Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/blkdev.h>
16#include <linux/blk-mq.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/hdreg.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/list_sort.h>
23#include <linux/slab.h>
24#include <linux/types.h>
25#include <linux/pr.h>
26#include <linux/ptrace.h>
27#include <linux/nvme_ioctl.h>
28#include <linux/t10-pi.h>
29#include <linux/pm_qos.h>
30#include <asm/unaligned.h>
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35#include "nvme.h"
36#include "fabrics.h"
37
38#define NVME_MINORS (1U << MINORBITS)
39
40unsigned int admin_timeout = 60;
41module_param(admin_timeout, uint, 0644);
42MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43EXPORT_SYMBOL_GPL(admin_timeout);
44
45unsigned int nvme_io_timeout = 30;
46module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48EXPORT_SYMBOL_GPL(nvme_io_timeout);
49
50static unsigned char shutdown_timeout = 5;
51module_param(shutdown_timeout, byte, 0644);
52MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53
54static u8 nvme_max_retries = 5;
55module_param_named(max_retries, nvme_max_retries, byte, 0644);
56MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57
58static unsigned long default_ps_max_latency_us = 100000;
59module_param(default_ps_max_latency_us, ulong, 0644);
60MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
62
63static bool force_apst;
64module_param(force_apst, bool, 0644);
65MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67static bool streams;
68module_param(streams, bool, 0644);
69MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71/*
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
75 *
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
81 */
82struct workqueue_struct *nvme_wq;
83EXPORT_SYMBOL_GPL(nvme_wq);
84
85struct workqueue_struct *nvme_reset_wq;
86EXPORT_SYMBOL_GPL(nvme_reset_wq);
87
88struct workqueue_struct *nvme_delete_wq;
89EXPORT_SYMBOL_GPL(nvme_delete_wq);
90
91static DEFINE_IDA(nvme_subsystems_ida);
92static LIST_HEAD(nvme_subsystems);
93static DEFINE_MUTEX(nvme_subsystems_lock);
94
95static DEFINE_IDA(nvme_instance_ida);
96static dev_t nvme_chr_devt;
97static struct class *nvme_class;
98static struct class *nvme_subsys_class;
99
100static void nvme_ns_remove(struct nvme_ns *ns);
101static int nvme_revalidate_disk(struct gendisk *disk);
102static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 unsigned nsid);
105
106static void nvme_set_queue_dying(struct nvme_ns *ns)
107{
108 /*
109 * Revalidating a dead namespace sets capacity to 0. This will end
110 * buffered writers dirtying pages that can't be synced.
111 */
112 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 return;
114 revalidate_disk(ns->disk);
115 blk_set_queue_dying(ns->queue);
116 /* Forcibly unquiesce queues to avoid blocking dispatch */
117 blk_mq_unquiesce_queue(ns->queue);
118}
119
120static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121{
122 /*
123 * Only new queue scan work when admin and IO queues are both alive
124 */
125 if (ctrl->state == NVME_CTRL_LIVE)
126 queue_work(nvme_wq, &ctrl->scan_work);
127}
128
129int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130{
131 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
136}
137EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138
139int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140{
141 int ret;
142
143 ret = nvme_reset_ctrl(ctrl);
144 if (!ret) {
145 flush_work(&ctrl->reset_work);
146 if (ctrl->state != NVME_CTRL_LIVE &&
147 ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 ret = -ENETRESET;
149 }
150
151 return ret;
152}
153EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154
155static void nvme_delete_ctrl_work(struct work_struct *work)
156{
157 struct nvme_ctrl *ctrl =
158 container_of(work, struct nvme_ctrl, delete_work);
159
160 dev_info(ctrl->device,
161 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162
163 flush_work(&ctrl->reset_work);
164 nvme_stop_ctrl(ctrl);
165 nvme_remove_namespaces(ctrl);
166 ctrl->ops->delete_ctrl(ctrl);
167 nvme_uninit_ctrl(ctrl);
168 nvme_put_ctrl(ctrl);
169}
170
171int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172{
173 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 return -EBUSY;
175 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 return -EBUSY;
177 return 0;
178}
179EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180
181int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182{
183 int ret = 0;
184
185 /*
186 * Keep a reference until the work is flushed since ->delete_ctrl
187 * can free the controller.
188 */
189 nvme_get_ctrl(ctrl);
190 ret = nvme_delete_ctrl(ctrl);
191 if (!ret)
192 flush_work(&ctrl->delete_work);
193 nvme_put_ctrl(ctrl);
194 return ret;
195}
196EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197
198static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199{
200 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201}
202
203static blk_status_t nvme_error_status(struct request *req)
204{
205 switch (nvme_req(req)->status & 0x7ff) {
206 case NVME_SC_SUCCESS:
207 return BLK_STS_OK;
208 case NVME_SC_CAP_EXCEEDED:
209 return BLK_STS_NOSPC;
210 case NVME_SC_LBA_RANGE:
211 return BLK_STS_TARGET;
212 case NVME_SC_BAD_ATTRIBUTES:
213 case NVME_SC_ONCS_NOT_SUPPORTED:
214 case NVME_SC_INVALID_OPCODE:
215 case NVME_SC_INVALID_FIELD:
216 case NVME_SC_INVALID_NS:
217 return BLK_STS_NOTSUPP;
218 case NVME_SC_WRITE_FAULT:
219 case NVME_SC_READ_ERROR:
220 case NVME_SC_UNWRITTEN_BLOCK:
221 case NVME_SC_ACCESS_DENIED:
222 case NVME_SC_READ_ONLY:
223 case NVME_SC_COMPARE_FAILED:
224 return BLK_STS_MEDIUM;
225 case NVME_SC_GUARD_CHECK:
226 case NVME_SC_APPTAG_CHECK:
227 case NVME_SC_REFTAG_CHECK:
228 case NVME_SC_INVALID_PI:
229 return BLK_STS_PROTECTION;
230 case NVME_SC_RESERVATION_CONFLICT:
231 return BLK_STS_NEXUS;
232 default:
233 return BLK_STS_IOERR;
234 }
235}
236
237static inline bool nvme_req_needs_retry(struct request *req)
238{
239 if (blk_noretry_request(req))
240 return false;
241 if (nvme_req(req)->status & NVME_SC_DNR)
242 return false;
243 if (nvme_req(req)->retries >= nvme_max_retries)
244 return false;
245 return true;
246}
247
248void nvme_complete_rq(struct request *req)
249{
250 blk_status_t status = nvme_error_status(req);
251
252 trace_nvme_complete_rq(req);
253
254 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 if ((req->cmd_flags & REQ_NVME_MPATH) &&
256 blk_path_error(status)) {
257 nvme_failover_req(req);
258 return;
259 }
260
261 if (!blk_queue_dying(req->q)) {
262 nvme_req(req)->retries++;
263 blk_mq_requeue_request(req, true);
264 return;
265 }
266 }
267 blk_mq_end_request(req, status);
268}
269EXPORT_SYMBOL_GPL(nvme_complete_rq);
270
271void nvme_cancel_request(struct request *req, void *data, bool reserved)
272{
273 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
274 "Cancelling I/O %d", req->tag);
275
276 nvme_req(req)->status = NVME_SC_ABORT_REQ;
277 blk_mq_complete_request(req);
278
279}
280EXPORT_SYMBOL_GPL(nvme_cancel_request);
281
282bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
283 enum nvme_ctrl_state new_state)
284{
285 enum nvme_ctrl_state old_state;
286 unsigned long flags;
287 bool changed = false;
288
289 spin_lock_irqsave(&ctrl->lock, flags);
290
291 old_state = ctrl->state;
292 switch (new_state) {
293 case NVME_CTRL_ADMIN_ONLY:
294 switch (old_state) {
295 case NVME_CTRL_CONNECTING:
296 changed = true;
297 /* FALLTHRU */
298 default:
299 break;
300 }
301 break;
302 case NVME_CTRL_LIVE:
303 switch (old_state) {
304 case NVME_CTRL_NEW:
305 case NVME_CTRL_RESETTING:
306 case NVME_CTRL_CONNECTING:
307 changed = true;
308 /* FALLTHRU */
309 default:
310 break;
311 }
312 break;
313 case NVME_CTRL_RESETTING:
314 switch (old_state) {
315 case NVME_CTRL_NEW:
316 case NVME_CTRL_LIVE:
317 case NVME_CTRL_ADMIN_ONLY:
318 changed = true;
319 /* FALLTHRU */
320 default:
321 break;
322 }
323 break;
324 case NVME_CTRL_CONNECTING:
325 switch (old_state) {
326 case NVME_CTRL_NEW:
327 case NVME_CTRL_RESETTING:
328 changed = true;
329 /* FALLTHRU */
330 default:
331 break;
332 }
333 break;
334 case NVME_CTRL_DELETING:
335 switch (old_state) {
336 case NVME_CTRL_LIVE:
337 case NVME_CTRL_ADMIN_ONLY:
338 case NVME_CTRL_RESETTING:
339 case NVME_CTRL_CONNECTING:
340 changed = true;
341 /* FALLTHRU */
342 default:
343 break;
344 }
345 break;
346 case NVME_CTRL_DEAD:
347 switch (old_state) {
348 case NVME_CTRL_DELETING:
349 changed = true;
350 /* FALLTHRU */
351 default:
352 break;
353 }
354 break;
355 default:
356 break;
357 }
358
359 if (changed)
360 ctrl->state = new_state;
361
362 spin_unlock_irqrestore(&ctrl->lock, flags);
363 if (changed && ctrl->state == NVME_CTRL_LIVE)
364 nvme_kick_requeue_lists(ctrl);
365 return changed;
366}
367EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
368
369static void nvme_free_ns_head(struct kref *ref)
370{
371 struct nvme_ns_head *head =
372 container_of(ref, struct nvme_ns_head, ref);
373
374 nvme_mpath_remove_disk(head);
375 ida_simple_remove(&head->subsys->ns_ida, head->instance);
376 list_del_init(&head->entry);
377 cleanup_srcu_struct_quiesced(&head->srcu);
378 nvme_put_subsystem(head->subsys);
379 kfree(head);
380}
381
382static void nvme_put_ns_head(struct nvme_ns_head *head)
383{
384 kref_put(&head->ref, nvme_free_ns_head);
385}
386
387static void nvme_free_ns(struct kref *kref)
388{
389 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
390
391 if (ns->ndev)
392 nvme_nvm_unregister(ns);
393
394 put_disk(ns->disk);
395 nvme_put_ns_head(ns->head);
396 nvme_put_ctrl(ns->ctrl);
397 kfree(ns);
398}
399
400static void nvme_put_ns(struct nvme_ns *ns)
401{
402 kref_put(&ns->kref, nvme_free_ns);
403}
404
405static inline void nvme_clear_nvme_request(struct request *req)
406{
407 if (!(req->rq_flags & RQF_DONTPREP)) {
408 nvme_req(req)->retries = 0;
409 nvme_req(req)->flags = 0;
410 req->rq_flags |= RQF_DONTPREP;
411 }
412}
413
414struct request *nvme_alloc_request(struct request_queue *q,
415 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
416{
417 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
418 struct request *req;
419
420 if (qid == NVME_QID_ANY) {
421 req = blk_mq_alloc_request(q, op, flags);
422 } else {
423 req = blk_mq_alloc_request_hctx(q, op, flags,
424 qid ? qid - 1 : 0);
425 }
426 if (IS_ERR(req))
427 return req;
428
429 req->cmd_flags |= REQ_FAILFAST_DRIVER;
430 nvme_clear_nvme_request(req);
431 nvme_req(req)->cmd = cmd;
432
433 return req;
434}
435EXPORT_SYMBOL_GPL(nvme_alloc_request);
436
437static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
438{
439 struct nvme_command c;
440
441 memset(&c, 0, sizeof(c));
442
443 c.directive.opcode = nvme_admin_directive_send;
444 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
445 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
446 c.directive.dtype = NVME_DIR_IDENTIFY;
447 c.directive.tdtype = NVME_DIR_STREAMS;
448 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
449
450 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
451}
452
453static int nvme_disable_streams(struct nvme_ctrl *ctrl)
454{
455 return nvme_toggle_streams(ctrl, false);
456}
457
458static int nvme_enable_streams(struct nvme_ctrl *ctrl)
459{
460 return nvme_toggle_streams(ctrl, true);
461}
462
463static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
464 struct streams_directive_params *s, u32 nsid)
465{
466 struct nvme_command c;
467
468 memset(&c, 0, sizeof(c));
469 memset(s, 0, sizeof(*s));
470
471 c.directive.opcode = nvme_admin_directive_recv;
472 c.directive.nsid = cpu_to_le32(nsid);
473 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
474 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
475 c.directive.dtype = NVME_DIR_STREAMS;
476
477 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
478}
479
480static int nvme_configure_directives(struct nvme_ctrl *ctrl)
481{
482 struct streams_directive_params s;
483 int ret;
484
485 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
486 return 0;
487 if (!streams)
488 return 0;
489
490 ret = nvme_enable_streams(ctrl);
491 if (ret)
492 return ret;
493
494 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
495 if (ret)
496 return ret;
497
498 ctrl->nssa = le16_to_cpu(s.nssa);
499 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
500 dev_info(ctrl->device, "too few streams (%u) available\n",
501 ctrl->nssa);
502 nvme_disable_streams(ctrl);
503 return 0;
504 }
505
506 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
507 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
508 return 0;
509}
510
511/*
512 * Check if 'req' has a write hint associated with it. If it does, assign
513 * a valid namespace stream to the write.
514 */
515static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
516 struct request *req, u16 *control,
517 u32 *dsmgmt)
518{
519 enum rw_hint streamid = req->write_hint;
520
521 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
522 streamid = 0;
523 else {
524 streamid--;
525 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
526 return;
527
528 *control |= NVME_RW_DTYPE_STREAMS;
529 *dsmgmt |= streamid << 16;
530 }
531
532 if (streamid < ARRAY_SIZE(req->q->write_hints))
533 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
534}
535
536static inline void nvme_setup_flush(struct nvme_ns *ns,
537 struct nvme_command *cmnd)
538{
539 memset(cmnd, 0, sizeof(*cmnd));
540 cmnd->common.opcode = nvme_cmd_flush;
541 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
542}
543
544static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
545 struct nvme_command *cmnd)
546{
547 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
548 struct nvme_dsm_range *range;
549 struct bio *bio;
550
551 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
552 if (!range)
553 return BLK_STS_RESOURCE;
554
555 __rq_for_each_bio(bio, req) {
556 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
557 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
558
559 if (n < segments) {
560 range[n].cattr = cpu_to_le32(0);
561 range[n].nlb = cpu_to_le32(nlb);
562 range[n].slba = cpu_to_le64(slba);
563 }
564 n++;
565 }
566
567 if (WARN_ON_ONCE(n != segments)) {
568 kfree(range);
569 return BLK_STS_IOERR;
570 }
571
572 memset(cmnd, 0, sizeof(*cmnd));
573 cmnd->dsm.opcode = nvme_cmd_dsm;
574 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
575 cmnd->dsm.nr = cpu_to_le32(segments - 1);
576 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
577
578 req->special_vec.bv_page = virt_to_page(range);
579 req->special_vec.bv_offset = offset_in_page(range);
580 req->special_vec.bv_len = sizeof(*range) * segments;
581 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
582
583 return BLK_STS_OK;
584}
585
586static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
587 struct request *req, struct nvme_command *cmnd)
588{
589 struct nvme_ctrl *ctrl = ns->ctrl;
590 u16 control = 0;
591 u32 dsmgmt = 0;
592
593 if (req->cmd_flags & REQ_FUA)
594 control |= NVME_RW_FUA;
595 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
596 control |= NVME_RW_LR;
597
598 if (req->cmd_flags & REQ_RAHEAD)
599 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
600
601 memset(cmnd, 0, sizeof(*cmnd));
602 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
603 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
604 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606
607 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
608 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
609
610 if (ns->ms) {
611 /*
612 * If formated with metadata, the block layer always provides a
613 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
614 * we enable the PRACT bit for protection information or set the
615 * namespace capacity to zero to prevent any I/O.
616 */
617 if (!blk_integrity_rq(req)) {
618 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
619 return BLK_STS_NOTSUPP;
620 control |= NVME_RW_PRINFO_PRACT;
621 } else if (req_op(req) == REQ_OP_WRITE) {
622 t10_pi_prepare(req, ns->pi_type);
623 }
624
625 switch (ns->pi_type) {
626 case NVME_NS_DPS_PI_TYPE3:
627 control |= NVME_RW_PRINFO_PRCHK_GUARD;
628 break;
629 case NVME_NS_DPS_PI_TYPE1:
630 case NVME_NS_DPS_PI_TYPE2:
631 control |= NVME_RW_PRINFO_PRCHK_GUARD |
632 NVME_RW_PRINFO_PRCHK_REF;
633 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
634 break;
635 }
636 }
637
638 cmnd->rw.control = cpu_to_le16(control);
639 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
640 return 0;
641}
642
643void nvme_cleanup_cmd(struct request *req)
644{
645 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
646 nvme_req(req)->status == 0) {
647 struct nvme_ns *ns = req->rq_disk->private_data;
648
649 t10_pi_complete(req, ns->pi_type,
650 blk_rq_bytes(req) >> ns->lba_shift);
651 }
652 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
653 kfree(page_address(req->special_vec.bv_page) +
654 req->special_vec.bv_offset);
655 }
656}
657EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
658
659blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
660 struct nvme_command *cmd)
661{
662 blk_status_t ret = BLK_STS_OK;
663
664 nvme_clear_nvme_request(req);
665
666 switch (req_op(req)) {
667 case REQ_OP_DRV_IN:
668 case REQ_OP_DRV_OUT:
669 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
670 break;
671 case REQ_OP_FLUSH:
672 nvme_setup_flush(ns, cmd);
673 break;
674 case REQ_OP_WRITE_ZEROES:
675 /* currently only aliased to deallocate for a few ctrls: */
676 case REQ_OP_DISCARD:
677 ret = nvme_setup_discard(ns, req, cmd);
678 break;
679 case REQ_OP_READ:
680 case REQ_OP_WRITE:
681 ret = nvme_setup_rw(ns, req, cmd);
682 break;
683 default:
684 WARN_ON_ONCE(1);
685 return BLK_STS_IOERR;
686 }
687
688 cmd->common.command_id = req->tag;
689 trace_nvme_setup_cmd(req, cmd);
690 return ret;
691}
692EXPORT_SYMBOL_GPL(nvme_setup_cmd);
693
694/*
695 * Returns 0 on success. If the result is negative, it's a Linux error code;
696 * if the result is positive, it's an NVM Express status code
697 */
698int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 union nvme_result *result, void *buffer, unsigned bufflen,
700 unsigned timeout, int qid, int at_head,
701 blk_mq_req_flags_t flags)
702{
703 struct request *req;
704 int ret;
705
706 req = nvme_alloc_request(q, cmd, flags, qid);
707 if (IS_ERR(req))
708 return PTR_ERR(req);
709
710 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
711
712 if (buffer && bufflen) {
713 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
714 if (ret)
715 goto out;
716 }
717
718 blk_execute_rq(req->q, NULL, req, at_head);
719 if (result)
720 *result = nvme_req(req)->result;
721 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
722 ret = -EINTR;
723 else
724 ret = nvme_req(req)->status;
725 out:
726 blk_mq_free_request(req);
727 return ret;
728}
729EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
730
731int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
732 void *buffer, unsigned bufflen)
733{
734 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
735 NVME_QID_ANY, 0, 0);
736}
737EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
738
739static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
740 unsigned len, u32 seed, bool write)
741{
742 struct bio_integrity_payload *bip;
743 int ret = -ENOMEM;
744 void *buf;
745
746 buf = kmalloc(len, GFP_KERNEL);
747 if (!buf)
748 goto out;
749
750 ret = -EFAULT;
751 if (write && copy_from_user(buf, ubuf, len))
752 goto out_free_meta;
753
754 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
755 if (IS_ERR(bip)) {
756 ret = PTR_ERR(bip);
757 goto out_free_meta;
758 }
759
760 bip->bip_iter.bi_size = len;
761 bip->bip_iter.bi_sector = seed;
762 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
763 offset_in_page(buf));
764 if (ret == len)
765 return buf;
766 ret = -ENOMEM;
767out_free_meta:
768 kfree(buf);
769out:
770 return ERR_PTR(ret);
771}
772
773static int nvme_submit_user_cmd(struct request_queue *q,
774 struct nvme_command *cmd, void __user *ubuffer,
775 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
776 u32 meta_seed, u32 *result, unsigned timeout)
777{
778 bool write = nvme_is_write(cmd);
779 struct nvme_ns *ns = q->queuedata;
780 struct gendisk *disk = ns ? ns->disk : NULL;
781 struct request *req;
782 struct bio *bio = NULL;
783 void *meta = NULL;
784 int ret;
785
786 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
787 if (IS_ERR(req))
788 return PTR_ERR(req);
789
790 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 nvme_req(req)->flags |= NVME_REQ_USERCMD;
792
793 if (ubuffer && bufflen) {
794 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
795 GFP_KERNEL);
796 if (ret)
797 goto out;
798 bio = req->bio;
799 bio->bi_disk = disk;
800 if (disk && meta_buffer && meta_len) {
801 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
802 meta_seed, write);
803 if (IS_ERR(meta)) {
804 ret = PTR_ERR(meta);
805 goto out_unmap;
806 }
807 req->cmd_flags |= REQ_INTEGRITY;
808 }
809 }
810
811 blk_execute_rq(req->q, disk, req, 0);
812 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
813 ret = -EINTR;
814 else
815 ret = nvme_req(req)->status;
816 if (result)
817 *result = le32_to_cpu(nvme_req(req)->result.u32);
818 if (meta && !ret && !write) {
819 if (copy_to_user(meta_buffer, meta, meta_len))
820 ret = -EFAULT;
821 }
822 kfree(meta);
823 out_unmap:
824 if (bio)
825 blk_rq_unmap_user(bio);
826 out:
827 blk_mq_free_request(req);
828 return ret;
829}
830
831static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
832{
833 struct nvme_ctrl *ctrl = rq->end_io_data;
834 unsigned long flags;
835 bool startka = false;
836
837 blk_mq_free_request(rq);
838
839 if (status) {
840 dev_err(ctrl->device,
841 "failed nvme_keep_alive_end_io error=%d\n",
842 status);
843 return;
844 }
845
846 spin_lock_irqsave(&ctrl->lock, flags);
847 if (ctrl->state == NVME_CTRL_LIVE ||
848 ctrl->state == NVME_CTRL_CONNECTING)
849 startka = true;
850 spin_unlock_irqrestore(&ctrl->lock, flags);
851 if (startka)
852 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
853}
854
855static int nvme_keep_alive(struct nvme_ctrl *ctrl)
856{
857 struct request *rq;
858
859 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
860 NVME_QID_ANY);
861 if (IS_ERR(rq))
862 return PTR_ERR(rq);
863
864 rq->timeout = ctrl->kato * HZ;
865 rq->end_io_data = ctrl;
866
867 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
868
869 return 0;
870}
871
872static void nvme_keep_alive_work(struct work_struct *work)
873{
874 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
875 struct nvme_ctrl, ka_work);
876
877 if (nvme_keep_alive(ctrl)) {
878 /* allocation failure, reset the controller */
879 dev_err(ctrl->device, "keep-alive failed\n");
880 nvme_reset_ctrl(ctrl);
881 return;
882 }
883}
884
885static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
886{
887 if (unlikely(ctrl->kato == 0))
888 return;
889
890 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
891}
892
893void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
894{
895 if (unlikely(ctrl->kato == 0))
896 return;
897
898 cancel_delayed_work_sync(&ctrl->ka_work);
899}
900EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
901
902static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
903{
904 struct nvme_command c = { };
905 int error;
906
907 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
908 c.identify.opcode = nvme_admin_identify;
909 c.identify.cns = NVME_ID_CNS_CTRL;
910
911 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
912 if (!*id)
913 return -ENOMEM;
914
915 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
916 sizeof(struct nvme_id_ctrl));
917 if (error)
918 kfree(*id);
919 return error;
920}
921
922static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
923 struct nvme_ns_ids *ids)
924{
925 struct nvme_command c = { };
926 int status;
927 void *data;
928 int pos;
929 int len;
930
931 c.identify.opcode = nvme_admin_identify;
932 c.identify.nsid = cpu_to_le32(nsid);
933 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
934
935 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
936 if (!data)
937 return -ENOMEM;
938
939 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
940 NVME_IDENTIFY_DATA_SIZE);
941 if (status)
942 goto free_data;
943
944 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
945 struct nvme_ns_id_desc *cur = data + pos;
946
947 if (cur->nidl == 0)
948 break;
949
950 switch (cur->nidt) {
951 case NVME_NIDT_EUI64:
952 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
953 dev_warn(ctrl->device,
954 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
955 cur->nidl);
956 goto free_data;
957 }
958 len = NVME_NIDT_EUI64_LEN;
959 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
960 break;
961 case NVME_NIDT_NGUID:
962 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
963 dev_warn(ctrl->device,
964 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
965 cur->nidl);
966 goto free_data;
967 }
968 len = NVME_NIDT_NGUID_LEN;
969 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
970 break;
971 case NVME_NIDT_UUID:
972 if (cur->nidl != NVME_NIDT_UUID_LEN) {
973 dev_warn(ctrl->device,
974 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
975 cur->nidl);
976 goto free_data;
977 }
978 len = NVME_NIDT_UUID_LEN;
979 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
980 break;
981 default:
982 /* Skip unknown types */
983 len = cur->nidl;
984 break;
985 }
986
987 len += sizeof(*cur);
988 }
989free_data:
990 kfree(data);
991 return status;
992}
993
994static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
995{
996 struct nvme_command c = { };
997
998 c.identify.opcode = nvme_admin_identify;
999 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1000 c.identify.nsid = cpu_to_le32(nsid);
1001 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1002 NVME_IDENTIFY_DATA_SIZE);
1003}
1004
1005static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1006 unsigned nsid)
1007{
1008 struct nvme_id_ns *id;
1009 struct nvme_command c = { };
1010 int error;
1011
1012 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1013 c.identify.opcode = nvme_admin_identify;
1014 c.identify.nsid = cpu_to_le32(nsid);
1015 c.identify.cns = NVME_ID_CNS_NS;
1016
1017 id = kmalloc(sizeof(*id), GFP_KERNEL);
1018 if (!id)
1019 return NULL;
1020
1021 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1022 if (error) {
1023 dev_warn(ctrl->device, "Identify namespace failed\n");
1024 kfree(id);
1025 return NULL;
1026 }
1027
1028 return id;
1029}
1030
1031static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1032 void *buffer, size_t buflen, u32 *result)
1033{
1034 struct nvme_command c;
1035 union nvme_result res;
1036 int ret;
1037
1038 memset(&c, 0, sizeof(c));
1039 c.features.opcode = nvme_admin_set_features;
1040 c.features.fid = cpu_to_le32(fid);
1041 c.features.dword11 = cpu_to_le32(dword11);
1042
1043 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1044 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1045 if (ret >= 0 && result)
1046 *result = le32_to_cpu(res.u32);
1047 return ret;
1048}
1049
1050int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1051{
1052 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1053 u32 result;
1054 int status, nr_io_queues;
1055
1056 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1057 &result);
1058 if (status < 0)
1059 return status;
1060
1061 /*
1062 * Degraded controllers might return an error when setting the queue
1063 * count. We still want to be able to bring them online and offer
1064 * access to the admin queue, as that might be only way to fix them up.
1065 */
1066 if (status > 0) {
1067 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1068 *count = 0;
1069 } else {
1070 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1071 *count = min(*count, nr_io_queues);
1072 }
1073
1074 return 0;
1075}
1076EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1077
1078#define NVME_AEN_SUPPORTED \
1079 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1080
1081static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1082{
1083 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1084 int status;
1085
1086 if (!supported_aens)
1087 return;
1088
1089 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1090 NULL, 0, &result);
1091 if (status)
1092 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1093 supported_aens);
1094}
1095
1096static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1097{
1098 struct nvme_user_io io;
1099 struct nvme_command c;
1100 unsigned length, meta_len;
1101 void __user *metadata;
1102
1103 if (copy_from_user(&io, uio, sizeof(io)))
1104 return -EFAULT;
1105 if (io.flags)
1106 return -EINVAL;
1107
1108 switch (io.opcode) {
1109 case nvme_cmd_write:
1110 case nvme_cmd_read:
1111 case nvme_cmd_compare:
1112 break;
1113 default:
1114 return -EINVAL;
1115 }
1116
1117 length = (io.nblocks + 1) << ns->lba_shift;
1118 meta_len = (io.nblocks + 1) * ns->ms;
1119 metadata = (void __user *)(uintptr_t)io.metadata;
1120
1121 if (ns->ext) {
1122 length += meta_len;
1123 meta_len = 0;
1124 } else if (meta_len) {
1125 if ((io.metadata & 3) || !io.metadata)
1126 return -EINVAL;
1127 }
1128
1129 memset(&c, 0, sizeof(c));
1130 c.rw.opcode = io.opcode;
1131 c.rw.flags = io.flags;
1132 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1133 c.rw.slba = cpu_to_le64(io.slba);
1134 c.rw.length = cpu_to_le16(io.nblocks);
1135 c.rw.control = cpu_to_le16(io.control);
1136 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1137 c.rw.reftag = cpu_to_le32(io.reftag);
1138 c.rw.apptag = cpu_to_le16(io.apptag);
1139 c.rw.appmask = cpu_to_le16(io.appmask);
1140
1141 return nvme_submit_user_cmd(ns->queue, &c,
1142 (void __user *)(uintptr_t)io.addr, length,
1143 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1144}
1145
1146static u32 nvme_known_admin_effects(u8 opcode)
1147{
1148 switch (opcode) {
1149 case nvme_admin_format_nvm:
1150 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1151 NVME_CMD_EFFECTS_CSE_MASK;
1152 case nvme_admin_sanitize_nvm:
1153 return NVME_CMD_EFFECTS_CSE_MASK;
1154 default:
1155 break;
1156 }
1157 return 0;
1158}
1159
1160static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1161 u8 opcode)
1162{
1163 u32 effects = 0;
1164
1165 if (ns) {
1166 if (ctrl->effects)
1167 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1168 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1169 dev_warn(ctrl->device,
1170 "IO command:%02x has unhandled effects:%08x\n",
1171 opcode, effects);
1172 return 0;
1173 }
1174
1175 if (ctrl->effects)
1176 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1177 else
1178 effects = nvme_known_admin_effects(opcode);
1179
1180 /*
1181 * For simplicity, IO to all namespaces is quiesced even if the command
1182 * effects say only one namespace is affected.
1183 */
1184 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1185 nvme_start_freeze(ctrl);
1186 nvme_wait_freeze(ctrl);
1187 }
1188 return effects;
1189}
1190
1191static void nvme_update_formats(struct nvme_ctrl *ctrl)
1192{
1193 struct nvme_ns *ns;
1194
1195 down_read(&ctrl->namespaces_rwsem);
1196 list_for_each_entry(ns, &ctrl->namespaces, list)
1197 if (ns->disk && nvme_revalidate_disk(ns->disk))
1198 nvme_set_queue_dying(ns);
1199 up_read(&ctrl->namespaces_rwsem);
1200
1201 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1202}
1203
1204static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1205{
1206 /*
1207 * Revalidate LBA changes prior to unfreezing. This is necessary to
1208 * prevent memory corruption if a logical block size was changed by
1209 * this command.
1210 */
1211 if (effects & NVME_CMD_EFFECTS_LBCC)
1212 nvme_update_formats(ctrl);
1213 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1214 nvme_unfreeze(ctrl);
1215 if (effects & NVME_CMD_EFFECTS_CCC)
1216 nvme_init_identify(ctrl);
1217 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1218 nvme_queue_scan(ctrl);
1219}
1220
1221static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1222 struct nvme_passthru_cmd __user *ucmd)
1223{
1224 struct nvme_passthru_cmd cmd;
1225 struct nvme_command c;
1226 unsigned timeout = 0;
1227 u32 effects;
1228 int status;
1229
1230 if (!capable(CAP_SYS_ADMIN))
1231 return -EACCES;
1232 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1233 return -EFAULT;
1234 if (cmd.flags)
1235 return -EINVAL;
1236
1237 memset(&c, 0, sizeof(c));
1238 c.common.opcode = cmd.opcode;
1239 c.common.flags = cmd.flags;
1240 c.common.nsid = cpu_to_le32(cmd.nsid);
1241 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1242 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1243 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1244 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1245 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1246 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1247 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1248 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1249
1250 if (cmd.timeout_ms)
1251 timeout = msecs_to_jiffies(cmd.timeout_ms);
1252
1253 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1254 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1255 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1256 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1257 0, &cmd.result, timeout);
1258 nvme_passthru_end(ctrl, effects);
1259
1260 if (status >= 0) {
1261 if (put_user(cmd.result, &ucmd->result))
1262 return -EFAULT;
1263 }
1264
1265 return status;
1266}
1267
1268/*
1269 * Issue ioctl requests on the first available path. Note that unlike normal
1270 * block layer requests we will not retry failed request on another controller.
1271 */
1272static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1273 struct nvme_ns_head **head, int *srcu_idx)
1274{
1275#ifdef CONFIG_NVME_MULTIPATH
1276 if (disk->fops == &nvme_ns_head_ops) {
1277 *head = disk->private_data;
1278 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1279 return nvme_find_path(*head);
1280 }
1281#endif
1282 *head = NULL;
1283 *srcu_idx = -1;
1284 return disk->private_data;
1285}
1286
1287static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1288{
1289 if (head)
1290 srcu_read_unlock(&head->srcu, idx);
1291}
1292
1293static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1294{
1295 switch (cmd) {
1296 case NVME_IOCTL_ID:
1297 force_successful_syscall_return();
1298 return ns->head->ns_id;
1299 case NVME_IOCTL_ADMIN_CMD:
1300 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1301 case NVME_IOCTL_IO_CMD:
1302 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1303 case NVME_IOCTL_SUBMIT_IO:
1304 return nvme_submit_io(ns, (void __user *)arg);
1305 default:
1306#ifdef CONFIG_NVM
1307 if (ns->ndev)
1308 return nvme_nvm_ioctl(ns, cmd, arg);
1309#endif
1310 if (is_sed_ioctl(cmd))
1311 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1312 (void __user *) arg);
1313 return -ENOTTY;
1314 }
1315}
1316
1317static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1318 unsigned int cmd, unsigned long arg)
1319{
1320 struct nvme_ns_head *head = NULL;
1321 struct nvme_ns *ns;
1322 int srcu_idx, ret;
1323
1324 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1325 if (unlikely(!ns))
1326 ret = -EWOULDBLOCK;
1327 else
1328 ret = nvme_ns_ioctl(ns, cmd, arg);
1329 nvme_put_ns_from_disk(head, srcu_idx);
1330 return ret;
1331}
1332
1333static int nvme_open(struct block_device *bdev, fmode_t mode)
1334{
1335 struct nvme_ns *ns = bdev->bd_disk->private_data;
1336
1337#ifdef CONFIG_NVME_MULTIPATH
1338 /* should never be called due to GENHD_FL_HIDDEN */
1339 if (WARN_ON_ONCE(ns->head->disk))
1340 goto fail;
1341#endif
1342 if (!kref_get_unless_zero(&ns->kref))
1343 goto fail;
1344 if (!try_module_get(ns->ctrl->ops->module))
1345 goto fail_put_ns;
1346
1347 return 0;
1348
1349fail_put_ns:
1350 nvme_put_ns(ns);
1351fail:
1352 return -ENXIO;
1353}
1354
1355static void nvme_release(struct gendisk *disk, fmode_t mode)
1356{
1357 struct nvme_ns *ns = disk->private_data;
1358
1359 module_put(ns->ctrl->ops->module);
1360 nvme_put_ns(ns);
1361}
1362
1363static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1364{
1365 /* some standard values */
1366 geo->heads = 1 << 6;
1367 geo->sectors = 1 << 5;
1368 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1369 return 0;
1370}
1371
1372#ifdef CONFIG_BLK_DEV_INTEGRITY
1373static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1374{
1375 struct blk_integrity integrity;
1376
1377 memset(&integrity, 0, sizeof(integrity));
1378 switch (pi_type) {
1379 case NVME_NS_DPS_PI_TYPE3:
1380 integrity.profile = &t10_pi_type3_crc;
1381 integrity.tag_size = sizeof(u16) + sizeof(u32);
1382 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1383 break;
1384 case NVME_NS_DPS_PI_TYPE1:
1385 case NVME_NS_DPS_PI_TYPE2:
1386 integrity.profile = &t10_pi_type1_crc;
1387 integrity.tag_size = sizeof(u16);
1388 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1389 break;
1390 default:
1391 integrity.profile = NULL;
1392 break;
1393 }
1394 integrity.tuple_size = ms;
1395 blk_integrity_register(disk, &integrity);
1396 blk_queue_max_integrity_segments(disk->queue, 1);
1397}
1398#else
1399static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1400{
1401}
1402#endif /* CONFIG_BLK_DEV_INTEGRITY */
1403
1404static void nvme_set_chunk_size(struct nvme_ns *ns)
1405{
1406 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1407 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1408}
1409
1410static void nvme_config_discard(struct nvme_ns *ns)
1411{
1412 struct nvme_ctrl *ctrl = ns->ctrl;
1413 struct request_queue *queue = ns->queue;
1414 u32 size = queue_logical_block_size(queue);
1415
1416 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1417 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1418 return;
1419 }
1420
1421 if (ctrl->nr_streams && ns->sws && ns->sgs)
1422 size *= ns->sws * ns->sgs;
1423
1424 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1425 NVME_DSM_MAX_RANGES);
1426
1427 queue->limits.discard_alignment = 0;
1428 queue->limits.discard_granularity = size;
1429
1430 /* If discard is already enabled, don't reset queue limits */
1431 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1432 return;
1433
1434 blk_queue_max_discard_sectors(queue, UINT_MAX);
1435 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1436
1437 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1438 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1439}
1440
1441static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1442 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1443{
1444 memset(ids, 0, sizeof(*ids));
1445
1446 if (ctrl->vs >= NVME_VS(1, 1, 0))
1447 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1448 if (ctrl->vs >= NVME_VS(1, 2, 0))
1449 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1450 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1451 /* Don't treat error as fatal we potentially
1452 * already have a NGUID or EUI-64
1453 */
1454 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1455 dev_warn(ctrl->device,
1456 "%s: Identify Descriptors failed\n", __func__);
1457 }
1458}
1459
1460static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1461{
1462 return !uuid_is_null(&ids->uuid) ||
1463 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1464 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1465}
1466
1467static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1468{
1469 return uuid_equal(&a->uuid, &b->uuid) &&
1470 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1471 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1472}
1473
1474static void nvme_update_disk_info(struct gendisk *disk,
1475 struct nvme_ns *ns, struct nvme_id_ns *id)
1476{
1477 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1478 unsigned short bs = 1 << ns->lba_shift;
1479
1480 blk_mq_freeze_queue(disk->queue);
1481 blk_integrity_unregister(disk);
1482
1483 blk_queue_logical_block_size(disk->queue, bs);
1484 blk_queue_physical_block_size(disk->queue, bs);
1485 blk_queue_io_min(disk->queue, bs);
1486
1487 if (ns->ms && !ns->ext &&
1488 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1489 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1490 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1491 capacity = 0;
1492
1493 set_capacity(disk, capacity);
1494 nvme_config_discard(ns);
1495
1496 if (id->nsattr & (1 << 0))
1497 set_disk_ro(disk, true);
1498 else
1499 set_disk_ro(disk, false);
1500
1501 blk_mq_unfreeze_queue(disk->queue);
1502}
1503
1504static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1505{
1506 struct nvme_ns *ns = disk->private_data;
1507
1508 /*
1509 * If identify namespace failed, use default 512 byte block size so
1510 * block layer can use before failing read/write for 0 capacity.
1511 */
1512 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1513 if (ns->lba_shift == 0)
1514 ns->lba_shift = 9;
1515 ns->noiob = le16_to_cpu(id->noiob);
1516 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1517 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1518 /* the PI implementation requires metadata equal t10 pi tuple size */
1519 if (ns->ms == sizeof(struct t10_pi_tuple))
1520 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1521 else
1522 ns->pi_type = 0;
1523
1524 if (ns->noiob)
1525 nvme_set_chunk_size(ns);
1526 nvme_update_disk_info(disk, ns, id);
1527 if (ns->ndev)
1528 nvme_nvm_update_nvm_info(ns);
1529#ifdef CONFIG_NVME_MULTIPATH
1530 if (ns->head->disk) {
1531 nvme_update_disk_info(ns->head->disk, ns, id);
1532 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1533 }
1534#endif
1535}
1536
1537static int nvme_revalidate_disk(struct gendisk *disk)
1538{
1539 struct nvme_ns *ns = disk->private_data;
1540 struct nvme_ctrl *ctrl = ns->ctrl;
1541 struct nvme_id_ns *id;
1542 struct nvme_ns_ids ids;
1543 int ret = 0;
1544
1545 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1546 set_capacity(disk, 0);
1547 return -ENODEV;
1548 }
1549
1550 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1551 if (!id)
1552 return -ENODEV;
1553
1554 if (id->ncap == 0) {
1555 ret = -ENODEV;
1556 goto out;
1557 }
1558
1559 __nvme_revalidate_disk(disk, id);
1560 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1561 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1562 dev_err(ctrl->device,
1563 "identifiers changed for nsid %d\n", ns->head->ns_id);
1564 ret = -ENODEV;
1565 }
1566
1567out:
1568 kfree(id);
1569 return ret;
1570}
1571
1572static char nvme_pr_type(enum pr_type type)
1573{
1574 switch (type) {
1575 case PR_WRITE_EXCLUSIVE:
1576 return 1;
1577 case PR_EXCLUSIVE_ACCESS:
1578 return 2;
1579 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1580 return 3;
1581 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1582 return 4;
1583 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1584 return 5;
1585 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1586 return 6;
1587 default:
1588 return 0;
1589 }
1590};
1591
1592static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1593 u64 key, u64 sa_key, u8 op)
1594{
1595 struct nvme_ns_head *head = NULL;
1596 struct nvme_ns *ns;
1597 struct nvme_command c;
1598 int srcu_idx, ret;
1599 u8 data[16] = { 0, };
1600
1601 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1602 if (unlikely(!ns))
1603 return -EWOULDBLOCK;
1604
1605 put_unaligned_le64(key, &data[0]);
1606 put_unaligned_le64(sa_key, &data[8]);
1607
1608 memset(&c, 0, sizeof(c));
1609 c.common.opcode = op;
1610 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1611 c.common.cdw10[0] = cpu_to_le32(cdw10);
1612
1613 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1614 nvme_put_ns_from_disk(head, srcu_idx);
1615 return ret;
1616}
1617
1618static int nvme_pr_register(struct block_device *bdev, u64 old,
1619 u64 new, unsigned flags)
1620{
1621 u32 cdw10;
1622
1623 if (flags & ~PR_FL_IGNORE_KEY)
1624 return -EOPNOTSUPP;
1625
1626 cdw10 = old ? 2 : 0;
1627 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1628 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1629 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1630}
1631
1632static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1633 enum pr_type type, unsigned flags)
1634{
1635 u32 cdw10;
1636
1637 if (flags & ~PR_FL_IGNORE_KEY)
1638 return -EOPNOTSUPP;
1639
1640 cdw10 = nvme_pr_type(type) << 8;
1641 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1642 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1643}
1644
1645static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1646 enum pr_type type, bool abort)
1647{
1648 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1649 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1650}
1651
1652static int nvme_pr_clear(struct block_device *bdev, u64 key)
1653{
1654 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1655 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1656}
1657
1658static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1659{
1660 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1661 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1662}
1663
1664static const struct pr_ops nvme_pr_ops = {
1665 .pr_register = nvme_pr_register,
1666 .pr_reserve = nvme_pr_reserve,
1667 .pr_release = nvme_pr_release,
1668 .pr_preempt = nvme_pr_preempt,
1669 .pr_clear = nvme_pr_clear,
1670};
1671
1672#ifdef CONFIG_BLK_SED_OPAL
1673int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1674 bool send)
1675{
1676 struct nvme_ctrl *ctrl = data;
1677 struct nvme_command cmd;
1678
1679 memset(&cmd, 0, sizeof(cmd));
1680 if (send)
1681 cmd.common.opcode = nvme_admin_security_send;
1682 else
1683 cmd.common.opcode = nvme_admin_security_recv;
1684 cmd.common.nsid = 0;
1685 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1686 cmd.common.cdw10[1] = cpu_to_le32(len);
1687
1688 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1689 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1690}
1691EXPORT_SYMBOL_GPL(nvme_sec_submit);
1692#endif /* CONFIG_BLK_SED_OPAL */
1693
1694static const struct block_device_operations nvme_fops = {
1695 .owner = THIS_MODULE,
1696 .ioctl = nvme_ioctl,
1697 .compat_ioctl = nvme_ioctl,
1698 .open = nvme_open,
1699 .release = nvme_release,
1700 .getgeo = nvme_getgeo,
1701 .revalidate_disk= nvme_revalidate_disk,
1702 .pr_ops = &nvme_pr_ops,
1703};
1704
1705#ifdef CONFIG_NVME_MULTIPATH
1706static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1707{
1708 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1709
1710 if (!kref_get_unless_zero(&head->ref))
1711 return -ENXIO;
1712 return 0;
1713}
1714
1715static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1716{
1717 nvme_put_ns_head(disk->private_data);
1718}
1719
1720const struct block_device_operations nvme_ns_head_ops = {
1721 .owner = THIS_MODULE,
1722 .open = nvme_ns_head_open,
1723 .release = nvme_ns_head_release,
1724 .ioctl = nvme_ioctl,
1725 .compat_ioctl = nvme_ioctl,
1726 .getgeo = nvme_getgeo,
1727 .pr_ops = &nvme_pr_ops,
1728};
1729#endif /* CONFIG_NVME_MULTIPATH */
1730
1731static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1732{
1733 unsigned long timeout =
1734 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1735 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1736 int ret;
1737
1738 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1739 if (csts == ~0)
1740 return -ENODEV;
1741 if ((csts & NVME_CSTS_RDY) == bit)
1742 break;
1743
1744 msleep(100);
1745 if (fatal_signal_pending(current))
1746 return -EINTR;
1747 if (time_after(jiffies, timeout)) {
1748 dev_err(ctrl->device,
1749 "Device not ready; aborting %s\n", enabled ?
1750 "initialisation" : "reset");
1751 return -ENODEV;
1752 }
1753 }
1754
1755 return ret;
1756}
1757
1758/*
1759 * If the device has been passed off to us in an enabled state, just clear
1760 * the enabled bit. The spec says we should set the 'shutdown notification
1761 * bits', but doing so may cause the device to complete commands to the
1762 * admin queue ... and we don't know what memory that might be pointing at!
1763 */
1764int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1765{
1766 int ret;
1767
1768 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1769 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1770
1771 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1772 if (ret)
1773 return ret;
1774
1775 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1776 msleep(NVME_QUIRK_DELAY_AMOUNT);
1777
1778 return nvme_wait_ready(ctrl, cap, false);
1779}
1780EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1781
1782int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1783{
1784 /*
1785 * Default to a 4K page size, with the intention to update this
1786 * path in the future to accomodate architectures with differing
1787 * kernel and IO page sizes.
1788 */
1789 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1790 int ret;
1791
1792 if (page_shift < dev_page_min) {
1793 dev_err(ctrl->device,
1794 "Minimum device page size %u too large for host (%u)\n",
1795 1 << dev_page_min, 1 << page_shift);
1796 return -ENODEV;
1797 }
1798
1799 ctrl->page_size = 1 << page_shift;
1800
1801 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1802 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1803 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1804 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1805 ctrl->ctrl_config |= NVME_CC_ENABLE;
1806
1807 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1808 if (ret)
1809 return ret;
1810 return nvme_wait_ready(ctrl, cap, true);
1811}
1812EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1813
1814int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1815{
1816 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1817 u32 csts;
1818 int ret;
1819
1820 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1821 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1822
1823 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1824 if (ret)
1825 return ret;
1826
1827 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1828 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1829 break;
1830
1831 msleep(100);
1832 if (fatal_signal_pending(current))
1833 return -EINTR;
1834 if (time_after(jiffies, timeout)) {
1835 dev_err(ctrl->device,
1836 "Device shutdown incomplete; abort shutdown\n");
1837 return -ENODEV;
1838 }
1839 }
1840
1841 return ret;
1842}
1843EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1844
1845static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1846 struct request_queue *q)
1847{
1848 bool vwc = false;
1849
1850 if (ctrl->max_hw_sectors) {
1851 u32 max_segments =
1852 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1853
1854 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1855 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1856 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1857 }
1858 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1859 is_power_of_2(ctrl->max_hw_sectors))
1860 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1861 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1862 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1863 vwc = true;
1864 blk_queue_write_cache(q, vwc, vwc);
1865}
1866
1867static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1868{
1869 __le64 ts;
1870 int ret;
1871
1872 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1873 return 0;
1874
1875 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1876 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1877 NULL);
1878 if (ret)
1879 dev_warn_once(ctrl->device,
1880 "could not set timestamp (%d)\n", ret);
1881 return ret;
1882}
1883
1884static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1885{
1886 /*
1887 * APST (Autonomous Power State Transition) lets us program a
1888 * table of power state transitions that the controller will
1889 * perform automatically. We configure it with a simple
1890 * heuristic: we are willing to spend at most 2% of the time
1891 * transitioning between power states. Therefore, when running
1892 * in any given state, we will enter the next lower-power
1893 * non-operational state after waiting 50 * (enlat + exlat)
1894 * microseconds, as long as that state's exit latency is under
1895 * the requested maximum latency.
1896 *
1897 * We will not autonomously enter any non-operational state for
1898 * which the total latency exceeds ps_max_latency_us. Users
1899 * can set ps_max_latency_us to zero to turn off APST.
1900 */
1901
1902 unsigned apste;
1903 struct nvme_feat_auto_pst *table;
1904 u64 max_lat_us = 0;
1905 int max_ps = -1;
1906 int ret;
1907
1908 /*
1909 * If APST isn't supported or if we haven't been initialized yet,
1910 * then don't do anything.
1911 */
1912 if (!ctrl->apsta)
1913 return 0;
1914
1915 if (ctrl->npss > 31) {
1916 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1917 return 0;
1918 }
1919
1920 table = kzalloc(sizeof(*table), GFP_KERNEL);
1921 if (!table)
1922 return 0;
1923
1924 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1925 /* Turn off APST. */
1926 apste = 0;
1927 dev_dbg(ctrl->device, "APST disabled\n");
1928 } else {
1929 __le64 target = cpu_to_le64(0);
1930 int state;
1931
1932 /*
1933 * Walk through all states from lowest- to highest-power.
1934 * According to the spec, lower-numbered states use more
1935 * power. NPSS, despite the name, is the index of the
1936 * lowest-power state, not the number of states.
1937 */
1938 for (state = (int)ctrl->npss; state >= 0; state--) {
1939 u64 total_latency_us, exit_latency_us, transition_ms;
1940
1941 if (target)
1942 table->entries[state] = target;
1943
1944 /*
1945 * Don't allow transitions to the deepest state
1946 * if it's quirked off.
1947 */
1948 if (state == ctrl->npss &&
1949 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1950 continue;
1951
1952 /*
1953 * Is this state a useful non-operational state for
1954 * higher-power states to autonomously transition to?
1955 */
1956 if (!(ctrl->psd[state].flags &
1957 NVME_PS_FLAGS_NON_OP_STATE))
1958 continue;
1959
1960 exit_latency_us =
1961 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1962 if (exit_latency_us > ctrl->ps_max_latency_us)
1963 continue;
1964
1965 total_latency_us =
1966 exit_latency_us +
1967 le32_to_cpu(ctrl->psd[state].entry_lat);
1968
1969 /*
1970 * This state is good. Use it as the APST idle
1971 * target for higher power states.
1972 */
1973 transition_ms = total_latency_us + 19;
1974 do_div(transition_ms, 20);
1975 if (transition_ms > (1 << 24) - 1)
1976 transition_ms = (1 << 24) - 1;
1977
1978 target = cpu_to_le64((state << 3) |
1979 (transition_ms << 8));
1980
1981 if (max_ps == -1)
1982 max_ps = state;
1983
1984 if (total_latency_us > max_lat_us)
1985 max_lat_us = total_latency_us;
1986 }
1987
1988 apste = 1;
1989
1990 if (max_ps == -1) {
1991 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1992 } else {
1993 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1994 max_ps, max_lat_us, (int)sizeof(*table), table);
1995 }
1996 }
1997
1998 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1999 table, sizeof(*table), NULL);
2000 if (ret)
2001 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2002
2003 kfree(table);
2004 return ret;
2005}
2006
2007static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2008{
2009 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2010 u64 latency;
2011
2012 switch (val) {
2013 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2014 case PM_QOS_LATENCY_ANY:
2015 latency = U64_MAX;
2016 break;
2017
2018 default:
2019 latency = val;
2020 }
2021
2022 if (ctrl->ps_max_latency_us != latency) {
2023 ctrl->ps_max_latency_us = latency;
2024 nvme_configure_apst(ctrl);
2025 }
2026}
2027
2028struct nvme_core_quirk_entry {
2029 /*
2030 * NVMe model and firmware strings are padded with spaces. For
2031 * simplicity, strings in the quirk table are padded with NULLs
2032 * instead.
2033 */
2034 u16 vid;
2035 const char *mn;
2036 const char *fr;
2037 unsigned long quirks;
2038};
2039
2040static const struct nvme_core_quirk_entry core_quirks[] = {
2041 {
2042 /*
2043 * This Toshiba device seems to die using any APST states. See:
2044 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2045 */
2046 .vid = 0x1179,
2047 .mn = "THNSF5256GPUK TOSHIBA",
2048 .quirks = NVME_QUIRK_NO_APST,
2049 }
2050};
2051
2052/* match is null-terminated but idstr is space-padded. */
2053static bool string_matches(const char *idstr, const char *match, size_t len)
2054{
2055 size_t matchlen;
2056
2057 if (!match)
2058 return true;
2059
2060 matchlen = strlen(match);
2061 WARN_ON_ONCE(matchlen > len);
2062
2063 if (memcmp(idstr, match, matchlen))
2064 return false;
2065
2066 for (; matchlen < len; matchlen++)
2067 if (idstr[matchlen] != ' ')
2068 return false;
2069
2070 return true;
2071}
2072
2073static bool quirk_matches(const struct nvme_id_ctrl *id,
2074 const struct nvme_core_quirk_entry *q)
2075{
2076 return q->vid == le16_to_cpu(id->vid) &&
2077 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2078 string_matches(id->fr, q->fr, sizeof(id->fr));
2079}
2080
2081static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2082 struct nvme_id_ctrl *id)
2083{
2084 size_t nqnlen;
2085 int off;
2086
2087 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2088 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2089 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2090 return;
2091 }
2092
2093 if (ctrl->vs >= NVME_VS(1, 2, 1))
2094 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2095
2096 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2097 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2098 "nqn.2014.08.org.nvmexpress:%4x%4x",
2099 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2100 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2101 off += sizeof(id->sn);
2102 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2103 off += sizeof(id->mn);
2104 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2105}
2106
2107static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2108{
2109 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2110 kfree(subsys);
2111}
2112
2113static void nvme_release_subsystem(struct device *dev)
2114{
2115 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2116}
2117
2118static void nvme_destroy_subsystem(struct kref *ref)
2119{
2120 struct nvme_subsystem *subsys =
2121 container_of(ref, struct nvme_subsystem, ref);
2122
2123 mutex_lock(&nvme_subsystems_lock);
2124 list_del(&subsys->entry);
2125 mutex_unlock(&nvme_subsystems_lock);
2126
2127 ida_destroy(&subsys->ns_ida);
2128 device_del(&subsys->dev);
2129 put_device(&subsys->dev);
2130}
2131
2132static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2133{
2134 kref_put(&subsys->ref, nvme_destroy_subsystem);
2135}
2136
2137static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2138{
2139 struct nvme_subsystem *subsys;
2140
2141 lockdep_assert_held(&nvme_subsystems_lock);
2142
2143 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2144 if (strcmp(subsys->subnqn, subsysnqn))
2145 continue;
2146 if (!kref_get_unless_zero(&subsys->ref))
2147 continue;
2148 return subsys;
2149 }
2150
2151 return NULL;
2152}
2153
2154#define SUBSYS_ATTR_RO(_name, _mode, _show) \
2155 struct device_attribute subsys_attr_##_name = \
2156 __ATTR(_name, _mode, _show, NULL)
2157
2158static ssize_t nvme_subsys_show_nqn(struct device *dev,
2159 struct device_attribute *attr,
2160 char *buf)
2161{
2162 struct nvme_subsystem *subsys =
2163 container_of(dev, struct nvme_subsystem, dev);
2164
2165 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2166}
2167static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2168
2169#define nvme_subsys_show_str_function(field) \
2170static ssize_t subsys_##field##_show(struct device *dev, \
2171 struct device_attribute *attr, char *buf) \
2172{ \
2173 struct nvme_subsystem *subsys = \
2174 container_of(dev, struct nvme_subsystem, dev); \
2175 return sprintf(buf, "%.*s\n", \
2176 (int)sizeof(subsys->field), subsys->field); \
2177} \
2178static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2179
2180nvme_subsys_show_str_function(model);
2181nvme_subsys_show_str_function(serial);
2182nvme_subsys_show_str_function(firmware_rev);
2183
2184static struct attribute *nvme_subsys_attrs[] = {
2185 &subsys_attr_model.attr,
2186 &subsys_attr_serial.attr,
2187 &subsys_attr_firmware_rev.attr,
2188 &subsys_attr_subsysnqn.attr,
2189 NULL,
2190};
2191
2192static struct attribute_group nvme_subsys_attrs_group = {
2193 .attrs = nvme_subsys_attrs,
2194};
2195
2196static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2197 &nvme_subsys_attrs_group,
2198 NULL,
2199};
2200
2201static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2202{
2203 int count = 0;
2204 struct nvme_ctrl *ctrl;
2205
2206 mutex_lock(&subsys->lock);
2207 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2208 if (ctrl->state != NVME_CTRL_DELETING &&
2209 ctrl->state != NVME_CTRL_DEAD)
2210 count++;
2211 }
2212 mutex_unlock(&subsys->lock);
2213
2214 return count;
2215}
2216
2217static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2218{
2219 struct nvme_subsystem *subsys, *found;
2220 int ret;
2221
2222 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2223 if (!subsys)
2224 return -ENOMEM;
2225 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2226 if (ret < 0) {
2227 kfree(subsys);
2228 return ret;
2229 }
2230 subsys->instance = ret;
2231 mutex_init(&subsys->lock);
2232 kref_init(&subsys->ref);
2233 INIT_LIST_HEAD(&subsys->ctrls);
2234 INIT_LIST_HEAD(&subsys->nsheads);
2235 nvme_init_subnqn(subsys, ctrl, id);
2236 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2237 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2238 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2239 subsys->vendor_id = le16_to_cpu(id->vid);
2240 subsys->cmic = id->cmic;
2241
2242 subsys->dev.class = nvme_subsys_class;
2243 subsys->dev.release = nvme_release_subsystem;
2244 subsys->dev.groups = nvme_subsys_attrs_groups;
2245 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2246 device_initialize(&subsys->dev);
2247
2248 mutex_lock(&nvme_subsystems_lock);
2249 found = __nvme_find_get_subsystem(subsys->subnqn);
2250 if (found) {
2251 /*
2252 * Verify that the subsystem actually supports multiple
2253 * controllers, else bail out.
2254 */
2255 if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2256 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2257 dev_err(ctrl->device,
2258 "ignoring ctrl due to duplicate subnqn (%s).\n",
2259 found->subnqn);
2260 nvme_put_subsystem(found);
2261 ret = -EINVAL;
2262 goto out_unlock;
2263 }
2264
2265 __nvme_release_subsystem(subsys);
2266 subsys = found;
2267 } else {
2268 ret = device_add(&subsys->dev);
2269 if (ret) {
2270 dev_err(ctrl->device,
2271 "failed to register subsystem device.\n");
2272 goto out_unlock;
2273 }
2274 ida_init(&subsys->ns_ida);
2275 list_add_tail(&subsys->entry, &nvme_subsystems);
2276 }
2277
2278 ctrl->subsys = subsys;
2279 mutex_unlock(&nvme_subsystems_lock);
2280
2281 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2282 dev_name(ctrl->device))) {
2283 dev_err(ctrl->device,
2284 "failed to create sysfs link from subsystem.\n");
2285 /* the transport driver will eventually put the subsystem */
2286 return -EINVAL;
2287 }
2288
2289 mutex_lock(&subsys->lock);
2290 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2291 mutex_unlock(&subsys->lock);
2292
2293 return 0;
2294
2295out_unlock:
2296 mutex_unlock(&nvme_subsystems_lock);
2297 put_device(&subsys->dev);
2298 return ret;
2299}
2300
2301int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2302 void *log, size_t size, u64 offset)
2303{
2304 struct nvme_command c = { };
2305 unsigned long dwlen = size / 4 - 1;
2306
2307 c.get_log_page.opcode = nvme_admin_get_log_page;
2308 c.get_log_page.nsid = cpu_to_le32(nsid);
2309 c.get_log_page.lid = log_page;
2310 c.get_log_page.lsp = lsp;
2311 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2312 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2313 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2314 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2315
2316 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2317}
2318
2319static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2320{
2321 int ret;
2322
2323 if (!ctrl->effects)
2324 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2325
2326 if (!ctrl->effects)
2327 return 0;
2328
2329 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2330 ctrl->effects, sizeof(*ctrl->effects), 0);
2331 if (ret) {
2332 kfree(ctrl->effects);
2333 ctrl->effects = NULL;
2334 }
2335 return ret;
2336}
2337
2338/*
2339 * Initialize the cached copies of the Identify data and various controller
2340 * register in our nvme_ctrl structure. This should be called as soon as
2341 * the admin queue is fully up and running.
2342 */
2343int nvme_init_identify(struct nvme_ctrl *ctrl)
2344{
2345 struct nvme_id_ctrl *id;
2346 u64 cap;
2347 int ret, page_shift;
2348 u32 max_hw_sectors;
2349 bool prev_apst_enabled;
2350
2351 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2352 if (ret) {
2353 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2354 return ret;
2355 }
2356
2357 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2358 if (ret) {
2359 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2360 return ret;
2361 }
2362 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2363
2364 if (ctrl->vs >= NVME_VS(1, 1, 0))
2365 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2366
2367 ret = nvme_identify_ctrl(ctrl, &id);
2368 if (ret) {
2369 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2370 return -EIO;
2371 }
2372
2373 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2374 ret = nvme_get_effects_log(ctrl);
2375 if (ret < 0)
2376 goto out_free;
2377 }
2378
2379 if (!ctrl->identified) {
2380 int i;
2381
2382 ret = nvme_init_subsystem(ctrl, id);
2383 if (ret)
2384 goto out_free;
2385
2386 /*
2387 * Check for quirks. Quirk can depend on firmware version,
2388 * so, in principle, the set of quirks present can change
2389 * across a reset. As a possible future enhancement, we
2390 * could re-scan for quirks every time we reinitialize
2391 * the device, but we'd have to make sure that the driver
2392 * behaves intelligently if the quirks change.
2393 */
2394 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2395 if (quirk_matches(id, &core_quirks[i]))
2396 ctrl->quirks |= core_quirks[i].quirks;
2397 }
2398 }
2399
2400 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2401 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2402 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2403 }
2404
2405 ctrl->oacs = le16_to_cpu(id->oacs);
2406 ctrl->oncs = le16_to_cpup(&id->oncs);
2407 ctrl->oaes = le32_to_cpu(id->oaes);
2408 atomic_set(&ctrl->abort_limit, id->acl + 1);
2409 ctrl->vwc = id->vwc;
2410 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2411 if (id->mdts)
2412 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2413 else
2414 max_hw_sectors = UINT_MAX;
2415 ctrl->max_hw_sectors =
2416 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2417
2418 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2419 ctrl->sgls = le32_to_cpu(id->sgls);
2420 ctrl->kas = le16_to_cpu(id->kas);
2421 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2422
2423 if (id->rtd3e) {
2424 /* us -> s */
2425 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2426
2427 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2428 shutdown_timeout, 60);
2429
2430 if (ctrl->shutdown_timeout != shutdown_timeout)
2431 dev_info(ctrl->device,
2432 "Shutdown timeout set to %u seconds\n",
2433 ctrl->shutdown_timeout);
2434 } else
2435 ctrl->shutdown_timeout = shutdown_timeout;
2436
2437 ctrl->npss = id->npss;
2438 ctrl->apsta = id->apsta;
2439 prev_apst_enabled = ctrl->apst_enabled;
2440 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2441 if (force_apst && id->apsta) {
2442 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2443 ctrl->apst_enabled = true;
2444 } else {
2445 ctrl->apst_enabled = false;
2446 }
2447 } else {
2448 ctrl->apst_enabled = id->apsta;
2449 }
2450 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2451
2452 if (ctrl->ops->flags & NVME_F_FABRICS) {
2453 ctrl->icdoff = le16_to_cpu(id->icdoff);
2454 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2455 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2456 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2457
2458 /*
2459 * In fabrics we need to verify the cntlid matches the
2460 * admin connect
2461 */
2462 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2463 ret = -EINVAL;
2464 goto out_free;
2465 }
2466
2467 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2468 dev_err(ctrl->device,
2469 "keep-alive support is mandatory for fabrics\n");
2470 ret = -EINVAL;
2471 goto out_free;
2472 }
2473 } else {
2474 ctrl->cntlid = le16_to_cpu(id->cntlid);
2475 ctrl->hmpre = le32_to_cpu(id->hmpre);
2476 ctrl->hmmin = le32_to_cpu(id->hmmin);
2477 ctrl->hmminds = le32_to_cpu(id->hmminds);
2478 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2479 }
2480
2481 ret = nvme_mpath_init(ctrl, id);
2482 kfree(id);
2483
2484 if (ret < 0)
2485 return ret;
2486
2487 if (ctrl->apst_enabled && !prev_apst_enabled)
2488 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2489 else if (!ctrl->apst_enabled && prev_apst_enabled)
2490 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2491
2492 ret = nvme_configure_apst(ctrl);
2493 if (ret < 0)
2494 return ret;
2495
2496 ret = nvme_configure_timestamp(ctrl);
2497 if (ret < 0)
2498 return ret;
2499
2500 ret = nvme_configure_directives(ctrl);
2501 if (ret < 0)
2502 return ret;
2503
2504 ctrl->identified = true;
2505
2506 return 0;
2507
2508out_free:
2509 kfree(id);
2510 return ret;
2511}
2512EXPORT_SYMBOL_GPL(nvme_init_identify);
2513
2514static int nvme_dev_open(struct inode *inode, struct file *file)
2515{
2516 struct nvme_ctrl *ctrl =
2517 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2518
2519 switch (ctrl->state) {
2520 case NVME_CTRL_LIVE:
2521 case NVME_CTRL_ADMIN_ONLY:
2522 break;
2523 default:
2524 return -EWOULDBLOCK;
2525 }
2526
2527 file->private_data = ctrl;
2528 return 0;
2529}
2530
2531static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2532{
2533 struct nvme_ns *ns;
2534 int ret;
2535
2536 down_read(&ctrl->namespaces_rwsem);
2537 if (list_empty(&ctrl->namespaces)) {
2538 ret = -ENOTTY;
2539 goto out_unlock;
2540 }
2541
2542 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2543 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2544 dev_warn(ctrl->device,
2545 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2546 ret = -EINVAL;
2547 goto out_unlock;
2548 }
2549
2550 dev_warn(ctrl->device,
2551 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2552 kref_get(&ns->kref);
2553 up_read(&ctrl->namespaces_rwsem);
2554
2555 ret = nvme_user_cmd(ctrl, ns, argp);
2556 nvme_put_ns(ns);
2557 return ret;
2558
2559out_unlock:
2560 up_read(&ctrl->namespaces_rwsem);
2561 return ret;
2562}
2563
2564static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2565 unsigned long arg)
2566{
2567 struct nvme_ctrl *ctrl = file->private_data;
2568 void __user *argp = (void __user *)arg;
2569
2570 switch (cmd) {
2571 case NVME_IOCTL_ADMIN_CMD:
2572 return nvme_user_cmd(ctrl, NULL, argp);
2573 case NVME_IOCTL_IO_CMD:
2574 return nvme_dev_user_cmd(ctrl, argp);
2575 case NVME_IOCTL_RESET:
2576 dev_warn(ctrl->device, "resetting controller\n");
2577 return nvme_reset_ctrl_sync(ctrl);
2578 case NVME_IOCTL_SUBSYS_RESET:
2579 return nvme_reset_subsystem(ctrl);
2580 case NVME_IOCTL_RESCAN:
2581 nvme_queue_scan(ctrl);
2582 return 0;
2583 default:
2584 return -ENOTTY;
2585 }
2586}
2587
2588static const struct file_operations nvme_dev_fops = {
2589 .owner = THIS_MODULE,
2590 .open = nvme_dev_open,
2591 .unlocked_ioctl = nvme_dev_ioctl,
2592 .compat_ioctl = nvme_dev_ioctl,
2593};
2594
2595static ssize_t nvme_sysfs_reset(struct device *dev,
2596 struct device_attribute *attr, const char *buf,
2597 size_t count)
2598{
2599 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2600 int ret;
2601
2602 ret = nvme_reset_ctrl_sync(ctrl);
2603 if (ret < 0)
2604 return ret;
2605 return count;
2606}
2607static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2608
2609static ssize_t nvme_sysfs_rescan(struct device *dev,
2610 struct device_attribute *attr, const char *buf,
2611 size_t count)
2612{
2613 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2614
2615 nvme_queue_scan(ctrl);
2616 return count;
2617}
2618static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2619
2620static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2621{
2622 struct gendisk *disk = dev_to_disk(dev);
2623
2624 if (disk->fops == &nvme_fops)
2625 return nvme_get_ns_from_dev(dev)->head;
2626 else
2627 return disk->private_data;
2628}
2629
2630static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2631 char *buf)
2632{
2633 struct nvme_ns_head *head = dev_to_ns_head(dev);
2634 struct nvme_ns_ids *ids = &head->ids;
2635 struct nvme_subsystem *subsys = head->subsys;
2636 int serial_len = sizeof(subsys->serial);
2637 int model_len = sizeof(subsys->model);
2638
2639 if (!uuid_is_null(&ids->uuid))
2640 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2641
2642 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2643 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2644
2645 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2646 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2647
2648 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2649 subsys->serial[serial_len - 1] == '\0'))
2650 serial_len--;
2651 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2652 subsys->model[model_len - 1] == '\0'))
2653 model_len--;
2654
2655 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2656 serial_len, subsys->serial, model_len, subsys->model,
2657 head->ns_id);
2658}
2659static DEVICE_ATTR_RO(wwid);
2660
2661static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2662 char *buf)
2663{
2664 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2665}
2666static DEVICE_ATTR_RO(nguid);
2667
2668static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2669 char *buf)
2670{
2671 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2672
2673 /* For backward compatibility expose the NGUID to userspace if
2674 * we have no UUID set
2675 */
2676 if (uuid_is_null(&ids->uuid)) {
2677 printk_ratelimited(KERN_WARNING
2678 "No UUID available providing old NGUID\n");
2679 return sprintf(buf, "%pU\n", ids->nguid);
2680 }
2681 return sprintf(buf, "%pU\n", &ids->uuid);
2682}
2683static DEVICE_ATTR_RO(uuid);
2684
2685static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2686 char *buf)
2687{
2688 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2689}
2690static DEVICE_ATTR_RO(eui);
2691
2692static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2693 char *buf)
2694{
2695 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2696}
2697static DEVICE_ATTR_RO(nsid);
2698
2699static struct attribute *nvme_ns_id_attrs[] = {
2700 &dev_attr_wwid.attr,
2701 &dev_attr_uuid.attr,
2702 &dev_attr_nguid.attr,
2703 &dev_attr_eui.attr,
2704 &dev_attr_nsid.attr,
2705#ifdef CONFIG_NVME_MULTIPATH
2706 &dev_attr_ana_grpid.attr,
2707 &dev_attr_ana_state.attr,
2708#endif
2709 NULL,
2710};
2711
2712static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2713 struct attribute *a, int n)
2714{
2715 struct device *dev = container_of(kobj, struct device, kobj);
2716 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2717
2718 if (a == &dev_attr_uuid.attr) {
2719 if (uuid_is_null(&ids->uuid) &&
2720 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2721 return 0;
2722 }
2723 if (a == &dev_attr_nguid.attr) {
2724 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2725 return 0;
2726 }
2727 if (a == &dev_attr_eui.attr) {
2728 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2729 return 0;
2730 }
2731#ifdef CONFIG_NVME_MULTIPATH
2732 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2733 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2734 return 0;
2735 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2736 return 0;
2737 }
2738#endif
2739 return a->mode;
2740}
2741
2742static const struct attribute_group nvme_ns_id_attr_group = {
2743 .attrs = nvme_ns_id_attrs,
2744 .is_visible = nvme_ns_id_attrs_are_visible,
2745};
2746
2747const struct attribute_group *nvme_ns_id_attr_groups[] = {
2748 &nvme_ns_id_attr_group,
2749#ifdef CONFIG_NVM
2750 &nvme_nvm_attr_group,
2751#endif
2752 NULL,
2753};
2754
2755#define nvme_show_str_function(field) \
2756static ssize_t field##_show(struct device *dev, \
2757 struct device_attribute *attr, char *buf) \
2758{ \
2759 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2760 return sprintf(buf, "%.*s\n", \
2761 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2762} \
2763static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2764
2765nvme_show_str_function(model);
2766nvme_show_str_function(serial);
2767nvme_show_str_function(firmware_rev);
2768
2769#define nvme_show_int_function(field) \
2770static ssize_t field##_show(struct device *dev, \
2771 struct device_attribute *attr, char *buf) \
2772{ \
2773 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2774 return sprintf(buf, "%d\n", ctrl->field); \
2775} \
2776static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2777
2778nvme_show_int_function(cntlid);
2779
2780static ssize_t nvme_sysfs_delete(struct device *dev,
2781 struct device_attribute *attr, const char *buf,
2782 size_t count)
2783{
2784 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2785
2786 if (device_remove_file_self(dev, attr))
2787 nvme_delete_ctrl_sync(ctrl);
2788 return count;
2789}
2790static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2791
2792static ssize_t nvme_sysfs_show_transport(struct device *dev,
2793 struct device_attribute *attr,
2794 char *buf)
2795{
2796 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2797
2798 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2799}
2800static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2801
2802static ssize_t nvme_sysfs_show_state(struct device *dev,
2803 struct device_attribute *attr,
2804 char *buf)
2805{
2806 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2807 static const char *const state_name[] = {
2808 [NVME_CTRL_NEW] = "new",
2809 [NVME_CTRL_LIVE] = "live",
2810 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2811 [NVME_CTRL_RESETTING] = "resetting",
2812 [NVME_CTRL_CONNECTING] = "connecting",
2813 [NVME_CTRL_DELETING] = "deleting",
2814 [NVME_CTRL_DEAD] = "dead",
2815 };
2816
2817 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2818 state_name[ctrl->state])
2819 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2820
2821 return sprintf(buf, "unknown state\n");
2822}
2823
2824static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2825
2826static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2827 struct device_attribute *attr,
2828 char *buf)
2829{
2830 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2831
2832 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2833}
2834static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2835
2836static ssize_t nvme_sysfs_show_address(struct device *dev,
2837 struct device_attribute *attr,
2838 char *buf)
2839{
2840 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2841
2842 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2843}
2844static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2845
2846static struct attribute *nvme_dev_attrs[] = {
2847 &dev_attr_reset_controller.attr,
2848 &dev_attr_rescan_controller.attr,
2849 &dev_attr_model.attr,
2850 &dev_attr_serial.attr,
2851 &dev_attr_firmware_rev.attr,
2852 &dev_attr_cntlid.attr,
2853 &dev_attr_delete_controller.attr,
2854 &dev_attr_transport.attr,
2855 &dev_attr_subsysnqn.attr,
2856 &dev_attr_address.attr,
2857 &dev_attr_state.attr,
2858 NULL
2859};
2860
2861static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2862 struct attribute *a, int n)
2863{
2864 struct device *dev = container_of(kobj, struct device, kobj);
2865 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2866
2867 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2868 return 0;
2869 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2870 return 0;
2871
2872 return a->mode;
2873}
2874
2875static struct attribute_group nvme_dev_attrs_group = {
2876 .attrs = nvme_dev_attrs,
2877 .is_visible = nvme_dev_attrs_are_visible,
2878};
2879
2880static const struct attribute_group *nvme_dev_attr_groups[] = {
2881 &nvme_dev_attrs_group,
2882 NULL,
2883};
2884
2885static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2886 unsigned nsid)
2887{
2888 struct nvme_ns_head *h;
2889
2890 lockdep_assert_held(&subsys->lock);
2891
2892 list_for_each_entry(h, &subsys->nsheads, entry) {
2893 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2894 return h;
2895 }
2896
2897 return NULL;
2898}
2899
2900static int __nvme_check_ids(struct nvme_subsystem *subsys,
2901 struct nvme_ns_head *new)
2902{
2903 struct nvme_ns_head *h;
2904
2905 lockdep_assert_held(&subsys->lock);
2906
2907 list_for_each_entry(h, &subsys->nsheads, entry) {
2908 if (nvme_ns_ids_valid(&new->ids) &&
2909 !list_empty(&h->list) &&
2910 nvme_ns_ids_equal(&new->ids, &h->ids))
2911 return -EINVAL;
2912 }
2913
2914 return 0;
2915}
2916
2917static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2918 unsigned nsid, struct nvme_id_ns *id)
2919{
2920 struct nvme_ns_head *head;
2921 size_t size = sizeof(*head);
2922 int ret = -ENOMEM;
2923
2924#ifdef CONFIG_NVME_MULTIPATH
2925 size += num_possible_nodes() * sizeof(struct nvme_ns *);
2926#endif
2927
2928 head = kzalloc(size, GFP_KERNEL);
2929 if (!head)
2930 goto out;
2931 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2932 if (ret < 0)
2933 goto out_free_head;
2934 head->instance = ret;
2935 INIT_LIST_HEAD(&head->list);
2936 ret = init_srcu_struct(&head->srcu);
2937 if (ret)
2938 goto out_ida_remove;
2939 head->subsys = ctrl->subsys;
2940 head->ns_id = nsid;
2941 kref_init(&head->ref);
2942
2943 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2944
2945 ret = __nvme_check_ids(ctrl->subsys, head);
2946 if (ret) {
2947 dev_err(ctrl->device,
2948 "duplicate IDs for nsid %d\n", nsid);
2949 goto out_cleanup_srcu;
2950 }
2951
2952 ret = nvme_mpath_alloc_disk(ctrl, head);
2953 if (ret)
2954 goto out_cleanup_srcu;
2955
2956 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2957
2958 kref_get(&ctrl->subsys->ref);
2959
2960 return head;
2961out_cleanup_srcu:
2962 cleanup_srcu_struct(&head->srcu);
2963out_ida_remove:
2964 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2965out_free_head:
2966 kfree(head);
2967out:
2968 return ERR_PTR(ret);
2969}
2970
2971static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2972 struct nvme_id_ns *id)
2973{
2974 struct nvme_ctrl *ctrl = ns->ctrl;
2975 bool is_shared = id->nmic & (1 << 0);
2976 struct nvme_ns_head *head = NULL;
2977 int ret = 0;
2978
2979 mutex_lock(&ctrl->subsys->lock);
2980 if (is_shared)
2981 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2982 if (!head) {
2983 head = nvme_alloc_ns_head(ctrl, nsid, id);
2984 if (IS_ERR(head)) {
2985 ret = PTR_ERR(head);
2986 goto out_unlock;
2987 }
2988 } else {
2989 struct nvme_ns_ids ids;
2990
2991 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2992 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2993 dev_err(ctrl->device,
2994 "IDs don't match for shared namespace %d\n",
2995 nsid);
2996 ret = -EINVAL;
2997 goto out_unlock;
2998 }
2999 }
3000
3001 list_add_tail(&ns->siblings, &head->list);
3002 ns->head = head;
3003
3004out_unlock:
3005 mutex_unlock(&ctrl->subsys->lock);
3006 return ret;
3007}
3008
3009static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3010{
3011 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3012 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3013
3014 return nsa->head->ns_id - nsb->head->ns_id;
3015}
3016
3017static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3018{
3019 struct nvme_ns *ns, *ret = NULL;
3020
3021 down_read(&ctrl->namespaces_rwsem);
3022 list_for_each_entry(ns, &ctrl->namespaces, list) {
3023 if (ns->head->ns_id == nsid) {
3024 if (!kref_get_unless_zero(&ns->kref))
3025 continue;
3026 ret = ns;
3027 break;
3028 }
3029 if (ns->head->ns_id > nsid)
3030 break;
3031 }
3032 up_read(&ctrl->namespaces_rwsem);
3033 return ret;
3034}
3035
3036static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3037{
3038 struct streams_directive_params s;
3039 int ret;
3040
3041 if (!ctrl->nr_streams)
3042 return 0;
3043
3044 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3045 if (ret)
3046 return ret;
3047
3048 ns->sws = le32_to_cpu(s.sws);
3049 ns->sgs = le16_to_cpu(s.sgs);
3050
3051 if (ns->sws) {
3052 unsigned int bs = 1 << ns->lba_shift;
3053
3054 blk_queue_io_min(ns->queue, bs * ns->sws);
3055 if (ns->sgs)
3056 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3057 }
3058
3059 return 0;
3060}
3061
3062static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3063{
3064 struct nvme_ns *ns;
3065 struct gendisk *disk;
3066 struct nvme_id_ns *id;
3067 char disk_name[DISK_NAME_LEN];
3068 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3069
3070 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3071 if (!ns)
3072 return;
3073
3074 ns->queue = blk_mq_init_queue(ctrl->tagset);
3075 if (IS_ERR(ns->queue))
3076 goto out_free_ns;
3077
3078 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3079 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3080 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3081
3082 ns->queue->queuedata = ns;
3083 ns->ctrl = ctrl;
3084
3085 kref_init(&ns->kref);
3086 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3087
3088 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3089 nvme_set_queue_limits(ctrl, ns->queue);
3090
3091 id = nvme_identify_ns(ctrl, nsid);
3092 if (!id)
3093 goto out_free_queue;
3094
3095 if (id->ncap == 0)
3096 goto out_free_id;
3097
3098 if (nvme_init_ns_head(ns, nsid, id))
3099 goto out_free_id;
3100 nvme_setup_streams_ns(ctrl, ns);
3101 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3102
3103 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3104 if (nvme_nvm_register(ns, disk_name, node)) {
3105 dev_warn(ctrl->device, "LightNVM init failure\n");
3106 goto out_unlink_ns;
3107 }
3108 }
3109
3110 disk = alloc_disk_node(0, node);
3111 if (!disk)
3112 goto out_unlink_ns;
3113
3114 disk->fops = &nvme_fops;
3115 disk->private_data = ns;
3116 disk->queue = ns->queue;
3117 disk->flags = flags;
3118 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3119 ns->disk = disk;
3120
3121 __nvme_revalidate_disk(disk, id);
3122
3123 down_write(&ctrl->namespaces_rwsem);
3124 list_add_tail(&ns->list, &ctrl->namespaces);
3125 up_write(&ctrl->namespaces_rwsem);
3126
3127 nvme_get_ctrl(ctrl);
3128
3129 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3130
3131 nvme_mpath_add_disk(ns, id);
3132 nvme_fault_inject_init(ns);
3133 kfree(id);
3134
3135 return;
3136 out_unlink_ns:
3137 mutex_lock(&ctrl->subsys->lock);
3138 list_del_rcu(&ns->siblings);
3139 mutex_unlock(&ctrl->subsys->lock);
3140 out_free_id:
3141 kfree(id);
3142 out_free_queue:
3143 blk_cleanup_queue(ns->queue);
3144 out_free_ns:
3145 kfree(ns);
3146}
3147
3148static void nvme_ns_remove(struct nvme_ns *ns)
3149{
3150 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3151 return;
3152
3153 nvme_fault_inject_fini(ns);
3154 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3155 del_gendisk(ns->disk);
3156 blk_cleanup_queue(ns->queue);
3157 if (blk_get_integrity(ns->disk))
3158 blk_integrity_unregister(ns->disk);
3159 }
3160
3161 mutex_lock(&ns->ctrl->subsys->lock);
3162 list_del_rcu(&ns->siblings);
3163 nvme_mpath_clear_current_path(ns);
3164 mutex_unlock(&ns->ctrl->subsys->lock);
3165
3166 down_write(&ns->ctrl->namespaces_rwsem);
3167 list_del_init(&ns->list);
3168 up_write(&ns->ctrl->namespaces_rwsem);
3169
3170 synchronize_srcu(&ns->head->srcu);
3171 nvme_mpath_check_last_path(ns);
3172 nvme_put_ns(ns);
3173}
3174
3175static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3176{
3177 struct nvme_ns *ns;
3178
3179 ns = nvme_find_get_ns(ctrl, nsid);
3180 if (ns) {
3181 if (ns->disk && revalidate_disk(ns->disk))
3182 nvme_ns_remove(ns);
3183 nvme_put_ns(ns);
3184 } else
3185 nvme_alloc_ns(ctrl, nsid);
3186}
3187
3188static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3189 unsigned nsid)
3190{
3191 struct nvme_ns *ns, *next;
3192 LIST_HEAD(rm_list);
3193
3194 down_write(&ctrl->namespaces_rwsem);
3195 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3196 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3197 list_move_tail(&ns->list, &rm_list);
3198 }
3199 up_write(&ctrl->namespaces_rwsem);
3200
3201 list_for_each_entry_safe(ns, next, &rm_list, list)
3202 nvme_ns_remove(ns);
3203
3204}
3205
3206static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3207{
3208 struct nvme_ns *ns;
3209 __le32 *ns_list;
3210 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3211 int ret = 0;
3212
3213 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3214 if (!ns_list)
3215 return -ENOMEM;
3216
3217 for (i = 0; i < num_lists; i++) {
3218 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3219 if (ret)
3220 goto free;
3221
3222 for (j = 0; j < min(nn, 1024U); j++) {
3223 nsid = le32_to_cpu(ns_list[j]);
3224 if (!nsid)
3225 goto out;
3226
3227 nvme_validate_ns(ctrl, nsid);
3228
3229 while (++prev < nsid) {
3230 ns = nvme_find_get_ns(ctrl, prev);
3231 if (ns) {
3232 nvme_ns_remove(ns);
3233 nvme_put_ns(ns);
3234 }
3235 }
3236 }
3237 nn -= j;
3238 }
3239 out:
3240 nvme_remove_invalid_namespaces(ctrl, prev);
3241 free:
3242 kfree(ns_list);
3243 return ret;
3244}
3245
3246static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3247{
3248 unsigned i;
3249
3250 for (i = 1; i <= nn; i++)
3251 nvme_validate_ns(ctrl, i);
3252
3253 nvme_remove_invalid_namespaces(ctrl, nn);
3254}
3255
3256static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3257{
3258 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3259 __le32 *log;
3260 int error;
3261
3262 log = kzalloc(log_size, GFP_KERNEL);
3263 if (!log)
3264 return;
3265
3266 /*
3267 * We need to read the log to clear the AEN, but we don't want to rely
3268 * on it for the changed namespace information as userspace could have
3269 * raced with us in reading the log page, which could cause us to miss
3270 * updates.
3271 */
3272 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3273 log_size, 0);
3274 if (error)
3275 dev_warn(ctrl->device,
3276 "reading changed ns log failed: %d\n", error);
3277
3278 kfree(log);
3279}
3280
3281static void nvme_scan_work(struct work_struct *work)
3282{
3283 struct nvme_ctrl *ctrl =
3284 container_of(work, struct nvme_ctrl, scan_work);
3285 struct nvme_id_ctrl *id;
3286 unsigned nn;
3287
3288 if (ctrl->state != NVME_CTRL_LIVE)
3289 return;
3290
3291 WARN_ON_ONCE(!ctrl->tagset);
3292
3293 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3294 dev_info(ctrl->device, "rescanning namespaces.\n");
3295 nvme_clear_changed_ns_log(ctrl);
3296 }
3297
3298 if (nvme_identify_ctrl(ctrl, &id))
3299 return;
3300
3301 nn = le32_to_cpu(id->nn);
3302 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3303 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3304 if (!nvme_scan_ns_list(ctrl, nn))
3305 goto out_free_id;
3306 }
3307 nvme_scan_ns_sequential(ctrl, nn);
3308out_free_id:
3309 kfree(id);
3310 down_write(&ctrl->namespaces_rwsem);
3311 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3312 up_write(&ctrl->namespaces_rwsem);
3313}
3314
3315/*
3316 * This function iterates the namespace list unlocked to allow recovery from
3317 * controller failure. It is up to the caller to ensure the namespace list is
3318 * not modified by scan work while this function is executing.
3319 */
3320void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3321{
3322 struct nvme_ns *ns, *next;
3323 LIST_HEAD(ns_list);
3324
3325 /* prevent racing with ns scanning */
3326 flush_work(&ctrl->scan_work);
3327
3328 /*
3329 * The dead states indicates the controller was not gracefully
3330 * disconnected. In that case, we won't be able to flush any data while
3331 * removing the namespaces' disks; fail all the queues now to avoid
3332 * potentially having to clean up the failed sync later.
3333 */
3334 if (ctrl->state == NVME_CTRL_DEAD)
3335 nvme_kill_queues(ctrl);
3336
3337 down_write(&ctrl->namespaces_rwsem);
3338 list_splice_init(&ctrl->namespaces, &ns_list);
3339 up_write(&ctrl->namespaces_rwsem);
3340
3341 list_for_each_entry_safe(ns, next, &ns_list, list)
3342 nvme_ns_remove(ns);
3343}
3344EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3345
3346static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3347{
3348 char *envp[2] = { NULL, NULL };
3349 u32 aen_result = ctrl->aen_result;
3350
3351 ctrl->aen_result = 0;
3352 if (!aen_result)
3353 return;
3354
3355 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3356 if (!envp[0])
3357 return;
3358 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3359 kfree(envp[0]);
3360}
3361
3362static void nvme_async_event_work(struct work_struct *work)
3363{
3364 struct nvme_ctrl *ctrl =
3365 container_of(work, struct nvme_ctrl, async_event_work);
3366
3367 nvme_aen_uevent(ctrl);
3368 ctrl->ops->submit_async_event(ctrl);
3369}
3370
3371static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3372{
3373
3374 u32 csts;
3375
3376 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3377 return false;
3378
3379 if (csts == ~0)
3380 return false;
3381
3382 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3383}
3384
3385static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3386{
3387 struct nvme_fw_slot_info_log *log;
3388
3389 log = kmalloc(sizeof(*log), GFP_KERNEL);
3390 if (!log)
3391 return;
3392
3393 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3394 sizeof(*log), 0))
3395 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3396 kfree(log);
3397}
3398
3399static void nvme_fw_act_work(struct work_struct *work)
3400{
3401 struct nvme_ctrl *ctrl = container_of(work,
3402 struct nvme_ctrl, fw_act_work);
3403 unsigned long fw_act_timeout;
3404
3405 if (ctrl->mtfa)
3406 fw_act_timeout = jiffies +
3407 msecs_to_jiffies(ctrl->mtfa * 100);
3408 else
3409 fw_act_timeout = jiffies +
3410 msecs_to_jiffies(admin_timeout * 1000);
3411
3412 nvme_stop_queues(ctrl);
3413 while (nvme_ctrl_pp_status(ctrl)) {
3414 if (time_after(jiffies, fw_act_timeout)) {
3415 dev_warn(ctrl->device,
3416 "Fw activation timeout, reset controller\n");
3417 nvme_reset_ctrl(ctrl);
3418 break;
3419 }
3420 msleep(100);
3421 }
3422
3423 if (ctrl->state != NVME_CTRL_LIVE)
3424 return;
3425
3426 nvme_start_queues(ctrl);
3427 /* read FW slot information to clear the AER */
3428 nvme_get_fw_slot_info(ctrl);
3429}
3430
3431static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3432{
3433 u32 aer_notice_type = (result & 0xff00) >> 8;
3434
3435 switch (aer_notice_type) {
3436 case NVME_AER_NOTICE_NS_CHANGED:
3437 trace_nvme_async_event(ctrl, aer_notice_type);
3438 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3439 nvme_queue_scan(ctrl);
3440 break;
3441 case NVME_AER_NOTICE_FW_ACT_STARTING:
3442 trace_nvme_async_event(ctrl, aer_notice_type);
3443 queue_work(nvme_wq, &ctrl->fw_act_work);
3444 break;
3445#ifdef CONFIG_NVME_MULTIPATH
3446 case NVME_AER_NOTICE_ANA:
3447 trace_nvme_async_event(ctrl, aer_notice_type);
3448 if (!ctrl->ana_log_buf)
3449 break;
3450 queue_work(nvme_wq, &ctrl->ana_work);
3451 break;
3452#endif
3453 default:
3454 dev_warn(ctrl->device, "async event result %08x\n", result);
3455 }
3456}
3457
3458void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3459 volatile union nvme_result *res)
3460{
3461 u32 result = le32_to_cpu(res->u32);
3462 u32 aer_type = result & 0x07;
3463
3464 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3465 return;
3466
3467 switch (aer_type) {
3468 case NVME_AER_NOTICE:
3469 nvme_handle_aen_notice(ctrl, result);
3470 break;
3471 case NVME_AER_ERROR:
3472 case NVME_AER_SMART:
3473 case NVME_AER_CSS:
3474 case NVME_AER_VS:
3475 trace_nvme_async_event(ctrl, aer_type);
3476 ctrl->aen_result = result;
3477 break;
3478 default:
3479 break;
3480 }
3481 queue_work(nvme_wq, &ctrl->async_event_work);
3482}
3483EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3484
3485void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3486{
3487 nvme_mpath_stop(ctrl);
3488 nvme_stop_keep_alive(ctrl);
3489 flush_work(&ctrl->async_event_work);
3490 cancel_work_sync(&ctrl->fw_act_work);
3491 if (ctrl->ops->stop_ctrl)
3492 ctrl->ops->stop_ctrl(ctrl);
3493}
3494EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3495
3496void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3497{
3498 if (ctrl->kato)
3499 nvme_start_keep_alive(ctrl);
3500
3501 if (ctrl->queue_count > 1) {
3502 nvme_queue_scan(ctrl);
3503 nvme_enable_aen(ctrl);
3504 queue_work(nvme_wq, &ctrl->async_event_work);
3505 nvme_start_queues(ctrl);
3506 }
3507}
3508EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3509
3510void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3511{
3512 cdev_device_del(&ctrl->cdev, ctrl->device);
3513}
3514EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3515
3516static void nvme_free_ctrl(struct device *dev)
3517{
3518 struct nvme_ctrl *ctrl =
3519 container_of(dev, struct nvme_ctrl, ctrl_device);
3520 struct nvme_subsystem *subsys = ctrl->subsys;
3521
3522 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3523 kfree(ctrl->effects);
3524 nvme_mpath_uninit(ctrl);
3525
3526 if (subsys) {
3527 mutex_lock(&subsys->lock);
3528 list_del(&ctrl->subsys_entry);
3529 mutex_unlock(&subsys->lock);
3530 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3531 }
3532
3533 ctrl->ops->free_ctrl(ctrl);
3534
3535 if (subsys)
3536 nvme_put_subsystem(subsys);
3537}
3538
3539/*
3540 * Initialize a NVMe controller structures. This needs to be called during
3541 * earliest initialization so that we have the initialized structured around
3542 * during probing.
3543 */
3544int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3545 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3546{
3547 int ret;
3548
3549 ctrl->state = NVME_CTRL_NEW;
3550 spin_lock_init(&ctrl->lock);
3551 INIT_LIST_HEAD(&ctrl->namespaces);
3552 init_rwsem(&ctrl->namespaces_rwsem);
3553 ctrl->dev = dev;
3554 ctrl->ops = ops;
3555 ctrl->quirks = quirks;
3556 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3557 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3558 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3559 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3560
3561 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3562 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3563 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3564
3565 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3566 if (ret < 0)
3567 goto out;
3568 ctrl->instance = ret;
3569
3570 device_initialize(&ctrl->ctrl_device);
3571 ctrl->device = &ctrl->ctrl_device;
3572 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3573 ctrl->device->class = nvme_class;
3574 ctrl->device->parent = ctrl->dev;
3575 ctrl->device->groups = nvme_dev_attr_groups;
3576 ctrl->device->release = nvme_free_ctrl;
3577 dev_set_drvdata(ctrl->device, ctrl);
3578 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3579 if (ret)
3580 goto out_release_instance;
3581
3582 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3583 ctrl->cdev.owner = ops->module;
3584 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3585 if (ret)
3586 goto out_free_name;
3587
3588 /*
3589 * Initialize latency tolerance controls. The sysfs files won't
3590 * be visible to userspace unless the device actually supports APST.
3591 */
3592 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3593 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3594 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3595
3596 return 0;
3597out_free_name:
3598 kfree_const(ctrl->device->kobj.name);
3599out_release_instance:
3600 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3601out:
3602 return ret;
3603}
3604EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3605
3606/**
3607 * nvme_kill_queues(): Ends all namespace queues
3608 * @ctrl: the dead controller that needs to end
3609 *
3610 * Call this function when the driver determines it is unable to get the
3611 * controller in a state capable of servicing IO.
3612 */
3613void nvme_kill_queues(struct nvme_ctrl *ctrl)
3614{
3615 struct nvme_ns *ns;
3616
3617 down_read(&ctrl->namespaces_rwsem);
3618
3619 /* Forcibly unquiesce queues to avoid blocking dispatch */
3620 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3621 blk_mq_unquiesce_queue(ctrl->admin_q);
3622
3623 list_for_each_entry(ns, &ctrl->namespaces, list)
3624 nvme_set_queue_dying(ns);
3625
3626 up_read(&ctrl->namespaces_rwsem);
3627}
3628EXPORT_SYMBOL_GPL(nvme_kill_queues);
3629
3630void nvme_unfreeze(struct nvme_ctrl *ctrl)
3631{
3632 struct nvme_ns *ns;
3633
3634 down_read(&ctrl->namespaces_rwsem);
3635 list_for_each_entry(ns, &ctrl->namespaces, list)
3636 blk_mq_unfreeze_queue(ns->queue);
3637 up_read(&ctrl->namespaces_rwsem);
3638}
3639EXPORT_SYMBOL_GPL(nvme_unfreeze);
3640
3641void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3642{
3643 struct nvme_ns *ns;
3644
3645 down_read(&ctrl->namespaces_rwsem);
3646 list_for_each_entry(ns, &ctrl->namespaces, list) {
3647 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3648 if (timeout <= 0)
3649 break;
3650 }
3651 up_read(&ctrl->namespaces_rwsem);
3652}
3653EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3654
3655void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3656{
3657 struct nvme_ns *ns;
3658
3659 down_read(&ctrl->namespaces_rwsem);
3660 list_for_each_entry(ns, &ctrl->namespaces, list)
3661 blk_mq_freeze_queue_wait(ns->queue);
3662 up_read(&ctrl->namespaces_rwsem);
3663}
3664EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3665
3666void nvme_start_freeze(struct nvme_ctrl *ctrl)
3667{
3668 struct nvme_ns *ns;
3669
3670 down_read(&ctrl->namespaces_rwsem);
3671 list_for_each_entry(ns, &ctrl->namespaces, list)
3672 blk_freeze_queue_start(ns->queue);
3673 up_read(&ctrl->namespaces_rwsem);
3674}
3675EXPORT_SYMBOL_GPL(nvme_start_freeze);
3676
3677void nvme_stop_queues(struct nvme_ctrl *ctrl)
3678{
3679 struct nvme_ns *ns;
3680
3681 down_read(&ctrl->namespaces_rwsem);
3682 list_for_each_entry(ns, &ctrl->namespaces, list)
3683 blk_mq_quiesce_queue(ns->queue);
3684 up_read(&ctrl->namespaces_rwsem);
3685}
3686EXPORT_SYMBOL_GPL(nvme_stop_queues);
3687
3688void nvme_start_queues(struct nvme_ctrl *ctrl)
3689{
3690 struct nvme_ns *ns;
3691
3692 down_read(&ctrl->namespaces_rwsem);
3693 list_for_each_entry(ns, &ctrl->namespaces, list)
3694 blk_mq_unquiesce_queue(ns->queue);
3695 up_read(&ctrl->namespaces_rwsem);
3696}
3697EXPORT_SYMBOL_GPL(nvme_start_queues);
3698
3699int __init nvme_core_init(void)
3700{
3701 int result = -ENOMEM;
3702
3703 nvme_wq = alloc_workqueue("nvme-wq",
3704 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3705 if (!nvme_wq)
3706 goto out;
3707
3708 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3709 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3710 if (!nvme_reset_wq)
3711 goto destroy_wq;
3712
3713 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3714 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3715 if (!nvme_delete_wq)
3716 goto destroy_reset_wq;
3717
3718 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3719 if (result < 0)
3720 goto destroy_delete_wq;
3721
3722 nvme_class = class_create(THIS_MODULE, "nvme");
3723 if (IS_ERR(nvme_class)) {
3724 result = PTR_ERR(nvme_class);
3725 goto unregister_chrdev;
3726 }
3727
3728 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3729 if (IS_ERR(nvme_subsys_class)) {
3730 result = PTR_ERR(nvme_subsys_class);
3731 goto destroy_class;
3732 }
3733 return 0;
3734
3735destroy_class:
3736 class_destroy(nvme_class);
3737unregister_chrdev:
3738 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3739destroy_delete_wq:
3740 destroy_workqueue(nvme_delete_wq);
3741destroy_reset_wq:
3742 destroy_workqueue(nvme_reset_wq);
3743destroy_wq:
3744 destroy_workqueue(nvme_wq);
3745out:
3746 return result;
3747}
3748
3749void nvme_core_exit(void)
3750{
3751 ida_destroy(&nvme_subsystems_ida);
3752 class_destroy(nvme_subsys_class);
3753 class_destroy(nvme_class);
3754 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3755 destroy_workqueue(nvme_delete_wq);
3756 destroy_workqueue(nvme_reset_wq);
3757 destroy_workqueue(nvme_wq);
3758}
3759
3760MODULE_LICENSE("GPL");
3761MODULE_VERSION("1.0");
3762module_init(nvme_core_init);
3763module_exit(nvme_core_exit);