 * @compress_cnt: number of compress requests 461 * @decompress_cnt: number of decompress requests 462 * @generate_cnt: number of RNG generate requests 463 * @seed_cnt: number of times the rng was seeded 464 * @hash_cnt: number of hash requests 465 * @sign_cnt: number of sign requests 466 * @setsecret_cnt: number of setsecrey operation 467 * @generate_public_key_cnt: number of generate_public_key operation 468 * @verify_cnt: number of verify operation 469 * @compute_shared_secret_cnt: number of compute_shared_secret operation 470 * @encrypt_tlen: total data size handled by encrypt requests 471 * @decrypt_tlen: total data size handled by decrypt requests 472 * @compress_tlen: total data size handled by compress requests 473 * @decompress_tlen: total data size handled by decompress requests 474 * @generate_tlen: total data size of generated data by the RNG 475 * @hash_tlen: total data size hashed 476 * @akcipher_err_cnt: number of error for akcipher requests 477 * @cipher_err_cnt: number of error for akcipher requests 478 * @compress_err_cnt: number of error for akcipher requests 479 * @aead_err_cnt: number of error for akcipher requests 480 * @hash_err_cnt: number of error for akcipher requests 481 * @rng_err_cnt: number of error for akcipher requests 482 * @kpp_err_cnt: number of error for akcipher requests 483 * 484 * The struct crypto_alg describes a generic Crypto API algorithm and is common 485 * for all of the transformations. Any variable not documented here shall not 486 * be used by a cipher implementation as it is internal to the Crypto API. 487 */ 488struct crypto_alg { 489 struct list_head cra_list; 490 struct list_head cra_users; 491 492 u32 cra_flags; 493 unsigned int cra_blocksize; 494 unsigned int cra_ctxsize; 495 unsigned int cra_alignmask; 496 497 int cra_priority; 498 refcount_t cra_refcnt; 499 500 char cra_name[CRYPTO_MAX_ALG_NAME]; 501 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 502 503 const struct crypto_type *cra_type; 504 505 union { 506 struct ablkcipher_alg ablkcipher; 507 struct blkcipher_alg blkcipher; 508 struct cipher_alg cipher; 509 struct compress_alg compress; 510 } cra_u; 511 512 int (*cra_init)(struct crypto_tfm *tfm); 513 void (*cra_exit)(struct crypto_tfm *tfm); 514 void (*cra_destroy)(struct crypto_alg *alg); 515 516 struct module *cra_module; 517 518 union { 519 atomic_t encrypt_cnt; 520 atomic_t compress_cnt; 521 atomic_t generate_cnt; 522 atomic_t hash_cnt; 523 atomic_t setsecret_cnt; 524 }; 525 union { 526 atomic64_t encrypt_tlen; 527 atomic64_t compress_tlen; 528 atomic64_t generate_tlen; 529 atomic64_t hash_tlen; 530 }; 531 union { 532 atomic_t akcipher_err_cnt; 533 atomic_t cipher_err_cnt; 534 atomic_t compress_err_cnt; 535 atomic_t aead_err_cnt; 536 atomic_t hash_err_cnt; 537 atomic_t rng_err_cnt; 538 atomic_t kpp_err_cnt; 539 }; 540 union { 541 atomic_t decrypt_cnt; 542 atomic_t decompress_cnt; 543 atomic_t seed_cnt; 544 atomic_t generate_public_key_cnt; 545 }; 546 union { 547 atomic64_t decrypt_tlen; 548 atomic64_t decompress_tlen; 549 }; 550 union { 551 atomic_t verify_cnt; 552 atomic_t compute_shared_secret_cnt; 553 }; 554 atomic_t sign_cnt; 555 556} CRYPTO_MINALIGN_ATTR; 557 558/* 559 * A helper struct for waiting for completion of async crypto ops 560 */ 561struct crypto_wait { 562 struct completion completion; 563 int err; 564}; 565 566/* 567 * Macro for declaring a crypto op async wait object on stack 568 */ 569#define DECLARE_CRYPTO_WAIT(_wait) \ 570 struct crypto_wait _wait = { \ 571 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 572 573/* 574 * Async ops completion helper functioons 575 */ 576void crypto_req_done(struct crypto_async_request *req, int err); 577 578static inline int crypto_wait_req(int err, struct crypto_wait *wait) 579{ 580 switch (err) { 581 case -EINPROGRESS: 582 case -EBUSY: 583 wait_for_completion(&wait->completion); 584 reinit_completion(&wait->completion); 585 err = wait->err; 586 break; 587 }; 588 589 return err; 590} 591 592static inline void crypto_init_wait(struct crypto_wait *wait) 593{ 594 init_completion(&wait->completion); 595} 596 597/* 598 * Algorithm registration interface. 599 */ 600int crypto_register_alg(struct crypto_alg *alg); 601int crypto_unregister_alg(struct crypto_alg *alg); 602int crypto_register_algs(struct crypto_alg *algs, int count); 603int crypto_unregister_algs(struct crypto_alg *algs, int count); 604 605/* 606 * Algorithm query interface. 607 */ 608int crypto_has_alg(const char *name, u32 type, u32 mask); 609 610/* 611 * Transforms: user-instantiated objects which encapsulate algorithms 612 * and core processing logic. Managed via crypto_alloc_*() and 613 * crypto_free_*(), as well as the various helpers below. 614 */ 615 616struct ablkcipher_tfm { 617 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 618 unsigned int keylen); 619 int (*encrypt)(struct ablkcipher_request *req); 620 int (*decrypt)(struct ablkcipher_request *req); 621 622 struct crypto_ablkcipher *base; 623 624 unsigned int ivsize; 625 unsigned int reqsize; 626}; 627 628struct blkcipher_tfm { 629 void *iv; 630 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 631 unsigned int keylen); 632 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 633 struct scatterlist *src, unsigned int nbytes); 634 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 635 struct scatterlist *src, unsigned int nbytes); 636}; 637 638struct cipher_tfm { 639 int (*cit_setkey)(struct crypto_tfm *tfm, 640 const u8 *key, unsigned int keylen); 641 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 642 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 643}; 644 645struct compress_tfm { 646 int (*cot_compress)(struct crypto_tfm *tfm, 647 const u8 *src, unsigned int slen, 648 u8 *dst, unsigned int *dlen); 649 int (*cot_decompress)(struct crypto_tfm *tfm, 650 const u8 *src, unsigned int slen, 651 u8 *dst, unsigned int *dlen); 652}; 653 654#define crt_ablkcipher crt_u.ablkcipher 655#define crt_blkcipher crt_u.blkcipher 656#define crt_cipher crt_u.cipher 657#define crt_compress crt_u.compress 658 659struct crypto_tfm { 660 661 u32 crt_flags; 662 663 union { 664 struct ablkcipher_tfm ablkcipher; 665 struct blkcipher_tfm blkcipher; 666 struct cipher_tfm cipher; 667 struct compress_tfm compress; 668 } crt_u; 669 670 void (*exit)(struct crypto_tfm *tfm); 671 672 struct crypto_alg *__crt_alg; 673 674 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 675}; 676 677struct crypto_ablkcipher { 678 struct crypto_tfm base; 679}; 680 681struct crypto_blkcipher { 682 struct crypto_tfm base; 683}; 684 685struct crypto_cipher { 686 struct crypto_tfm base; 687}; 688 689struct crypto_comp { 690 struct crypto_tfm base; 691}; 692 693enum { 694 CRYPTOA_UNSPEC, 695 CRYPTOA_ALG, 696 CRYPTOA_TYPE, 697 CRYPTOA_U32, 698 __CRYPTOA_MAX, 699}; 700 701#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 702 703/* Maximum number of (rtattr) parameters for each template. */ 704#define CRYPTO_MAX_ATTRS 32 705 706struct crypto_attr_alg { 707 char name[CRYPTO_MAX_ALG_NAME]; 708}; 709 710struct crypto_attr_type { 711 u32 type; 712 u32 mask; 713}; 714 715struct crypto_attr_u32 { 716 u32 num; 717}; 718 719/* 720 * Transform user interface. 721 */ 722 723struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 724void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 725 726static inline void crypto_free_tfm(struct crypto_tfm *tfm) 727{ 728 return crypto_destroy_tfm(tfm, tfm); 729} 730 731int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 732 733/* 734 * Transform helpers which query the underlying algorithm. 735 */ 736static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 737{ 738 return tfm->__crt_alg->cra_name; 739} 740 741static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 742{ 743 return tfm->__crt_alg->cra_driver_name; 744} 745 746static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 747{ 748 return tfm->__crt_alg->cra_priority; 749} 750 751static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 752{ 753 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 754} 755 756static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 757{ 758 return tfm->__crt_alg->cra_blocksize; 759} 760 761static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 762{ 763 return tfm->__crt_alg->cra_alignmask; 764} 765 766static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 767{ 768 return tfm->crt_flags; 769} 770 771static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 772{ 773 tfm->crt_flags |= flags; 774} 775 776static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 777{ 778 tfm->crt_flags &= ~flags; 779} 780 781static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 782{ 783 return tfm->__crt_ctx; 784} 785 786static inline unsigned int crypto_tfm_ctx_alignment(void) 787{ 788 struct crypto_tfm *tfm; 789 return __alignof__(tfm->__crt_ctx); 790} 791 792/* 793 * API wrappers. 794 */ 795static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 796 struct crypto_tfm *tfm) 797{ 798 return (struct crypto_ablkcipher *)tfm; 799} 800 801static inline u32 crypto_skcipher_type(u32 type) 802{ 803 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 804 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 805 return type; 806} 807 808static inline u32 crypto_skcipher_mask(u32 mask) 809{ 810 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 811 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 812 return mask; 813} 814 815/** 816 * DOC: Asynchronous Block Cipher API 817 * 818 * Asynchronous block cipher API is used with the ciphers of type 819 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 820 * 821 * Asynchronous cipher operations imply that the function invocation for a 822 * cipher request returns immediately before the completion of the operation. 823 * The cipher request is scheduled as a separate kernel thread and therefore 824 * load-balanced on the different CPUs via the process scheduler. To allow 825 * the kernel crypto API to inform the caller about the completion of a cipher 826 * request, the caller must provide a callback function. That function is 827 * invoked with the cipher handle when the request completes. 828 * 829 * To support the asynchronous operation, additional information than just the 830 * cipher handle must be supplied to the kernel crypto API. That additional 831 * information is given by filling in the ablkcipher_request data structure. 832 * 833 * For the asynchronous block cipher API, the state is maintained with the tfm 834 * cipher handle. A single tfm can be used across multiple calls and in 835 * parallel. For asynchronous block cipher calls, context data supplied and 836 * only used by the caller can be referenced the request data structure in 837 * addition to the IV used for the cipher request. The maintenance of such 838 * state information would be important for a crypto driver implementer to 839 * have, because when calling the callback function upon completion of the 840 * cipher operation, that callback function may need some information about 841 * which operation just finished if it invoked multiple in parallel. This 842 * state information is unused by the kernel crypto API. 843 */ 844 845static inline struct crypto_tfm *crypto_ablkcipher_tfm( 846 struct crypto_ablkcipher *tfm) 847{ 848 return &tfm->base; 849} 850 851/** 852 * crypto_free_ablkcipher() - zeroize and free cipher handle 853 * @tfm: cipher handle to be freed 854 */ 855static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 856{ 857 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 858} 859 860/** 861 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 862 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 863 * ablkcipher 864 * @type: specifies the type of the cipher 865 * @mask: specifies the mask for the cipher 866 * 867 * Return: true when the ablkcipher is known to the kernel crypto API; false 868 * otherwise 869 */ 870static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 871 u32 mask) 872{ 873 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 874 crypto_skcipher_mask(mask)); 875} 876 877static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 878 struct crypto_ablkcipher *tfm) 879{ 880 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 881} 882 883/** 884 * crypto_ablkcipher_ivsize() - obtain IV size 885 * @tfm: cipher handle 886 * 887 * The size of the IV for the ablkcipher referenced by the cipher handle is 888 * returned. This IV size may be zero if the cipher does not need an IV. 889 * 890 * Return: IV size in bytes 891 */ 892static inline unsigned int crypto_ablkcipher_ivsize( 893 struct crypto_ablkcipher *tfm) 894{ 895 return crypto_ablkcipher_crt(tfm)->ivsize; 896} 897 898/** 899 * crypto_ablkcipher_blocksize() - obtain block size of cipher 900 * @tfm: cipher handle 901 * 902 * The block size for the ablkcipher referenced with the cipher handle is 903 * returned. The caller may use that information to allocate appropriate 904 * memory for the data returned by the encryption or decryption operation 905 * 906 * Return: block size of cipher 907 */ 908static inline unsigned int crypto_ablkcipher_blocksize( 909 struct crypto_ablkcipher *tfm) 910{ 911 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 912} 913 914static inline unsigned int crypto_ablkcipher_alignmask( 915 struct crypto_ablkcipher *tfm) 916{ 917 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 918} 919 920static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 921{ 922 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 923} 924 925static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 926 u32 flags) 927{ 928 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 929} 930 931static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 932 u32 flags) 933{ 934 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 935} 936 937/** 938 * crypto_ablkcipher_setkey() - set key for cipher 939 * @tfm: cipher handle 940 * @key: buffer holding the key 941 * @keylen: length of the key in bytes 942 * 943 * The caller provided key is set for the ablkcipher referenced by the cipher 944 * handle. 945 * 946 * Note, the key length determines the cipher type. Many block ciphers implement 947 * different cipher modes depending on the key size, such as AES-128 vs AES-192 948 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 949 * is performed. 950 * 951 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 952 */ 953static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 954 const u8 *key, unsigned int keylen) 955{ 956 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 957 958 return crt->setkey(crt->base, key, keylen); 959} 960 961/** 962 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 963 * @req: ablkcipher_request out of which the cipher handle is to be obtained 964 * 965 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 966 * data structure. 967 * 968 * Return: crypto_ablkcipher handle 969 */ 970static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 971 struct ablkcipher_request *req) 972{ 973 return __crypto_ablkcipher_cast(req->base.tfm); 974} 975 976static inline void crypto_stat_ablkcipher_encrypt(struct ablkcipher_request *req, 977 int ret) 978{ 979#ifdef CONFIG_CRYPTO_STATS 980 struct ablkcipher_tfm *crt = 981 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 982 983 if (ret && ret != -EINPROGRESS && ret != -EBUSY) { 984 atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt); 985 } else { 986 atomic_inc(&crt->base->base.__crt_alg->encrypt_cnt); 987 atomic64_add(req->nbytes, &crt->base->base.__crt_alg->encrypt_tlen); 988 } 989#endif 990} 991 992static inline void crypto_stat_ablkcipher_decrypt(struct ablkcipher_request *req, 993 int ret) 994{ 995#ifdef CONFIG_CRYPTO_STATS 996 struct ablkcipher_tfm *crt = 997 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 998 999 if (ret && ret != -EINPROGRESS && ret != -EBUSY) { 1000 atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt); 1001 } else { 1002 atomic_inc(&crt->base->base.__crt_alg->decrypt_cnt); 1003 atomic64_add(req->nbytes, &crt->base->base.__crt_alg->decrypt_tlen); 1004 } 1005#endif 1006} 1007 1008/** 1009 * crypto_ablkcipher_encrypt() - encrypt plaintext 1010 * @req: reference to the ablkcipher_request handle that holds all information 1011 * needed to perform the cipher operation 1012 * 1013 * Encrypt plaintext data using the ablkcipher_request handle. That data 1014 * structure and how it is filled with data is discussed with the 1015 * ablkcipher_request_* functions. 1016 * 1017 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1018 */ 1019static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1020{ 1021 struct ablkcipher_tfm *crt = 1022 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1023 int ret; 1024 1025 ret = crt->encrypt(req); 1026 crypto_stat_ablkcipher_encrypt(req, ret); 1027 return ret; 1028} 1029 1030/** 1031 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1032 * @req: reference to the ablkcipher_request handle that holds all information 1033 * needed to perform the cipher operation 1034 * 1035 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1036 * structure and how it is filled with data is discussed with the 1037 * ablkcipher_request_* functions. 1038 * 1039 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1040 */ 1041static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1042{ 1043 struct ablkcipher_tfm *crt = 1044 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1045 int ret; 1046 1047 ret = crt->decrypt(req); 1048 crypto_stat_ablkcipher_decrypt(req, ret); 1049 return ret; 1050} 1051 1052/** 1053 * DOC: Asynchronous Cipher Request Handle 1054 * 1055 * The ablkcipher_request data structure contains all pointers to data 1056 * required for the asynchronous cipher operation. This includes the cipher 1057 * handle (which can be used by multiple ablkcipher_request instances), pointer 1058 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1059 * as a handle to the ablkcipher_request_* API calls in a similar way as 1060 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1061 */ 1062 1063/** 1064 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1065 * @tfm: cipher handle 1066 * 1067 * Return: number of bytes 1068 */ 1069static inline unsigned int crypto_ablkcipher_reqsize( 1070 struct crypto_ablkcipher *tfm) 1071{ 1072 return crypto_ablkcipher_crt(tfm)->reqsize; 1073} 1074 1075/** 1076 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1077 * @req: request handle to be modified 1078 * @tfm: cipher handle that shall be added to the request handle 1079 * 1080 * Allow the caller to replace the existing ablkcipher handle in the request 1081 * data structure with a different one. 1082 */ 1083static inline void ablkcipher_request_set_tfm( 1084 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1085{ 1086 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1087} 1088 1089static inline struct ablkcipher_request *ablkcipher_request_cast( 1090 struct crypto_async_request *req) 1091{ 1092 return container_of(req, struct ablkcipher_request, base); 1093} 1094 1095/** 1096 * ablkcipher_request_alloc() - allocate request data structure 1097 * @tfm: cipher handle to be registered with the request 1098 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1099 * 1100 * Allocate the request data structure that must be used with the ablkcipher 1101 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1102 * handle is registered in the request data structure. 1103 * 1104 * Return: allocated request handle in case of success, or NULL if out of memory 1105 */ 1106static inline struct ablkcipher_request *ablkcipher_request_alloc( 1107 struct crypto_ablkcipher *tfm, gfp_t gfp) 1108{ 1109 struct ablkcipher_request *req; 1110 1111 req = kmalloc(sizeof(struct ablkcipher_request) + 1112 crypto_ablkcipher_reqsize(tfm), gfp); 1113 1114 if (likely(req)) 1115 ablkcipher_request_set_tfm(req, tfm); 1116 1117 return req; 1118} 1119 1120/** 1121 * ablkcipher_request_free() - zeroize and free request data structure 1122 * @req: request data structure cipher handle to be freed 1123 */ 1124static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1125{ 1126 kzfree(req); 1127} 1128 1129/** 1130 * ablkcipher_request_set_callback() - set asynchronous callback function 1131 * @req: request handle 1132 * @flags: specify zero or an ORing of the flags 1133 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1134 * increase the wait queue beyond the initial maximum size; 1135 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1136 * @compl: callback function pointer to be registered with the request handle 1137 * @data: The data pointer refers to memory that is not used by the kernel 1138 * crypto API, but provided to the callback function for it to use. Here, 1139 * the caller can provide a reference to memory the callback function can 1140 * operate on. As the callback function is invoked asynchronously to the 1141 * related functionality, it may need to access data structures of the 1142 * related functionality which can be referenced using this pointer. The 1143 * callback function can access the memory via the "data" field in the 1144 * crypto_async_request data structure provided to the callback function. 1145 * 1146 * This function allows setting the callback function that is triggered once the 1147 * cipher operation completes. 1148 * 1149 * The callback function is registered with the ablkcipher_request handle and 1150 * must comply with the following template:: 1151 * 1152 * void callback_function(struct crypto_async_request *req, int error) 1153 */ 1154static inline void ablkcipher_request_set_callback( 1155 struct ablkcipher_request *req, 1156 u32 flags, crypto_completion_t compl, void *data) 1157{ 1158 req->base.complete = compl; 1159 req->base.data = data; 1160 req->base.flags = flags; 1161} 1162 1163/** 1164 * ablkcipher_request_set_crypt() - set data buffers 1165 * @req: request handle 1166 * @src: source scatter / gather list 1167 * @dst: destination scatter / gather list 1168 * @nbytes: number of bytes to process from @src 1169 * @iv: IV for the cipher operation which must comply with the IV size defined 1170 * by crypto_ablkcipher_ivsize 1171 * 1172 * This function allows setting of the source data and destination data 1173 * scatter / gather lists. 1174 * 1175 * For encryption, the source is treated as the plaintext and the 1176 * destination is the ciphertext. For a decryption operation, the use is 1177 * reversed - the source is the ciphertext and the destination is the plaintext. 1178 */ 1179static inline void ablkcipher_request_set_crypt( 1180 struct ablkcipher_request *req, 1181 struct scatterlist *src, struct scatterlist *dst, 1182 unsigned int nbytes, void *iv) 1183{ 1184 req->src = src; 1185 req->dst = dst; 1186 req->nbytes = nbytes; 1187 req->info = iv; 1188} 1189 1190/** 1191 * DOC: Synchronous Block Cipher API 1192 * 1193 * The synchronous block cipher API is used with the ciphers of type 1194 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1195 * 1196 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1197 * used in multiple calls and in parallel, this info should not be changeable 1198 * (unless a lock is used). This applies, for example, to the symmetric key. 1199 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1200 * structure for synchronous blkcipher api. So, its the only state info that can 1201 * be kept for synchronous calls without using a big lock across a tfm. 1202 * 1203 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1204 * consisting of a template (a block chaining mode) and a single block cipher 1205 * primitive (e.g. AES). 1206 * 1207 * The plaintext data buffer and the ciphertext data buffer are pointed to 1208 * by using scatter/gather lists. The cipher operation is performed 1209 * on all segments of the provided scatter/gather lists. 1210 * 1211 * The kernel crypto API supports a cipher operation "in-place" which means that 1212 * the caller may provide the same scatter/gather list for the plaintext and 1213 * cipher text. After the completion of the cipher operation, the plaintext 1214 * data is replaced with the ciphertext data in case of an encryption and vice 1215 * versa for a decryption. The caller must ensure that the scatter/gather lists 1216 * for the output data point to sufficiently large buffers, i.e. multiples of 1217 * the block size of the cipher. 1218 */ 1219 1220static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1221 struct crypto_tfm *tfm) 1222{ 1223 return (struct crypto_blkcipher *)tfm; 1224} 1225 1226static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1227 struct crypto_tfm *tfm) 1228{ 1229 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1230 return __crypto_blkcipher_cast(tfm); 1231} 1232 1233/** 1234 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1235 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1236 * blkcipher cipher 1237 * @type: specifies the type of the cipher 1238 * @mask: specifies the mask for the cipher 1239 * 1240 * Allocate a cipher handle for a block cipher. The returned struct 1241 * crypto_blkcipher is the cipher handle that is required for any subsequent 1242 * API invocation for that block cipher. 1243 * 1244 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1245 * of an error, PTR_ERR() returns the error code. 1246 */ 1247static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1248 const char *alg_name, u32 type, u32 mask) 1249{ 1250 type &= ~CRYPTO_ALG_TYPE_MASK; 1251 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1252 mask |= CRYPTO_ALG_TYPE_MASK; 1253 1254 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1255} 1256 1257static inline struct crypto_tfm *crypto_blkcipher_tfm( 1258 struct crypto_blkcipher *tfm) 1259{ 1260 return &tfm->base; 1261} 1262 1263/** 1264 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1265 * @tfm: cipher handle to be freed 1266 */ 1267static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1268{ 1269 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1270} 1271 1272/** 1273 * crypto_has_blkcipher() - Search for the availability of a block cipher 1274 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1275 * block cipher 1276 * @type: specifies the type of the cipher 1277 * @mask: specifies the mask for the cipher 1278 * 1279 * Return: true when the block cipher is known to the kernel crypto API; false 1280 * otherwise 1281 */ 1282static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1283{ 1284 type &= ~CRYPTO_ALG_TYPE_MASK; 1285 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1286 mask |= CRYPTO_ALG_TYPE_MASK; 1287 1288 return crypto_has_alg(alg_name, type, mask); 1289} 1290 1291/** 1292 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1293 * @tfm: cipher handle 1294 * 1295 * Return: The character string holding the name of the cipher 1296 */ 1297static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1298{ 1299 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1300} 1301 1302static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1303 struct crypto_blkcipher *tfm) 1304{ 1305 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1306} 1307 1308static inline struct blkcipher_alg *crypto_blkcipher_alg( 1309 struct crypto_blkcipher *tfm) 1310{ 1311 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1312} 1313 1314/** 1315 * crypto_blkcipher_ivsize() - obtain IV size 1316 * @tfm: cipher handle 1317 * 1318 * The size of the IV for the block cipher referenced by the cipher handle is 1319 * returned. This IV size may be zero if the cipher does not need an IV. 1320 * 1321 * Return: IV size in bytes 1322 */ 1323static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1324{ 1325 return crypto_blkcipher_alg(tfm)->ivsize; 1326} 1327 1328/** 1329 * crypto_blkcipher_blocksize() - obtain block size of cipher 1330 * @tfm: cipher handle 1331 * 1332 * The block size for the block cipher referenced with the cipher handle is 1333 * returned. The caller may use that information to allocate appropriate 1334 * memory for the data returned by the encryption or decryption operation. 1335 * 1336 * Return: block size of cipher 1337 */ 1338static inline unsigned int crypto_blkcipher_blocksize( 1339 struct crypto_blkcipher *tfm) 1340{ 1341 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1342} 1343 1344static inline unsigned int crypto_blkcipher_alignmask( 1345 struct crypto_blkcipher *tfm) 1346{ 1347 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1348} 1349 1350static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1351{ 1352 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1353} 1354 1355static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1356 u32 flags) 1357{ 1358 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1359} 1360 1361static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1362 u32 flags) 1363{ 1364 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1365} 1366 1367/** 1368 * crypto_blkcipher_setkey() - set key for cipher 1369 * @tfm: cipher handle 1370 * @key: buffer holding the key 1371 * @keylen: length of the key in bytes 1372 * 1373 * The caller provided key is set for the block cipher referenced by the cipher 1374 * handle. 1375 * 1376 * Note, the key length determines the cipher type. Many block ciphers implement 1377 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1378 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1379 * is performed. 1380 * 1381 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1382 */ 1383static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1384 const u8 *key, unsigned int keylen) 1385{ 1386 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1387 key, keylen); 1388} 1389 1390/** 1391 * crypto_blkcipher_encrypt() - encrypt plaintext 1392 * @desc: reference to the block cipher handle with meta data 1393 * @dst: scatter/gather list that is filled by the cipher operation with the 1394 * ciphertext 1395 * @src: scatter/gather list that holds the plaintext 1396 * @nbytes: number of bytes of the plaintext to encrypt. 1397 * 1398 * Encrypt plaintext data using the IV set by the caller with a preceding 1399 * call of crypto_blkcipher_set_iv. 1400 * 1401 * The blkcipher_desc data structure must be filled by the caller and can 1402 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1403 * with the block cipher handle; desc.flags is filled with either 1404 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1405 * 1406 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1407 */ 1408static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1409 struct scatterlist *dst, 1410 struct scatterlist *src, 1411 unsigned int nbytes) 1412{ 1413 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1414 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1415} 1416 1417/** 1418 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1419 * @desc: reference to the block cipher handle with meta data 1420 * @dst: scatter/gather list that is filled by the cipher operation with the 1421 * ciphertext 1422 * @src: scatter/gather list that holds the plaintext 1423 * @nbytes: number of bytes of the plaintext to encrypt. 1424 * 1425 * Encrypt plaintext data with the use of an IV that is solely used for this 1426 * cipher operation. Any previously set IV is not used. 1427 * 1428 * The blkcipher_desc data structure must be filled by the caller and can 1429 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1430 * with the block cipher handle; desc.info is filled with the IV to be used for 1431 * the current operation; desc.flags is filled with either 1432 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1433 * 1434 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1435 */ 1436static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1437 struct scatterlist *dst, 1438 struct scatterlist *src, 1439 unsigned int nbytes) 1440{ 1441 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1442} 1443 1444/** 1445 * crypto_blkcipher_decrypt() - decrypt ciphertext 1446 * @desc: reference to the block cipher handle with meta data 1447 * @dst: scatter/gather list that is filled by the cipher operation with the 1448 * plaintext 1449 * @src: scatter/gather list that holds the ciphertext 1450 * @nbytes: number of bytes of the ciphertext to decrypt. 1451 * 1452 * Decrypt ciphertext data using the IV set by the caller with a preceding 1453 * call of crypto_blkcipher_set_iv. 1454 * 1455 * The blkcipher_desc data structure must be filled by the caller as documented 1456 * for the crypto_blkcipher_encrypt call above. 1457 * 1458 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1459 * 1460 */ 1461static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1462 struct scatterlist *dst, 1463 struct scatterlist *src, 1464 unsigned int nbytes) 1465{ 1466 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1467 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1468} 1469 1470/** 1471 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1472 * @desc: reference to the block cipher handle with meta data 1473 * @dst: scatter/gather list that is filled by the cipher operation with the 1474 * plaintext 1475 * @src: scatter/gather list that holds the ciphertext 1476 * @nbytes: number of bytes of the ciphertext to decrypt. 1477 * 1478 * Decrypt ciphertext data with the use of an IV that is solely used for this 1479 * cipher operation. Any previously set IV is not used. 1480 * 1481 * The blkcipher_desc data structure must be filled by the caller as documented 1482 * for the crypto_blkcipher_encrypt_iv call above. 1483 * 1484 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1485 */ 1486static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1487 struct scatterlist *dst, 1488 struct scatterlist *src, 1489 unsigned int nbytes) 1490{ 1491 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1492} 1493 1494/** 1495 * crypto_blkcipher_set_iv() - set IV for cipher 1496 * @tfm: cipher handle 1497 * @src: buffer holding the IV 1498 * @len: length of the IV in bytes 1499 * 1500 * The caller provided IV is set for the block cipher referenced by the cipher 1501 * handle. 1502 */ 1503static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1504 const u8 *src, unsigned int len) 1505{ 1506 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1507} 1508 1509/** 1510 * crypto_blkcipher_get_iv() - obtain IV from cipher 1511 * @tfm: cipher handle 1512 * @dst: buffer filled with the IV 1513 * @len: length of the buffer dst 1514 * 1515 * The caller can obtain the IV set for the block cipher referenced by the 1516 * cipher handle and store it into the user-provided buffer. If the buffer 1517 * has an insufficient space, the IV is truncated to fit the buffer. 1518 */ 1519static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1520 u8 *dst, unsigned int len) 1521{ 1522 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1523} 1524 1525/** 1526 * DOC: Single Block Cipher API 1527 * 1528 * The single block cipher API is used with the ciphers of type 1529 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1530 * 1531 * Using the single block cipher API calls, operations with the basic cipher 1532 * primitive can be implemented. These cipher primitives exclude any block 1533 * chaining operations including IV handling. 1534 * 1535 * The purpose of this single block cipher API is to support the implementation 1536 * of templates or other concepts that only need to perform the cipher operation 1537 * on one block at a time. Templates invoke the underlying cipher primitive 1538 * block-wise and process either the input or the output data of these cipher 1539 * operations. 1540 */ 1541 1542static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1543{ 1544 return (struct crypto_cipher *)tfm; 1545} 1546 1547static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1548{ 1549 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1550 return __crypto_cipher_cast(tfm); 1551} 1552 1553/** 1554 * crypto_alloc_cipher() - allocate single block cipher handle 1555 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1556 * single block cipher 1557 * @type: specifies the type of the cipher 1558 * @mask: specifies the mask for the cipher 1559 * 1560 * Allocate a cipher handle for a single block cipher. The returned struct 1561 * crypto_cipher is the cipher handle that is required for any subsequent API 1562 * invocation for that single block cipher. 1563 * 1564 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1565 * of an error, PTR_ERR() returns the error code. 1566 */ 1567static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1568 u32 type, u32 mask) 1569{ 1570 type &= ~CRYPTO_ALG_TYPE_MASK; 1571 type |= CRYPTO_ALG_TYPE_CIPHER; 1572 mask |= CRYPTO_ALG_TYPE_MASK; 1573 1574 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1575} 1576 1577static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1578{ 1579 return &tfm->base; 1580} 1581 1582/** 1583 * crypto_free_cipher() - zeroize and free the single block cipher handle 1584 * @tfm: cipher handle to be freed 1585 */ 1586static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1587{ 1588 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1589} 1590 1591/** 1592 * crypto_has_cipher() - Search for the availability of a single block cipher 1593 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1594 * single block cipher 1595 * @type: specifies the type of the cipher 1596 * @mask: specifies the mask for the cipher 1597 * 1598 * Return: true when the single block cipher is known to the kernel crypto API; 1599 * false otherwise 1600 */ 1601static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1602{ 1603 type &= ~CRYPTO_ALG_TYPE_MASK; 1604 type |= CRYPTO_ALG_TYPE_CIPHER; 1605 mask |= CRYPTO_ALG_TYPE_MASK; 1606 1607 return crypto_has_alg(alg_name, type, mask); 1608} 1609 1610static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1611{ 1612 return &crypto_cipher_tfm(tfm)->crt_cipher; 1613} 1614 1615/** 1616 * crypto_cipher_blocksize() - obtain block size for cipher 1617 * @tfm: cipher handle 1618 * 1619 * The block size for the single block cipher referenced with the cipher handle 1620 * tfm is returned. The caller may use that information to allocate appropriate 1621 * memory for the data returned by the encryption or decryption operation 1622 * 1623 * Return: block size of cipher 1624 */ 1625static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1626{ 1627 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1628} 1629 1630static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1631{ 1632 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1633} 1634 1635static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1636{ 1637 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1638} 1639 1640static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1641 u32 flags) 1642{ 1643 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1644} 1645 1646static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1647 u32 flags) 1648{ 1649 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1650} 1651 1652/** 1653 * crypto_cipher_setkey() - set key for cipher 1654 * @tfm: cipher handle 1655 * @key: buffer holding the key 1656 * @keylen: length of the key in bytes 1657 * 1658 * The caller provided key is set for the single block cipher referenced by the 1659 * cipher handle. 1660 * 1661 * Note, the key length determines the cipher type. Many block ciphers implement 1662 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1663 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1664 * is performed. 1665 * 1666 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1667 */ 1668static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1669 const u8 *key, unsigned int keylen) 1670{ 1671 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1672 key, keylen); 1673} 1674 1675/** 1676 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1677 * @tfm: cipher handle 1678 * @dst: points to the buffer that will be filled with the ciphertext 1679 * @src: buffer holding the plaintext to be encrypted 1680 * 1681 * Invoke the encryption operation of one block. The caller must ensure that 1682 * the plaintext and ciphertext buffers are at least one block in size. 1683 */ 1684static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1685 u8 *dst, const u8 *src) 1686{ 1687 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1688 dst, src); 1689} 1690 1691/** 1692 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1693 * @tfm: cipher handle 1694 * @dst: points to the buffer that will be filled with the plaintext 1695 * @src: buffer holding the ciphertext to be decrypted 1696 * 1697 * Invoke the decryption operation of one block. The caller must ensure that 1698 * the plaintext and ciphertext buffers are at least one block in size. 1699 */ 1700static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1701 u8 *dst, const u8 *src) 1702{ 1703 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1704 dst, src); 1705} 1706 1707static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1708{ 1709 return (struct crypto_comp *)tfm; 1710} 1711 1712static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1713{ 1714 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1715 CRYPTO_ALG_TYPE_MASK); 1716 return __crypto_comp_cast(tfm); 1717} 1718 1719static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1720 u32 type, u32 mask) 1721{ 1722 type &= ~CRYPTO_ALG_TYPE_MASK; 1723 type |= CRYPTO_ALG_TYPE_COMPRESS; 1724 mask |= CRYPTO_ALG_TYPE_MASK; 1725 1726 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1727} 1728 1729static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1730{ 1731 return &tfm->base; 1732} 1733 1734static inline void crypto_free_comp(struct crypto_comp *tfm) 1735{ 1736 crypto_free_tfm(crypto_comp_tfm(tfm)); 1737} 1738 1739static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1740{ 1741 type &= ~CRYPTO_ALG_TYPE_MASK; 1742 type |= CRYPTO_ALG_TYPE_COMPRESS; 1743 mask |= CRYPTO_ALG_TYPE_MASK; 1744 1745 return crypto_has_alg(alg_name, type, mask); 1746} 1747 1748static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1749{ 1750 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1751} 1752 1753static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1754{ 1755 return &crypto_comp_tfm(tfm)->crt_compress; 1756} 1757 1758static inline int crypto_comp_compress(struct crypto_comp *tfm, 1759 const u8 *src, unsigned int slen, 1760 u8 *dst, unsigned int *dlen) 1761{ 1762 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1763 src, slen, dst, dlen); 1764} 1765 1766static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1767 const u8 *src, unsigned int slen, 1768 u8 *dst, unsigned int *dlen) 1769{ 1770 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1771 src, slen, dst, dlen); 1772} 1773 1774#endif /* _LINUX_CRYPTO_H */ 1775