Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24#include <linux/fs.h>
25#include <linux/backing-dev.h>
26#include <linux/stat.h>
27#include <linux/fcntl.h>
28#include <linux/pagemap.h>
29#include <linux/pagevec.h>
30#include <linux/writeback.h>
31#include <linux/task_io_accounting_ops.h>
32#include <linux/delay.h>
33#include <linux/mount.h>
34#include <linux/slab.h>
35#include <linux/swap.h>
36#include <asm/div64.h>
37#include "cifsfs.h"
38#include "cifspdu.h"
39#include "cifsglob.h"
40#include "cifsproto.h"
41#include "cifs_unicode.h"
42#include "cifs_debug.h"
43#include "cifs_fs_sb.h"
44#include "fscache.h"
45#include "smbdirect.h"
46
47static inline int cifs_convert_flags(unsigned int flags)
48{
49 if ((flags & O_ACCMODE) == O_RDONLY)
50 return GENERIC_READ;
51 else if ((flags & O_ACCMODE) == O_WRONLY)
52 return GENERIC_WRITE;
53 else if ((flags & O_ACCMODE) == O_RDWR) {
54 /* GENERIC_ALL is too much permission to request
55 can cause unnecessary access denied on create */
56 /* return GENERIC_ALL; */
57 return (GENERIC_READ | GENERIC_WRITE);
58 }
59
60 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
61 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
62 FILE_READ_DATA);
63}
64
65static u32 cifs_posix_convert_flags(unsigned int flags)
66{
67 u32 posix_flags = 0;
68
69 if ((flags & O_ACCMODE) == O_RDONLY)
70 posix_flags = SMB_O_RDONLY;
71 else if ((flags & O_ACCMODE) == O_WRONLY)
72 posix_flags = SMB_O_WRONLY;
73 else if ((flags & O_ACCMODE) == O_RDWR)
74 posix_flags = SMB_O_RDWR;
75
76 if (flags & O_CREAT) {
77 posix_flags |= SMB_O_CREAT;
78 if (flags & O_EXCL)
79 posix_flags |= SMB_O_EXCL;
80 } else if (flags & O_EXCL)
81 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
82 current->comm, current->tgid);
83
84 if (flags & O_TRUNC)
85 posix_flags |= SMB_O_TRUNC;
86 /* be safe and imply O_SYNC for O_DSYNC */
87 if (flags & O_DSYNC)
88 posix_flags |= SMB_O_SYNC;
89 if (flags & O_DIRECTORY)
90 posix_flags |= SMB_O_DIRECTORY;
91 if (flags & O_NOFOLLOW)
92 posix_flags |= SMB_O_NOFOLLOW;
93 if (flags & O_DIRECT)
94 posix_flags |= SMB_O_DIRECT;
95
96 return posix_flags;
97}
98
99static inline int cifs_get_disposition(unsigned int flags)
100{
101 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
102 return FILE_CREATE;
103 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
104 return FILE_OVERWRITE_IF;
105 else if ((flags & O_CREAT) == O_CREAT)
106 return FILE_OPEN_IF;
107 else if ((flags & O_TRUNC) == O_TRUNC)
108 return FILE_OVERWRITE;
109 else
110 return FILE_OPEN;
111}
112
113int cifs_posix_open(char *full_path, struct inode **pinode,
114 struct super_block *sb, int mode, unsigned int f_flags,
115 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
116{
117 int rc;
118 FILE_UNIX_BASIC_INFO *presp_data;
119 __u32 posix_flags = 0;
120 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
121 struct cifs_fattr fattr;
122 struct tcon_link *tlink;
123 struct cifs_tcon *tcon;
124
125 cifs_dbg(FYI, "posix open %s\n", full_path);
126
127 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
128 if (presp_data == NULL)
129 return -ENOMEM;
130
131 tlink = cifs_sb_tlink(cifs_sb);
132 if (IS_ERR(tlink)) {
133 rc = PTR_ERR(tlink);
134 goto posix_open_ret;
135 }
136
137 tcon = tlink_tcon(tlink);
138 mode &= ~current_umask();
139
140 posix_flags = cifs_posix_convert_flags(f_flags);
141 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
142 poplock, full_path, cifs_sb->local_nls,
143 cifs_remap(cifs_sb));
144 cifs_put_tlink(tlink);
145
146 if (rc)
147 goto posix_open_ret;
148
149 if (presp_data->Type == cpu_to_le32(-1))
150 goto posix_open_ret; /* open ok, caller does qpathinfo */
151
152 if (!pinode)
153 goto posix_open_ret; /* caller does not need info */
154
155 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
156
157 /* get new inode and set it up */
158 if (*pinode == NULL) {
159 cifs_fill_uniqueid(sb, &fattr);
160 *pinode = cifs_iget(sb, &fattr);
161 if (!*pinode) {
162 rc = -ENOMEM;
163 goto posix_open_ret;
164 }
165 } else {
166 cifs_fattr_to_inode(*pinode, &fattr);
167 }
168
169posix_open_ret:
170 kfree(presp_data);
171 return rc;
172}
173
174static int
175cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
176 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
177 struct cifs_fid *fid, unsigned int xid)
178{
179 int rc;
180 int desired_access;
181 int disposition;
182 int create_options = CREATE_NOT_DIR;
183 FILE_ALL_INFO *buf;
184 struct TCP_Server_Info *server = tcon->ses->server;
185 struct cifs_open_parms oparms;
186
187 if (!server->ops->open)
188 return -ENOSYS;
189
190 desired_access = cifs_convert_flags(f_flags);
191
192/*********************************************************************
193 * open flag mapping table:
194 *
195 * POSIX Flag CIFS Disposition
196 * ---------- ----------------
197 * O_CREAT FILE_OPEN_IF
198 * O_CREAT | O_EXCL FILE_CREATE
199 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
200 * O_TRUNC FILE_OVERWRITE
201 * none of the above FILE_OPEN
202 *
203 * Note that there is not a direct match between disposition
204 * FILE_SUPERSEDE (ie create whether or not file exists although
205 * O_CREAT | O_TRUNC is similar but truncates the existing
206 * file rather than creating a new file as FILE_SUPERSEDE does
207 * (which uses the attributes / metadata passed in on open call)
208 *?
209 *? O_SYNC is a reasonable match to CIFS writethrough flag
210 *? and the read write flags match reasonably. O_LARGEFILE
211 *? is irrelevant because largefile support is always used
212 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
213 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
214 *********************************************************************/
215
216 disposition = cifs_get_disposition(f_flags);
217
218 /* BB pass O_SYNC flag through on file attributes .. BB */
219
220 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
221 if (!buf)
222 return -ENOMEM;
223
224 if (backup_cred(cifs_sb))
225 create_options |= CREATE_OPEN_BACKUP_INTENT;
226
227 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
228 if (f_flags & O_SYNC)
229 create_options |= CREATE_WRITE_THROUGH;
230
231 if (f_flags & O_DIRECT)
232 create_options |= CREATE_NO_BUFFER;
233
234 oparms.tcon = tcon;
235 oparms.cifs_sb = cifs_sb;
236 oparms.desired_access = desired_access;
237 oparms.create_options = create_options;
238 oparms.disposition = disposition;
239 oparms.path = full_path;
240 oparms.fid = fid;
241 oparms.reconnect = false;
242
243 rc = server->ops->open(xid, &oparms, oplock, buf);
244
245 if (rc)
246 goto out;
247
248 if (tcon->unix_ext)
249 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
250 xid);
251 else
252 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
253 xid, fid);
254
255out:
256 kfree(buf);
257 return rc;
258}
259
260static bool
261cifs_has_mand_locks(struct cifsInodeInfo *cinode)
262{
263 struct cifs_fid_locks *cur;
264 bool has_locks = false;
265
266 down_read(&cinode->lock_sem);
267 list_for_each_entry(cur, &cinode->llist, llist) {
268 if (!list_empty(&cur->locks)) {
269 has_locks = true;
270 break;
271 }
272 }
273 up_read(&cinode->lock_sem);
274 return has_locks;
275}
276
277struct cifsFileInfo *
278cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
279 struct tcon_link *tlink, __u32 oplock)
280{
281 struct dentry *dentry = file_dentry(file);
282 struct inode *inode = d_inode(dentry);
283 struct cifsInodeInfo *cinode = CIFS_I(inode);
284 struct cifsFileInfo *cfile;
285 struct cifs_fid_locks *fdlocks;
286 struct cifs_tcon *tcon = tlink_tcon(tlink);
287 struct TCP_Server_Info *server = tcon->ses->server;
288
289 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
290 if (cfile == NULL)
291 return cfile;
292
293 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
294 if (!fdlocks) {
295 kfree(cfile);
296 return NULL;
297 }
298
299 INIT_LIST_HEAD(&fdlocks->locks);
300 fdlocks->cfile = cfile;
301 cfile->llist = fdlocks;
302 down_write(&cinode->lock_sem);
303 list_add(&fdlocks->llist, &cinode->llist);
304 up_write(&cinode->lock_sem);
305
306 cfile->count = 1;
307 cfile->pid = current->tgid;
308 cfile->uid = current_fsuid();
309 cfile->dentry = dget(dentry);
310 cfile->f_flags = file->f_flags;
311 cfile->invalidHandle = false;
312 cfile->tlink = cifs_get_tlink(tlink);
313 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
314 mutex_init(&cfile->fh_mutex);
315 spin_lock_init(&cfile->file_info_lock);
316
317 cifs_sb_active(inode->i_sb);
318
319 /*
320 * If the server returned a read oplock and we have mandatory brlocks,
321 * set oplock level to None.
322 */
323 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
324 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
325 oplock = 0;
326 }
327
328 spin_lock(&tcon->open_file_lock);
329 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
330 oplock = fid->pending_open->oplock;
331 list_del(&fid->pending_open->olist);
332
333 fid->purge_cache = false;
334 server->ops->set_fid(cfile, fid, oplock);
335
336 list_add(&cfile->tlist, &tcon->openFileList);
337 atomic_inc(&tcon->num_local_opens);
338
339 /* if readable file instance put first in list*/
340 if (file->f_mode & FMODE_READ)
341 list_add(&cfile->flist, &cinode->openFileList);
342 else
343 list_add_tail(&cfile->flist, &cinode->openFileList);
344 spin_unlock(&tcon->open_file_lock);
345
346 if (fid->purge_cache)
347 cifs_zap_mapping(inode);
348
349 file->private_data = cfile;
350 return cfile;
351}
352
353struct cifsFileInfo *
354cifsFileInfo_get(struct cifsFileInfo *cifs_file)
355{
356 spin_lock(&cifs_file->file_info_lock);
357 cifsFileInfo_get_locked(cifs_file);
358 spin_unlock(&cifs_file->file_info_lock);
359 return cifs_file;
360}
361
362/*
363 * Release a reference on the file private data. This may involve closing
364 * the filehandle out on the server. Must be called without holding
365 * tcon->open_file_lock and cifs_file->file_info_lock.
366 */
367void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
368{
369 struct inode *inode = d_inode(cifs_file->dentry);
370 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
371 struct TCP_Server_Info *server = tcon->ses->server;
372 struct cifsInodeInfo *cifsi = CIFS_I(inode);
373 struct super_block *sb = inode->i_sb;
374 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
375 struct cifsLockInfo *li, *tmp;
376 struct cifs_fid fid;
377 struct cifs_pending_open open;
378 bool oplock_break_cancelled;
379
380 spin_lock(&tcon->open_file_lock);
381
382 spin_lock(&cifs_file->file_info_lock);
383 if (--cifs_file->count > 0) {
384 spin_unlock(&cifs_file->file_info_lock);
385 spin_unlock(&tcon->open_file_lock);
386 return;
387 }
388 spin_unlock(&cifs_file->file_info_lock);
389
390 if (server->ops->get_lease_key)
391 server->ops->get_lease_key(inode, &fid);
392
393 /* store open in pending opens to make sure we don't miss lease break */
394 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
395
396 /* remove it from the lists */
397 list_del(&cifs_file->flist);
398 list_del(&cifs_file->tlist);
399 atomic_dec(&tcon->num_local_opens);
400
401 if (list_empty(&cifsi->openFileList)) {
402 cifs_dbg(FYI, "closing last open instance for inode %p\n",
403 d_inode(cifs_file->dentry));
404 /*
405 * In strict cache mode we need invalidate mapping on the last
406 * close because it may cause a error when we open this file
407 * again and get at least level II oplock.
408 */
409 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
410 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
411 cifs_set_oplock_level(cifsi, 0);
412 }
413
414 spin_unlock(&tcon->open_file_lock);
415
416 oplock_break_cancelled = cancel_work_sync(&cifs_file->oplock_break);
417
418 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
419 struct TCP_Server_Info *server = tcon->ses->server;
420 unsigned int xid;
421
422 xid = get_xid();
423 if (server->ops->close)
424 server->ops->close(xid, tcon, &cifs_file->fid);
425 _free_xid(xid);
426 }
427
428 if (oplock_break_cancelled)
429 cifs_done_oplock_break(cifsi);
430
431 cifs_del_pending_open(&open);
432
433 /*
434 * Delete any outstanding lock records. We'll lose them when the file
435 * is closed anyway.
436 */
437 down_write(&cifsi->lock_sem);
438 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
439 list_del(&li->llist);
440 cifs_del_lock_waiters(li);
441 kfree(li);
442 }
443 list_del(&cifs_file->llist->llist);
444 kfree(cifs_file->llist);
445 up_write(&cifsi->lock_sem);
446
447 cifs_put_tlink(cifs_file->tlink);
448 dput(cifs_file->dentry);
449 cifs_sb_deactive(sb);
450 kfree(cifs_file);
451}
452
453int cifs_open(struct inode *inode, struct file *file)
454
455{
456 int rc = -EACCES;
457 unsigned int xid;
458 __u32 oplock;
459 struct cifs_sb_info *cifs_sb;
460 struct TCP_Server_Info *server;
461 struct cifs_tcon *tcon;
462 struct tcon_link *tlink;
463 struct cifsFileInfo *cfile = NULL;
464 char *full_path = NULL;
465 bool posix_open_ok = false;
466 struct cifs_fid fid;
467 struct cifs_pending_open open;
468
469 xid = get_xid();
470
471 cifs_sb = CIFS_SB(inode->i_sb);
472 tlink = cifs_sb_tlink(cifs_sb);
473 if (IS_ERR(tlink)) {
474 free_xid(xid);
475 return PTR_ERR(tlink);
476 }
477 tcon = tlink_tcon(tlink);
478 server = tcon->ses->server;
479
480 full_path = build_path_from_dentry(file_dentry(file));
481 if (full_path == NULL) {
482 rc = -ENOMEM;
483 goto out;
484 }
485
486 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
487 inode, file->f_flags, full_path);
488
489 if (file->f_flags & O_DIRECT &&
490 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
491 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
492 file->f_op = &cifs_file_direct_nobrl_ops;
493 else
494 file->f_op = &cifs_file_direct_ops;
495 }
496
497 if (server->oplocks)
498 oplock = REQ_OPLOCK;
499 else
500 oplock = 0;
501
502 if (!tcon->broken_posix_open && tcon->unix_ext &&
503 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
504 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
505 /* can not refresh inode info since size could be stale */
506 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
507 cifs_sb->mnt_file_mode /* ignored */,
508 file->f_flags, &oplock, &fid.netfid, xid);
509 if (rc == 0) {
510 cifs_dbg(FYI, "posix open succeeded\n");
511 posix_open_ok = true;
512 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
513 if (tcon->ses->serverNOS)
514 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
515 tcon->ses->serverName,
516 tcon->ses->serverNOS);
517 tcon->broken_posix_open = true;
518 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
519 (rc != -EOPNOTSUPP)) /* path not found or net err */
520 goto out;
521 /*
522 * Else fallthrough to retry open the old way on network i/o
523 * or DFS errors.
524 */
525 }
526
527 if (server->ops->get_lease_key)
528 server->ops->get_lease_key(inode, &fid);
529
530 cifs_add_pending_open(&fid, tlink, &open);
531
532 if (!posix_open_ok) {
533 if (server->ops->get_lease_key)
534 server->ops->get_lease_key(inode, &fid);
535
536 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
537 file->f_flags, &oplock, &fid, xid);
538 if (rc) {
539 cifs_del_pending_open(&open);
540 goto out;
541 }
542 }
543
544 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
545 if (cfile == NULL) {
546 if (server->ops->close)
547 server->ops->close(xid, tcon, &fid);
548 cifs_del_pending_open(&open);
549 rc = -ENOMEM;
550 goto out;
551 }
552
553 cifs_fscache_set_inode_cookie(inode, file);
554
555 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
556 /*
557 * Time to set mode which we can not set earlier due to
558 * problems creating new read-only files.
559 */
560 struct cifs_unix_set_info_args args = {
561 .mode = inode->i_mode,
562 .uid = INVALID_UID, /* no change */
563 .gid = INVALID_GID, /* no change */
564 .ctime = NO_CHANGE_64,
565 .atime = NO_CHANGE_64,
566 .mtime = NO_CHANGE_64,
567 .device = 0,
568 };
569 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
570 cfile->pid);
571 }
572
573out:
574 kfree(full_path);
575 free_xid(xid);
576 cifs_put_tlink(tlink);
577 return rc;
578}
579
580static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
581
582/*
583 * Try to reacquire byte range locks that were released when session
584 * to server was lost.
585 */
586static int
587cifs_relock_file(struct cifsFileInfo *cfile)
588{
589 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
590 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
591 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
592 int rc = 0;
593
594 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING);
595 if (cinode->can_cache_brlcks) {
596 /* can cache locks - no need to relock */
597 up_read(&cinode->lock_sem);
598 return rc;
599 }
600
601 if (cap_unix(tcon->ses) &&
602 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
603 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
604 rc = cifs_push_posix_locks(cfile);
605 else
606 rc = tcon->ses->server->ops->push_mand_locks(cfile);
607
608 up_read(&cinode->lock_sem);
609 return rc;
610}
611
612static int
613cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
614{
615 int rc = -EACCES;
616 unsigned int xid;
617 __u32 oplock;
618 struct cifs_sb_info *cifs_sb;
619 struct cifs_tcon *tcon;
620 struct TCP_Server_Info *server;
621 struct cifsInodeInfo *cinode;
622 struct inode *inode;
623 char *full_path = NULL;
624 int desired_access;
625 int disposition = FILE_OPEN;
626 int create_options = CREATE_NOT_DIR;
627 struct cifs_open_parms oparms;
628
629 xid = get_xid();
630 mutex_lock(&cfile->fh_mutex);
631 if (!cfile->invalidHandle) {
632 mutex_unlock(&cfile->fh_mutex);
633 rc = 0;
634 free_xid(xid);
635 return rc;
636 }
637
638 inode = d_inode(cfile->dentry);
639 cifs_sb = CIFS_SB(inode->i_sb);
640 tcon = tlink_tcon(cfile->tlink);
641 server = tcon->ses->server;
642
643 /*
644 * Can not grab rename sem here because various ops, including those
645 * that already have the rename sem can end up causing writepage to get
646 * called and if the server was down that means we end up here, and we
647 * can never tell if the caller already has the rename_sem.
648 */
649 full_path = build_path_from_dentry(cfile->dentry);
650 if (full_path == NULL) {
651 rc = -ENOMEM;
652 mutex_unlock(&cfile->fh_mutex);
653 free_xid(xid);
654 return rc;
655 }
656
657 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
658 inode, cfile->f_flags, full_path);
659
660 if (tcon->ses->server->oplocks)
661 oplock = REQ_OPLOCK;
662 else
663 oplock = 0;
664
665 if (tcon->unix_ext && cap_unix(tcon->ses) &&
666 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
667 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
668 /*
669 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
670 * original open. Must mask them off for a reopen.
671 */
672 unsigned int oflags = cfile->f_flags &
673 ~(O_CREAT | O_EXCL | O_TRUNC);
674
675 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
676 cifs_sb->mnt_file_mode /* ignored */,
677 oflags, &oplock, &cfile->fid.netfid, xid);
678 if (rc == 0) {
679 cifs_dbg(FYI, "posix reopen succeeded\n");
680 oparms.reconnect = true;
681 goto reopen_success;
682 }
683 /*
684 * fallthrough to retry open the old way on errors, especially
685 * in the reconnect path it is important to retry hard
686 */
687 }
688
689 desired_access = cifs_convert_flags(cfile->f_flags);
690
691 if (backup_cred(cifs_sb))
692 create_options |= CREATE_OPEN_BACKUP_INTENT;
693
694 if (server->ops->get_lease_key)
695 server->ops->get_lease_key(inode, &cfile->fid);
696
697 oparms.tcon = tcon;
698 oparms.cifs_sb = cifs_sb;
699 oparms.desired_access = desired_access;
700 oparms.create_options = create_options;
701 oparms.disposition = disposition;
702 oparms.path = full_path;
703 oparms.fid = &cfile->fid;
704 oparms.reconnect = true;
705
706 /*
707 * Can not refresh inode by passing in file_info buf to be returned by
708 * ops->open and then calling get_inode_info with returned buf since
709 * file might have write behind data that needs to be flushed and server
710 * version of file size can be stale. If we knew for sure that inode was
711 * not dirty locally we could do this.
712 */
713 rc = server->ops->open(xid, &oparms, &oplock, NULL);
714 if (rc == -ENOENT && oparms.reconnect == false) {
715 /* durable handle timeout is expired - open the file again */
716 rc = server->ops->open(xid, &oparms, &oplock, NULL);
717 /* indicate that we need to relock the file */
718 oparms.reconnect = true;
719 }
720
721 if (rc) {
722 mutex_unlock(&cfile->fh_mutex);
723 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
724 cifs_dbg(FYI, "oplock: %d\n", oplock);
725 goto reopen_error_exit;
726 }
727
728reopen_success:
729 cfile->invalidHandle = false;
730 mutex_unlock(&cfile->fh_mutex);
731 cinode = CIFS_I(inode);
732
733 if (can_flush) {
734 rc = filemap_write_and_wait(inode->i_mapping);
735 mapping_set_error(inode->i_mapping, rc);
736
737 if (tcon->unix_ext)
738 rc = cifs_get_inode_info_unix(&inode, full_path,
739 inode->i_sb, xid);
740 else
741 rc = cifs_get_inode_info(&inode, full_path, NULL,
742 inode->i_sb, xid, NULL);
743 }
744 /*
745 * Else we are writing out data to server already and could deadlock if
746 * we tried to flush data, and since we do not know if we have data that
747 * would invalidate the current end of file on the server we can not go
748 * to the server to get the new inode info.
749 */
750
751 /*
752 * If the server returned a read oplock and we have mandatory brlocks,
753 * set oplock level to None.
754 */
755 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
756 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
757 oplock = 0;
758 }
759
760 server->ops->set_fid(cfile, &cfile->fid, oplock);
761 if (oparms.reconnect)
762 cifs_relock_file(cfile);
763
764reopen_error_exit:
765 kfree(full_path);
766 free_xid(xid);
767 return rc;
768}
769
770int cifs_close(struct inode *inode, struct file *file)
771{
772 if (file->private_data != NULL) {
773 cifsFileInfo_put(file->private_data);
774 file->private_data = NULL;
775 }
776
777 /* return code from the ->release op is always ignored */
778 return 0;
779}
780
781void
782cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
783{
784 struct cifsFileInfo *open_file;
785 struct list_head *tmp;
786 struct list_head *tmp1;
787 struct list_head tmp_list;
788
789 if (!tcon->use_persistent || !tcon->need_reopen_files)
790 return;
791
792 tcon->need_reopen_files = false;
793
794 cifs_dbg(FYI, "Reopen persistent handles");
795 INIT_LIST_HEAD(&tmp_list);
796
797 /* list all files open on tree connection, reopen resilient handles */
798 spin_lock(&tcon->open_file_lock);
799 list_for_each(tmp, &tcon->openFileList) {
800 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
801 if (!open_file->invalidHandle)
802 continue;
803 cifsFileInfo_get(open_file);
804 list_add_tail(&open_file->rlist, &tmp_list);
805 }
806 spin_unlock(&tcon->open_file_lock);
807
808 list_for_each_safe(tmp, tmp1, &tmp_list) {
809 open_file = list_entry(tmp, struct cifsFileInfo, rlist);
810 if (cifs_reopen_file(open_file, false /* do not flush */))
811 tcon->need_reopen_files = true;
812 list_del_init(&open_file->rlist);
813 cifsFileInfo_put(open_file);
814 }
815}
816
817int cifs_closedir(struct inode *inode, struct file *file)
818{
819 int rc = 0;
820 unsigned int xid;
821 struct cifsFileInfo *cfile = file->private_data;
822 struct cifs_tcon *tcon;
823 struct TCP_Server_Info *server;
824 char *buf;
825
826 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
827
828 if (cfile == NULL)
829 return rc;
830
831 xid = get_xid();
832 tcon = tlink_tcon(cfile->tlink);
833 server = tcon->ses->server;
834
835 cifs_dbg(FYI, "Freeing private data in close dir\n");
836 spin_lock(&cfile->file_info_lock);
837 if (server->ops->dir_needs_close(cfile)) {
838 cfile->invalidHandle = true;
839 spin_unlock(&cfile->file_info_lock);
840 if (server->ops->close_dir)
841 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
842 else
843 rc = -ENOSYS;
844 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
845 /* not much we can do if it fails anyway, ignore rc */
846 rc = 0;
847 } else
848 spin_unlock(&cfile->file_info_lock);
849
850 buf = cfile->srch_inf.ntwrk_buf_start;
851 if (buf) {
852 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
853 cfile->srch_inf.ntwrk_buf_start = NULL;
854 if (cfile->srch_inf.smallBuf)
855 cifs_small_buf_release(buf);
856 else
857 cifs_buf_release(buf);
858 }
859
860 cifs_put_tlink(cfile->tlink);
861 kfree(file->private_data);
862 file->private_data = NULL;
863 /* BB can we lock the filestruct while this is going on? */
864 free_xid(xid);
865 return rc;
866}
867
868static struct cifsLockInfo *
869cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags)
870{
871 struct cifsLockInfo *lock =
872 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
873 if (!lock)
874 return lock;
875 lock->offset = offset;
876 lock->length = length;
877 lock->type = type;
878 lock->pid = current->tgid;
879 lock->flags = flags;
880 INIT_LIST_HEAD(&lock->blist);
881 init_waitqueue_head(&lock->block_q);
882 return lock;
883}
884
885void
886cifs_del_lock_waiters(struct cifsLockInfo *lock)
887{
888 struct cifsLockInfo *li, *tmp;
889 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
890 list_del_init(&li->blist);
891 wake_up(&li->block_q);
892 }
893}
894
895#define CIFS_LOCK_OP 0
896#define CIFS_READ_OP 1
897#define CIFS_WRITE_OP 2
898
899/* @rw_check : 0 - no op, 1 - read, 2 - write */
900static bool
901cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
902 __u64 length, __u8 type, __u16 flags,
903 struct cifsFileInfo *cfile,
904 struct cifsLockInfo **conf_lock, int rw_check)
905{
906 struct cifsLockInfo *li;
907 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
908 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
909
910 list_for_each_entry(li, &fdlocks->locks, llist) {
911 if (offset + length <= li->offset ||
912 offset >= li->offset + li->length)
913 continue;
914 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
915 server->ops->compare_fids(cfile, cur_cfile)) {
916 /* shared lock prevents write op through the same fid */
917 if (!(li->type & server->vals->shared_lock_type) ||
918 rw_check != CIFS_WRITE_OP)
919 continue;
920 }
921 if ((type & server->vals->shared_lock_type) &&
922 ((server->ops->compare_fids(cfile, cur_cfile) &&
923 current->tgid == li->pid) || type == li->type))
924 continue;
925 if (rw_check == CIFS_LOCK_OP &&
926 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) &&
927 server->ops->compare_fids(cfile, cur_cfile))
928 continue;
929 if (conf_lock)
930 *conf_lock = li;
931 return true;
932 }
933 return false;
934}
935
936bool
937cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
938 __u8 type, __u16 flags,
939 struct cifsLockInfo **conf_lock, int rw_check)
940{
941 bool rc = false;
942 struct cifs_fid_locks *cur;
943 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
944
945 list_for_each_entry(cur, &cinode->llist, llist) {
946 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
947 flags, cfile, conf_lock,
948 rw_check);
949 if (rc)
950 break;
951 }
952
953 return rc;
954}
955
956/*
957 * Check if there is another lock that prevents us to set the lock (mandatory
958 * style). If such a lock exists, update the flock structure with its
959 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
960 * or leave it the same if we can't. Returns 0 if we don't need to request to
961 * the server or 1 otherwise.
962 */
963static int
964cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
965 __u8 type, struct file_lock *flock)
966{
967 int rc = 0;
968 struct cifsLockInfo *conf_lock;
969 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
970 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
971 bool exist;
972
973 down_read(&cinode->lock_sem);
974
975 exist = cifs_find_lock_conflict(cfile, offset, length, type,
976 flock->fl_flags, &conf_lock,
977 CIFS_LOCK_OP);
978 if (exist) {
979 flock->fl_start = conf_lock->offset;
980 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
981 flock->fl_pid = conf_lock->pid;
982 if (conf_lock->type & server->vals->shared_lock_type)
983 flock->fl_type = F_RDLCK;
984 else
985 flock->fl_type = F_WRLCK;
986 } else if (!cinode->can_cache_brlcks)
987 rc = 1;
988 else
989 flock->fl_type = F_UNLCK;
990
991 up_read(&cinode->lock_sem);
992 return rc;
993}
994
995static void
996cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
997{
998 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
999 down_write(&cinode->lock_sem);
1000 list_add_tail(&lock->llist, &cfile->llist->locks);
1001 up_write(&cinode->lock_sem);
1002}
1003
1004/*
1005 * Set the byte-range lock (mandatory style). Returns:
1006 * 1) 0, if we set the lock and don't need to request to the server;
1007 * 2) 1, if no locks prevent us but we need to request to the server;
1008 * 3) -EACCES, if there is a lock that prevents us and wait is false.
1009 */
1010static int
1011cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
1012 bool wait)
1013{
1014 struct cifsLockInfo *conf_lock;
1015 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1016 bool exist;
1017 int rc = 0;
1018
1019try_again:
1020 exist = false;
1021 down_write(&cinode->lock_sem);
1022
1023 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
1024 lock->type, lock->flags, &conf_lock,
1025 CIFS_LOCK_OP);
1026 if (!exist && cinode->can_cache_brlcks) {
1027 list_add_tail(&lock->llist, &cfile->llist->locks);
1028 up_write(&cinode->lock_sem);
1029 return rc;
1030 }
1031
1032 if (!exist)
1033 rc = 1;
1034 else if (!wait)
1035 rc = -EACCES;
1036 else {
1037 list_add_tail(&lock->blist, &conf_lock->blist);
1038 up_write(&cinode->lock_sem);
1039 rc = wait_event_interruptible(lock->block_q,
1040 (lock->blist.prev == &lock->blist) &&
1041 (lock->blist.next == &lock->blist));
1042 if (!rc)
1043 goto try_again;
1044 down_write(&cinode->lock_sem);
1045 list_del_init(&lock->blist);
1046 }
1047
1048 up_write(&cinode->lock_sem);
1049 return rc;
1050}
1051
1052/*
1053 * Check if there is another lock that prevents us to set the lock (posix
1054 * style). If such a lock exists, update the flock structure with its
1055 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1056 * or leave it the same if we can't. Returns 0 if we don't need to request to
1057 * the server or 1 otherwise.
1058 */
1059static int
1060cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1061{
1062 int rc = 0;
1063 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1064 unsigned char saved_type = flock->fl_type;
1065
1066 if ((flock->fl_flags & FL_POSIX) == 0)
1067 return 1;
1068
1069 down_read(&cinode->lock_sem);
1070 posix_test_lock(file, flock);
1071
1072 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1073 flock->fl_type = saved_type;
1074 rc = 1;
1075 }
1076
1077 up_read(&cinode->lock_sem);
1078 return rc;
1079}
1080
1081/*
1082 * Set the byte-range lock (posix style). Returns:
1083 * 1) 0, if we set the lock and don't need to request to the server;
1084 * 2) 1, if we need to request to the server;
1085 * 3) <0, if the error occurs while setting the lock.
1086 */
1087static int
1088cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1089{
1090 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1091 int rc = 1;
1092
1093 if ((flock->fl_flags & FL_POSIX) == 0)
1094 return rc;
1095
1096try_again:
1097 down_write(&cinode->lock_sem);
1098 if (!cinode->can_cache_brlcks) {
1099 up_write(&cinode->lock_sem);
1100 return rc;
1101 }
1102
1103 rc = posix_lock_file(file, flock, NULL);
1104 up_write(&cinode->lock_sem);
1105 if (rc == FILE_LOCK_DEFERRED) {
1106 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
1107 if (!rc)
1108 goto try_again;
1109 posix_unblock_lock(flock);
1110 }
1111 return rc;
1112}
1113
1114int
1115cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1116{
1117 unsigned int xid;
1118 int rc = 0, stored_rc;
1119 struct cifsLockInfo *li, *tmp;
1120 struct cifs_tcon *tcon;
1121 unsigned int num, max_num, max_buf;
1122 LOCKING_ANDX_RANGE *buf, *cur;
1123 static const int types[] = {
1124 LOCKING_ANDX_LARGE_FILES,
1125 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1126 };
1127 int i;
1128
1129 xid = get_xid();
1130 tcon = tlink_tcon(cfile->tlink);
1131
1132 /*
1133 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1134 * and check it for zero before using.
1135 */
1136 max_buf = tcon->ses->server->maxBuf;
1137 if (!max_buf) {
1138 free_xid(xid);
1139 return -EINVAL;
1140 }
1141
1142 max_num = (max_buf - sizeof(struct smb_hdr)) /
1143 sizeof(LOCKING_ANDX_RANGE);
1144 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1145 if (!buf) {
1146 free_xid(xid);
1147 return -ENOMEM;
1148 }
1149
1150 for (i = 0; i < 2; i++) {
1151 cur = buf;
1152 num = 0;
1153 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1154 if (li->type != types[i])
1155 continue;
1156 cur->Pid = cpu_to_le16(li->pid);
1157 cur->LengthLow = cpu_to_le32((u32)li->length);
1158 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1159 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1160 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1161 if (++num == max_num) {
1162 stored_rc = cifs_lockv(xid, tcon,
1163 cfile->fid.netfid,
1164 (__u8)li->type, 0, num,
1165 buf);
1166 if (stored_rc)
1167 rc = stored_rc;
1168 cur = buf;
1169 num = 0;
1170 } else
1171 cur++;
1172 }
1173
1174 if (num) {
1175 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1176 (__u8)types[i], 0, num, buf);
1177 if (stored_rc)
1178 rc = stored_rc;
1179 }
1180 }
1181
1182 kfree(buf);
1183 free_xid(xid);
1184 return rc;
1185}
1186
1187static __u32
1188hash_lockowner(fl_owner_t owner)
1189{
1190 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1191}
1192
1193struct lock_to_push {
1194 struct list_head llist;
1195 __u64 offset;
1196 __u64 length;
1197 __u32 pid;
1198 __u16 netfid;
1199 __u8 type;
1200};
1201
1202static int
1203cifs_push_posix_locks(struct cifsFileInfo *cfile)
1204{
1205 struct inode *inode = d_inode(cfile->dentry);
1206 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1207 struct file_lock *flock;
1208 struct file_lock_context *flctx = inode->i_flctx;
1209 unsigned int count = 0, i;
1210 int rc = 0, xid, type;
1211 struct list_head locks_to_send, *el;
1212 struct lock_to_push *lck, *tmp;
1213 __u64 length;
1214
1215 xid = get_xid();
1216
1217 if (!flctx)
1218 goto out;
1219
1220 spin_lock(&flctx->flc_lock);
1221 list_for_each(el, &flctx->flc_posix) {
1222 count++;
1223 }
1224 spin_unlock(&flctx->flc_lock);
1225
1226 INIT_LIST_HEAD(&locks_to_send);
1227
1228 /*
1229 * Allocating count locks is enough because no FL_POSIX locks can be
1230 * added to the list while we are holding cinode->lock_sem that
1231 * protects locking operations of this inode.
1232 */
1233 for (i = 0; i < count; i++) {
1234 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1235 if (!lck) {
1236 rc = -ENOMEM;
1237 goto err_out;
1238 }
1239 list_add_tail(&lck->llist, &locks_to_send);
1240 }
1241
1242 el = locks_to_send.next;
1243 spin_lock(&flctx->flc_lock);
1244 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1245 if (el == &locks_to_send) {
1246 /*
1247 * The list ended. We don't have enough allocated
1248 * structures - something is really wrong.
1249 */
1250 cifs_dbg(VFS, "Can't push all brlocks!\n");
1251 break;
1252 }
1253 length = 1 + flock->fl_end - flock->fl_start;
1254 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1255 type = CIFS_RDLCK;
1256 else
1257 type = CIFS_WRLCK;
1258 lck = list_entry(el, struct lock_to_push, llist);
1259 lck->pid = hash_lockowner(flock->fl_owner);
1260 lck->netfid = cfile->fid.netfid;
1261 lck->length = length;
1262 lck->type = type;
1263 lck->offset = flock->fl_start;
1264 }
1265 spin_unlock(&flctx->flc_lock);
1266
1267 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1268 int stored_rc;
1269
1270 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1271 lck->offset, lck->length, NULL,
1272 lck->type, 0);
1273 if (stored_rc)
1274 rc = stored_rc;
1275 list_del(&lck->llist);
1276 kfree(lck);
1277 }
1278
1279out:
1280 free_xid(xid);
1281 return rc;
1282err_out:
1283 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1284 list_del(&lck->llist);
1285 kfree(lck);
1286 }
1287 goto out;
1288}
1289
1290static int
1291cifs_push_locks(struct cifsFileInfo *cfile)
1292{
1293 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1294 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1295 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1296 int rc = 0;
1297
1298 /* we are going to update can_cache_brlcks here - need a write access */
1299 down_write(&cinode->lock_sem);
1300 if (!cinode->can_cache_brlcks) {
1301 up_write(&cinode->lock_sem);
1302 return rc;
1303 }
1304
1305 if (cap_unix(tcon->ses) &&
1306 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1307 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1308 rc = cifs_push_posix_locks(cfile);
1309 else
1310 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1311
1312 cinode->can_cache_brlcks = false;
1313 up_write(&cinode->lock_sem);
1314 return rc;
1315}
1316
1317static void
1318cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1319 bool *wait_flag, struct TCP_Server_Info *server)
1320{
1321 if (flock->fl_flags & FL_POSIX)
1322 cifs_dbg(FYI, "Posix\n");
1323 if (flock->fl_flags & FL_FLOCK)
1324 cifs_dbg(FYI, "Flock\n");
1325 if (flock->fl_flags & FL_SLEEP) {
1326 cifs_dbg(FYI, "Blocking lock\n");
1327 *wait_flag = true;
1328 }
1329 if (flock->fl_flags & FL_ACCESS)
1330 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1331 if (flock->fl_flags & FL_LEASE)
1332 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1333 if (flock->fl_flags &
1334 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1335 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK)))
1336 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1337
1338 *type = server->vals->large_lock_type;
1339 if (flock->fl_type == F_WRLCK) {
1340 cifs_dbg(FYI, "F_WRLCK\n");
1341 *type |= server->vals->exclusive_lock_type;
1342 *lock = 1;
1343 } else if (flock->fl_type == F_UNLCK) {
1344 cifs_dbg(FYI, "F_UNLCK\n");
1345 *type |= server->vals->unlock_lock_type;
1346 *unlock = 1;
1347 /* Check if unlock includes more than one lock range */
1348 } else if (flock->fl_type == F_RDLCK) {
1349 cifs_dbg(FYI, "F_RDLCK\n");
1350 *type |= server->vals->shared_lock_type;
1351 *lock = 1;
1352 } else if (flock->fl_type == F_EXLCK) {
1353 cifs_dbg(FYI, "F_EXLCK\n");
1354 *type |= server->vals->exclusive_lock_type;
1355 *lock = 1;
1356 } else if (flock->fl_type == F_SHLCK) {
1357 cifs_dbg(FYI, "F_SHLCK\n");
1358 *type |= server->vals->shared_lock_type;
1359 *lock = 1;
1360 } else
1361 cifs_dbg(FYI, "Unknown type of lock\n");
1362}
1363
1364static int
1365cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1366 bool wait_flag, bool posix_lck, unsigned int xid)
1367{
1368 int rc = 0;
1369 __u64 length = 1 + flock->fl_end - flock->fl_start;
1370 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1371 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1372 struct TCP_Server_Info *server = tcon->ses->server;
1373 __u16 netfid = cfile->fid.netfid;
1374
1375 if (posix_lck) {
1376 int posix_lock_type;
1377
1378 rc = cifs_posix_lock_test(file, flock);
1379 if (!rc)
1380 return rc;
1381
1382 if (type & server->vals->shared_lock_type)
1383 posix_lock_type = CIFS_RDLCK;
1384 else
1385 posix_lock_type = CIFS_WRLCK;
1386 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1387 hash_lockowner(flock->fl_owner),
1388 flock->fl_start, length, flock,
1389 posix_lock_type, wait_flag);
1390 return rc;
1391 }
1392
1393 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1394 if (!rc)
1395 return rc;
1396
1397 /* BB we could chain these into one lock request BB */
1398 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1399 1, 0, false);
1400 if (rc == 0) {
1401 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1402 type, 0, 1, false);
1403 flock->fl_type = F_UNLCK;
1404 if (rc != 0)
1405 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1406 rc);
1407 return 0;
1408 }
1409
1410 if (type & server->vals->shared_lock_type) {
1411 flock->fl_type = F_WRLCK;
1412 return 0;
1413 }
1414
1415 type &= ~server->vals->exclusive_lock_type;
1416
1417 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1418 type | server->vals->shared_lock_type,
1419 1, 0, false);
1420 if (rc == 0) {
1421 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1422 type | server->vals->shared_lock_type, 0, 1, false);
1423 flock->fl_type = F_RDLCK;
1424 if (rc != 0)
1425 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1426 rc);
1427 } else
1428 flock->fl_type = F_WRLCK;
1429
1430 return 0;
1431}
1432
1433void
1434cifs_move_llist(struct list_head *source, struct list_head *dest)
1435{
1436 struct list_head *li, *tmp;
1437 list_for_each_safe(li, tmp, source)
1438 list_move(li, dest);
1439}
1440
1441void
1442cifs_free_llist(struct list_head *llist)
1443{
1444 struct cifsLockInfo *li, *tmp;
1445 list_for_each_entry_safe(li, tmp, llist, llist) {
1446 cifs_del_lock_waiters(li);
1447 list_del(&li->llist);
1448 kfree(li);
1449 }
1450}
1451
1452int
1453cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1454 unsigned int xid)
1455{
1456 int rc = 0, stored_rc;
1457 static const int types[] = {
1458 LOCKING_ANDX_LARGE_FILES,
1459 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1460 };
1461 unsigned int i;
1462 unsigned int max_num, num, max_buf;
1463 LOCKING_ANDX_RANGE *buf, *cur;
1464 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1465 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1466 struct cifsLockInfo *li, *tmp;
1467 __u64 length = 1 + flock->fl_end - flock->fl_start;
1468 struct list_head tmp_llist;
1469
1470 INIT_LIST_HEAD(&tmp_llist);
1471
1472 /*
1473 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1474 * and check it for zero before using.
1475 */
1476 max_buf = tcon->ses->server->maxBuf;
1477 if (!max_buf)
1478 return -EINVAL;
1479
1480 max_num = (max_buf - sizeof(struct smb_hdr)) /
1481 sizeof(LOCKING_ANDX_RANGE);
1482 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1483 if (!buf)
1484 return -ENOMEM;
1485
1486 down_write(&cinode->lock_sem);
1487 for (i = 0; i < 2; i++) {
1488 cur = buf;
1489 num = 0;
1490 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1491 if (flock->fl_start > li->offset ||
1492 (flock->fl_start + length) <
1493 (li->offset + li->length))
1494 continue;
1495 if (current->tgid != li->pid)
1496 continue;
1497 if (types[i] != li->type)
1498 continue;
1499 if (cinode->can_cache_brlcks) {
1500 /*
1501 * We can cache brlock requests - simply remove
1502 * a lock from the file's list.
1503 */
1504 list_del(&li->llist);
1505 cifs_del_lock_waiters(li);
1506 kfree(li);
1507 continue;
1508 }
1509 cur->Pid = cpu_to_le16(li->pid);
1510 cur->LengthLow = cpu_to_le32((u32)li->length);
1511 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1512 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1513 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1514 /*
1515 * We need to save a lock here to let us add it again to
1516 * the file's list if the unlock range request fails on
1517 * the server.
1518 */
1519 list_move(&li->llist, &tmp_llist);
1520 if (++num == max_num) {
1521 stored_rc = cifs_lockv(xid, tcon,
1522 cfile->fid.netfid,
1523 li->type, num, 0, buf);
1524 if (stored_rc) {
1525 /*
1526 * We failed on the unlock range
1527 * request - add all locks from the tmp
1528 * list to the head of the file's list.
1529 */
1530 cifs_move_llist(&tmp_llist,
1531 &cfile->llist->locks);
1532 rc = stored_rc;
1533 } else
1534 /*
1535 * The unlock range request succeed -
1536 * free the tmp list.
1537 */
1538 cifs_free_llist(&tmp_llist);
1539 cur = buf;
1540 num = 0;
1541 } else
1542 cur++;
1543 }
1544 if (num) {
1545 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1546 types[i], num, 0, buf);
1547 if (stored_rc) {
1548 cifs_move_llist(&tmp_llist,
1549 &cfile->llist->locks);
1550 rc = stored_rc;
1551 } else
1552 cifs_free_llist(&tmp_llist);
1553 }
1554 }
1555
1556 up_write(&cinode->lock_sem);
1557 kfree(buf);
1558 return rc;
1559}
1560
1561static int
1562cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1563 bool wait_flag, bool posix_lck, int lock, int unlock,
1564 unsigned int xid)
1565{
1566 int rc = 0;
1567 __u64 length = 1 + flock->fl_end - flock->fl_start;
1568 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1569 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1570 struct TCP_Server_Info *server = tcon->ses->server;
1571 struct inode *inode = d_inode(cfile->dentry);
1572
1573 if (posix_lck) {
1574 int posix_lock_type;
1575
1576 rc = cifs_posix_lock_set(file, flock);
1577 if (!rc || rc < 0)
1578 return rc;
1579
1580 if (type & server->vals->shared_lock_type)
1581 posix_lock_type = CIFS_RDLCK;
1582 else
1583 posix_lock_type = CIFS_WRLCK;
1584
1585 if (unlock == 1)
1586 posix_lock_type = CIFS_UNLCK;
1587
1588 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1589 hash_lockowner(flock->fl_owner),
1590 flock->fl_start, length,
1591 NULL, posix_lock_type, wait_flag);
1592 goto out;
1593 }
1594
1595 if (lock) {
1596 struct cifsLockInfo *lock;
1597
1598 lock = cifs_lock_init(flock->fl_start, length, type,
1599 flock->fl_flags);
1600 if (!lock)
1601 return -ENOMEM;
1602
1603 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1604 if (rc < 0) {
1605 kfree(lock);
1606 return rc;
1607 }
1608 if (!rc)
1609 goto out;
1610
1611 /*
1612 * Windows 7 server can delay breaking lease from read to None
1613 * if we set a byte-range lock on a file - break it explicitly
1614 * before sending the lock to the server to be sure the next
1615 * read won't conflict with non-overlapted locks due to
1616 * pagereading.
1617 */
1618 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1619 CIFS_CACHE_READ(CIFS_I(inode))) {
1620 cifs_zap_mapping(inode);
1621 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1622 inode);
1623 CIFS_I(inode)->oplock = 0;
1624 }
1625
1626 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1627 type, 1, 0, wait_flag);
1628 if (rc) {
1629 kfree(lock);
1630 return rc;
1631 }
1632
1633 cifs_lock_add(cfile, lock);
1634 } else if (unlock)
1635 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1636
1637out:
1638 if (flock->fl_flags & FL_POSIX && !rc)
1639 rc = locks_lock_file_wait(file, flock);
1640 return rc;
1641}
1642
1643int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1644{
1645 int rc, xid;
1646 int lock = 0, unlock = 0;
1647 bool wait_flag = false;
1648 bool posix_lck = false;
1649 struct cifs_sb_info *cifs_sb;
1650 struct cifs_tcon *tcon;
1651 struct cifsInodeInfo *cinode;
1652 struct cifsFileInfo *cfile;
1653 __u16 netfid;
1654 __u32 type;
1655
1656 rc = -EACCES;
1657 xid = get_xid();
1658
1659 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1660 cmd, flock->fl_flags, flock->fl_type,
1661 flock->fl_start, flock->fl_end);
1662
1663 cfile = (struct cifsFileInfo *)file->private_data;
1664 tcon = tlink_tcon(cfile->tlink);
1665
1666 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1667 tcon->ses->server);
1668 cifs_sb = CIFS_FILE_SB(file);
1669 netfid = cfile->fid.netfid;
1670 cinode = CIFS_I(file_inode(file));
1671
1672 if (cap_unix(tcon->ses) &&
1673 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1674 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1675 posix_lck = true;
1676 /*
1677 * BB add code here to normalize offset and length to account for
1678 * negative length which we can not accept over the wire.
1679 */
1680 if (IS_GETLK(cmd)) {
1681 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1682 free_xid(xid);
1683 return rc;
1684 }
1685
1686 if (!lock && !unlock) {
1687 /*
1688 * if no lock or unlock then nothing to do since we do not
1689 * know what it is
1690 */
1691 free_xid(xid);
1692 return -EOPNOTSUPP;
1693 }
1694
1695 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1696 xid);
1697 free_xid(xid);
1698 return rc;
1699}
1700
1701/*
1702 * update the file size (if needed) after a write. Should be called with
1703 * the inode->i_lock held
1704 */
1705void
1706cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1707 unsigned int bytes_written)
1708{
1709 loff_t end_of_write = offset + bytes_written;
1710
1711 if (end_of_write > cifsi->server_eof)
1712 cifsi->server_eof = end_of_write;
1713}
1714
1715static ssize_t
1716cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1717 size_t write_size, loff_t *offset)
1718{
1719 int rc = 0;
1720 unsigned int bytes_written = 0;
1721 unsigned int total_written;
1722 struct cifs_sb_info *cifs_sb;
1723 struct cifs_tcon *tcon;
1724 struct TCP_Server_Info *server;
1725 unsigned int xid;
1726 struct dentry *dentry = open_file->dentry;
1727 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1728 struct cifs_io_parms io_parms;
1729
1730 cifs_sb = CIFS_SB(dentry->d_sb);
1731
1732 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1733 write_size, *offset, dentry);
1734
1735 tcon = tlink_tcon(open_file->tlink);
1736 server = tcon->ses->server;
1737
1738 if (!server->ops->sync_write)
1739 return -ENOSYS;
1740
1741 xid = get_xid();
1742
1743 for (total_written = 0; write_size > total_written;
1744 total_written += bytes_written) {
1745 rc = -EAGAIN;
1746 while (rc == -EAGAIN) {
1747 struct kvec iov[2];
1748 unsigned int len;
1749
1750 if (open_file->invalidHandle) {
1751 /* we could deadlock if we called
1752 filemap_fdatawait from here so tell
1753 reopen_file not to flush data to
1754 server now */
1755 rc = cifs_reopen_file(open_file, false);
1756 if (rc != 0)
1757 break;
1758 }
1759
1760 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1761 (unsigned int)write_size - total_written);
1762 /* iov[0] is reserved for smb header */
1763 iov[1].iov_base = (char *)write_data + total_written;
1764 iov[1].iov_len = len;
1765 io_parms.pid = pid;
1766 io_parms.tcon = tcon;
1767 io_parms.offset = *offset;
1768 io_parms.length = len;
1769 rc = server->ops->sync_write(xid, &open_file->fid,
1770 &io_parms, &bytes_written, iov, 1);
1771 }
1772 if (rc || (bytes_written == 0)) {
1773 if (total_written)
1774 break;
1775 else {
1776 free_xid(xid);
1777 return rc;
1778 }
1779 } else {
1780 spin_lock(&d_inode(dentry)->i_lock);
1781 cifs_update_eof(cifsi, *offset, bytes_written);
1782 spin_unlock(&d_inode(dentry)->i_lock);
1783 *offset += bytes_written;
1784 }
1785 }
1786
1787 cifs_stats_bytes_written(tcon, total_written);
1788
1789 if (total_written > 0) {
1790 spin_lock(&d_inode(dentry)->i_lock);
1791 if (*offset > d_inode(dentry)->i_size)
1792 i_size_write(d_inode(dentry), *offset);
1793 spin_unlock(&d_inode(dentry)->i_lock);
1794 }
1795 mark_inode_dirty_sync(d_inode(dentry));
1796 free_xid(xid);
1797 return total_written;
1798}
1799
1800struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1801 bool fsuid_only)
1802{
1803 struct cifsFileInfo *open_file = NULL;
1804 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1805 struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);
1806
1807 /* only filter by fsuid on multiuser mounts */
1808 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1809 fsuid_only = false;
1810
1811 spin_lock(&tcon->open_file_lock);
1812 /* we could simply get the first_list_entry since write-only entries
1813 are always at the end of the list but since the first entry might
1814 have a close pending, we go through the whole list */
1815 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1816 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1817 continue;
1818 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1819 if (!open_file->invalidHandle) {
1820 /* found a good file */
1821 /* lock it so it will not be closed on us */
1822 cifsFileInfo_get(open_file);
1823 spin_unlock(&tcon->open_file_lock);
1824 return open_file;
1825 } /* else might as well continue, and look for
1826 another, or simply have the caller reopen it
1827 again rather than trying to fix this handle */
1828 } else /* write only file */
1829 break; /* write only files are last so must be done */
1830 }
1831 spin_unlock(&tcon->open_file_lock);
1832 return NULL;
1833}
1834
1835struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1836 bool fsuid_only)
1837{
1838 struct cifsFileInfo *open_file, *inv_file = NULL;
1839 struct cifs_sb_info *cifs_sb;
1840 struct cifs_tcon *tcon;
1841 bool any_available = false;
1842 int rc;
1843 unsigned int refind = 0;
1844
1845 /* Having a null inode here (because mapping->host was set to zero by
1846 the VFS or MM) should not happen but we had reports of on oops (due to
1847 it being zero) during stress testcases so we need to check for it */
1848
1849 if (cifs_inode == NULL) {
1850 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1851 dump_stack();
1852 return NULL;
1853 }
1854
1855 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1856 tcon = cifs_sb_master_tcon(cifs_sb);
1857
1858 /* only filter by fsuid on multiuser mounts */
1859 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1860 fsuid_only = false;
1861
1862 spin_lock(&tcon->open_file_lock);
1863refind_writable:
1864 if (refind > MAX_REOPEN_ATT) {
1865 spin_unlock(&tcon->open_file_lock);
1866 return NULL;
1867 }
1868 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1869 if (!any_available && open_file->pid != current->tgid)
1870 continue;
1871 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1872 continue;
1873 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1874 if (!open_file->invalidHandle) {
1875 /* found a good writable file */
1876 cifsFileInfo_get(open_file);
1877 spin_unlock(&tcon->open_file_lock);
1878 return open_file;
1879 } else {
1880 if (!inv_file)
1881 inv_file = open_file;
1882 }
1883 }
1884 }
1885 /* couldn't find useable FH with same pid, try any available */
1886 if (!any_available) {
1887 any_available = true;
1888 goto refind_writable;
1889 }
1890
1891 if (inv_file) {
1892 any_available = false;
1893 cifsFileInfo_get(inv_file);
1894 }
1895
1896 spin_unlock(&tcon->open_file_lock);
1897
1898 if (inv_file) {
1899 rc = cifs_reopen_file(inv_file, false);
1900 if (!rc)
1901 return inv_file;
1902 else {
1903 spin_lock(&tcon->open_file_lock);
1904 list_move_tail(&inv_file->flist,
1905 &cifs_inode->openFileList);
1906 spin_unlock(&tcon->open_file_lock);
1907 cifsFileInfo_put(inv_file);
1908 ++refind;
1909 inv_file = NULL;
1910 spin_lock(&tcon->open_file_lock);
1911 goto refind_writable;
1912 }
1913 }
1914
1915 return NULL;
1916}
1917
1918static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1919{
1920 struct address_space *mapping = page->mapping;
1921 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
1922 char *write_data;
1923 int rc = -EFAULT;
1924 int bytes_written = 0;
1925 struct inode *inode;
1926 struct cifsFileInfo *open_file;
1927
1928 if (!mapping || !mapping->host)
1929 return -EFAULT;
1930
1931 inode = page->mapping->host;
1932
1933 offset += (loff_t)from;
1934 write_data = kmap(page);
1935 write_data += from;
1936
1937 if ((to > PAGE_SIZE) || (from > to)) {
1938 kunmap(page);
1939 return -EIO;
1940 }
1941
1942 /* racing with truncate? */
1943 if (offset > mapping->host->i_size) {
1944 kunmap(page);
1945 return 0; /* don't care */
1946 }
1947
1948 /* check to make sure that we are not extending the file */
1949 if (mapping->host->i_size - offset < (loff_t)to)
1950 to = (unsigned)(mapping->host->i_size - offset);
1951
1952 open_file = find_writable_file(CIFS_I(mapping->host), false);
1953 if (open_file) {
1954 bytes_written = cifs_write(open_file, open_file->pid,
1955 write_data, to - from, &offset);
1956 cifsFileInfo_put(open_file);
1957 /* Does mm or vfs already set times? */
1958 inode->i_atime = inode->i_mtime = current_time(inode);
1959 if ((bytes_written > 0) && (offset))
1960 rc = 0;
1961 else if (bytes_written < 0)
1962 rc = bytes_written;
1963 } else {
1964 cifs_dbg(FYI, "No writeable filehandles for inode\n");
1965 rc = -EIO;
1966 }
1967
1968 kunmap(page);
1969 return rc;
1970}
1971
1972static struct cifs_writedata *
1973wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
1974 pgoff_t end, pgoff_t *index,
1975 unsigned int *found_pages)
1976{
1977 struct cifs_writedata *wdata;
1978
1979 wdata = cifs_writedata_alloc((unsigned int)tofind,
1980 cifs_writev_complete);
1981 if (!wdata)
1982 return NULL;
1983
1984 *found_pages = find_get_pages_range_tag(mapping, index, end,
1985 PAGECACHE_TAG_DIRTY, tofind, wdata->pages);
1986 return wdata;
1987}
1988
1989static unsigned int
1990wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
1991 struct address_space *mapping,
1992 struct writeback_control *wbc,
1993 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
1994{
1995 unsigned int nr_pages = 0, i;
1996 struct page *page;
1997
1998 for (i = 0; i < found_pages; i++) {
1999 page = wdata->pages[i];
2000 /*
2001 * At this point we hold neither the i_pages lock nor the
2002 * page lock: the page may be truncated or invalidated
2003 * (changing page->mapping to NULL), or even swizzled
2004 * back from swapper_space to tmpfs file mapping
2005 */
2006
2007 if (nr_pages == 0)
2008 lock_page(page);
2009 else if (!trylock_page(page))
2010 break;
2011
2012 if (unlikely(page->mapping != mapping)) {
2013 unlock_page(page);
2014 break;
2015 }
2016
2017 if (!wbc->range_cyclic && page->index > end) {
2018 *done = true;
2019 unlock_page(page);
2020 break;
2021 }
2022
2023 if (*next && (page->index != *next)) {
2024 /* Not next consecutive page */
2025 unlock_page(page);
2026 break;
2027 }
2028
2029 if (wbc->sync_mode != WB_SYNC_NONE)
2030 wait_on_page_writeback(page);
2031
2032 if (PageWriteback(page) ||
2033 !clear_page_dirty_for_io(page)) {
2034 unlock_page(page);
2035 break;
2036 }
2037
2038 /*
2039 * This actually clears the dirty bit in the radix tree.
2040 * See cifs_writepage() for more commentary.
2041 */
2042 set_page_writeback(page);
2043 if (page_offset(page) >= i_size_read(mapping->host)) {
2044 *done = true;
2045 unlock_page(page);
2046 end_page_writeback(page);
2047 break;
2048 }
2049
2050 wdata->pages[i] = page;
2051 *next = page->index + 1;
2052 ++nr_pages;
2053 }
2054
2055 /* reset index to refind any pages skipped */
2056 if (nr_pages == 0)
2057 *index = wdata->pages[0]->index + 1;
2058
2059 /* put any pages we aren't going to use */
2060 for (i = nr_pages; i < found_pages; i++) {
2061 put_page(wdata->pages[i]);
2062 wdata->pages[i] = NULL;
2063 }
2064
2065 return nr_pages;
2066}
2067
2068static int
2069wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2070 struct address_space *mapping, struct writeback_control *wbc)
2071{
2072 int rc = 0;
2073 struct TCP_Server_Info *server;
2074 unsigned int i;
2075
2076 wdata->sync_mode = wbc->sync_mode;
2077 wdata->nr_pages = nr_pages;
2078 wdata->offset = page_offset(wdata->pages[0]);
2079 wdata->pagesz = PAGE_SIZE;
2080 wdata->tailsz = min(i_size_read(mapping->host) -
2081 page_offset(wdata->pages[nr_pages - 1]),
2082 (loff_t)PAGE_SIZE);
2083 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2084
2085 if (wdata->cfile != NULL)
2086 cifsFileInfo_put(wdata->cfile);
2087 wdata->cfile = find_writable_file(CIFS_I(mapping->host), false);
2088 if (!wdata->cfile) {
2089 cifs_dbg(VFS, "No writable handles for inode\n");
2090 rc = -EBADF;
2091 } else {
2092 wdata->pid = wdata->cfile->pid;
2093 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2094 rc = server->ops->async_writev(wdata, cifs_writedata_release);
2095 }
2096
2097 for (i = 0; i < nr_pages; ++i)
2098 unlock_page(wdata->pages[i]);
2099
2100 return rc;
2101}
2102
2103static int cifs_writepages(struct address_space *mapping,
2104 struct writeback_control *wbc)
2105{
2106 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
2107 struct TCP_Server_Info *server;
2108 bool done = false, scanned = false, range_whole = false;
2109 pgoff_t end, index;
2110 struct cifs_writedata *wdata;
2111 int rc = 0;
2112 unsigned int xid;
2113
2114 /*
2115 * If wsize is smaller than the page cache size, default to writing
2116 * one page at a time via cifs_writepage
2117 */
2118 if (cifs_sb->wsize < PAGE_SIZE)
2119 return generic_writepages(mapping, wbc);
2120
2121 xid = get_xid();
2122 if (wbc->range_cyclic) {
2123 index = mapping->writeback_index; /* Start from prev offset */
2124 end = -1;
2125 } else {
2126 index = wbc->range_start >> PAGE_SHIFT;
2127 end = wbc->range_end >> PAGE_SHIFT;
2128 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2129 range_whole = true;
2130 scanned = true;
2131 }
2132 server = cifs_sb_master_tcon(cifs_sb)->ses->server;
2133retry:
2134 while (!done && index <= end) {
2135 unsigned int i, nr_pages, found_pages, wsize, credits;
2136 pgoff_t next = 0, tofind, saved_index = index;
2137
2138 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2139 &wsize, &credits);
2140 if (rc)
2141 break;
2142
2143 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2144
2145 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2146 &found_pages);
2147 if (!wdata) {
2148 rc = -ENOMEM;
2149 add_credits_and_wake_if(server, credits, 0);
2150 break;
2151 }
2152
2153 if (found_pages == 0) {
2154 kref_put(&wdata->refcount, cifs_writedata_release);
2155 add_credits_and_wake_if(server, credits, 0);
2156 break;
2157 }
2158
2159 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2160 end, &index, &next, &done);
2161
2162 /* nothing to write? */
2163 if (nr_pages == 0) {
2164 kref_put(&wdata->refcount, cifs_writedata_release);
2165 add_credits_and_wake_if(server, credits, 0);
2166 continue;
2167 }
2168
2169 wdata->credits = credits;
2170
2171 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2172
2173 /* send failure -- clean up the mess */
2174 if (rc != 0) {
2175 add_credits_and_wake_if(server, wdata->credits, 0);
2176 for (i = 0; i < nr_pages; ++i) {
2177 if (rc == -EAGAIN)
2178 redirty_page_for_writepage(wbc,
2179 wdata->pages[i]);
2180 else
2181 SetPageError(wdata->pages[i]);
2182 end_page_writeback(wdata->pages[i]);
2183 put_page(wdata->pages[i]);
2184 }
2185 if (rc != -EAGAIN)
2186 mapping_set_error(mapping, rc);
2187 }
2188 kref_put(&wdata->refcount, cifs_writedata_release);
2189
2190 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2191 index = saved_index;
2192 continue;
2193 }
2194
2195 wbc->nr_to_write -= nr_pages;
2196 if (wbc->nr_to_write <= 0)
2197 done = true;
2198
2199 index = next;
2200 }
2201
2202 if (!scanned && !done) {
2203 /*
2204 * We hit the last page and there is more work to be done: wrap
2205 * back to the start of the file
2206 */
2207 scanned = true;
2208 index = 0;
2209 goto retry;
2210 }
2211
2212 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2213 mapping->writeback_index = index;
2214
2215 free_xid(xid);
2216 return rc;
2217}
2218
2219static int
2220cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2221{
2222 int rc;
2223 unsigned int xid;
2224
2225 xid = get_xid();
2226/* BB add check for wbc flags */
2227 get_page(page);
2228 if (!PageUptodate(page))
2229 cifs_dbg(FYI, "ppw - page not up to date\n");
2230
2231 /*
2232 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2233 *
2234 * A writepage() implementation always needs to do either this,
2235 * or re-dirty the page with "redirty_page_for_writepage()" in
2236 * the case of a failure.
2237 *
2238 * Just unlocking the page will cause the radix tree tag-bits
2239 * to fail to update with the state of the page correctly.
2240 */
2241 set_page_writeback(page);
2242retry_write:
2243 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2244 if (rc == -EAGAIN) {
2245 if (wbc->sync_mode == WB_SYNC_ALL)
2246 goto retry_write;
2247 redirty_page_for_writepage(wbc, page);
2248 } else if (rc != 0) {
2249 SetPageError(page);
2250 mapping_set_error(page->mapping, rc);
2251 } else {
2252 SetPageUptodate(page);
2253 }
2254 end_page_writeback(page);
2255 put_page(page);
2256 free_xid(xid);
2257 return rc;
2258}
2259
2260static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2261{
2262 int rc = cifs_writepage_locked(page, wbc);
2263 unlock_page(page);
2264 return rc;
2265}
2266
2267static int cifs_write_end(struct file *file, struct address_space *mapping,
2268 loff_t pos, unsigned len, unsigned copied,
2269 struct page *page, void *fsdata)
2270{
2271 int rc;
2272 struct inode *inode = mapping->host;
2273 struct cifsFileInfo *cfile = file->private_data;
2274 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2275 __u32 pid;
2276
2277 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2278 pid = cfile->pid;
2279 else
2280 pid = current->tgid;
2281
2282 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2283 page, pos, copied);
2284
2285 if (PageChecked(page)) {
2286 if (copied == len)
2287 SetPageUptodate(page);
2288 ClearPageChecked(page);
2289 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2290 SetPageUptodate(page);
2291
2292 if (!PageUptodate(page)) {
2293 char *page_data;
2294 unsigned offset = pos & (PAGE_SIZE - 1);
2295 unsigned int xid;
2296
2297 xid = get_xid();
2298 /* this is probably better than directly calling
2299 partialpage_write since in this function the file handle is
2300 known which we might as well leverage */
2301 /* BB check if anything else missing out of ppw
2302 such as updating last write time */
2303 page_data = kmap(page);
2304 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2305 /* if (rc < 0) should we set writebehind rc? */
2306 kunmap(page);
2307
2308 free_xid(xid);
2309 } else {
2310 rc = copied;
2311 pos += copied;
2312 set_page_dirty(page);
2313 }
2314
2315 if (rc > 0) {
2316 spin_lock(&inode->i_lock);
2317 if (pos > inode->i_size)
2318 i_size_write(inode, pos);
2319 spin_unlock(&inode->i_lock);
2320 }
2321
2322 unlock_page(page);
2323 put_page(page);
2324
2325 return rc;
2326}
2327
2328int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2329 int datasync)
2330{
2331 unsigned int xid;
2332 int rc = 0;
2333 struct cifs_tcon *tcon;
2334 struct TCP_Server_Info *server;
2335 struct cifsFileInfo *smbfile = file->private_data;
2336 struct inode *inode = file_inode(file);
2337 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2338
2339 rc = file_write_and_wait_range(file, start, end);
2340 if (rc)
2341 return rc;
2342 inode_lock(inode);
2343
2344 xid = get_xid();
2345
2346 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2347 file, datasync);
2348
2349 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2350 rc = cifs_zap_mapping(inode);
2351 if (rc) {
2352 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2353 rc = 0; /* don't care about it in fsync */
2354 }
2355 }
2356
2357 tcon = tlink_tcon(smbfile->tlink);
2358 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2359 server = tcon->ses->server;
2360 if (server->ops->flush)
2361 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2362 else
2363 rc = -ENOSYS;
2364 }
2365
2366 free_xid(xid);
2367 inode_unlock(inode);
2368 return rc;
2369}
2370
2371int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2372{
2373 unsigned int xid;
2374 int rc = 0;
2375 struct cifs_tcon *tcon;
2376 struct TCP_Server_Info *server;
2377 struct cifsFileInfo *smbfile = file->private_data;
2378 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2379 struct inode *inode = file->f_mapping->host;
2380
2381 rc = file_write_and_wait_range(file, start, end);
2382 if (rc)
2383 return rc;
2384 inode_lock(inode);
2385
2386 xid = get_xid();
2387
2388 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2389 file, datasync);
2390
2391 tcon = tlink_tcon(smbfile->tlink);
2392 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2393 server = tcon->ses->server;
2394 if (server->ops->flush)
2395 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2396 else
2397 rc = -ENOSYS;
2398 }
2399
2400 free_xid(xid);
2401 inode_unlock(inode);
2402 return rc;
2403}
2404
2405/*
2406 * As file closes, flush all cached write data for this inode checking
2407 * for write behind errors.
2408 */
2409int cifs_flush(struct file *file, fl_owner_t id)
2410{
2411 struct inode *inode = file_inode(file);
2412 int rc = 0;
2413
2414 if (file->f_mode & FMODE_WRITE)
2415 rc = filemap_write_and_wait(inode->i_mapping);
2416
2417 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2418
2419 return rc;
2420}
2421
2422static int
2423cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2424{
2425 int rc = 0;
2426 unsigned long i;
2427
2428 for (i = 0; i < num_pages; i++) {
2429 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2430 if (!pages[i]) {
2431 /*
2432 * save number of pages we have already allocated and
2433 * return with ENOMEM error
2434 */
2435 num_pages = i;
2436 rc = -ENOMEM;
2437 break;
2438 }
2439 }
2440
2441 if (rc) {
2442 for (i = 0; i < num_pages; i++)
2443 put_page(pages[i]);
2444 }
2445 return rc;
2446}
2447
2448static inline
2449size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2450{
2451 size_t num_pages;
2452 size_t clen;
2453
2454 clen = min_t(const size_t, len, wsize);
2455 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2456
2457 if (cur_len)
2458 *cur_len = clen;
2459
2460 return num_pages;
2461}
2462
2463static void
2464cifs_uncached_writedata_release(struct kref *refcount)
2465{
2466 int i;
2467 struct cifs_writedata *wdata = container_of(refcount,
2468 struct cifs_writedata, refcount);
2469
2470 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release);
2471 for (i = 0; i < wdata->nr_pages; i++)
2472 put_page(wdata->pages[i]);
2473 cifs_writedata_release(refcount);
2474}
2475
2476static void collect_uncached_write_data(struct cifs_aio_ctx *ctx);
2477
2478static void
2479cifs_uncached_writev_complete(struct work_struct *work)
2480{
2481 struct cifs_writedata *wdata = container_of(work,
2482 struct cifs_writedata, work);
2483 struct inode *inode = d_inode(wdata->cfile->dentry);
2484 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2485
2486 spin_lock(&inode->i_lock);
2487 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2488 if (cifsi->server_eof > inode->i_size)
2489 i_size_write(inode, cifsi->server_eof);
2490 spin_unlock(&inode->i_lock);
2491
2492 complete(&wdata->done);
2493 collect_uncached_write_data(wdata->ctx);
2494 /* the below call can possibly free the last ref to aio ctx */
2495 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2496}
2497
2498static int
2499wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2500 size_t *len, unsigned long *num_pages)
2501{
2502 size_t save_len, copied, bytes, cur_len = *len;
2503 unsigned long i, nr_pages = *num_pages;
2504
2505 save_len = cur_len;
2506 for (i = 0; i < nr_pages; i++) {
2507 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2508 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2509 cur_len -= copied;
2510 /*
2511 * If we didn't copy as much as we expected, then that
2512 * may mean we trod into an unmapped area. Stop copying
2513 * at that point. On the next pass through the big
2514 * loop, we'll likely end up getting a zero-length
2515 * write and bailing out of it.
2516 */
2517 if (copied < bytes)
2518 break;
2519 }
2520 cur_len = save_len - cur_len;
2521 *len = cur_len;
2522
2523 /*
2524 * If we have no data to send, then that probably means that
2525 * the copy above failed altogether. That's most likely because
2526 * the address in the iovec was bogus. Return -EFAULT and let
2527 * the caller free anything we allocated and bail out.
2528 */
2529 if (!cur_len)
2530 return -EFAULT;
2531
2532 /*
2533 * i + 1 now represents the number of pages we actually used in
2534 * the copy phase above.
2535 */
2536 *num_pages = i + 1;
2537 return 0;
2538}
2539
2540static int
2541cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list,
2542 struct cifs_aio_ctx *ctx)
2543{
2544 unsigned int wsize, credits;
2545 int rc;
2546 struct TCP_Server_Info *server =
2547 tlink_tcon(wdata->cfile->tlink)->ses->server;
2548
2549 /*
2550 * Wait for credits to resend this wdata.
2551 * Note: we are attempting to resend the whole wdata not in segments
2552 */
2553 do {
2554 rc = server->ops->wait_mtu_credits(
2555 server, wdata->bytes, &wsize, &credits);
2556
2557 if (rc)
2558 goto out;
2559
2560 if (wsize < wdata->bytes) {
2561 add_credits_and_wake_if(server, credits, 0);
2562 msleep(1000);
2563 }
2564 } while (wsize < wdata->bytes);
2565
2566 rc = -EAGAIN;
2567 while (rc == -EAGAIN) {
2568 rc = 0;
2569 if (wdata->cfile->invalidHandle)
2570 rc = cifs_reopen_file(wdata->cfile, false);
2571 if (!rc)
2572 rc = server->ops->async_writev(wdata,
2573 cifs_uncached_writedata_release);
2574 }
2575
2576 if (!rc) {
2577 list_add_tail(&wdata->list, wdata_list);
2578 return 0;
2579 }
2580
2581 add_credits_and_wake_if(server, wdata->credits, 0);
2582out:
2583 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2584
2585 return rc;
2586}
2587
2588static int
2589cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2590 struct cifsFileInfo *open_file,
2591 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list,
2592 struct cifs_aio_ctx *ctx)
2593{
2594 int rc = 0;
2595 size_t cur_len;
2596 unsigned long nr_pages, num_pages, i;
2597 struct cifs_writedata *wdata;
2598 struct iov_iter saved_from = *from;
2599 loff_t saved_offset = offset;
2600 pid_t pid;
2601 struct TCP_Server_Info *server;
2602 struct page **pagevec;
2603 size_t start;
2604
2605 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2606 pid = open_file->pid;
2607 else
2608 pid = current->tgid;
2609
2610 server = tlink_tcon(open_file->tlink)->ses->server;
2611
2612 do {
2613 unsigned int wsize, credits;
2614
2615 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2616 &wsize, &credits);
2617 if (rc)
2618 break;
2619
2620 if (ctx->direct_io) {
2621 ssize_t result;
2622
2623 result = iov_iter_get_pages_alloc(
2624 from, &pagevec, wsize, &start);
2625 if (result < 0) {
2626 cifs_dbg(VFS,
2627 "direct_writev couldn't get user pages "
2628 "(rc=%zd) iter type %d iov_offset %zd "
2629 "count %zd\n",
2630 result, from->type,
2631 from->iov_offset, from->count);
2632 dump_stack();
2633 break;
2634 }
2635 cur_len = (size_t)result;
2636 iov_iter_advance(from, cur_len);
2637
2638 nr_pages =
2639 (cur_len + start + PAGE_SIZE - 1) / PAGE_SIZE;
2640
2641 wdata = cifs_writedata_direct_alloc(pagevec,
2642 cifs_uncached_writev_complete);
2643 if (!wdata) {
2644 rc = -ENOMEM;
2645 add_credits_and_wake_if(server, credits, 0);
2646 break;
2647 }
2648
2649
2650 wdata->page_offset = start;
2651 wdata->tailsz =
2652 nr_pages > 1 ?
2653 cur_len - (PAGE_SIZE - start) -
2654 (nr_pages - 2) * PAGE_SIZE :
2655 cur_len;
2656 } else {
2657 nr_pages = get_numpages(wsize, len, &cur_len);
2658 wdata = cifs_writedata_alloc(nr_pages,
2659 cifs_uncached_writev_complete);
2660 if (!wdata) {
2661 rc = -ENOMEM;
2662 add_credits_and_wake_if(server, credits, 0);
2663 break;
2664 }
2665
2666 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2667 if (rc) {
2668 kfree(wdata);
2669 add_credits_and_wake_if(server, credits, 0);
2670 break;
2671 }
2672
2673 num_pages = nr_pages;
2674 rc = wdata_fill_from_iovec(
2675 wdata, from, &cur_len, &num_pages);
2676 if (rc) {
2677 for (i = 0; i < nr_pages; i++)
2678 put_page(wdata->pages[i]);
2679 kfree(wdata);
2680 add_credits_and_wake_if(server, credits, 0);
2681 break;
2682 }
2683
2684 /*
2685 * Bring nr_pages down to the number of pages we
2686 * actually used, and free any pages that we didn't use.
2687 */
2688 for ( ; nr_pages > num_pages; nr_pages--)
2689 put_page(wdata->pages[nr_pages - 1]);
2690
2691 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2692 }
2693
2694 wdata->sync_mode = WB_SYNC_ALL;
2695 wdata->nr_pages = nr_pages;
2696 wdata->offset = (__u64)offset;
2697 wdata->cfile = cifsFileInfo_get(open_file);
2698 wdata->pid = pid;
2699 wdata->bytes = cur_len;
2700 wdata->pagesz = PAGE_SIZE;
2701 wdata->credits = credits;
2702 wdata->ctx = ctx;
2703 kref_get(&ctx->refcount);
2704
2705 if (!wdata->cfile->invalidHandle ||
2706 !(rc = cifs_reopen_file(wdata->cfile, false)))
2707 rc = server->ops->async_writev(wdata,
2708 cifs_uncached_writedata_release);
2709 if (rc) {
2710 add_credits_and_wake_if(server, wdata->credits, 0);
2711 kref_put(&wdata->refcount,
2712 cifs_uncached_writedata_release);
2713 if (rc == -EAGAIN) {
2714 *from = saved_from;
2715 iov_iter_advance(from, offset - saved_offset);
2716 continue;
2717 }
2718 break;
2719 }
2720
2721 list_add_tail(&wdata->list, wdata_list);
2722 offset += cur_len;
2723 len -= cur_len;
2724 } while (len > 0);
2725
2726 return rc;
2727}
2728
2729static void collect_uncached_write_data(struct cifs_aio_ctx *ctx)
2730{
2731 struct cifs_writedata *wdata, *tmp;
2732 struct cifs_tcon *tcon;
2733 struct cifs_sb_info *cifs_sb;
2734 struct dentry *dentry = ctx->cfile->dentry;
2735 unsigned int i;
2736 int rc;
2737
2738 tcon = tlink_tcon(ctx->cfile->tlink);
2739 cifs_sb = CIFS_SB(dentry->d_sb);
2740
2741 mutex_lock(&ctx->aio_mutex);
2742
2743 if (list_empty(&ctx->list)) {
2744 mutex_unlock(&ctx->aio_mutex);
2745 return;
2746 }
2747
2748 rc = ctx->rc;
2749 /*
2750 * Wait for and collect replies for any successful sends in order of
2751 * increasing offset. Once an error is hit, then return without waiting
2752 * for any more replies.
2753 */
2754restart_loop:
2755 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) {
2756 if (!rc) {
2757 if (!try_wait_for_completion(&wdata->done)) {
2758 mutex_unlock(&ctx->aio_mutex);
2759 return;
2760 }
2761
2762 if (wdata->result)
2763 rc = wdata->result;
2764 else
2765 ctx->total_len += wdata->bytes;
2766
2767 /* resend call if it's a retryable error */
2768 if (rc == -EAGAIN) {
2769 struct list_head tmp_list;
2770 struct iov_iter tmp_from = ctx->iter;
2771
2772 INIT_LIST_HEAD(&tmp_list);
2773 list_del_init(&wdata->list);
2774
2775 if (ctx->direct_io)
2776 rc = cifs_resend_wdata(
2777 wdata, &tmp_list, ctx);
2778 else {
2779 iov_iter_advance(&tmp_from,
2780 wdata->offset - ctx->pos);
2781
2782 rc = cifs_write_from_iter(wdata->offset,
2783 wdata->bytes, &tmp_from,
2784 ctx->cfile, cifs_sb, &tmp_list,
2785 ctx);
2786 }
2787
2788 list_splice(&tmp_list, &ctx->list);
2789
2790 kref_put(&wdata->refcount,
2791 cifs_uncached_writedata_release);
2792 goto restart_loop;
2793 }
2794 }
2795 list_del_init(&wdata->list);
2796 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2797 }
2798
2799 if (!ctx->direct_io)
2800 for (i = 0; i < ctx->npages; i++)
2801 put_page(ctx->bv[i].bv_page);
2802
2803 cifs_stats_bytes_written(tcon, ctx->total_len);
2804 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags);
2805
2806 ctx->rc = (rc == 0) ? ctx->total_len : rc;
2807
2808 mutex_unlock(&ctx->aio_mutex);
2809
2810 if (ctx->iocb && ctx->iocb->ki_complete)
2811 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
2812 else
2813 complete(&ctx->done);
2814}
2815
2816static ssize_t __cifs_writev(
2817 struct kiocb *iocb, struct iov_iter *from, bool direct)
2818{
2819 struct file *file = iocb->ki_filp;
2820 ssize_t total_written = 0;
2821 struct cifsFileInfo *cfile;
2822 struct cifs_tcon *tcon;
2823 struct cifs_sb_info *cifs_sb;
2824 struct cifs_aio_ctx *ctx;
2825 struct iov_iter saved_from = *from;
2826 size_t len = iov_iter_count(from);
2827 int rc;
2828
2829 /*
2830 * iov_iter_get_pages_alloc doesn't work with ITER_KVEC.
2831 * In this case, fall back to non-direct write function.
2832 * this could be improved by getting pages directly in ITER_KVEC
2833 */
2834 if (direct && from->type & ITER_KVEC) {
2835 cifs_dbg(FYI, "use non-direct cifs_writev for kvec I/O\n");
2836 direct = false;
2837 }
2838
2839 rc = generic_write_checks(iocb, from);
2840 if (rc <= 0)
2841 return rc;
2842
2843 cifs_sb = CIFS_FILE_SB(file);
2844 cfile = file->private_data;
2845 tcon = tlink_tcon(cfile->tlink);
2846
2847 if (!tcon->ses->server->ops->async_writev)
2848 return -ENOSYS;
2849
2850 ctx = cifs_aio_ctx_alloc();
2851 if (!ctx)
2852 return -ENOMEM;
2853
2854 ctx->cfile = cifsFileInfo_get(cfile);
2855
2856 if (!is_sync_kiocb(iocb))
2857 ctx->iocb = iocb;
2858
2859 ctx->pos = iocb->ki_pos;
2860
2861 if (direct) {
2862 ctx->direct_io = true;
2863 ctx->iter = *from;
2864 ctx->len = len;
2865 } else {
2866 rc = setup_aio_ctx_iter(ctx, from, WRITE);
2867 if (rc) {
2868 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2869 return rc;
2870 }
2871 }
2872
2873 /* grab a lock here due to read response handlers can access ctx */
2874 mutex_lock(&ctx->aio_mutex);
2875
2876 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &saved_from,
2877 cfile, cifs_sb, &ctx->list, ctx);
2878
2879 /*
2880 * If at least one write was successfully sent, then discard any rc
2881 * value from the later writes. If the other write succeeds, then
2882 * we'll end up returning whatever was written. If it fails, then
2883 * we'll get a new rc value from that.
2884 */
2885 if (!list_empty(&ctx->list))
2886 rc = 0;
2887
2888 mutex_unlock(&ctx->aio_mutex);
2889
2890 if (rc) {
2891 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2892 return rc;
2893 }
2894
2895 if (!is_sync_kiocb(iocb)) {
2896 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2897 return -EIOCBQUEUED;
2898 }
2899
2900 rc = wait_for_completion_killable(&ctx->done);
2901 if (rc) {
2902 mutex_lock(&ctx->aio_mutex);
2903 ctx->rc = rc = -EINTR;
2904 total_written = ctx->total_len;
2905 mutex_unlock(&ctx->aio_mutex);
2906 } else {
2907 rc = ctx->rc;
2908 total_written = ctx->total_len;
2909 }
2910
2911 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2912
2913 if (unlikely(!total_written))
2914 return rc;
2915
2916 iocb->ki_pos += total_written;
2917 return total_written;
2918}
2919
2920ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from)
2921{
2922 return __cifs_writev(iocb, from, true);
2923}
2924
2925ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
2926{
2927 return __cifs_writev(iocb, from, false);
2928}
2929
2930static ssize_t
2931cifs_writev(struct kiocb *iocb, struct iov_iter *from)
2932{
2933 struct file *file = iocb->ki_filp;
2934 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2935 struct inode *inode = file->f_mapping->host;
2936 struct cifsInodeInfo *cinode = CIFS_I(inode);
2937 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2938 ssize_t rc;
2939
2940 inode_lock(inode);
2941 /*
2942 * We need to hold the sem to be sure nobody modifies lock list
2943 * with a brlock that prevents writing.
2944 */
2945 down_read(&cinode->lock_sem);
2946
2947 rc = generic_write_checks(iocb, from);
2948 if (rc <= 0)
2949 goto out;
2950
2951 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
2952 server->vals->exclusive_lock_type, 0,
2953 NULL, CIFS_WRITE_OP))
2954 rc = __generic_file_write_iter(iocb, from);
2955 else
2956 rc = -EACCES;
2957out:
2958 up_read(&cinode->lock_sem);
2959 inode_unlock(inode);
2960
2961 if (rc > 0)
2962 rc = generic_write_sync(iocb, rc);
2963 return rc;
2964}
2965
2966ssize_t
2967cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
2968{
2969 struct inode *inode = file_inode(iocb->ki_filp);
2970 struct cifsInodeInfo *cinode = CIFS_I(inode);
2971 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2972 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2973 iocb->ki_filp->private_data;
2974 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2975 ssize_t written;
2976
2977 written = cifs_get_writer(cinode);
2978 if (written)
2979 return written;
2980
2981 if (CIFS_CACHE_WRITE(cinode)) {
2982 if (cap_unix(tcon->ses) &&
2983 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
2984 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
2985 written = generic_file_write_iter(iocb, from);
2986 goto out;
2987 }
2988 written = cifs_writev(iocb, from);
2989 goto out;
2990 }
2991 /*
2992 * For non-oplocked files in strict cache mode we need to write the data
2993 * to the server exactly from the pos to pos+len-1 rather than flush all
2994 * affected pages because it may cause a error with mandatory locks on
2995 * these pages but not on the region from pos to ppos+len-1.
2996 */
2997 written = cifs_user_writev(iocb, from);
2998 if (written > 0 && CIFS_CACHE_READ(cinode)) {
2999 /*
3000 * Windows 7 server can delay breaking level2 oplock if a write
3001 * request comes - break it on the client to prevent reading
3002 * an old data.
3003 */
3004 cifs_zap_mapping(inode);
3005 cifs_dbg(FYI, "Set no oplock for inode=%p after a write operation\n",
3006 inode);
3007 cinode->oplock = 0;
3008 }
3009out:
3010 cifs_put_writer(cinode);
3011 return written;
3012}
3013
3014static struct cifs_readdata *
3015cifs_readdata_direct_alloc(struct page **pages, work_func_t complete)
3016{
3017 struct cifs_readdata *rdata;
3018
3019 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL);
3020 if (rdata != NULL) {
3021 rdata->pages = pages;
3022 kref_init(&rdata->refcount);
3023 INIT_LIST_HEAD(&rdata->list);
3024 init_completion(&rdata->done);
3025 INIT_WORK(&rdata->work, complete);
3026 }
3027
3028 return rdata;
3029}
3030
3031static struct cifs_readdata *
3032cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
3033{
3034 struct page **pages =
3035 kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
3036 struct cifs_readdata *ret = NULL;
3037
3038 if (pages) {
3039 ret = cifs_readdata_direct_alloc(pages, complete);
3040 if (!ret)
3041 kfree(pages);
3042 }
3043
3044 return ret;
3045}
3046
3047void
3048cifs_readdata_release(struct kref *refcount)
3049{
3050 struct cifs_readdata *rdata = container_of(refcount,
3051 struct cifs_readdata, refcount);
3052#ifdef CONFIG_CIFS_SMB_DIRECT
3053 if (rdata->mr) {
3054 smbd_deregister_mr(rdata->mr);
3055 rdata->mr = NULL;
3056 }
3057#endif
3058 if (rdata->cfile)
3059 cifsFileInfo_put(rdata->cfile);
3060
3061 kvfree(rdata->pages);
3062 kfree(rdata);
3063}
3064
3065static int
3066cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
3067{
3068 int rc = 0;
3069 struct page *page;
3070 unsigned int i;
3071
3072 for (i = 0; i < nr_pages; i++) {
3073 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
3074 if (!page) {
3075 rc = -ENOMEM;
3076 break;
3077 }
3078 rdata->pages[i] = page;
3079 }
3080
3081 if (rc) {
3082 for (i = 0; i < nr_pages; i++) {
3083 put_page(rdata->pages[i]);
3084 rdata->pages[i] = NULL;
3085 }
3086 }
3087 return rc;
3088}
3089
3090static void
3091cifs_uncached_readdata_release(struct kref *refcount)
3092{
3093 struct cifs_readdata *rdata = container_of(refcount,
3094 struct cifs_readdata, refcount);
3095 unsigned int i;
3096
3097 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release);
3098 for (i = 0; i < rdata->nr_pages; i++) {
3099 put_page(rdata->pages[i]);
3100 }
3101 cifs_readdata_release(refcount);
3102}
3103
3104/**
3105 * cifs_readdata_to_iov - copy data from pages in response to an iovec
3106 * @rdata: the readdata response with list of pages holding data
3107 * @iter: destination for our data
3108 *
3109 * This function copies data from a list of pages in a readdata response into
3110 * an array of iovecs. It will first calculate where the data should go
3111 * based on the info in the readdata and then copy the data into that spot.
3112 */
3113static int
3114cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
3115{
3116 size_t remaining = rdata->got_bytes;
3117 unsigned int i;
3118
3119 for (i = 0; i < rdata->nr_pages; i++) {
3120 struct page *page = rdata->pages[i];
3121 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
3122 size_t written;
3123
3124 if (unlikely(iov_iter_is_pipe(iter))) {
3125 void *addr = kmap_atomic(page);
3126
3127 written = copy_to_iter(addr, copy, iter);
3128 kunmap_atomic(addr);
3129 } else
3130 written = copy_page_to_iter(page, 0, copy, iter);
3131 remaining -= written;
3132 if (written < copy && iov_iter_count(iter) > 0)
3133 break;
3134 }
3135 return remaining ? -EFAULT : 0;
3136}
3137
3138static void collect_uncached_read_data(struct cifs_aio_ctx *ctx);
3139
3140static void
3141cifs_uncached_readv_complete(struct work_struct *work)
3142{
3143 struct cifs_readdata *rdata = container_of(work,
3144 struct cifs_readdata, work);
3145
3146 complete(&rdata->done);
3147 collect_uncached_read_data(rdata->ctx);
3148 /* the below call can possibly free the last ref to aio ctx */
3149 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3150}
3151
3152static int
3153uncached_fill_pages(struct TCP_Server_Info *server,
3154 struct cifs_readdata *rdata, struct iov_iter *iter,
3155 unsigned int len)
3156{
3157 int result = 0;
3158 unsigned int i;
3159 unsigned int nr_pages = rdata->nr_pages;
3160 unsigned int page_offset = rdata->page_offset;
3161
3162 rdata->got_bytes = 0;
3163 rdata->tailsz = PAGE_SIZE;
3164 for (i = 0; i < nr_pages; i++) {
3165 struct page *page = rdata->pages[i];
3166 size_t n;
3167 unsigned int segment_size = rdata->pagesz;
3168
3169 if (i == 0)
3170 segment_size -= page_offset;
3171 else
3172 page_offset = 0;
3173
3174
3175 if (len <= 0) {
3176 /* no need to hold page hostage */
3177 rdata->pages[i] = NULL;
3178 rdata->nr_pages--;
3179 put_page(page);
3180 continue;
3181 }
3182
3183 n = len;
3184 if (len >= segment_size)
3185 /* enough data to fill the page */
3186 n = segment_size;
3187 else
3188 rdata->tailsz = len;
3189 len -= n;
3190
3191 if (iter)
3192 result = copy_page_from_iter(
3193 page, page_offset, n, iter);
3194#ifdef CONFIG_CIFS_SMB_DIRECT
3195 else if (rdata->mr)
3196 result = n;
3197#endif
3198 else
3199 result = cifs_read_page_from_socket(
3200 server, page, page_offset, n);
3201 if (result < 0)
3202 break;
3203
3204 rdata->got_bytes += result;
3205 }
3206
3207 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3208 rdata->got_bytes : result;
3209}
3210
3211static int
3212cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
3213 struct cifs_readdata *rdata, unsigned int len)
3214{
3215 return uncached_fill_pages(server, rdata, NULL, len);
3216}
3217
3218static int
3219cifs_uncached_copy_into_pages(struct TCP_Server_Info *server,
3220 struct cifs_readdata *rdata,
3221 struct iov_iter *iter)
3222{
3223 return uncached_fill_pages(server, rdata, iter, iter->count);
3224}
3225
3226static int cifs_resend_rdata(struct cifs_readdata *rdata,
3227 struct list_head *rdata_list,
3228 struct cifs_aio_ctx *ctx)
3229{
3230 unsigned int rsize, credits;
3231 int rc;
3232 struct TCP_Server_Info *server =
3233 tlink_tcon(rdata->cfile->tlink)->ses->server;
3234
3235 /*
3236 * Wait for credits to resend this rdata.
3237 * Note: we are attempting to resend the whole rdata not in segments
3238 */
3239 do {
3240 rc = server->ops->wait_mtu_credits(server, rdata->bytes,
3241 &rsize, &credits);
3242
3243 if (rc)
3244 goto out;
3245
3246 if (rsize < rdata->bytes) {
3247 add_credits_and_wake_if(server, credits, 0);
3248 msleep(1000);
3249 }
3250 } while (rsize < rdata->bytes);
3251
3252 rc = -EAGAIN;
3253 while (rc == -EAGAIN) {
3254 rc = 0;
3255 if (rdata->cfile->invalidHandle)
3256 rc = cifs_reopen_file(rdata->cfile, true);
3257 if (!rc)
3258 rc = server->ops->async_readv(rdata);
3259 }
3260
3261 if (!rc) {
3262 /* Add to aio pending list */
3263 list_add_tail(&rdata->list, rdata_list);
3264 return 0;
3265 }
3266
3267 add_credits_and_wake_if(server, rdata->credits, 0);
3268out:
3269 kref_put(&rdata->refcount,
3270 cifs_uncached_readdata_release);
3271
3272 return rc;
3273}
3274
3275static int
3276cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
3277 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list,
3278 struct cifs_aio_ctx *ctx)
3279{
3280 struct cifs_readdata *rdata;
3281 unsigned int npages, rsize, credits;
3282 size_t cur_len;
3283 int rc;
3284 pid_t pid;
3285 struct TCP_Server_Info *server;
3286 struct page **pagevec;
3287 size_t start;
3288 struct iov_iter direct_iov = ctx->iter;
3289
3290 server = tlink_tcon(open_file->tlink)->ses->server;
3291
3292 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3293 pid = open_file->pid;
3294 else
3295 pid = current->tgid;
3296
3297 if (ctx->direct_io)
3298 iov_iter_advance(&direct_iov, offset - ctx->pos);
3299
3300 do {
3301 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3302 &rsize, &credits);
3303 if (rc)
3304 break;
3305
3306 cur_len = min_t(const size_t, len, rsize);
3307
3308 if (ctx->direct_io) {
3309 ssize_t result;
3310
3311 result = iov_iter_get_pages_alloc(
3312 &direct_iov, &pagevec,
3313 cur_len, &start);
3314 if (result < 0) {
3315 cifs_dbg(VFS,
3316 "couldn't get user pages (cur_len=%zd)"
3317 " iter type %d"
3318 " iov_offset %zd count %zd\n",
3319 result, direct_iov.type,
3320 direct_iov.iov_offset,
3321 direct_iov.count);
3322 dump_stack();
3323 break;
3324 }
3325 cur_len = (size_t)result;
3326 iov_iter_advance(&direct_iov, cur_len);
3327
3328 rdata = cifs_readdata_direct_alloc(
3329 pagevec, cifs_uncached_readv_complete);
3330 if (!rdata) {
3331 add_credits_and_wake_if(server, credits, 0);
3332 rc = -ENOMEM;
3333 break;
3334 }
3335
3336 npages = (cur_len + start + PAGE_SIZE-1) / PAGE_SIZE;
3337 rdata->page_offset = start;
3338 rdata->tailsz = npages > 1 ?
3339 cur_len-(PAGE_SIZE-start)-(npages-2)*PAGE_SIZE :
3340 cur_len;
3341
3342 } else {
3343
3344 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
3345 /* allocate a readdata struct */
3346 rdata = cifs_readdata_alloc(npages,
3347 cifs_uncached_readv_complete);
3348 if (!rdata) {
3349 add_credits_and_wake_if(server, credits, 0);
3350 rc = -ENOMEM;
3351 break;
3352 }
3353
3354 rc = cifs_read_allocate_pages(rdata, npages);
3355 if (rc)
3356 goto error;
3357
3358 rdata->tailsz = PAGE_SIZE;
3359 }
3360
3361 rdata->cfile = cifsFileInfo_get(open_file);
3362 rdata->nr_pages = npages;
3363 rdata->offset = offset;
3364 rdata->bytes = cur_len;
3365 rdata->pid = pid;
3366 rdata->pagesz = PAGE_SIZE;
3367 rdata->read_into_pages = cifs_uncached_read_into_pages;
3368 rdata->copy_into_pages = cifs_uncached_copy_into_pages;
3369 rdata->credits = credits;
3370 rdata->ctx = ctx;
3371 kref_get(&ctx->refcount);
3372
3373 if (!rdata->cfile->invalidHandle ||
3374 !(rc = cifs_reopen_file(rdata->cfile, true)))
3375 rc = server->ops->async_readv(rdata);
3376error:
3377 if (rc) {
3378 add_credits_and_wake_if(server, rdata->credits, 0);
3379 kref_put(&rdata->refcount,
3380 cifs_uncached_readdata_release);
3381 if (rc == -EAGAIN) {
3382 iov_iter_revert(&direct_iov, cur_len);
3383 continue;
3384 }
3385 break;
3386 }
3387
3388 list_add_tail(&rdata->list, rdata_list);
3389 offset += cur_len;
3390 len -= cur_len;
3391 } while (len > 0);
3392
3393 return rc;
3394}
3395
3396static void
3397collect_uncached_read_data(struct cifs_aio_ctx *ctx)
3398{
3399 struct cifs_readdata *rdata, *tmp;
3400 struct iov_iter *to = &ctx->iter;
3401 struct cifs_sb_info *cifs_sb;
3402 struct cifs_tcon *tcon;
3403 unsigned int i;
3404 int rc;
3405
3406 tcon = tlink_tcon(ctx->cfile->tlink);
3407 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb);
3408
3409 mutex_lock(&ctx->aio_mutex);
3410
3411 if (list_empty(&ctx->list)) {
3412 mutex_unlock(&ctx->aio_mutex);
3413 return;
3414 }
3415
3416 rc = ctx->rc;
3417 /* the loop below should proceed in the order of increasing offsets */
3418again:
3419 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) {
3420 if (!rc) {
3421 if (!try_wait_for_completion(&rdata->done)) {
3422 mutex_unlock(&ctx->aio_mutex);
3423 return;
3424 }
3425
3426 if (rdata->result == -EAGAIN) {
3427 /* resend call if it's a retryable error */
3428 struct list_head tmp_list;
3429 unsigned int got_bytes = rdata->got_bytes;
3430
3431 list_del_init(&rdata->list);
3432 INIT_LIST_HEAD(&tmp_list);
3433
3434 /*
3435 * Got a part of data and then reconnect has
3436 * happened -- fill the buffer and continue
3437 * reading.
3438 */
3439 if (got_bytes && got_bytes < rdata->bytes) {
3440 rc = 0;
3441 if (!ctx->direct_io)
3442 rc = cifs_readdata_to_iov(rdata, to);
3443 if (rc) {
3444 kref_put(&rdata->refcount,
3445 cifs_uncached_readdata_release);
3446 continue;
3447 }
3448 }
3449
3450 if (ctx->direct_io) {
3451 /*
3452 * Re-use rdata as this is a
3453 * direct I/O
3454 */
3455 rc = cifs_resend_rdata(
3456 rdata,
3457 &tmp_list, ctx);
3458 } else {
3459 rc = cifs_send_async_read(
3460 rdata->offset + got_bytes,
3461 rdata->bytes - got_bytes,
3462 rdata->cfile, cifs_sb,
3463 &tmp_list, ctx);
3464
3465 kref_put(&rdata->refcount,
3466 cifs_uncached_readdata_release);
3467 }
3468
3469 list_splice(&tmp_list, &ctx->list);
3470
3471 goto again;
3472 } else if (rdata->result)
3473 rc = rdata->result;
3474 else if (!ctx->direct_io)
3475 rc = cifs_readdata_to_iov(rdata, to);
3476
3477 /* if there was a short read -- discard anything left */
3478 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3479 rc = -ENODATA;
3480
3481 ctx->total_len += rdata->got_bytes;
3482 }
3483 list_del_init(&rdata->list);
3484 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3485 }
3486
3487 if (!ctx->direct_io) {
3488 for (i = 0; i < ctx->npages; i++) {
3489 if (ctx->should_dirty)
3490 set_page_dirty(ctx->bv[i].bv_page);
3491 put_page(ctx->bv[i].bv_page);
3492 }
3493
3494 ctx->total_len = ctx->len - iov_iter_count(to);
3495 }
3496
3497 cifs_stats_bytes_read(tcon, ctx->total_len);
3498
3499 /* mask nodata case */
3500 if (rc == -ENODATA)
3501 rc = 0;
3502
3503 ctx->rc = (rc == 0) ? ctx->total_len : rc;
3504
3505 mutex_unlock(&ctx->aio_mutex);
3506
3507 if (ctx->iocb && ctx->iocb->ki_complete)
3508 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
3509 else
3510 complete(&ctx->done);
3511}
3512
3513static ssize_t __cifs_readv(
3514 struct kiocb *iocb, struct iov_iter *to, bool direct)
3515{
3516 size_t len;
3517 struct file *file = iocb->ki_filp;
3518 struct cifs_sb_info *cifs_sb;
3519 struct cifsFileInfo *cfile;
3520 struct cifs_tcon *tcon;
3521 ssize_t rc, total_read = 0;
3522 loff_t offset = iocb->ki_pos;
3523 struct cifs_aio_ctx *ctx;
3524
3525 /*
3526 * iov_iter_get_pages_alloc() doesn't work with ITER_KVEC,
3527 * fall back to data copy read path
3528 * this could be improved by getting pages directly in ITER_KVEC
3529 */
3530 if (direct && to->type & ITER_KVEC) {
3531 cifs_dbg(FYI, "use non-direct cifs_user_readv for kvec I/O\n");
3532 direct = false;
3533 }
3534
3535 len = iov_iter_count(to);
3536 if (!len)
3537 return 0;
3538
3539 cifs_sb = CIFS_FILE_SB(file);
3540 cfile = file->private_data;
3541 tcon = tlink_tcon(cfile->tlink);
3542
3543 if (!tcon->ses->server->ops->async_readv)
3544 return -ENOSYS;
3545
3546 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3547 cifs_dbg(FYI, "attempting read on write only file instance\n");
3548
3549 ctx = cifs_aio_ctx_alloc();
3550 if (!ctx)
3551 return -ENOMEM;
3552
3553 ctx->cfile = cifsFileInfo_get(cfile);
3554
3555 if (!is_sync_kiocb(iocb))
3556 ctx->iocb = iocb;
3557
3558 if (iter_is_iovec(to))
3559 ctx->should_dirty = true;
3560
3561 if (direct) {
3562 ctx->pos = offset;
3563 ctx->direct_io = true;
3564 ctx->iter = *to;
3565 ctx->len = len;
3566 } else {
3567 rc = setup_aio_ctx_iter(ctx, to, READ);
3568 if (rc) {
3569 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3570 return rc;
3571 }
3572 len = ctx->len;
3573 }
3574
3575 /* grab a lock here due to read response handlers can access ctx */
3576 mutex_lock(&ctx->aio_mutex);
3577
3578 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx);
3579
3580 /* if at least one read request send succeeded, then reset rc */
3581 if (!list_empty(&ctx->list))
3582 rc = 0;
3583
3584 mutex_unlock(&ctx->aio_mutex);
3585
3586 if (rc) {
3587 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3588 return rc;
3589 }
3590
3591 if (!is_sync_kiocb(iocb)) {
3592 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3593 return -EIOCBQUEUED;
3594 }
3595
3596 rc = wait_for_completion_killable(&ctx->done);
3597 if (rc) {
3598 mutex_lock(&ctx->aio_mutex);
3599 ctx->rc = rc = -EINTR;
3600 total_read = ctx->total_len;
3601 mutex_unlock(&ctx->aio_mutex);
3602 } else {
3603 rc = ctx->rc;
3604 total_read = ctx->total_len;
3605 }
3606
3607 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3608
3609 if (total_read) {
3610 iocb->ki_pos += total_read;
3611 return total_read;
3612 }
3613 return rc;
3614}
3615
3616ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to)
3617{
3618 return __cifs_readv(iocb, to, true);
3619}
3620
3621ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
3622{
3623 return __cifs_readv(iocb, to, false);
3624}
3625
3626ssize_t
3627cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
3628{
3629 struct inode *inode = file_inode(iocb->ki_filp);
3630 struct cifsInodeInfo *cinode = CIFS_I(inode);
3631 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3632 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3633 iocb->ki_filp->private_data;
3634 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3635 int rc = -EACCES;
3636
3637 /*
3638 * In strict cache mode we need to read from the server all the time
3639 * if we don't have level II oplock because the server can delay mtime
3640 * change - so we can't make a decision about inode invalidating.
3641 * And we can also fail with pagereading if there are mandatory locks
3642 * on pages affected by this read but not on the region from pos to
3643 * pos+len-1.
3644 */
3645 if (!CIFS_CACHE_READ(cinode))
3646 return cifs_user_readv(iocb, to);
3647
3648 if (cap_unix(tcon->ses) &&
3649 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
3650 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
3651 return generic_file_read_iter(iocb, to);
3652
3653 /*
3654 * We need to hold the sem to be sure nobody modifies lock list
3655 * with a brlock that prevents reading.
3656 */
3657 down_read(&cinode->lock_sem);
3658 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
3659 tcon->ses->server->vals->shared_lock_type,
3660 0, NULL, CIFS_READ_OP))
3661 rc = generic_file_read_iter(iocb, to);
3662 up_read(&cinode->lock_sem);
3663 return rc;
3664}
3665
3666static ssize_t
3667cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3668{
3669 int rc = -EACCES;
3670 unsigned int bytes_read = 0;
3671 unsigned int total_read;
3672 unsigned int current_read_size;
3673 unsigned int rsize;
3674 struct cifs_sb_info *cifs_sb;
3675 struct cifs_tcon *tcon;
3676 struct TCP_Server_Info *server;
3677 unsigned int xid;
3678 char *cur_offset;
3679 struct cifsFileInfo *open_file;
3680 struct cifs_io_parms io_parms;
3681 int buf_type = CIFS_NO_BUFFER;
3682 __u32 pid;
3683
3684 xid = get_xid();
3685 cifs_sb = CIFS_FILE_SB(file);
3686
3687 /* FIXME: set up handlers for larger reads and/or convert to async */
3688 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3689
3690 if (file->private_data == NULL) {
3691 rc = -EBADF;
3692 free_xid(xid);
3693 return rc;
3694 }
3695 open_file = file->private_data;
3696 tcon = tlink_tcon(open_file->tlink);
3697 server = tcon->ses->server;
3698
3699 if (!server->ops->sync_read) {
3700 free_xid(xid);
3701 return -ENOSYS;
3702 }
3703
3704 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3705 pid = open_file->pid;
3706 else
3707 pid = current->tgid;
3708
3709 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3710 cifs_dbg(FYI, "attempting read on write only file instance\n");
3711
3712 for (total_read = 0, cur_offset = read_data; read_size > total_read;
3713 total_read += bytes_read, cur_offset += bytes_read) {
3714 do {
3715 current_read_size = min_t(uint, read_size - total_read,
3716 rsize);
3717 /*
3718 * For windows me and 9x we do not want to request more
3719 * than it negotiated since it will refuse the read
3720 * then.
3721 */
3722 if ((tcon->ses) && !(tcon->ses->capabilities &
3723 tcon->ses->server->vals->cap_large_files)) {
3724 current_read_size = min_t(uint,
3725 current_read_size, CIFSMaxBufSize);
3726 }
3727 if (open_file->invalidHandle) {
3728 rc = cifs_reopen_file(open_file, true);
3729 if (rc != 0)
3730 break;
3731 }
3732 io_parms.pid = pid;
3733 io_parms.tcon = tcon;
3734 io_parms.offset = *offset;
3735 io_parms.length = current_read_size;
3736 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
3737 &bytes_read, &cur_offset,
3738 &buf_type);
3739 } while (rc == -EAGAIN);
3740
3741 if (rc || (bytes_read == 0)) {
3742 if (total_read) {
3743 break;
3744 } else {
3745 free_xid(xid);
3746 return rc;
3747 }
3748 } else {
3749 cifs_stats_bytes_read(tcon, total_read);
3750 *offset += bytes_read;
3751 }
3752 }
3753 free_xid(xid);
3754 return total_read;
3755}
3756
3757/*
3758 * If the page is mmap'ed into a process' page tables, then we need to make
3759 * sure that it doesn't change while being written back.
3760 */
3761static vm_fault_t
3762cifs_page_mkwrite(struct vm_fault *vmf)
3763{
3764 struct page *page = vmf->page;
3765
3766 lock_page(page);
3767 return VM_FAULT_LOCKED;
3768}
3769
3770static const struct vm_operations_struct cifs_file_vm_ops = {
3771 .fault = filemap_fault,
3772 .map_pages = filemap_map_pages,
3773 .page_mkwrite = cifs_page_mkwrite,
3774};
3775
3776int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3777{
3778 int xid, rc = 0;
3779 struct inode *inode = file_inode(file);
3780
3781 xid = get_xid();
3782
3783 if (!CIFS_CACHE_READ(CIFS_I(inode)))
3784 rc = cifs_zap_mapping(inode);
3785 if (!rc)
3786 rc = generic_file_mmap(file, vma);
3787 if (!rc)
3788 vma->vm_ops = &cifs_file_vm_ops;
3789
3790 free_xid(xid);
3791 return rc;
3792}
3793
3794int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3795{
3796 int rc, xid;
3797
3798 xid = get_xid();
3799
3800 rc = cifs_revalidate_file(file);
3801 if (rc)
3802 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3803 rc);
3804 if (!rc)
3805 rc = generic_file_mmap(file, vma);
3806 if (!rc)
3807 vma->vm_ops = &cifs_file_vm_ops;
3808
3809 free_xid(xid);
3810 return rc;
3811}
3812
3813static void
3814cifs_readv_complete(struct work_struct *work)
3815{
3816 unsigned int i, got_bytes;
3817 struct cifs_readdata *rdata = container_of(work,
3818 struct cifs_readdata, work);
3819
3820 got_bytes = rdata->got_bytes;
3821 for (i = 0; i < rdata->nr_pages; i++) {
3822 struct page *page = rdata->pages[i];
3823
3824 lru_cache_add_file(page);
3825
3826 if (rdata->result == 0 ||
3827 (rdata->result == -EAGAIN && got_bytes)) {
3828 flush_dcache_page(page);
3829 SetPageUptodate(page);
3830 }
3831
3832 unlock_page(page);
3833
3834 if (rdata->result == 0 ||
3835 (rdata->result == -EAGAIN && got_bytes))
3836 cifs_readpage_to_fscache(rdata->mapping->host, page);
3837
3838 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
3839
3840 put_page(page);
3841 rdata->pages[i] = NULL;
3842 }
3843 kref_put(&rdata->refcount, cifs_readdata_release);
3844}
3845
3846static int
3847readpages_fill_pages(struct TCP_Server_Info *server,
3848 struct cifs_readdata *rdata, struct iov_iter *iter,
3849 unsigned int len)
3850{
3851 int result = 0;
3852 unsigned int i;
3853 u64 eof;
3854 pgoff_t eof_index;
3855 unsigned int nr_pages = rdata->nr_pages;
3856 unsigned int page_offset = rdata->page_offset;
3857
3858 /* determine the eof that the server (probably) has */
3859 eof = CIFS_I(rdata->mapping->host)->server_eof;
3860 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
3861 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
3862
3863 rdata->got_bytes = 0;
3864 rdata->tailsz = PAGE_SIZE;
3865 for (i = 0; i < nr_pages; i++) {
3866 struct page *page = rdata->pages[i];
3867 unsigned int to_read = rdata->pagesz;
3868 size_t n;
3869
3870 if (i == 0)
3871 to_read -= page_offset;
3872 else
3873 page_offset = 0;
3874
3875 n = to_read;
3876
3877 if (len >= to_read) {
3878 len -= to_read;
3879 } else if (len > 0) {
3880 /* enough for partial page, fill and zero the rest */
3881 zero_user(page, len + page_offset, to_read - len);
3882 n = rdata->tailsz = len;
3883 len = 0;
3884 } else if (page->index > eof_index) {
3885 /*
3886 * The VFS will not try to do readahead past the
3887 * i_size, but it's possible that we have outstanding
3888 * writes with gaps in the middle and the i_size hasn't
3889 * caught up yet. Populate those with zeroed out pages
3890 * to prevent the VFS from repeatedly attempting to
3891 * fill them until the writes are flushed.
3892 */
3893 zero_user(page, 0, PAGE_SIZE);
3894 lru_cache_add_file(page);
3895 flush_dcache_page(page);
3896 SetPageUptodate(page);
3897 unlock_page(page);
3898 put_page(page);
3899 rdata->pages[i] = NULL;
3900 rdata->nr_pages--;
3901 continue;
3902 } else {
3903 /* no need to hold page hostage */
3904 lru_cache_add_file(page);
3905 unlock_page(page);
3906 put_page(page);
3907 rdata->pages[i] = NULL;
3908 rdata->nr_pages--;
3909 continue;
3910 }
3911
3912 if (iter)
3913 result = copy_page_from_iter(
3914 page, page_offset, n, iter);
3915#ifdef CONFIG_CIFS_SMB_DIRECT
3916 else if (rdata->mr)
3917 result = n;
3918#endif
3919 else
3920 result = cifs_read_page_from_socket(
3921 server, page, page_offset, n);
3922 if (result < 0)
3923 break;
3924
3925 rdata->got_bytes += result;
3926 }
3927
3928 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3929 rdata->got_bytes : result;
3930}
3931
3932static int
3933cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3934 struct cifs_readdata *rdata, unsigned int len)
3935{
3936 return readpages_fill_pages(server, rdata, NULL, len);
3937}
3938
3939static int
3940cifs_readpages_copy_into_pages(struct TCP_Server_Info *server,
3941 struct cifs_readdata *rdata,
3942 struct iov_iter *iter)
3943{
3944 return readpages_fill_pages(server, rdata, iter, iter->count);
3945}
3946
3947static int
3948readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
3949 unsigned int rsize, struct list_head *tmplist,
3950 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
3951{
3952 struct page *page, *tpage;
3953 unsigned int expected_index;
3954 int rc;
3955 gfp_t gfp = readahead_gfp_mask(mapping);
3956
3957 INIT_LIST_HEAD(tmplist);
3958
3959 page = list_entry(page_list->prev, struct page, lru);
3960
3961 /*
3962 * Lock the page and put it in the cache. Since no one else
3963 * should have access to this page, we're safe to simply set
3964 * PG_locked without checking it first.
3965 */
3966 __SetPageLocked(page);
3967 rc = add_to_page_cache_locked(page, mapping,
3968 page->index, gfp);
3969
3970 /* give up if we can't stick it in the cache */
3971 if (rc) {
3972 __ClearPageLocked(page);
3973 return rc;
3974 }
3975
3976 /* move first page to the tmplist */
3977 *offset = (loff_t)page->index << PAGE_SHIFT;
3978 *bytes = PAGE_SIZE;
3979 *nr_pages = 1;
3980 list_move_tail(&page->lru, tmplist);
3981
3982 /* now try and add more pages onto the request */
3983 expected_index = page->index + 1;
3984 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3985 /* discontinuity ? */
3986 if (page->index != expected_index)
3987 break;
3988
3989 /* would this page push the read over the rsize? */
3990 if (*bytes + PAGE_SIZE > rsize)
3991 break;
3992
3993 __SetPageLocked(page);
3994 if (add_to_page_cache_locked(page, mapping, page->index, gfp)) {
3995 __ClearPageLocked(page);
3996 break;
3997 }
3998 list_move_tail(&page->lru, tmplist);
3999 (*bytes) += PAGE_SIZE;
4000 expected_index++;
4001 (*nr_pages)++;
4002 }
4003 return rc;
4004}
4005
4006static int cifs_readpages(struct file *file, struct address_space *mapping,
4007 struct list_head *page_list, unsigned num_pages)
4008{
4009 int rc;
4010 struct list_head tmplist;
4011 struct cifsFileInfo *open_file = file->private_data;
4012 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
4013 struct TCP_Server_Info *server;
4014 pid_t pid;
4015 unsigned int xid;
4016
4017 xid = get_xid();
4018 /*
4019 * Reads as many pages as possible from fscache. Returns -ENOBUFS
4020 * immediately if the cookie is negative
4021 *
4022 * After this point, every page in the list might have PG_fscache set,
4023 * so we will need to clean that up off of every page we don't use.
4024 */
4025 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
4026 &num_pages);
4027 if (rc == 0) {
4028 free_xid(xid);
4029 return rc;
4030 }
4031
4032 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4033 pid = open_file->pid;
4034 else
4035 pid = current->tgid;
4036
4037 rc = 0;
4038 server = tlink_tcon(open_file->tlink)->ses->server;
4039
4040 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
4041 __func__, file, mapping, num_pages);
4042
4043 /*
4044 * Start with the page at end of list and move it to private
4045 * list. Do the same with any following pages until we hit
4046 * the rsize limit, hit an index discontinuity, or run out of
4047 * pages. Issue the async read and then start the loop again
4048 * until the list is empty.
4049 *
4050 * Note that list order is important. The page_list is in
4051 * the order of declining indexes. When we put the pages in
4052 * the rdata->pages, then we want them in increasing order.
4053 */
4054 while (!list_empty(page_list)) {
4055 unsigned int i, nr_pages, bytes, rsize;
4056 loff_t offset;
4057 struct page *page, *tpage;
4058 struct cifs_readdata *rdata;
4059 unsigned credits;
4060
4061 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
4062 &rsize, &credits);
4063 if (rc)
4064 break;
4065
4066 /*
4067 * Give up immediately if rsize is too small to read an entire
4068 * page. The VFS will fall back to readpage. We should never
4069 * reach this point however since we set ra_pages to 0 when the
4070 * rsize is smaller than a cache page.
4071 */
4072 if (unlikely(rsize < PAGE_SIZE)) {
4073 add_credits_and_wake_if(server, credits, 0);
4074 free_xid(xid);
4075 return 0;
4076 }
4077
4078 rc = readpages_get_pages(mapping, page_list, rsize, &tmplist,
4079 &nr_pages, &offset, &bytes);
4080 if (rc) {
4081 add_credits_and_wake_if(server, credits, 0);
4082 break;
4083 }
4084
4085 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
4086 if (!rdata) {
4087 /* best to give up if we're out of mem */
4088 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4089 list_del(&page->lru);
4090 lru_cache_add_file(page);
4091 unlock_page(page);
4092 put_page(page);
4093 }
4094 rc = -ENOMEM;
4095 add_credits_and_wake_if(server, credits, 0);
4096 break;
4097 }
4098
4099 rdata->cfile = cifsFileInfo_get(open_file);
4100 rdata->mapping = mapping;
4101 rdata->offset = offset;
4102 rdata->bytes = bytes;
4103 rdata->pid = pid;
4104 rdata->pagesz = PAGE_SIZE;
4105 rdata->tailsz = PAGE_SIZE;
4106 rdata->read_into_pages = cifs_readpages_read_into_pages;
4107 rdata->copy_into_pages = cifs_readpages_copy_into_pages;
4108 rdata->credits = credits;
4109
4110 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4111 list_del(&page->lru);
4112 rdata->pages[rdata->nr_pages++] = page;
4113 }
4114
4115 if (!rdata->cfile->invalidHandle ||
4116 !(rc = cifs_reopen_file(rdata->cfile, true)))
4117 rc = server->ops->async_readv(rdata);
4118 if (rc) {
4119 add_credits_and_wake_if(server, rdata->credits, 0);
4120 for (i = 0; i < rdata->nr_pages; i++) {
4121 page = rdata->pages[i];
4122 lru_cache_add_file(page);
4123 unlock_page(page);
4124 put_page(page);
4125 }
4126 /* Fallback to the readpage in error/reconnect cases */
4127 kref_put(&rdata->refcount, cifs_readdata_release);
4128 break;
4129 }
4130
4131 kref_put(&rdata->refcount, cifs_readdata_release);
4132 }
4133
4134 /* Any pages that have been shown to fscache but didn't get added to
4135 * the pagecache must be uncached before they get returned to the
4136 * allocator.
4137 */
4138 cifs_fscache_readpages_cancel(mapping->host, page_list);
4139 free_xid(xid);
4140 return rc;
4141}
4142
4143/*
4144 * cifs_readpage_worker must be called with the page pinned
4145 */
4146static int cifs_readpage_worker(struct file *file, struct page *page,
4147 loff_t *poffset)
4148{
4149 char *read_data;
4150 int rc;
4151
4152 /* Is the page cached? */
4153 rc = cifs_readpage_from_fscache(file_inode(file), page);
4154 if (rc == 0)
4155 goto read_complete;
4156
4157 read_data = kmap(page);
4158 /* for reads over a certain size could initiate async read ahead */
4159
4160 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
4161
4162 if (rc < 0)
4163 goto io_error;
4164 else
4165 cifs_dbg(FYI, "Bytes read %d\n", rc);
4166
4167 /* we do not want atime to be less than mtime, it broke some apps */
4168 file_inode(file)->i_atime = current_time(file_inode(file));
4169 if (timespec64_compare(&(file_inode(file)->i_atime), &(file_inode(file)->i_mtime)))
4170 file_inode(file)->i_atime = file_inode(file)->i_mtime;
4171 else
4172 file_inode(file)->i_atime = current_time(file_inode(file));
4173
4174 if (PAGE_SIZE > rc)
4175 memset(read_data + rc, 0, PAGE_SIZE - rc);
4176
4177 flush_dcache_page(page);
4178 SetPageUptodate(page);
4179
4180 /* send this page to the cache */
4181 cifs_readpage_to_fscache(file_inode(file), page);
4182
4183 rc = 0;
4184
4185io_error:
4186 kunmap(page);
4187 unlock_page(page);
4188
4189read_complete:
4190 return rc;
4191}
4192
4193static int cifs_readpage(struct file *file, struct page *page)
4194{
4195 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
4196 int rc = -EACCES;
4197 unsigned int xid;
4198
4199 xid = get_xid();
4200
4201 if (file->private_data == NULL) {
4202 rc = -EBADF;
4203 free_xid(xid);
4204 return rc;
4205 }
4206
4207 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
4208 page, (int)offset, (int)offset);
4209
4210 rc = cifs_readpage_worker(file, page, &offset);
4211
4212 free_xid(xid);
4213 return rc;
4214}
4215
4216static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
4217{
4218 struct cifsFileInfo *open_file;
4219 struct cifs_tcon *tcon =
4220 cifs_sb_master_tcon(CIFS_SB(cifs_inode->vfs_inode.i_sb));
4221
4222 spin_lock(&tcon->open_file_lock);
4223 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
4224 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
4225 spin_unlock(&tcon->open_file_lock);
4226 return 1;
4227 }
4228 }
4229 spin_unlock(&tcon->open_file_lock);
4230 return 0;
4231}
4232
4233/* We do not want to update the file size from server for inodes
4234 open for write - to avoid races with writepage extending
4235 the file - in the future we could consider allowing
4236 refreshing the inode only on increases in the file size
4237 but this is tricky to do without racing with writebehind
4238 page caching in the current Linux kernel design */
4239bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
4240{
4241 if (!cifsInode)
4242 return true;
4243
4244 if (is_inode_writable(cifsInode)) {
4245 /* This inode is open for write at least once */
4246 struct cifs_sb_info *cifs_sb;
4247
4248 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
4249 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
4250 /* since no page cache to corrupt on directio
4251 we can change size safely */
4252 return true;
4253 }
4254
4255 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
4256 return true;
4257
4258 return false;
4259 } else
4260 return true;
4261}
4262
4263static int cifs_write_begin(struct file *file, struct address_space *mapping,
4264 loff_t pos, unsigned len, unsigned flags,
4265 struct page **pagep, void **fsdata)
4266{
4267 int oncethru = 0;
4268 pgoff_t index = pos >> PAGE_SHIFT;
4269 loff_t offset = pos & (PAGE_SIZE - 1);
4270 loff_t page_start = pos & PAGE_MASK;
4271 loff_t i_size;
4272 struct page *page;
4273 int rc = 0;
4274
4275 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
4276
4277start:
4278 page = grab_cache_page_write_begin(mapping, index, flags);
4279 if (!page) {
4280 rc = -ENOMEM;
4281 goto out;
4282 }
4283
4284 if (PageUptodate(page))
4285 goto out;
4286
4287 /*
4288 * If we write a full page it will be up to date, no need to read from
4289 * the server. If the write is short, we'll end up doing a sync write
4290 * instead.
4291 */
4292 if (len == PAGE_SIZE)
4293 goto out;
4294
4295 /*
4296 * optimize away the read when we have an oplock, and we're not
4297 * expecting to use any of the data we'd be reading in. That
4298 * is, when the page lies beyond the EOF, or straddles the EOF
4299 * and the write will cover all of the existing data.
4300 */
4301 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
4302 i_size = i_size_read(mapping->host);
4303 if (page_start >= i_size ||
4304 (offset == 0 && (pos + len) >= i_size)) {
4305 zero_user_segments(page, 0, offset,
4306 offset + len,
4307 PAGE_SIZE);
4308 /*
4309 * PageChecked means that the parts of the page
4310 * to which we're not writing are considered up
4311 * to date. Once the data is copied to the
4312 * page, it can be set uptodate.
4313 */
4314 SetPageChecked(page);
4315 goto out;
4316 }
4317 }
4318
4319 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
4320 /*
4321 * might as well read a page, it is fast enough. If we get
4322 * an error, we don't need to return it. cifs_write_end will
4323 * do a sync write instead since PG_uptodate isn't set.
4324 */
4325 cifs_readpage_worker(file, page, &page_start);
4326 put_page(page);
4327 oncethru = 1;
4328 goto start;
4329 } else {
4330 /* we could try using another file handle if there is one -
4331 but how would we lock it to prevent close of that handle
4332 racing with this read? In any case
4333 this will be written out by write_end so is fine */
4334 }
4335out:
4336 *pagep = page;
4337 return rc;
4338}
4339
4340static int cifs_release_page(struct page *page, gfp_t gfp)
4341{
4342 if (PagePrivate(page))
4343 return 0;
4344
4345 return cifs_fscache_release_page(page, gfp);
4346}
4347
4348static void cifs_invalidate_page(struct page *page, unsigned int offset,
4349 unsigned int length)
4350{
4351 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
4352
4353 if (offset == 0 && length == PAGE_SIZE)
4354 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
4355}
4356
4357static int cifs_launder_page(struct page *page)
4358{
4359 int rc = 0;
4360 loff_t range_start = page_offset(page);
4361 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
4362 struct writeback_control wbc = {
4363 .sync_mode = WB_SYNC_ALL,
4364 .nr_to_write = 0,
4365 .range_start = range_start,
4366 .range_end = range_end,
4367 };
4368
4369 cifs_dbg(FYI, "Launder page: %p\n", page);
4370
4371 if (clear_page_dirty_for_io(page))
4372 rc = cifs_writepage_locked(page, &wbc);
4373
4374 cifs_fscache_invalidate_page(page, page->mapping->host);
4375 return rc;
4376}
4377
4378void cifs_oplock_break(struct work_struct *work)
4379{
4380 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
4381 oplock_break);
4382 struct inode *inode = d_inode(cfile->dentry);
4383 struct cifsInodeInfo *cinode = CIFS_I(inode);
4384 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4385 struct TCP_Server_Info *server = tcon->ses->server;
4386 int rc = 0;
4387
4388 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
4389 TASK_UNINTERRUPTIBLE);
4390
4391 server->ops->downgrade_oplock(server, cinode,
4392 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
4393
4394 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
4395 cifs_has_mand_locks(cinode)) {
4396 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
4397 inode);
4398 cinode->oplock = 0;
4399 }
4400
4401 if (inode && S_ISREG(inode->i_mode)) {
4402 if (CIFS_CACHE_READ(cinode))
4403 break_lease(inode, O_RDONLY);
4404 else
4405 break_lease(inode, O_WRONLY);
4406 rc = filemap_fdatawrite(inode->i_mapping);
4407 if (!CIFS_CACHE_READ(cinode)) {
4408 rc = filemap_fdatawait(inode->i_mapping);
4409 mapping_set_error(inode->i_mapping, rc);
4410 cifs_zap_mapping(inode);
4411 }
4412 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
4413 }
4414
4415 rc = cifs_push_locks(cfile);
4416 if (rc)
4417 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
4418
4419 /*
4420 * releasing stale oplock after recent reconnect of smb session using
4421 * a now incorrect file handle is not a data integrity issue but do
4422 * not bother sending an oplock release if session to server still is
4423 * disconnected since oplock already released by the server
4424 */
4425 if (!cfile->oplock_break_cancelled) {
4426 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
4427 cinode);
4428 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
4429 }
4430 cifs_done_oplock_break(cinode);
4431}
4432
4433/*
4434 * The presence of cifs_direct_io() in the address space ops vector
4435 * allowes open() O_DIRECT flags which would have failed otherwise.
4436 *
4437 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
4438 * so this method should never be called.
4439 *
4440 * Direct IO is not yet supported in the cached mode.
4441 */
4442static ssize_t
4443cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
4444{
4445 /*
4446 * FIXME
4447 * Eventually need to support direct IO for non forcedirectio mounts
4448 */
4449 return -EINVAL;
4450}
4451
4452
4453const struct address_space_operations cifs_addr_ops = {
4454 .readpage = cifs_readpage,
4455 .readpages = cifs_readpages,
4456 .writepage = cifs_writepage,
4457 .writepages = cifs_writepages,
4458 .write_begin = cifs_write_begin,
4459 .write_end = cifs_write_end,
4460 .set_page_dirty = __set_page_dirty_nobuffers,
4461 .releasepage = cifs_release_page,
4462 .direct_IO = cifs_direct_io,
4463 .invalidatepage = cifs_invalidate_page,
4464 .launder_page = cifs_launder_page,
4465};
4466
4467/*
4468 * cifs_readpages requires the server to support a buffer large enough to
4469 * contain the header plus one complete page of data. Otherwise, we need
4470 * to leave cifs_readpages out of the address space operations.
4471 */
4472const struct address_space_operations cifs_addr_ops_smallbuf = {
4473 .readpage = cifs_readpage,
4474 .writepage = cifs_writepage,
4475 .writepages = cifs_writepages,
4476 .write_begin = cifs_write_begin,
4477 .write_end = cifs_write_end,
4478 .set_page_dirty = __set_page_dirty_nobuffers,
4479 .releasepage = cifs_release_page,
4480 .invalidatepage = cifs_invalidate_page,
4481 .launder_page = cifs_launder_page,
4482};