at v4.20 130 kB view raw
1/* 2 * CFQ, or complete fairness queueing, disk scheduler. 3 * 4 * Based on ideas from a previously unfinished io 5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. 6 * 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 8 */ 9#include <linux/module.h> 10#include <linux/slab.h> 11#include <linux/sched/clock.h> 12#include <linux/blkdev.h> 13#include <linux/elevator.h> 14#include <linux/ktime.h> 15#include <linux/rbtree.h> 16#include <linux/ioprio.h> 17#include <linux/blktrace_api.h> 18#include <linux/blk-cgroup.h> 19#include "blk.h" 20#include "blk-wbt.h" 21 22/* 23 * tunables 24 */ 25/* max queue in one round of service */ 26static const int cfq_quantum = 8; 27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 28/* maximum backwards seek, in KiB */ 29static const int cfq_back_max = 16 * 1024; 30/* penalty of a backwards seek */ 31static const int cfq_back_penalty = 2; 32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10; 33static u64 cfq_slice_async = NSEC_PER_SEC / 25; 34static const int cfq_slice_async_rq = 2; 35static u64 cfq_slice_idle = NSEC_PER_SEC / 125; 36static u64 cfq_group_idle = NSEC_PER_SEC / 125; 37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */ 38static const int cfq_hist_divisor = 4; 39 40/* 41 * offset from end of queue service tree for idle class 42 */ 43#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5) 44/* offset from end of group service tree under time slice mode */ 45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5) 46/* offset from end of group service under IOPS mode */ 47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5) 48 49/* 50 * below this threshold, we consider thinktime immediate 51 */ 52#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ) 53 54#define CFQ_SLICE_SCALE (5) 55#define CFQ_HW_QUEUE_MIN (5) 56#define CFQ_SERVICE_SHIFT 12 57 58#define CFQQ_SEEK_THR (sector_t)(8 * 100) 59#define CFQQ_CLOSE_THR (sector_t)(8 * 1024) 60#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 61#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8) 62 63#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq) 64#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0]) 65#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1]) 66 67static struct kmem_cache *cfq_pool; 68 69#define CFQ_PRIO_LISTS IOPRIO_BE_NR 70#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 71#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) 72 73#define sample_valid(samples) ((samples) > 80) 74#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node) 75 76/* blkio-related constants */ 77#define CFQ_WEIGHT_LEGACY_MIN 10 78#define CFQ_WEIGHT_LEGACY_DFL 500 79#define CFQ_WEIGHT_LEGACY_MAX 1000 80 81struct cfq_ttime { 82 u64 last_end_request; 83 84 u64 ttime_total; 85 u64 ttime_mean; 86 unsigned long ttime_samples; 87}; 88 89/* 90 * Most of our rbtree usage is for sorting with min extraction, so 91 * if we cache the leftmost node we don't have to walk down the tree 92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should 93 * move this into the elevator for the rq sorting as well. 94 */ 95struct cfq_rb_root { 96 struct rb_root_cached rb; 97 struct rb_node *rb_rightmost; 98 unsigned count; 99 u64 min_vdisktime; 100 struct cfq_ttime ttime; 101}; 102#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \ 103 .rb_rightmost = NULL, \ 104 .ttime = {.last_end_request = ktime_get_ns(),},} 105 106/* 107 * Per process-grouping structure 108 */ 109struct cfq_queue { 110 /* reference count */ 111 int ref; 112 /* various state flags, see below */ 113 unsigned int flags; 114 /* parent cfq_data */ 115 struct cfq_data *cfqd; 116 /* service_tree member */ 117 struct rb_node rb_node; 118 /* service_tree key */ 119 u64 rb_key; 120 /* prio tree member */ 121 struct rb_node p_node; 122 /* prio tree root we belong to, if any */ 123 struct rb_root *p_root; 124 /* sorted list of pending requests */ 125 struct rb_root sort_list; 126 /* if fifo isn't expired, next request to serve */ 127 struct request *next_rq; 128 /* requests queued in sort_list */ 129 int queued[2]; 130 /* currently allocated requests */ 131 int allocated[2]; 132 /* fifo list of requests in sort_list */ 133 struct list_head fifo; 134 135 /* time when queue got scheduled in to dispatch first request. */ 136 u64 dispatch_start; 137 u64 allocated_slice; 138 u64 slice_dispatch; 139 /* time when first request from queue completed and slice started. */ 140 u64 slice_start; 141 u64 slice_end; 142 s64 slice_resid; 143 144 /* pending priority requests */ 145 int prio_pending; 146 /* number of requests that are on the dispatch list or inside driver */ 147 int dispatched; 148 149 /* io prio of this group */ 150 unsigned short ioprio, org_ioprio; 151 unsigned short ioprio_class, org_ioprio_class; 152 153 pid_t pid; 154 155 u32 seek_history; 156 sector_t last_request_pos; 157 158 struct cfq_rb_root *service_tree; 159 struct cfq_queue *new_cfqq; 160 struct cfq_group *cfqg; 161 /* Number of sectors dispatched from queue in single dispatch round */ 162 unsigned long nr_sectors; 163}; 164 165/* 166 * First index in the service_trees. 167 * IDLE is handled separately, so it has negative index 168 */ 169enum wl_class_t { 170 BE_WORKLOAD = 0, 171 RT_WORKLOAD = 1, 172 IDLE_WORKLOAD = 2, 173 CFQ_PRIO_NR, 174}; 175 176/* 177 * Second index in the service_trees. 178 */ 179enum wl_type_t { 180 ASYNC_WORKLOAD = 0, 181 SYNC_NOIDLE_WORKLOAD = 1, 182 SYNC_WORKLOAD = 2 183}; 184 185struct cfqg_stats { 186#ifdef CONFIG_CFQ_GROUP_IOSCHED 187 /* number of ios merged */ 188 struct blkg_rwstat merged; 189 /* total time spent on device in ns, may not be accurate w/ queueing */ 190 struct blkg_rwstat service_time; 191 /* total time spent waiting in scheduler queue in ns */ 192 struct blkg_rwstat wait_time; 193 /* number of IOs queued up */ 194 struct blkg_rwstat queued; 195 /* total disk time and nr sectors dispatched by this group */ 196 struct blkg_stat time; 197#ifdef CONFIG_DEBUG_BLK_CGROUP 198 /* time not charged to this cgroup */ 199 struct blkg_stat unaccounted_time; 200 /* sum of number of ios queued across all samples */ 201 struct blkg_stat avg_queue_size_sum; 202 /* count of samples taken for average */ 203 struct blkg_stat avg_queue_size_samples; 204 /* how many times this group has been removed from service tree */ 205 struct blkg_stat dequeue; 206 /* total time spent waiting for it to be assigned a timeslice. */ 207 struct blkg_stat group_wait_time; 208 /* time spent idling for this blkcg_gq */ 209 struct blkg_stat idle_time; 210 /* total time with empty current active q with other requests queued */ 211 struct blkg_stat empty_time; 212 /* fields after this shouldn't be cleared on stat reset */ 213 u64 start_group_wait_time; 214 u64 start_idle_time; 215 u64 start_empty_time; 216 uint16_t flags; 217#endif /* CONFIG_DEBUG_BLK_CGROUP */ 218#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 219}; 220 221/* Per-cgroup data */ 222struct cfq_group_data { 223 /* must be the first member */ 224 struct blkcg_policy_data cpd; 225 226 unsigned int weight; 227 unsigned int leaf_weight; 228}; 229 230/* This is per cgroup per device grouping structure */ 231struct cfq_group { 232 /* must be the first member */ 233 struct blkg_policy_data pd; 234 235 /* group service_tree member */ 236 struct rb_node rb_node; 237 238 /* group service_tree key */ 239 u64 vdisktime; 240 241 /* 242 * The number of active cfqgs and sum of their weights under this 243 * cfqg. This covers this cfqg's leaf_weight and all children's 244 * weights, but does not cover weights of further descendants. 245 * 246 * If a cfqg is on the service tree, it's active. An active cfqg 247 * also activates its parent and contributes to the children_weight 248 * of the parent. 249 */ 250 int nr_active; 251 unsigned int children_weight; 252 253 /* 254 * vfraction is the fraction of vdisktime that the tasks in this 255 * cfqg are entitled to. This is determined by compounding the 256 * ratios walking up from this cfqg to the root. 257 * 258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all 259 * vfractions on a service tree is approximately 1. The sum may 260 * deviate a bit due to rounding errors and fluctuations caused by 261 * cfqgs entering and leaving the service tree. 262 */ 263 unsigned int vfraction; 264 265 /* 266 * There are two weights - (internal) weight is the weight of this 267 * cfqg against the sibling cfqgs. leaf_weight is the wight of 268 * this cfqg against the child cfqgs. For the root cfqg, both 269 * weights are kept in sync for backward compatibility. 270 */ 271 unsigned int weight; 272 unsigned int new_weight; 273 unsigned int dev_weight; 274 275 unsigned int leaf_weight; 276 unsigned int new_leaf_weight; 277 unsigned int dev_leaf_weight; 278 279 /* number of cfqq currently on this group */ 280 int nr_cfqq; 281 282 /* 283 * Per group busy queues average. Useful for workload slice calc. We 284 * create the array for each prio class but at run time it is used 285 * only for RT and BE class and slot for IDLE class remains unused. 286 * This is primarily done to avoid confusion and a gcc warning. 287 */ 288 unsigned int busy_queues_avg[CFQ_PRIO_NR]; 289 /* 290 * rr lists of queues with requests. We maintain service trees for 291 * RT and BE classes. These trees are subdivided in subclasses 292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE 293 * class there is no subclassification and all the cfq queues go on 294 * a single tree service_tree_idle. 295 * Counts are embedded in the cfq_rb_root 296 */ 297 struct cfq_rb_root service_trees[2][3]; 298 struct cfq_rb_root service_tree_idle; 299 300 u64 saved_wl_slice; 301 enum wl_type_t saved_wl_type; 302 enum wl_class_t saved_wl_class; 303 304 /* number of requests that are on the dispatch list or inside driver */ 305 int dispatched; 306 struct cfq_ttime ttime; 307 struct cfqg_stats stats; /* stats for this cfqg */ 308 309 /* async queue for each priority case */ 310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; 311 struct cfq_queue *async_idle_cfqq; 312 313}; 314 315struct cfq_io_cq { 316 struct io_cq icq; /* must be the first member */ 317 struct cfq_queue *cfqq[2]; 318 struct cfq_ttime ttime; 319 int ioprio; /* the current ioprio */ 320#ifdef CONFIG_CFQ_GROUP_IOSCHED 321 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 322#endif 323}; 324 325/* 326 * Per block device queue structure 327 */ 328struct cfq_data { 329 struct request_queue *queue; 330 /* Root service tree for cfq_groups */ 331 struct cfq_rb_root grp_service_tree; 332 struct cfq_group *root_group; 333 334 /* 335 * The priority currently being served 336 */ 337 enum wl_class_t serving_wl_class; 338 enum wl_type_t serving_wl_type; 339 u64 workload_expires; 340 struct cfq_group *serving_group; 341 342 /* 343 * Each priority tree is sorted by next_request position. These 344 * trees are used when determining if two or more queues are 345 * interleaving requests (see cfq_close_cooperator). 346 */ 347 struct rb_root prio_trees[CFQ_PRIO_LISTS]; 348 349 unsigned int busy_queues; 350 unsigned int busy_sync_queues; 351 352 int rq_in_driver; 353 int rq_in_flight[2]; 354 355 /* 356 * queue-depth detection 357 */ 358 int rq_queued; 359 int hw_tag; 360 /* 361 * hw_tag can be 362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) 363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth) 364 * 0 => no NCQ 365 */ 366 int hw_tag_est_depth; 367 unsigned int hw_tag_samples; 368 369 /* 370 * idle window management 371 */ 372 struct hrtimer idle_slice_timer; 373 struct work_struct unplug_work; 374 375 struct cfq_queue *active_queue; 376 struct cfq_io_cq *active_cic; 377 378 sector_t last_position; 379 380 /* 381 * tunables, see top of file 382 */ 383 unsigned int cfq_quantum; 384 unsigned int cfq_back_penalty; 385 unsigned int cfq_back_max; 386 unsigned int cfq_slice_async_rq; 387 unsigned int cfq_latency; 388 u64 cfq_fifo_expire[2]; 389 u64 cfq_slice[2]; 390 u64 cfq_slice_idle; 391 u64 cfq_group_idle; 392 u64 cfq_target_latency; 393 394 /* 395 * Fallback dummy cfqq for extreme OOM conditions 396 */ 397 struct cfq_queue oom_cfqq; 398 399 u64 last_delayed_sync; 400}; 401 402static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); 403static void cfq_put_queue(struct cfq_queue *cfqq); 404 405static struct cfq_rb_root *st_for(struct cfq_group *cfqg, 406 enum wl_class_t class, 407 enum wl_type_t type) 408{ 409 if (!cfqg) 410 return NULL; 411 412 if (class == IDLE_WORKLOAD) 413 return &cfqg->service_tree_idle; 414 415 return &cfqg->service_trees[class][type]; 416} 417 418enum cfqq_state_flags { 419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */ 420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */ 421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */ 422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */ 423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ 424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */ 425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */ 426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */ 427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */ 428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */ 429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */ 430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */ 431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */ 432}; 433 434#define CFQ_CFQQ_FNS(name) \ 435static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ 436{ \ 437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ 438} \ 439static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ 440{ \ 441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ 442} \ 443static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ 444{ \ 445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ 446} 447 448CFQ_CFQQ_FNS(on_rr); 449CFQ_CFQQ_FNS(wait_request); 450CFQ_CFQQ_FNS(must_dispatch); 451CFQ_CFQQ_FNS(must_alloc_slice); 452CFQ_CFQQ_FNS(fifo_expire); 453CFQ_CFQQ_FNS(idle_window); 454CFQ_CFQQ_FNS(prio_changed); 455CFQ_CFQQ_FNS(slice_new); 456CFQ_CFQQ_FNS(sync); 457CFQ_CFQQ_FNS(coop); 458CFQ_CFQQ_FNS(split_coop); 459CFQ_CFQQ_FNS(deep); 460CFQ_CFQQ_FNS(wait_busy); 461#undef CFQ_CFQQ_FNS 462 463#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 464 465/* cfqg stats flags */ 466enum cfqg_stats_flags { 467 CFQG_stats_waiting = 0, 468 CFQG_stats_idling, 469 CFQG_stats_empty, 470}; 471 472#define CFQG_FLAG_FNS(name) \ 473static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \ 474{ \ 475 stats->flags |= (1 << CFQG_stats_##name); \ 476} \ 477static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \ 478{ \ 479 stats->flags &= ~(1 << CFQG_stats_##name); \ 480} \ 481static inline int cfqg_stats_##name(struct cfqg_stats *stats) \ 482{ \ 483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \ 484} \ 485 486CFQG_FLAG_FNS(waiting) 487CFQG_FLAG_FNS(idling) 488CFQG_FLAG_FNS(empty) 489#undef CFQG_FLAG_FNS 490 491/* This should be called with the queue_lock held. */ 492static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) 493{ 494 u64 now; 495 496 if (!cfqg_stats_waiting(stats)) 497 return; 498 499 now = ktime_get_ns(); 500 if (now > stats->start_group_wait_time) 501 blkg_stat_add(&stats->group_wait_time, 502 now - stats->start_group_wait_time); 503 cfqg_stats_clear_waiting(stats); 504} 505 506/* This should be called with the queue_lock held. */ 507static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, 508 struct cfq_group *curr_cfqg) 509{ 510 struct cfqg_stats *stats = &cfqg->stats; 511 512 if (cfqg_stats_waiting(stats)) 513 return; 514 if (cfqg == curr_cfqg) 515 return; 516 stats->start_group_wait_time = ktime_get_ns(); 517 cfqg_stats_mark_waiting(stats); 518} 519 520/* This should be called with the queue_lock held. */ 521static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) 522{ 523 u64 now; 524 525 if (!cfqg_stats_empty(stats)) 526 return; 527 528 now = ktime_get_ns(); 529 if (now > stats->start_empty_time) 530 blkg_stat_add(&stats->empty_time, 531 now - stats->start_empty_time); 532 cfqg_stats_clear_empty(stats); 533} 534 535static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) 536{ 537 blkg_stat_add(&cfqg->stats.dequeue, 1); 538} 539 540static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) 541{ 542 struct cfqg_stats *stats = &cfqg->stats; 543 544 if (blkg_rwstat_total(&stats->queued)) 545 return; 546 547 /* 548 * group is already marked empty. This can happen if cfqq got new 549 * request in parent group and moved to this group while being added 550 * to service tree. Just ignore the event and move on. 551 */ 552 if (cfqg_stats_empty(stats)) 553 return; 554 555 stats->start_empty_time = ktime_get_ns(); 556 cfqg_stats_mark_empty(stats); 557} 558 559static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) 560{ 561 struct cfqg_stats *stats = &cfqg->stats; 562 563 if (cfqg_stats_idling(stats)) { 564 u64 now = ktime_get_ns(); 565 566 if (now > stats->start_idle_time) 567 blkg_stat_add(&stats->idle_time, 568 now - stats->start_idle_time); 569 cfqg_stats_clear_idling(stats); 570 } 571} 572 573static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) 574{ 575 struct cfqg_stats *stats = &cfqg->stats; 576 577 BUG_ON(cfqg_stats_idling(stats)); 578 579 stats->start_idle_time = ktime_get_ns(); 580 cfqg_stats_mark_idling(stats); 581} 582 583static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) 584{ 585 struct cfqg_stats *stats = &cfqg->stats; 586 587 blkg_stat_add(&stats->avg_queue_size_sum, 588 blkg_rwstat_total(&stats->queued)); 589 blkg_stat_add(&stats->avg_queue_size_samples, 1); 590 cfqg_stats_update_group_wait_time(stats); 591} 592 593#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 594 595static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } 596static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } 597static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } 598static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } 599static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } 600static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } 601static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } 602 603#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 604 605#ifdef CONFIG_CFQ_GROUP_IOSCHED 606 607static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) 608{ 609 return pd ? container_of(pd, struct cfq_group, pd) : NULL; 610} 611 612static struct cfq_group_data 613*cpd_to_cfqgd(struct blkcg_policy_data *cpd) 614{ 615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL; 616} 617 618static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) 619{ 620 return pd_to_blkg(&cfqg->pd); 621} 622 623static struct blkcg_policy blkcg_policy_cfq; 624 625static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) 626{ 627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); 628} 629 630static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg) 631{ 632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq)); 633} 634 635static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) 636{ 637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; 638 639 return pblkg ? blkg_to_cfqg(pblkg) : NULL; 640} 641 642static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 643 struct cfq_group *ancestor) 644{ 645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup, 646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup); 647} 648 649static inline void cfqg_get(struct cfq_group *cfqg) 650{ 651 return blkg_get(cfqg_to_blkg(cfqg)); 652} 653 654static inline void cfqg_put(struct cfq_group *cfqg) 655{ 656 return blkg_put(cfqg_to_blkg(cfqg)); 657} 658 659#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \ 660 blk_add_cgroup_trace_msg((cfqd)->queue, \ 661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \ 662 "cfq%d%c%c " fmt, (cfqq)->pid, \ 663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 665 ##args); \ 666} while (0) 667 668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \ 669 blk_add_cgroup_trace_msg((cfqd)->queue, \ 670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \ 671} while (0) 672 673static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 674 struct cfq_group *curr_cfqg, 675 unsigned int op) 676{ 677 blkg_rwstat_add(&cfqg->stats.queued, op, 1); 678 cfqg_stats_end_empty_time(&cfqg->stats); 679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); 680} 681 682static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 683 uint64_t time, unsigned long unaccounted_time) 684{ 685 blkg_stat_add(&cfqg->stats.time, time); 686#ifdef CONFIG_DEBUG_BLK_CGROUP 687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); 688#endif 689} 690 691static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 692 unsigned int op) 693{ 694 blkg_rwstat_add(&cfqg->stats.queued, op, -1); 695} 696 697static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 698 unsigned int op) 699{ 700 blkg_rwstat_add(&cfqg->stats.merged, op, 1); 701} 702 703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 704 u64 start_time_ns, 705 u64 io_start_time_ns, 706 unsigned int op) 707{ 708 struct cfqg_stats *stats = &cfqg->stats; 709 u64 now = ktime_get_ns(); 710 711 if (now > io_start_time_ns) 712 blkg_rwstat_add(&stats->service_time, op, 713 now - io_start_time_ns); 714 if (io_start_time_ns > start_time_ns) 715 blkg_rwstat_add(&stats->wait_time, op, 716 io_start_time_ns - start_time_ns); 717} 718 719/* @stats = 0 */ 720static void cfqg_stats_reset(struct cfqg_stats *stats) 721{ 722 /* queued stats shouldn't be cleared */ 723 blkg_rwstat_reset(&stats->merged); 724 blkg_rwstat_reset(&stats->service_time); 725 blkg_rwstat_reset(&stats->wait_time); 726 blkg_stat_reset(&stats->time); 727#ifdef CONFIG_DEBUG_BLK_CGROUP 728 blkg_stat_reset(&stats->unaccounted_time); 729 blkg_stat_reset(&stats->avg_queue_size_sum); 730 blkg_stat_reset(&stats->avg_queue_size_samples); 731 blkg_stat_reset(&stats->dequeue); 732 blkg_stat_reset(&stats->group_wait_time); 733 blkg_stat_reset(&stats->idle_time); 734 blkg_stat_reset(&stats->empty_time); 735#endif 736} 737 738/* @to += @from */ 739static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from) 740{ 741 /* queued stats shouldn't be cleared */ 742 blkg_rwstat_add_aux(&to->merged, &from->merged); 743 blkg_rwstat_add_aux(&to->service_time, &from->service_time); 744 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); 745 blkg_stat_add_aux(&from->time, &from->time); 746#ifdef CONFIG_DEBUG_BLK_CGROUP 747 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time); 748 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); 749 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); 750 blkg_stat_add_aux(&to->dequeue, &from->dequeue); 751 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); 752 blkg_stat_add_aux(&to->idle_time, &from->idle_time); 753 blkg_stat_add_aux(&to->empty_time, &from->empty_time); 754#endif 755} 756 757/* 758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors' 759 * recursive stats can still account for the amount used by this cfqg after 760 * it's gone. 761 */ 762static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) 763{ 764 struct cfq_group *parent = cfqg_parent(cfqg); 765 766 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); 767 768 if (unlikely(!parent)) 769 return; 770 771 cfqg_stats_add_aux(&parent->stats, &cfqg->stats); 772 cfqg_stats_reset(&cfqg->stats); 773} 774 775#else /* CONFIG_CFQ_GROUP_IOSCHED */ 776 777static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } 778static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 779 struct cfq_group *ancestor) 780{ 781 return true; 782} 783static inline void cfqg_get(struct cfq_group *cfqg) { } 784static inline void cfqg_put(struct cfq_group *cfqg) { } 785 786#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \ 787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \ 788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 790 ##args) 791#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0) 792 793static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 794 struct cfq_group *curr_cfqg, unsigned int op) { } 795static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 796 uint64_t time, unsigned long unaccounted_time) { } 797static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 798 unsigned int op) { } 799static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 800 unsigned int op) { } 801static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 802 u64 start_time_ns, 803 u64 io_start_time_ns, 804 unsigned int op) { } 805 806#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 807 808#define cfq_log(cfqd, fmt, args...) \ 809 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) 810 811/* Traverses through cfq group service trees */ 812#define for_each_cfqg_st(cfqg, i, j, st) \ 813 for (i = 0; i <= IDLE_WORKLOAD; i++) \ 814 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ 815 : &cfqg->service_tree_idle; \ 816 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ 817 (i == IDLE_WORKLOAD && j == 0); \ 818 j++, st = i < IDLE_WORKLOAD ? \ 819 &cfqg->service_trees[i][j]: NULL) \ 820 821static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, 822 struct cfq_ttime *ttime, bool group_idle) 823{ 824 u64 slice; 825 if (!sample_valid(ttime->ttime_samples)) 826 return false; 827 if (group_idle) 828 slice = cfqd->cfq_group_idle; 829 else 830 slice = cfqd->cfq_slice_idle; 831 return ttime->ttime_mean > slice; 832} 833 834static inline bool iops_mode(struct cfq_data *cfqd) 835{ 836 /* 837 * If we are not idling on queues and it is a NCQ drive, parallel 838 * execution of requests is on and measuring time is not possible 839 * in most of the cases until and unless we drive shallower queue 840 * depths and that becomes a performance bottleneck. In such cases 841 * switch to start providing fairness in terms of number of IOs. 842 */ 843 if (!cfqd->cfq_slice_idle && cfqd->hw_tag) 844 return true; 845 else 846 return false; 847} 848 849static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) 850{ 851 if (cfq_class_idle(cfqq)) 852 return IDLE_WORKLOAD; 853 if (cfq_class_rt(cfqq)) 854 return RT_WORKLOAD; 855 return BE_WORKLOAD; 856} 857 858 859static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) 860{ 861 if (!cfq_cfqq_sync(cfqq)) 862 return ASYNC_WORKLOAD; 863 if (!cfq_cfqq_idle_window(cfqq)) 864 return SYNC_NOIDLE_WORKLOAD; 865 return SYNC_WORKLOAD; 866} 867 868static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, 869 struct cfq_data *cfqd, 870 struct cfq_group *cfqg) 871{ 872 if (wl_class == IDLE_WORKLOAD) 873 return cfqg->service_tree_idle.count; 874 875 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + 876 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + 877 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; 878} 879 880static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, 881 struct cfq_group *cfqg) 882{ 883 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + 884 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; 885} 886 887static void cfq_dispatch_insert(struct request_queue *, struct request *); 888static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, 889 struct cfq_io_cq *cic, struct bio *bio); 890 891static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) 892{ 893 /* cic->icq is the first member, %NULL will convert to %NULL */ 894 return container_of(icq, struct cfq_io_cq, icq); 895} 896 897static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, 898 struct io_context *ioc) 899{ 900 if (ioc) 901 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); 902 return NULL; 903} 904 905static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) 906{ 907 return cic->cfqq[is_sync]; 908} 909 910static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, 911 bool is_sync) 912{ 913 cic->cfqq[is_sync] = cfqq; 914} 915 916static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) 917{ 918 return cic->icq.q->elevator->elevator_data; 919} 920 921/* 922 * scheduler run of queue, if there are requests pending and no one in the 923 * driver that will restart queueing 924 */ 925static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) 926{ 927 if (cfqd->busy_queues) { 928 cfq_log(cfqd, "schedule dispatch"); 929 kblockd_schedule_work(&cfqd->unplug_work); 930 } 931} 932 933/* 934 * Scale schedule slice based on io priority. Use the sync time slice only 935 * if a queue is marked sync and has sync io queued. A sync queue with async 936 * io only, should not get full sync slice length. 937 */ 938static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync, 939 unsigned short prio) 940{ 941 u64 base_slice = cfqd->cfq_slice[sync]; 942 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE); 943 944 WARN_ON(prio >= IOPRIO_BE_NR); 945 946 return base_slice + (slice * (4 - prio)); 947} 948 949static inline u64 950cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 951{ 952 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); 953} 954 955/** 956 * cfqg_scale_charge - scale disk time charge according to cfqg weight 957 * @charge: disk time being charged 958 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT 959 * 960 * Scale @charge according to @vfraction, which is in range (0, 1]. The 961 * scaling is inversely proportional. 962 * 963 * scaled = charge / vfraction 964 * 965 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. 966 */ 967static inline u64 cfqg_scale_charge(u64 charge, 968 unsigned int vfraction) 969{ 970 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */ 971 972 /* charge / vfraction */ 973 c <<= CFQ_SERVICE_SHIFT; 974 return div_u64(c, vfraction); 975} 976 977static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) 978{ 979 s64 delta = (s64)(vdisktime - min_vdisktime); 980 if (delta > 0) 981 min_vdisktime = vdisktime; 982 983 return min_vdisktime; 984} 985 986static void update_min_vdisktime(struct cfq_rb_root *st) 987{ 988 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) { 989 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost); 990 991 st->min_vdisktime = max_vdisktime(st->min_vdisktime, 992 cfqg->vdisktime); 993 } 994} 995 996/* 997 * get averaged number of queues of RT/BE priority. 998 * average is updated, with a formula that gives more weight to higher numbers, 999 * to quickly follows sudden increases and decrease slowly 1000 */ 1001 1002static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, 1003 struct cfq_group *cfqg, bool rt) 1004{ 1005 unsigned min_q, max_q; 1006 unsigned mult = cfq_hist_divisor - 1; 1007 unsigned round = cfq_hist_divisor / 2; 1008 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); 1009 1010 min_q = min(cfqg->busy_queues_avg[rt], busy); 1011 max_q = max(cfqg->busy_queues_avg[rt], busy); 1012 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / 1013 cfq_hist_divisor; 1014 return cfqg->busy_queues_avg[rt]; 1015} 1016 1017static inline u64 1018cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) 1019{ 1020 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; 1021} 1022 1023static inline u64 1024cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1025{ 1026 u64 slice = cfq_prio_to_slice(cfqd, cfqq); 1027 if (cfqd->cfq_latency) { 1028 /* 1029 * interested queues (we consider only the ones with the same 1030 * priority class in the cfq group) 1031 */ 1032 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, 1033 cfq_class_rt(cfqq)); 1034 u64 sync_slice = cfqd->cfq_slice[1]; 1035 u64 expect_latency = sync_slice * iq; 1036 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg); 1037 1038 if (expect_latency > group_slice) { 1039 u64 base_low_slice = 2 * cfqd->cfq_slice_idle; 1040 u64 low_slice; 1041 1042 /* scale low_slice according to IO priority 1043 * and sync vs async */ 1044 low_slice = div64_u64(base_low_slice*slice, sync_slice); 1045 low_slice = min(slice, low_slice); 1046 /* the adapted slice value is scaled to fit all iqs 1047 * into the target latency */ 1048 slice = div64_u64(slice*group_slice, expect_latency); 1049 slice = max(slice, low_slice); 1050 } 1051 } 1052 return slice; 1053} 1054 1055static inline void 1056cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1057{ 1058 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq); 1059 u64 now = ktime_get_ns(); 1060 1061 cfqq->slice_start = now; 1062 cfqq->slice_end = now + slice; 1063 cfqq->allocated_slice = slice; 1064 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now); 1065} 1066 1067/* 1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end 1069 * isn't valid until the first request from the dispatch is activated 1070 * and the slice time set. 1071 */ 1072static inline bool cfq_slice_used(struct cfq_queue *cfqq) 1073{ 1074 if (cfq_cfqq_slice_new(cfqq)) 1075 return false; 1076 if (ktime_get_ns() < cfqq->slice_end) 1077 return false; 1078 1079 return true; 1080} 1081 1082/* 1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 1084 * We choose the request that is closest to the head right now. Distance 1085 * behind the head is penalized and only allowed to a certain extent. 1086 */ 1087static struct request * 1088cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) 1089{ 1090 sector_t s1, s2, d1 = 0, d2 = 0; 1091 unsigned long back_max; 1092#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 1093#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 1094 unsigned wrap = 0; /* bit mask: requests behind the disk head? */ 1095 1096 if (rq1 == NULL || rq1 == rq2) 1097 return rq2; 1098 if (rq2 == NULL) 1099 return rq1; 1100 1101 if (rq_is_sync(rq1) != rq_is_sync(rq2)) 1102 return rq_is_sync(rq1) ? rq1 : rq2; 1103 1104 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) 1105 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; 1106 1107 s1 = blk_rq_pos(rq1); 1108 s2 = blk_rq_pos(rq2); 1109 1110 /* 1111 * by definition, 1KiB is 2 sectors 1112 */ 1113 back_max = cfqd->cfq_back_max * 2; 1114 1115 /* 1116 * Strict one way elevator _except_ in the case where we allow 1117 * short backward seeks which are biased as twice the cost of a 1118 * similar forward seek. 1119 */ 1120 if (s1 >= last) 1121 d1 = s1 - last; 1122 else if (s1 + back_max >= last) 1123 d1 = (last - s1) * cfqd->cfq_back_penalty; 1124 else 1125 wrap |= CFQ_RQ1_WRAP; 1126 1127 if (s2 >= last) 1128 d2 = s2 - last; 1129 else if (s2 + back_max >= last) 1130 d2 = (last - s2) * cfqd->cfq_back_penalty; 1131 else 1132 wrap |= CFQ_RQ2_WRAP; 1133 1134 /* Found required data */ 1135 1136 /* 1137 * By doing switch() on the bit mask "wrap" we avoid having to 1138 * check two variables for all permutations: --> faster! 1139 */ 1140 switch (wrap) { 1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 1142 if (d1 < d2) 1143 return rq1; 1144 else if (d2 < d1) 1145 return rq2; 1146 else { 1147 if (s1 >= s2) 1148 return rq1; 1149 else 1150 return rq2; 1151 } 1152 1153 case CFQ_RQ2_WRAP: 1154 return rq1; 1155 case CFQ_RQ1_WRAP: 1156 return rq2; 1157 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ 1158 default: 1159 /* 1160 * Since both rqs are wrapped, 1161 * start with the one that's further behind head 1162 * (--> only *one* back seek required), 1163 * since back seek takes more time than forward. 1164 */ 1165 if (s1 <= s2) 1166 return rq1; 1167 else 1168 return rq2; 1169 } 1170} 1171 1172static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) 1173{ 1174 /* Service tree is empty */ 1175 if (!root->count) 1176 return NULL; 1177 1178 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node); 1179} 1180 1181static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) 1182{ 1183 return rb_entry_cfqg(rb_first_cached(&root->rb)); 1184} 1185 1186static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) 1187{ 1188 if (root->rb_rightmost == n) 1189 root->rb_rightmost = rb_prev(n); 1190 1191 rb_erase_cached(n, &root->rb); 1192 RB_CLEAR_NODE(n); 1193 1194 --root->count; 1195} 1196 1197/* 1198 * would be nice to take fifo expire time into account as well 1199 */ 1200static struct request * 1201cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 1202 struct request *last) 1203{ 1204 struct rb_node *rbnext = rb_next(&last->rb_node); 1205 struct rb_node *rbprev = rb_prev(&last->rb_node); 1206 struct request *next = NULL, *prev = NULL; 1207 1208 BUG_ON(RB_EMPTY_NODE(&last->rb_node)); 1209 1210 if (rbprev) 1211 prev = rb_entry_rq(rbprev); 1212 1213 if (rbnext) 1214 next = rb_entry_rq(rbnext); 1215 else { 1216 rbnext = rb_first(&cfqq->sort_list); 1217 if (rbnext && rbnext != &last->rb_node) 1218 next = rb_entry_rq(rbnext); 1219 } 1220 1221 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); 1222} 1223 1224static u64 cfq_slice_offset(struct cfq_data *cfqd, 1225 struct cfq_queue *cfqq) 1226{ 1227 /* 1228 * just an approximation, should be ok. 1229 */ 1230 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - 1231 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); 1232} 1233 1234static inline s64 1235cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) 1236{ 1237 return cfqg->vdisktime - st->min_vdisktime; 1238} 1239 1240static void 1241__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1242{ 1243 struct rb_node **node = &st->rb.rb_root.rb_node; 1244 struct rb_node *parent = NULL; 1245 struct cfq_group *__cfqg; 1246 s64 key = cfqg_key(st, cfqg); 1247 bool leftmost = true, rightmost = true; 1248 1249 while (*node != NULL) { 1250 parent = *node; 1251 __cfqg = rb_entry_cfqg(parent); 1252 1253 if (key < cfqg_key(st, __cfqg)) { 1254 node = &parent->rb_left; 1255 rightmost = false; 1256 } else { 1257 node = &parent->rb_right; 1258 leftmost = false; 1259 } 1260 } 1261 1262 if (rightmost) 1263 st->rb_rightmost = &cfqg->rb_node; 1264 1265 rb_link_node(&cfqg->rb_node, parent, node); 1266 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost); 1267} 1268 1269/* 1270 * This has to be called only on activation of cfqg 1271 */ 1272static void 1273cfq_update_group_weight(struct cfq_group *cfqg) 1274{ 1275 if (cfqg->new_weight) { 1276 cfqg->weight = cfqg->new_weight; 1277 cfqg->new_weight = 0; 1278 } 1279} 1280 1281static void 1282cfq_update_group_leaf_weight(struct cfq_group *cfqg) 1283{ 1284 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1285 1286 if (cfqg->new_leaf_weight) { 1287 cfqg->leaf_weight = cfqg->new_leaf_weight; 1288 cfqg->new_leaf_weight = 0; 1289 } 1290} 1291 1292static void 1293cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1294{ 1295 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */ 1296 struct cfq_group *pos = cfqg; 1297 struct cfq_group *parent; 1298 bool propagate; 1299 1300 /* add to the service tree */ 1301 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1302 1303 /* 1304 * Update leaf_weight. We cannot update weight at this point 1305 * because cfqg might already have been activated and is 1306 * contributing its current weight to the parent's child_weight. 1307 */ 1308 cfq_update_group_leaf_weight(cfqg); 1309 __cfq_group_service_tree_add(st, cfqg); 1310 1311 /* 1312 * Activate @cfqg and calculate the portion of vfraction @cfqg is 1313 * entitled to. vfraction is calculated by walking the tree 1314 * towards the root calculating the fraction it has at each level. 1315 * The compounded ratio is how much vfraction @cfqg owns. 1316 * 1317 * Start with the proportion tasks in this cfqg has against active 1318 * children cfqgs - its leaf_weight against children_weight. 1319 */ 1320 propagate = !pos->nr_active++; 1321 pos->children_weight += pos->leaf_weight; 1322 vfr = vfr * pos->leaf_weight / pos->children_weight; 1323 1324 /* 1325 * Compound ->weight walking up the tree. Both activation and 1326 * vfraction calculation are done in the same loop. Propagation 1327 * stops once an already activated node is met. vfraction 1328 * calculation should always continue to the root. 1329 */ 1330 while ((parent = cfqg_parent(pos))) { 1331 if (propagate) { 1332 cfq_update_group_weight(pos); 1333 propagate = !parent->nr_active++; 1334 parent->children_weight += pos->weight; 1335 } 1336 vfr = vfr * pos->weight / parent->children_weight; 1337 pos = parent; 1338 } 1339 1340 cfqg->vfraction = max_t(unsigned, vfr, 1); 1341} 1342 1343static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd) 1344{ 1345 if (!iops_mode(cfqd)) 1346 return CFQ_SLICE_MODE_GROUP_DELAY; 1347 else 1348 return CFQ_IOPS_MODE_GROUP_DELAY; 1349} 1350 1351static void 1352cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) 1353{ 1354 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1355 struct cfq_group *__cfqg; 1356 struct rb_node *n; 1357 1358 cfqg->nr_cfqq++; 1359 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1360 return; 1361 1362 /* 1363 * Currently put the group at the end. Later implement something 1364 * so that groups get lesser vtime based on their weights, so that 1365 * if group does not loose all if it was not continuously backlogged. 1366 */ 1367 n = st->rb_rightmost; 1368 if (n) { 1369 __cfqg = rb_entry_cfqg(n); 1370 cfqg->vdisktime = __cfqg->vdisktime + 1371 cfq_get_cfqg_vdisktime_delay(cfqd); 1372 } else 1373 cfqg->vdisktime = st->min_vdisktime; 1374 cfq_group_service_tree_add(st, cfqg); 1375} 1376 1377static void 1378cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) 1379{ 1380 struct cfq_group *pos = cfqg; 1381 bool propagate; 1382 1383 /* 1384 * Undo activation from cfq_group_service_tree_add(). Deactivate 1385 * @cfqg and propagate deactivation upwards. 1386 */ 1387 propagate = !--pos->nr_active; 1388 pos->children_weight -= pos->leaf_weight; 1389 1390 while (propagate) { 1391 struct cfq_group *parent = cfqg_parent(pos); 1392 1393 /* @pos has 0 nr_active at this point */ 1394 WARN_ON_ONCE(pos->children_weight); 1395 pos->vfraction = 0; 1396 1397 if (!parent) 1398 break; 1399 1400 propagate = !--parent->nr_active; 1401 parent->children_weight -= pos->weight; 1402 pos = parent; 1403 } 1404 1405 /* remove from the service tree */ 1406 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1407 cfq_rb_erase(&cfqg->rb_node, st); 1408} 1409 1410static void 1411cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) 1412{ 1413 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1414 1415 BUG_ON(cfqg->nr_cfqq < 1); 1416 cfqg->nr_cfqq--; 1417 1418 /* If there are other cfq queues under this group, don't delete it */ 1419 if (cfqg->nr_cfqq) 1420 return; 1421 1422 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); 1423 cfq_group_service_tree_del(st, cfqg); 1424 cfqg->saved_wl_slice = 0; 1425 cfqg_stats_update_dequeue(cfqg); 1426} 1427 1428static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq, 1429 u64 *unaccounted_time) 1430{ 1431 u64 slice_used; 1432 u64 now = ktime_get_ns(); 1433 1434 /* 1435 * Queue got expired before even a single request completed or 1436 * got expired immediately after first request completion. 1437 */ 1438 if (!cfqq->slice_start || cfqq->slice_start == now) { 1439 /* 1440 * Also charge the seek time incurred to the group, otherwise 1441 * if there are mutiple queues in the group, each can dispatch 1442 * a single request on seeky media and cause lots of seek time 1443 * and group will never know it. 1444 */ 1445 slice_used = max_t(u64, (now - cfqq->dispatch_start), 1446 jiffies_to_nsecs(1)); 1447 } else { 1448 slice_used = now - cfqq->slice_start; 1449 if (slice_used > cfqq->allocated_slice) { 1450 *unaccounted_time = slice_used - cfqq->allocated_slice; 1451 slice_used = cfqq->allocated_slice; 1452 } 1453 if (cfqq->slice_start > cfqq->dispatch_start) 1454 *unaccounted_time += cfqq->slice_start - 1455 cfqq->dispatch_start; 1456 } 1457 1458 return slice_used; 1459} 1460 1461static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, 1462 struct cfq_queue *cfqq) 1463{ 1464 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1465 u64 used_sl, charge, unaccounted_sl = 0; 1466 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) 1467 - cfqg->service_tree_idle.count; 1468 unsigned int vfr; 1469 u64 now = ktime_get_ns(); 1470 1471 BUG_ON(nr_sync < 0); 1472 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); 1473 1474 if (iops_mode(cfqd)) 1475 charge = cfqq->slice_dispatch; 1476 else if (!cfq_cfqq_sync(cfqq) && !nr_sync) 1477 charge = cfqq->allocated_slice; 1478 1479 /* 1480 * Can't update vdisktime while on service tree and cfqg->vfraction 1481 * is valid only while on it. Cache vfr, leave the service tree, 1482 * update vdisktime and go back on. The re-addition to the tree 1483 * will also update the weights as necessary. 1484 */ 1485 vfr = cfqg->vfraction; 1486 cfq_group_service_tree_del(st, cfqg); 1487 cfqg->vdisktime += cfqg_scale_charge(charge, vfr); 1488 cfq_group_service_tree_add(st, cfqg); 1489 1490 /* This group is being expired. Save the context */ 1491 if (cfqd->workload_expires > now) { 1492 cfqg->saved_wl_slice = cfqd->workload_expires - now; 1493 cfqg->saved_wl_type = cfqd->serving_wl_type; 1494 cfqg->saved_wl_class = cfqd->serving_wl_class; 1495 } else 1496 cfqg->saved_wl_slice = 0; 1497 1498 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, 1499 st->min_vdisktime); 1500 cfq_log_cfqq(cfqq->cfqd, cfqq, 1501 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu", 1502 used_sl, cfqq->slice_dispatch, charge, 1503 iops_mode(cfqd), cfqq->nr_sectors); 1504 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); 1505 cfqg_stats_set_start_empty_time(cfqg); 1506} 1507 1508/** 1509 * cfq_init_cfqg_base - initialize base part of a cfq_group 1510 * @cfqg: cfq_group to initialize 1511 * 1512 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED 1513 * is enabled or not. 1514 */ 1515static void cfq_init_cfqg_base(struct cfq_group *cfqg) 1516{ 1517 struct cfq_rb_root *st; 1518 int i, j; 1519 1520 for_each_cfqg_st(cfqg, i, j, st) 1521 *st = CFQ_RB_ROOT; 1522 RB_CLEAR_NODE(&cfqg->rb_node); 1523 1524 cfqg->ttime.last_end_request = ktime_get_ns(); 1525} 1526 1527#ifdef CONFIG_CFQ_GROUP_IOSCHED 1528static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1529 bool on_dfl, bool reset_dev, bool is_leaf_weight); 1530 1531static void cfqg_stats_exit(struct cfqg_stats *stats) 1532{ 1533 blkg_rwstat_exit(&stats->merged); 1534 blkg_rwstat_exit(&stats->service_time); 1535 blkg_rwstat_exit(&stats->wait_time); 1536 blkg_rwstat_exit(&stats->queued); 1537 blkg_stat_exit(&stats->time); 1538#ifdef CONFIG_DEBUG_BLK_CGROUP 1539 blkg_stat_exit(&stats->unaccounted_time); 1540 blkg_stat_exit(&stats->avg_queue_size_sum); 1541 blkg_stat_exit(&stats->avg_queue_size_samples); 1542 blkg_stat_exit(&stats->dequeue); 1543 blkg_stat_exit(&stats->group_wait_time); 1544 blkg_stat_exit(&stats->idle_time); 1545 blkg_stat_exit(&stats->empty_time); 1546#endif 1547} 1548 1549static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp) 1550{ 1551 if (blkg_rwstat_init(&stats->merged, gfp) || 1552 blkg_rwstat_init(&stats->service_time, gfp) || 1553 blkg_rwstat_init(&stats->wait_time, gfp) || 1554 blkg_rwstat_init(&stats->queued, gfp) || 1555 blkg_stat_init(&stats->time, gfp)) 1556 goto err; 1557 1558#ifdef CONFIG_DEBUG_BLK_CGROUP 1559 if (blkg_stat_init(&stats->unaccounted_time, gfp) || 1560 blkg_stat_init(&stats->avg_queue_size_sum, gfp) || 1561 blkg_stat_init(&stats->avg_queue_size_samples, gfp) || 1562 blkg_stat_init(&stats->dequeue, gfp) || 1563 blkg_stat_init(&stats->group_wait_time, gfp) || 1564 blkg_stat_init(&stats->idle_time, gfp) || 1565 blkg_stat_init(&stats->empty_time, gfp)) 1566 goto err; 1567#endif 1568 return 0; 1569err: 1570 cfqg_stats_exit(stats); 1571 return -ENOMEM; 1572} 1573 1574static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp) 1575{ 1576 struct cfq_group_data *cgd; 1577 1578 cgd = kzalloc(sizeof(*cgd), gfp); 1579 if (!cgd) 1580 return NULL; 1581 return &cgd->cpd; 1582} 1583 1584static void cfq_cpd_init(struct blkcg_policy_data *cpd) 1585{ 1586 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd); 1587 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? 1588 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1589 1590 if (cpd_to_blkcg(cpd) == &blkcg_root) 1591 weight *= 2; 1592 1593 cgd->weight = weight; 1594 cgd->leaf_weight = weight; 1595} 1596 1597static void cfq_cpd_free(struct blkcg_policy_data *cpd) 1598{ 1599 kfree(cpd_to_cfqgd(cpd)); 1600} 1601 1602static void cfq_cpd_bind(struct blkcg_policy_data *cpd) 1603{ 1604 struct blkcg *blkcg = cpd_to_blkcg(cpd); 1605 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys); 1606 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1607 1608 if (blkcg == &blkcg_root) 1609 weight *= 2; 1610 1611 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false)); 1612 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true)); 1613} 1614 1615static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node) 1616{ 1617 struct cfq_group *cfqg; 1618 1619 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node); 1620 if (!cfqg) 1621 return NULL; 1622 1623 cfq_init_cfqg_base(cfqg); 1624 if (cfqg_stats_init(&cfqg->stats, gfp)) { 1625 kfree(cfqg); 1626 return NULL; 1627 } 1628 1629 return &cfqg->pd; 1630} 1631 1632static void cfq_pd_init(struct blkg_policy_data *pd) 1633{ 1634 struct cfq_group *cfqg = pd_to_cfqg(pd); 1635 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg); 1636 1637 cfqg->weight = cgd->weight; 1638 cfqg->leaf_weight = cgd->leaf_weight; 1639} 1640 1641static void cfq_pd_offline(struct blkg_policy_data *pd) 1642{ 1643 struct cfq_group *cfqg = pd_to_cfqg(pd); 1644 int i; 1645 1646 for (i = 0; i < IOPRIO_BE_NR; i++) { 1647 if (cfqg->async_cfqq[0][i]) { 1648 cfq_put_queue(cfqg->async_cfqq[0][i]); 1649 cfqg->async_cfqq[0][i] = NULL; 1650 } 1651 if (cfqg->async_cfqq[1][i]) { 1652 cfq_put_queue(cfqg->async_cfqq[1][i]); 1653 cfqg->async_cfqq[1][i] = NULL; 1654 } 1655 } 1656 1657 if (cfqg->async_idle_cfqq) { 1658 cfq_put_queue(cfqg->async_idle_cfqq); 1659 cfqg->async_idle_cfqq = NULL; 1660 } 1661 1662 /* 1663 * @blkg is going offline and will be ignored by 1664 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so 1665 * that they don't get lost. If IOs complete after this point, the 1666 * stats for them will be lost. Oh well... 1667 */ 1668 cfqg_stats_xfer_dead(cfqg); 1669} 1670 1671static void cfq_pd_free(struct blkg_policy_data *pd) 1672{ 1673 struct cfq_group *cfqg = pd_to_cfqg(pd); 1674 1675 cfqg_stats_exit(&cfqg->stats); 1676 return kfree(cfqg); 1677} 1678 1679static void cfq_pd_reset_stats(struct blkg_policy_data *pd) 1680{ 1681 struct cfq_group *cfqg = pd_to_cfqg(pd); 1682 1683 cfqg_stats_reset(&cfqg->stats); 1684} 1685 1686static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 1687 struct blkcg *blkcg) 1688{ 1689 struct blkcg_gq *blkg; 1690 1691 blkg = blkg_lookup(blkcg, cfqd->queue); 1692 if (likely(blkg)) 1693 return blkg_to_cfqg(blkg); 1694 return NULL; 1695} 1696 1697static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) 1698{ 1699 cfqq->cfqg = cfqg; 1700 /* cfqq reference on cfqg */ 1701 cfqg_get(cfqg); 1702} 1703 1704static u64 cfqg_prfill_weight_device(struct seq_file *sf, 1705 struct blkg_policy_data *pd, int off) 1706{ 1707 struct cfq_group *cfqg = pd_to_cfqg(pd); 1708 1709 if (!cfqg->dev_weight) 1710 return 0; 1711 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); 1712} 1713 1714static int cfqg_print_weight_device(struct seq_file *sf, void *v) 1715{ 1716 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1717 cfqg_prfill_weight_device, &blkcg_policy_cfq, 1718 0, false); 1719 return 0; 1720} 1721 1722static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, 1723 struct blkg_policy_data *pd, int off) 1724{ 1725 struct cfq_group *cfqg = pd_to_cfqg(pd); 1726 1727 if (!cfqg->dev_leaf_weight) 1728 return 0; 1729 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); 1730} 1731 1732static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) 1733{ 1734 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1735 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 1736 0, false); 1737 return 0; 1738} 1739 1740static int cfq_print_weight(struct seq_file *sf, void *v) 1741{ 1742 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1743 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1744 unsigned int val = 0; 1745 1746 if (cgd) 1747 val = cgd->weight; 1748 1749 seq_printf(sf, "%u\n", val); 1750 return 0; 1751} 1752 1753static int cfq_print_leaf_weight(struct seq_file *sf, void *v) 1754{ 1755 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1756 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1757 unsigned int val = 0; 1758 1759 if (cgd) 1760 val = cgd->leaf_weight; 1761 1762 seq_printf(sf, "%u\n", val); 1763 return 0; 1764} 1765 1766static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of, 1767 char *buf, size_t nbytes, loff_t off, 1768 bool on_dfl, bool is_leaf_weight) 1769{ 1770 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1771 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1772 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1773 struct blkg_conf_ctx ctx; 1774 struct cfq_group *cfqg; 1775 struct cfq_group_data *cfqgd; 1776 int ret; 1777 u64 v; 1778 1779 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); 1780 if (ret) 1781 return ret; 1782 1783 if (sscanf(ctx.body, "%llu", &v) == 1) { 1784 /* require "default" on dfl */ 1785 ret = -ERANGE; 1786 if (!v && on_dfl) 1787 goto out_finish; 1788 } else if (!strcmp(strim(ctx.body), "default")) { 1789 v = 0; 1790 } else { 1791 ret = -EINVAL; 1792 goto out_finish; 1793 } 1794 1795 cfqg = blkg_to_cfqg(ctx.blkg); 1796 cfqgd = blkcg_to_cfqgd(blkcg); 1797 1798 ret = -ERANGE; 1799 if (!v || (v >= min && v <= max)) { 1800 if (!is_leaf_weight) { 1801 cfqg->dev_weight = v; 1802 cfqg->new_weight = v ?: cfqgd->weight; 1803 } else { 1804 cfqg->dev_leaf_weight = v; 1805 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight; 1806 } 1807 ret = 0; 1808 } 1809out_finish: 1810 blkg_conf_finish(&ctx); 1811 return ret ?: nbytes; 1812} 1813 1814static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of, 1815 char *buf, size_t nbytes, loff_t off) 1816{ 1817 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false); 1818} 1819 1820static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of, 1821 char *buf, size_t nbytes, loff_t off) 1822{ 1823 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true); 1824} 1825 1826static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1827 bool on_dfl, bool reset_dev, bool is_leaf_weight) 1828{ 1829 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1830 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1831 struct blkcg *blkcg = css_to_blkcg(css); 1832 struct blkcg_gq *blkg; 1833 struct cfq_group_data *cfqgd; 1834 int ret = 0; 1835 1836 if (val < min || val > max) 1837 return -ERANGE; 1838 1839 spin_lock_irq(&blkcg->lock); 1840 cfqgd = blkcg_to_cfqgd(blkcg); 1841 if (!cfqgd) { 1842 ret = -EINVAL; 1843 goto out; 1844 } 1845 1846 if (!is_leaf_weight) 1847 cfqgd->weight = val; 1848 else 1849 cfqgd->leaf_weight = val; 1850 1851 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 1852 struct cfq_group *cfqg = blkg_to_cfqg(blkg); 1853 1854 if (!cfqg) 1855 continue; 1856 1857 if (!is_leaf_weight) { 1858 if (reset_dev) 1859 cfqg->dev_weight = 0; 1860 if (!cfqg->dev_weight) 1861 cfqg->new_weight = cfqgd->weight; 1862 } else { 1863 if (reset_dev) 1864 cfqg->dev_leaf_weight = 0; 1865 if (!cfqg->dev_leaf_weight) 1866 cfqg->new_leaf_weight = cfqgd->leaf_weight; 1867 } 1868 } 1869 1870out: 1871 spin_unlock_irq(&blkcg->lock); 1872 return ret; 1873} 1874 1875static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, 1876 u64 val) 1877{ 1878 return __cfq_set_weight(css, val, false, false, false); 1879} 1880 1881static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, 1882 struct cftype *cft, u64 val) 1883{ 1884 return __cfq_set_weight(css, val, false, false, true); 1885} 1886 1887static int cfqg_print_stat(struct seq_file *sf, void *v) 1888{ 1889 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, 1890 &blkcg_policy_cfq, seq_cft(sf)->private, false); 1891 return 0; 1892} 1893 1894static int cfqg_print_rwstat(struct seq_file *sf, void *v) 1895{ 1896 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, 1897 &blkcg_policy_cfq, seq_cft(sf)->private, true); 1898 return 0; 1899} 1900 1901static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, 1902 struct blkg_policy_data *pd, int off) 1903{ 1904 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), 1905 &blkcg_policy_cfq, off); 1906 return __blkg_prfill_u64(sf, pd, sum); 1907} 1908 1909static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, 1910 struct blkg_policy_data *pd, int off) 1911{ 1912 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), 1913 &blkcg_policy_cfq, off); 1914 return __blkg_prfill_rwstat(sf, pd, &sum); 1915} 1916 1917static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) 1918{ 1919 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1920 cfqg_prfill_stat_recursive, &blkcg_policy_cfq, 1921 seq_cft(sf)->private, false); 1922 return 0; 1923} 1924 1925static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) 1926{ 1927 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1928 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, 1929 seq_cft(sf)->private, true); 1930 return 0; 1931} 1932 1933static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, 1934 int off) 1935{ 1936 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); 1937 1938 return __blkg_prfill_u64(sf, pd, sum >> 9); 1939} 1940 1941static int cfqg_print_stat_sectors(struct seq_file *sf, void *v) 1942{ 1943 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1944 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false); 1945 return 0; 1946} 1947 1948static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf, 1949 struct blkg_policy_data *pd, int off) 1950{ 1951 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, 1952 offsetof(struct blkcg_gq, stat_bytes)); 1953 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + 1954 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); 1955 1956 return __blkg_prfill_u64(sf, pd, sum >> 9); 1957} 1958 1959static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) 1960{ 1961 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1962 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0, 1963 false); 1964 return 0; 1965} 1966 1967#ifdef CONFIG_DEBUG_BLK_CGROUP 1968static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, 1969 struct blkg_policy_data *pd, int off) 1970{ 1971 struct cfq_group *cfqg = pd_to_cfqg(pd); 1972 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); 1973 u64 v = 0; 1974 1975 if (samples) { 1976 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); 1977 v = div64_u64(v, samples); 1978 } 1979 __blkg_prfill_u64(sf, pd, v); 1980 return 0; 1981} 1982 1983/* print avg_queue_size */ 1984static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) 1985{ 1986 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1987 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, 1988 0, false); 1989 return 0; 1990} 1991#endif /* CONFIG_DEBUG_BLK_CGROUP */ 1992 1993static struct cftype cfq_blkcg_legacy_files[] = { 1994 /* on root, weight is mapped to leaf_weight */ 1995 { 1996 .name = "weight_device", 1997 .flags = CFTYPE_ONLY_ON_ROOT, 1998 .seq_show = cfqg_print_leaf_weight_device, 1999 .write = cfqg_set_leaf_weight_device, 2000 }, 2001 { 2002 .name = "weight", 2003 .flags = CFTYPE_ONLY_ON_ROOT, 2004 .seq_show = cfq_print_leaf_weight, 2005 .write_u64 = cfq_set_leaf_weight, 2006 }, 2007 2008 /* no such mapping necessary for !roots */ 2009 { 2010 .name = "weight_device", 2011 .flags = CFTYPE_NOT_ON_ROOT, 2012 .seq_show = cfqg_print_weight_device, 2013 .write = cfqg_set_weight_device, 2014 }, 2015 { 2016 .name = "weight", 2017 .flags = CFTYPE_NOT_ON_ROOT, 2018 .seq_show = cfq_print_weight, 2019 .write_u64 = cfq_set_weight, 2020 }, 2021 2022 { 2023 .name = "leaf_weight_device", 2024 .seq_show = cfqg_print_leaf_weight_device, 2025 .write = cfqg_set_leaf_weight_device, 2026 }, 2027 { 2028 .name = "leaf_weight", 2029 .seq_show = cfq_print_leaf_weight, 2030 .write_u64 = cfq_set_leaf_weight, 2031 }, 2032 2033 /* statistics, covers only the tasks in the cfqg */ 2034 { 2035 .name = "time", 2036 .private = offsetof(struct cfq_group, stats.time), 2037 .seq_show = cfqg_print_stat, 2038 }, 2039 { 2040 .name = "sectors", 2041 .seq_show = cfqg_print_stat_sectors, 2042 }, 2043 { 2044 .name = "io_service_bytes", 2045 .private = (unsigned long)&blkcg_policy_cfq, 2046 .seq_show = blkg_print_stat_bytes, 2047 }, 2048 { 2049 .name = "io_serviced", 2050 .private = (unsigned long)&blkcg_policy_cfq, 2051 .seq_show = blkg_print_stat_ios, 2052 }, 2053 { 2054 .name = "io_service_time", 2055 .private = offsetof(struct cfq_group, stats.service_time), 2056 .seq_show = cfqg_print_rwstat, 2057 }, 2058 { 2059 .name = "io_wait_time", 2060 .private = offsetof(struct cfq_group, stats.wait_time), 2061 .seq_show = cfqg_print_rwstat, 2062 }, 2063 { 2064 .name = "io_merged", 2065 .private = offsetof(struct cfq_group, stats.merged), 2066 .seq_show = cfqg_print_rwstat, 2067 }, 2068 { 2069 .name = "io_queued", 2070 .private = offsetof(struct cfq_group, stats.queued), 2071 .seq_show = cfqg_print_rwstat, 2072 }, 2073 2074 /* the same statictics which cover the cfqg and its descendants */ 2075 { 2076 .name = "time_recursive", 2077 .private = offsetof(struct cfq_group, stats.time), 2078 .seq_show = cfqg_print_stat_recursive, 2079 }, 2080 { 2081 .name = "sectors_recursive", 2082 .seq_show = cfqg_print_stat_sectors_recursive, 2083 }, 2084 { 2085 .name = "io_service_bytes_recursive", 2086 .private = (unsigned long)&blkcg_policy_cfq, 2087 .seq_show = blkg_print_stat_bytes_recursive, 2088 }, 2089 { 2090 .name = "io_serviced_recursive", 2091 .private = (unsigned long)&blkcg_policy_cfq, 2092 .seq_show = blkg_print_stat_ios_recursive, 2093 }, 2094 { 2095 .name = "io_service_time_recursive", 2096 .private = offsetof(struct cfq_group, stats.service_time), 2097 .seq_show = cfqg_print_rwstat_recursive, 2098 }, 2099 { 2100 .name = "io_wait_time_recursive", 2101 .private = offsetof(struct cfq_group, stats.wait_time), 2102 .seq_show = cfqg_print_rwstat_recursive, 2103 }, 2104 { 2105 .name = "io_merged_recursive", 2106 .private = offsetof(struct cfq_group, stats.merged), 2107 .seq_show = cfqg_print_rwstat_recursive, 2108 }, 2109 { 2110 .name = "io_queued_recursive", 2111 .private = offsetof(struct cfq_group, stats.queued), 2112 .seq_show = cfqg_print_rwstat_recursive, 2113 }, 2114#ifdef CONFIG_DEBUG_BLK_CGROUP 2115 { 2116 .name = "avg_queue_size", 2117 .seq_show = cfqg_print_avg_queue_size, 2118 }, 2119 { 2120 .name = "group_wait_time", 2121 .private = offsetof(struct cfq_group, stats.group_wait_time), 2122 .seq_show = cfqg_print_stat, 2123 }, 2124 { 2125 .name = "idle_time", 2126 .private = offsetof(struct cfq_group, stats.idle_time), 2127 .seq_show = cfqg_print_stat, 2128 }, 2129 { 2130 .name = "empty_time", 2131 .private = offsetof(struct cfq_group, stats.empty_time), 2132 .seq_show = cfqg_print_stat, 2133 }, 2134 { 2135 .name = "dequeue", 2136 .private = offsetof(struct cfq_group, stats.dequeue), 2137 .seq_show = cfqg_print_stat, 2138 }, 2139 { 2140 .name = "unaccounted_time", 2141 .private = offsetof(struct cfq_group, stats.unaccounted_time), 2142 .seq_show = cfqg_print_stat, 2143 }, 2144#endif /* CONFIG_DEBUG_BLK_CGROUP */ 2145 { } /* terminate */ 2146}; 2147 2148static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v) 2149{ 2150 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2151 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 2152 2153 seq_printf(sf, "default %u\n", cgd->weight); 2154 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device, 2155 &blkcg_policy_cfq, 0, false); 2156 return 0; 2157} 2158 2159static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of, 2160 char *buf, size_t nbytes, loff_t off) 2161{ 2162 char *endp; 2163 int ret; 2164 u64 v; 2165 2166 buf = strim(buf); 2167 2168 /* "WEIGHT" or "default WEIGHT" sets the default weight */ 2169 v = simple_strtoull(buf, &endp, 0); 2170 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { 2171 ret = __cfq_set_weight(of_css(of), v, true, false, false); 2172 return ret ?: nbytes; 2173 } 2174 2175 /* "MAJ:MIN WEIGHT" */ 2176 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false); 2177} 2178 2179static struct cftype cfq_blkcg_files[] = { 2180 { 2181 .name = "weight", 2182 .flags = CFTYPE_NOT_ON_ROOT, 2183 .seq_show = cfq_print_weight_on_dfl, 2184 .write = cfq_set_weight_on_dfl, 2185 }, 2186 { } /* terminate */ 2187}; 2188 2189#else /* GROUP_IOSCHED */ 2190static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 2191 struct blkcg *blkcg) 2192{ 2193 return cfqd->root_group; 2194} 2195 2196static inline void 2197cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { 2198 cfqq->cfqg = cfqg; 2199} 2200 2201#endif /* GROUP_IOSCHED */ 2202 2203/* 2204 * The cfqd->service_trees holds all pending cfq_queue's that have 2205 * requests waiting to be processed. It is sorted in the order that 2206 * we will service the queues. 2207 */ 2208static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2209 bool add_front) 2210{ 2211 struct rb_node **p, *parent; 2212 struct cfq_queue *__cfqq; 2213 u64 rb_key; 2214 struct cfq_rb_root *st; 2215 bool leftmost = true; 2216 int new_cfqq = 1; 2217 u64 now = ktime_get_ns(); 2218 2219 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); 2220 if (cfq_class_idle(cfqq)) { 2221 rb_key = CFQ_IDLE_DELAY; 2222 parent = st->rb_rightmost; 2223 if (parent && parent != &cfqq->rb_node) { 2224 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2225 rb_key += __cfqq->rb_key; 2226 } else 2227 rb_key += now; 2228 } else if (!add_front) { 2229 /* 2230 * Get our rb key offset. Subtract any residual slice 2231 * value carried from last service. A negative resid 2232 * count indicates slice overrun, and this should position 2233 * the next service time further away in the tree. 2234 */ 2235 rb_key = cfq_slice_offset(cfqd, cfqq) + now; 2236 rb_key -= cfqq->slice_resid; 2237 cfqq->slice_resid = 0; 2238 } else { 2239 rb_key = -NSEC_PER_SEC; 2240 __cfqq = cfq_rb_first(st); 2241 rb_key += __cfqq ? __cfqq->rb_key : now; 2242 } 2243 2244 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2245 new_cfqq = 0; 2246 /* 2247 * same position, nothing more to do 2248 */ 2249 if (rb_key == cfqq->rb_key && cfqq->service_tree == st) 2250 return; 2251 2252 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2253 cfqq->service_tree = NULL; 2254 } 2255 2256 parent = NULL; 2257 cfqq->service_tree = st; 2258 p = &st->rb.rb_root.rb_node; 2259 while (*p) { 2260 parent = *p; 2261 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2262 2263 /* 2264 * sort by key, that represents service time. 2265 */ 2266 if (rb_key < __cfqq->rb_key) 2267 p = &parent->rb_left; 2268 else { 2269 p = &parent->rb_right; 2270 leftmost = false; 2271 } 2272 } 2273 2274 cfqq->rb_key = rb_key; 2275 rb_link_node(&cfqq->rb_node, parent, p); 2276 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost); 2277 st->count++; 2278 if (add_front || !new_cfqq) 2279 return; 2280 cfq_group_notify_queue_add(cfqd, cfqq->cfqg); 2281} 2282 2283static struct cfq_queue * 2284cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, 2285 sector_t sector, struct rb_node **ret_parent, 2286 struct rb_node ***rb_link) 2287{ 2288 struct rb_node **p, *parent; 2289 struct cfq_queue *cfqq = NULL; 2290 2291 parent = NULL; 2292 p = &root->rb_node; 2293 while (*p) { 2294 struct rb_node **n; 2295 2296 parent = *p; 2297 cfqq = rb_entry(parent, struct cfq_queue, p_node); 2298 2299 /* 2300 * Sort strictly based on sector. Smallest to the left, 2301 * largest to the right. 2302 */ 2303 if (sector > blk_rq_pos(cfqq->next_rq)) 2304 n = &(*p)->rb_right; 2305 else if (sector < blk_rq_pos(cfqq->next_rq)) 2306 n = &(*p)->rb_left; 2307 else 2308 break; 2309 p = n; 2310 cfqq = NULL; 2311 } 2312 2313 *ret_parent = parent; 2314 if (rb_link) 2315 *rb_link = p; 2316 return cfqq; 2317} 2318 2319static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2320{ 2321 struct rb_node **p, *parent; 2322 struct cfq_queue *__cfqq; 2323 2324 if (cfqq->p_root) { 2325 rb_erase(&cfqq->p_node, cfqq->p_root); 2326 cfqq->p_root = NULL; 2327 } 2328 2329 if (cfq_class_idle(cfqq)) 2330 return; 2331 if (!cfqq->next_rq) 2332 return; 2333 2334 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; 2335 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, 2336 blk_rq_pos(cfqq->next_rq), &parent, &p); 2337 if (!__cfqq) { 2338 rb_link_node(&cfqq->p_node, parent, p); 2339 rb_insert_color(&cfqq->p_node, cfqq->p_root); 2340 } else 2341 cfqq->p_root = NULL; 2342} 2343 2344/* 2345 * Update cfqq's position in the service tree. 2346 */ 2347static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2348{ 2349 /* 2350 * Resorting requires the cfqq to be on the RR list already. 2351 */ 2352 if (cfq_cfqq_on_rr(cfqq)) { 2353 cfq_service_tree_add(cfqd, cfqq, 0); 2354 cfq_prio_tree_add(cfqd, cfqq); 2355 } 2356} 2357 2358/* 2359 * add to busy list of queues for service, trying to be fair in ordering 2360 * the pending list according to last request service 2361 */ 2362static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2363{ 2364 cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); 2365 BUG_ON(cfq_cfqq_on_rr(cfqq)); 2366 cfq_mark_cfqq_on_rr(cfqq); 2367 cfqd->busy_queues++; 2368 if (cfq_cfqq_sync(cfqq)) 2369 cfqd->busy_sync_queues++; 2370 2371 cfq_resort_rr_list(cfqd, cfqq); 2372} 2373 2374/* 2375 * Called when the cfqq no longer has requests pending, remove it from 2376 * the service tree. 2377 */ 2378static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2379{ 2380 cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); 2381 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 2382 cfq_clear_cfqq_on_rr(cfqq); 2383 2384 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2385 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2386 cfqq->service_tree = NULL; 2387 } 2388 if (cfqq->p_root) { 2389 rb_erase(&cfqq->p_node, cfqq->p_root); 2390 cfqq->p_root = NULL; 2391 } 2392 2393 cfq_group_notify_queue_del(cfqd, cfqq->cfqg); 2394 BUG_ON(!cfqd->busy_queues); 2395 cfqd->busy_queues--; 2396 if (cfq_cfqq_sync(cfqq)) 2397 cfqd->busy_sync_queues--; 2398} 2399 2400/* 2401 * rb tree support functions 2402 */ 2403static void cfq_del_rq_rb(struct request *rq) 2404{ 2405 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2406 const int sync = rq_is_sync(rq); 2407 2408 BUG_ON(!cfqq->queued[sync]); 2409 cfqq->queued[sync]--; 2410 2411 elv_rb_del(&cfqq->sort_list, rq); 2412 2413 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { 2414 /* 2415 * Queue will be deleted from service tree when we actually 2416 * expire it later. Right now just remove it from prio tree 2417 * as it is empty. 2418 */ 2419 if (cfqq->p_root) { 2420 rb_erase(&cfqq->p_node, cfqq->p_root); 2421 cfqq->p_root = NULL; 2422 } 2423 } 2424} 2425 2426static void cfq_add_rq_rb(struct request *rq) 2427{ 2428 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2429 struct cfq_data *cfqd = cfqq->cfqd; 2430 struct request *prev; 2431 2432 cfqq->queued[rq_is_sync(rq)]++; 2433 2434 elv_rb_add(&cfqq->sort_list, rq); 2435 2436 if (!cfq_cfqq_on_rr(cfqq)) 2437 cfq_add_cfqq_rr(cfqd, cfqq); 2438 2439 /* 2440 * check if this request is a better next-serve candidate 2441 */ 2442 prev = cfqq->next_rq; 2443 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); 2444 2445 /* 2446 * adjust priority tree position, if ->next_rq changes 2447 */ 2448 if (prev != cfqq->next_rq) 2449 cfq_prio_tree_add(cfqd, cfqq); 2450 2451 BUG_ON(!cfqq->next_rq); 2452} 2453 2454static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) 2455{ 2456 elv_rb_del(&cfqq->sort_list, rq); 2457 cfqq->queued[rq_is_sync(rq)]--; 2458 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2459 cfq_add_rq_rb(rq); 2460 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, 2461 rq->cmd_flags); 2462} 2463 2464static struct request * 2465cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) 2466{ 2467 struct task_struct *tsk = current; 2468 struct cfq_io_cq *cic; 2469 struct cfq_queue *cfqq; 2470 2471 cic = cfq_cic_lookup(cfqd, tsk->io_context); 2472 if (!cic) 2473 return NULL; 2474 2475 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf)); 2476 if (cfqq) 2477 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); 2478 2479 return NULL; 2480} 2481 2482static void cfq_activate_request(struct request_queue *q, struct request *rq) 2483{ 2484 struct cfq_data *cfqd = q->elevator->elevator_data; 2485 2486 cfqd->rq_in_driver++; 2487 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", 2488 cfqd->rq_in_driver); 2489 2490 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2491} 2492 2493static void cfq_deactivate_request(struct request_queue *q, struct request *rq) 2494{ 2495 struct cfq_data *cfqd = q->elevator->elevator_data; 2496 2497 WARN_ON(!cfqd->rq_in_driver); 2498 cfqd->rq_in_driver--; 2499 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", 2500 cfqd->rq_in_driver); 2501} 2502 2503static void cfq_remove_request(struct request *rq) 2504{ 2505 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2506 2507 if (cfqq->next_rq == rq) 2508 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); 2509 2510 list_del_init(&rq->queuelist); 2511 cfq_del_rq_rb(rq); 2512 2513 cfqq->cfqd->rq_queued--; 2514 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2515 if (rq->cmd_flags & REQ_PRIO) { 2516 WARN_ON(!cfqq->prio_pending); 2517 cfqq->prio_pending--; 2518 } 2519} 2520 2521static enum elv_merge cfq_merge(struct request_queue *q, struct request **req, 2522 struct bio *bio) 2523{ 2524 struct cfq_data *cfqd = q->elevator->elevator_data; 2525 struct request *__rq; 2526 2527 __rq = cfq_find_rq_fmerge(cfqd, bio); 2528 if (__rq && elv_bio_merge_ok(__rq, bio)) { 2529 *req = __rq; 2530 return ELEVATOR_FRONT_MERGE; 2531 } 2532 2533 return ELEVATOR_NO_MERGE; 2534} 2535 2536static void cfq_merged_request(struct request_queue *q, struct request *req, 2537 enum elv_merge type) 2538{ 2539 if (type == ELEVATOR_FRONT_MERGE) { 2540 struct cfq_queue *cfqq = RQ_CFQQ(req); 2541 2542 cfq_reposition_rq_rb(cfqq, req); 2543 } 2544} 2545 2546static void cfq_bio_merged(struct request_queue *q, struct request *req, 2547 struct bio *bio) 2548{ 2549 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf); 2550} 2551 2552static void 2553cfq_merged_requests(struct request_queue *q, struct request *rq, 2554 struct request *next) 2555{ 2556 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2557 struct cfq_data *cfqd = q->elevator->elevator_data; 2558 2559 /* 2560 * reposition in fifo if next is older than rq 2561 */ 2562 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 2563 next->fifo_time < rq->fifo_time && 2564 cfqq == RQ_CFQQ(next)) { 2565 list_move(&rq->queuelist, &next->queuelist); 2566 rq->fifo_time = next->fifo_time; 2567 } 2568 2569 if (cfqq->next_rq == next) 2570 cfqq->next_rq = rq; 2571 cfq_remove_request(next); 2572 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags); 2573 2574 cfqq = RQ_CFQQ(next); 2575 /* 2576 * all requests of this queue are merged to other queues, delete it 2577 * from the service tree. If it's the active_queue, 2578 * cfq_dispatch_requests() will choose to expire it or do idle 2579 */ 2580 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && 2581 cfqq != cfqd->active_queue) 2582 cfq_del_cfqq_rr(cfqd, cfqq); 2583} 2584 2585static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2586 struct bio *bio) 2587{ 2588 struct cfq_data *cfqd = q->elevator->elevator_data; 2589 bool is_sync = op_is_sync(bio->bi_opf); 2590 struct cfq_io_cq *cic; 2591 struct cfq_queue *cfqq; 2592 2593 /* 2594 * Disallow merge of a sync bio into an async request. 2595 */ 2596 if (is_sync && !rq_is_sync(rq)) 2597 return false; 2598 2599 /* 2600 * Lookup the cfqq that this bio will be queued with and allow 2601 * merge only if rq is queued there. 2602 */ 2603 cic = cfq_cic_lookup(cfqd, current->io_context); 2604 if (!cic) 2605 return false; 2606 2607 cfqq = cic_to_cfqq(cic, is_sync); 2608 return cfqq == RQ_CFQQ(rq); 2609} 2610 2611static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq, 2612 struct request *next) 2613{ 2614 return RQ_CFQQ(rq) == RQ_CFQQ(next); 2615} 2616 2617static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2618{ 2619 hrtimer_try_to_cancel(&cfqd->idle_slice_timer); 2620 cfqg_stats_update_idle_time(cfqq->cfqg); 2621} 2622 2623static void __cfq_set_active_queue(struct cfq_data *cfqd, 2624 struct cfq_queue *cfqq) 2625{ 2626 if (cfqq) { 2627 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", 2628 cfqd->serving_wl_class, cfqd->serving_wl_type); 2629 cfqg_stats_update_avg_queue_size(cfqq->cfqg); 2630 cfqq->slice_start = 0; 2631 cfqq->dispatch_start = ktime_get_ns(); 2632 cfqq->allocated_slice = 0; 2633 cfqq->slice_end = 0; 2634 cfqq->slice_dispatch = 0; 2635 cfqq->nr_sectors = 0; 2636 2637 cfq_clear_cfqq_wait_request(cfqq); 2638 cfq_clear_cfqq_must_dispatch(cfqq); 2639 cfq_clear_cfqq_must_alloc_slice(cfqq); 2640 cfq_clear_cfqq_fifo_expire(cfqq); 2641 cfq_mark_cfqq_slice_new(cfqq); 2642 2643 cfq_del_timer(cfqd, cfqq); 2644 } 2645 2646 cfqd->active_queue = cfqq; 2647} 2648 2649/* 2650 * current cfqq expired its slice (or was too idle), select new one 2651 */ 2652static void 2653__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2654 bool timed_out) 2655{ 2656 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); 2657 2658 if (cfq_cfqq_wait_request(cfqq)) 2659 cfq_del_timer(cfqd, cfqq); 2660 2661 cfq_clear_cfqq_wait_request(cfqq); 2662 cfq_clear_cfqq_wait_busy(cfqq); 2663 2664 /* 2665 * If this cfqq is shared between multiple processes, check to 2666 * make sure that those processes are still issuing I/Os within 2667 * the mean seek distance. If not, it may be time to break the 2668 * queues apart again. 2669 */ 2670 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) 2671 cfq_mark_cfqq_split_coop(cfqq); 2672 2673 /* 2674 * store what was left of this slice, if the queue idled/timed out 2675 */ 2676 if (timed_out) { 2677 if (cfq_cfqq_slice_new(cfqq)) 2678 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); 2679 else 2680 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns(); 2681 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid); 2682 } 2683 2684 cfq_group_served(cfqd, cfqq->cfqg, cfqq); 2685 2686 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) 2687 cfq_del_cfqq_rr(cfqd, cfqq); 2688 2689 cfq_resort_rr_list(cfqd, cfqq); 2690 2691 if (cfqq == cfqd->active_queue) 2692 cfqd->active_queue = NULL; 2693 2694 if (cfqd->active_cic) { 2695 put_io_context(cfqd->active_cic->icq.ioc); 2696 cfqd->active_cic = NULL; 2697 } 2698} 2699 2700static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) 2701{ 2702 struct cfq_queue *cfqq = cfqd->active_queue; 2703 2704 if (cfqq) 2705 __cfq_slice_expired(cfqd, cfqq, timed_out); 2706} 2707 2708/* 2709 * Get next queue for service. Unless we have a queue preemption, 2710 * we'll simply select the first cfqq in the service tree. 2711 */ 2712static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) 2713{ 2714 struct cfq_rb_root *st = st_for(cfqd->serving_group, 2715 cfqd->serving_wl_class, cfqd->serving_wl_type); 2716 2717 if (!cfqd->rq_queued) 2718 return NULL; 2719 2720 /* There is nothing to dispatch */ 2721 if (!st) 2722 return NULL; 2723 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 2724 return NULL; 2725 return cfq_rb_first(st); 2726} 2727 2728static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) 2729{ 2730 struct cfq_group *cfqg; 2731 struct cfq_queue *cfqq; 2732 int i, j; 2733 struct cfq_rb_root *st; 2734 2735 if (!cfqd->rq_queued) 2736 return NULL; 2737 2738 cfqg = cfq_get_next_cfqg(cfqd); 2739 if (!cfqg) 2740 return NULL; 2741 2742 for_each_cfqg_st(cfqg, i, j, st) { 2743 cfqq = cfq_rb_first(st); 2744 if (cfqq) 2745 return cfqq; 2746 } 2747 return NULL; 2748} 2749 2750/* 2751 * Get and set a new active queue for service. 2752 */ 2753static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, 2754 struct cfq_queue *cfqq) 2755{ 2756 if (!cfqq) 2757 cfqq = cfq_get_next_queue(cfqd); 2758 2759 __cfq_set_active_queue(cfqd, cfqq); 2760 return cfqq; 2761} 2762 2763static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, 2764 struct request *rq) 2765{ 2766 if (blk_rq_pos(rq) >= cfqd->last_position) 2767 return blk_rq_pos(rq) - cfqd->last_position; 2768 else 2769 return cfqd->last_position - blk_rq_pos(rq); 2770} 2771 2772static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2773 struct request *rq) 2774{ 2775 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; 2776} 2777 2778static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, 2779 struct cfq_queue *cur_cfqq) 2780{ 2781 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; 2782 struct rb_node *parent, *node; 2783 struct cfq_queue *__cfqq; 2784 sector_t sector = cfqd->last_position; 2785 2786 if (RB_EMPTY_ROOT(root)) 2787 return NULL; 2788 2789 /* 2790 * First, if we find a request starting at the end of the last 2791 * request, choose it. 2792 */ 2793 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); 2794 if (__cfqq) 2795 return __cfqq; 2796 2797 /* 2798 * If the exact sector wasn't found, the parent of the NULL leaf 2799 * will contain the closest sector. 2800 */ 2801 __cfqq = rb_entry(parent, struct cfq_queue, p_node); 2802 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2803 return __cfqq; 2804 2805 if (blk_rq_pos(__cfqq->next_rq) < sector) 2806 node = rb_next(&__cfqq->p_node); 2807 else 2808 node = rb_prev(&__cfqq->p_node); 2809 if (!node) 2810 return NULL; 2811 2812 __cfqq = rb_entry(node, struct cfq_queue, p_node); 2813 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2814 return __cfqq; 2815 2816 return NULL; 2817} 2818 2819/* 2820 * cfqd - obvious 2821 * cur_cfqq - passed in so that we don't decide that the current queue is 2822 * closely cooperating with itself. 2823 * 2824 * So, basically we're assuming that that cur_cfqq has dispatched at least 2825 * one request, and that cfqd->last_position reflects a position on the disk 2826 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid 2827 * assumption. 2828 */ 2829static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, 2830 struct cfq_queue *cur_cfqq) 2831{ 2832 struct cfq_queue *cfqq; 2833 2834 if (cfq_class_idle(cur_cfqq)) 2835 return NULL; 2836 if (!cfq_cfqq_sync(cur_cfqq)) 2837 return NULL; 2838 if (CFQQ_SEEKY(cur_cfqq)) 2839 return NULL; 2840 2841 /* 2842 * Don't search priority tree if it's the only queue in the group. 2843 */ 2844 if (cur_cfqq->cfqg->nr_cfqq == 1) 2845 return NULL; 2846 2847 /* 2848 * We should notice if some of the queues are cooperating, eg 2849 * working closely on the same area of the disk. In that case, 2850 * we can group them together and don't waste time idling. 2851 */ 2852 cfqq = cfqq_close(cfqd, cur_cfqq); 2853 if (!cfqq) 2854 return NULL; 2855 2856 /* If new queue belongs to different cfq_group, don't choose it */ 2857 if (cur_cfqq->cfqg != cfqq->cfqg) 2858 return NULL; 2859 2860 /* 2861 * It only makes sense to merge sync queues. 2862 */ 2863 if (!cfq_cfqq_sync(cfqq)) 2864 return NULL; 2865 if (CFQQ_SEEKY(cfqq)) 2866 return NULL; 2867 2868 /* 2869 * Do not merge queues of different priority classes 2870 */ 2871 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) 2872 return NULL; 2873 2874 return cfqq; 2875} 2876 2877/* 2878 * Determine whether we should enforce idle window for this queue. 2879 */ 2880 2881static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2882{ 2883 enum wl_class_t wl_class = cfqq_class(cfqq); 2884 struct cfq_rb_root *st = cfqq->service_tree; 2885 2886 BUG_ON(!st); 2887 BUG_ON(!st->count); 2888 2889 if (!cfqd->cfq_slice_idle) 2890 return false; 2891 2892 /* We never do for idle class queues. */ 2893 if (wl_class == IDLE_WORKLOAD) 2894 return false; 2895 2896 /* We do for queues that were marked with idle window flag. */ 2897 if (cfq_cfqq_idle_window(cfqq) && 2898 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) 2899 return true; 2900 2901 /* 2902 * Otherwise, we do only if they are the last ones 2903 * in their service tree. 2904 */ 2905 if (st->count == 1 && cfq_cfqq_sync(cfqq) && 2906 !cfq_io_thinktime_big(cfqd, &st->ttime, false)) 2907 return true; 2908 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); 2909 return false; 2910} 2911 2912static void cfq_arm_slice_timer(struct cfq_data *cfqd) 2913{ 2914 struct cfq_queue *cfqq = cfqd->active_queue; 2915 struct cfq_rb_root *st = cfqq->service_tree; 2916 struct cfq_io_cq *cic; 2917 u64 sl, group_idle = 0; 2918 u64 now = ktime_get_ns(); 2919 2920 /* 2921 * SSD device without seek penalty, disable idling. But only do so 2922 * for devices that support queuing, otherwise we still have a problem 2923 * with sync vs async workloads. 2924 */ 2925 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag && 2926 !cfqd->cfq_group_idle) 2927 return; 2928 2929 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); 2930 WARN_ON(cfq_cfqq_slice_new(cfqq)); 2931 2932 /* 2933 * idle is disabled, either manually or by past process history 2934 */ 2935 if (!cfq_should_idle(cfqd, cfqq)) { 2936 /* no queue idling. Check for group idling */ 2937 if (cfqd->cfq_group_idle) 2938 group_idle = cfqd->cfq_group_idle; 2939 else 2940 return; 2941 } 2942 2943 /* 2944 * still active requests from this queue, don't idle 2945 */ 2946 if (cfqq->dispatched) 2947 return; 2948 2949 /* 2950 * task has exited, don't wait 2951 */ 2952 cic = cfqd->active_cic; 2953 if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) 2954 return; 2955 2956 /* 2957 * If our average think time is larger than the remaining time 2958 * slice, then don't idle. This avoids overrunning the allotted 2959 * time slice. 2960 */ 2961 if (sample_valid(cic->ttime.ttime_samples) && 2962 (cfqq->slice_end - now < cic->ttime.ttime_mean)) { 2963 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu", 2964 cic->ttime.ttime_mean); 2965 return; 2966 } 2967 2968 /* 2969 * There are other queues in the group or this is the only group and 2970 * it has too big thinktime, don't do group idle. 2971 */ 2972 if (group_idle && 2973 (cfqq->cfqg->nr_cfqq > 1 || 2974 cfq_io_thinktime_big(cfqd, &st->ttime, true))) 2975 return; 2976 2977 cfq_mark_cfqq_wait_request(cfqq); 2978 2979 if (group_idle) 2980 sl = cfqd->cfq_group_idle; 2981 else 2982 sl = cfqd->cfq_slice_idle; 2983 2984 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl), 2985 HRTIMER_MODE_REL); 2986 cfqg_stats_set_start_idle_time(cfqq->cfqg); 2987 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl, 2988 group_idle ? 1 : 0); 2989} 2990 2991/* 2992 * Move request from internal lists to the request queue dispatch list. 2993 */ 2994static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) 2995{ 2996 struct cfq_data *cfqd = q->elevator->elevator_data; 2997 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2998 2999 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); 3000 3001 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); 3002 cfq_remove_request(rq); 3003 cfqq->dispatched++; 3004 (RQ_CFQG(rq))->dispatched++; 3005 elv_dispatch_sort(q, rq); 3006 3007 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; 3008 cfqq->nr_sectors += blk_rq_sectors(rq); 3009} 3010 3011/* 3012 * return expired entry, or NULL to just start from scratch in rbtree 3013 */ 3014static struct request *cfq_check_fifo(struct cfq_queue *cfqq) 3015{ 3016 struct request *rq = NULL; 3017 3018 if (cfq_cfqq_fifo_expire(cfqq)) 3019 return NULL; 3020 3021 cfq_mark_cfqq_fifo_expire(cfqq); 3022 3023 if (list_empty(&cfqq->fifo)) 3024 return NULL; 3025 3026 rq = rq_entry_fifo(cfqq->fifo.next); 3027 if (ktime_get_ns() < rq->fifo_time) 3028 rq = NULL; 3029 3030 return rq; 3031} 3032 3033static inline int 3034cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3035{ 3036 const int base_rq = cfqd->cfq_slice_async_rq; 3037 3038 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); 3039 3040 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); 3041} 3042 3043/* 3044 * Must be called with the queue_lock held. 3045 */ 3046static int cfqq_process_refs(struct cfq_queue *cfqq) 3047{ 3048 int process_refs, io_refs; 3049 3050 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; 3051 process_refs = cfqq->ref - io_refs; 3052 BUG_ON(process_refs < 0); 3053 return process_refs; 3054} 3055 3056static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) 3057{ 3058 int process_refs, new_process_refs; 3059 struct cfq_queue *__cfqq; 3060 3061 /* 3062 * If there are no process references on the new_cfqq, then it is 3063 * unsafe to follow the ->new_cfqq chain as other cfqq's in the 3064 * chain may have dropped their last reference (not just their 3065 * last process reference). 3066 */ 3067 if (!cfqq_process_refs(new_cfqq)) 3068 return; 3069 3070 /* Avoid a circular list and skip interim queue merges */ 3071 while ((__cfqq = new_cfqq->new_cfqq)) { 3072 if (__cfqq == cfqq) 3073 return; 3074 new_cfqq = __cfqq; 3075 } 3076 3077 process_refs = cfqq_process_refs(cfqq); 3078 new_process_refs = cfqq_process_refs(new_cfqq); 3079 /* 3080 * If the process for the cfqq has gone away, there is no 3081 * sense in merging the queues. 3082 */ 3083 if (process_refs == 0 || new_process_refs == 0) 3084 return; 3085 3086 /* 3087 * Merge in the direction of the lesser amount of work. 3088 */ 3089 if (new_process_refs >= process_refs) { 3090 cfqq->new_cfqq = new_cfqq; 3091 new_cfqq->ref += process_refs; 3092 } else { 3093 new_cfqq->new_cfqq = cfqq; 3094 cfqq->ref += new_process_refs; 3095 } 3096} 3097 3098static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, 3099 struct cfq_group *cfqg, enum wl_class_t wl_class) 3100{ 3101 struct cfq_queue *queue; 3102 int i; 3103 bool key_valid = false; 3104 u64 lowest_key = 0; 3105 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; 3106 3107 for (i = 0; i <= SYNC_WORKLOAD; ++i) { 3108 /* select the one with lowest rb_key */ 3109 queue = cfq_rb_first(st_for(cfqg, wl_class, i)); 3110 if (queue && 3111 (!key_valid || queue->rb_key < lowest_key)) { 3112 lowest_key = queue->rb_key; 3113 cur_best = i; 3114 key_valid = true; 3115 } 3116 } 3117 3118 return cur_best; 3119} 3120 3121static void 3122choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) 3123{ 3124 u64 slice; 3125 unsigned count; 3126 struct cfq_rb_root *st; 3127 u64 group_slice; 3128 enum wl_class_t original_class = cfqd->serving_wl_class; 3129 u64 now = ktime_get_ns(); 3130 3131 /* Choose next priority. RT > BE > IDLE */ 3132 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) 3133 cfqd->serving_wl_class = RT_WORKLOAD; 3134 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) 3135 cfqd->serving_wl_class = BE_WORKLOAD; 3136 else { 3137 cfqd->serving_wl_class = IDLE_WORKLOAD; 3138 cfqd->workload_expires = now + jiffies_to_nsecs(1); 3139 return; 3140 } 3141 3142 if (original_class != cfqd->serving_wl_class) 3143 goto new_workload; 3144 3145 /* 3146 * For RT and BE, we have to choose also the type 3147 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload 3148 * expiration time 3149 */ 3150 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3151 count = st->count; 3152 3153 /* 3154 * check workload expiration, and that we still have other queues ready 3155 */ 3156 if (count && !(now > cfqd->workload_expires)) 3157 return; 3158 3159new_workload: 3160 /* otherwise select new workload type */ 3161 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, 3162 cfqd->serving_wl_class); 3163 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3164 count = st->count; 3165 3166 /* 3167 * the workload slice is computed as a fraction of target latency 3168 * proportional to the number of queues in that workload, over 3169 * all the queues in the same priority class 3170 */ 3171 group_slice = cfq_group_slice(cfqd, cfqg); 3172 3173 slice = div_u64(group_slice * count, 3174 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], 3175 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, 3176 cfqg))); 3177 3178 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { 3179 u64 tmp; 3180 3181 /* 3182 * Async queues are currently system wide. Just taking 3183 * proportion of queues with-in same group will lead to higher 3184 * async ratio system wide as generally root group is going 3185 * to have higher weight. A more accurate thing would be to 3186 * calculate system wide asnc/sync ratio. 3187 */ 3188 tmp = cfqd->cfq_target_latency * 3189 cfqg_busy_async_queues(cfqd, cfqg); 3190 tmp = div_u64(tmp, cfqd->busy_queues); 3191 slice = min_t(u64, slice, tmp); 3192 3193 /* async workload slice is scaled down according to 3194 * the sync/async slice ratio. */ 3195 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]); 3196 } else 3197 /* sync workload slice is at least 2 * cfq_slice_idle */ 3198 slice = max(slice, 2 * cfqd->cfq_slice_idle); 3199 3200 slice = max_t(u64, slice, CFQ_MIN_TT); 3201 cfq_log(cfqd, "workload slice:%llu", slice); 3202 cfqd->workload_expires = now + slice; 3203} 3204 3205static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) 3206{ 3207 struct cfq_rb_root *st = &cfqd->grp_service_tree; 3208 struct cfq_group *cfqg; 3209 3210 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 3211 return NULL; 3212 cfqg = cfq_rb_first_group(st); 3213 update_min_vdisktime(st); 3214 return cfqg; 3215} 3216 3217static void cfq_choose_cfqg(struct cfq_data *cfqd) 3218{ 3219 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); 3220 u64 now = ktime_get_ns(); 3221 3222 cfqd->serving_group = cfqg; 3223 3224 /* Restore the workload type data */ 3225 if (cfqg->saved_wl_slice) { 3226 cfqd->workload_expires = now + cfqg->saved_wl_slice; 3227 cfqd->serving_wl_type = cfqg->saved_wl_type; 3228 cfqd->serving_wl_class = cfqg->saved_wl_class; 3229 } else 3230 cfqd->workload_expires = now - 1; 3231 3232 choose_wl_class_and_type(cfqd, cfqg); 3233} 3234 3235/* 3236 * Select a queue for service. If we have a current active queue, 3237 * check whether to continue servicing it, or retrieve and set a new one. 3238 */ 3239static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) 3240{ 3241 struct cfq_queue *cfqq, *new_cfqq = NULL; 3242 u64 now = ktime_get_ns(); 3243 3244 cfqq = cfqd->active_queue; 3245 if (!cfqq) 3246 goto new_queue; 3247 3248 if (!cfqd->rq_queued) 3249 return NULL; 3250 3251 /* 3252 * We were waiting for group to get backlogged. Expire the queue 3253 */ 3254 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) 3255 goto expire; 3256 3257 /* 3258 * The active queue has run out of time, expire it and select new. 3259 */ 3260 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { 3261 /* 3262 * If slice had not expired at the completion of last request 3263 * we might not have turned on wait_busy flag. Don't expire 3264 * the queue yet. Allow the group to get backlogged. 3265 * 3266 * The very fact that we have used the slice, that means we 3267 * have been idling all along on this queue and it should be 3268 * ok to wait for this request to complete. 3269 */ 3270 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) 3271 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3272 cfqq = NULL; 3273 goto keep_queue; 3274 } else 3275 goto check_group_idle; 3276 } 3277 3278 /* 3279 * The active queue has requests and isn't expired, allow it to 3280 * dispatch. 3281 */ 3282 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 3283 goto keep_queue; 3284 3285 /* 3286 * If another queue has a request waiting within our mean seek 3287 * distance, let it run. The expire code will check for close 3288 * cooperators and put the close queue at the front of the service 3289 * tree. If possible, merge the expiring queue with the new cfqq. 3290 */ 3291 new_cfqq = cfq_close_cooperator(cfqd, cfqq); 3292 if (new_cfqq) { 3293 if (!cfqq->new_cfqq) 3294 cfq_setup_merge(cfqq, new_cfqq); 3295 goto expire; 3296 } 3297 3298 /* 3299 * No requests pending. If the active queue still has requests in 3300 * flight or is idling for a new request, allow either of these 3301 * conditions to happen (or time out) before selecting a new queue. 3302 */ 3303 if (hrtimer_active(&cfqd->idle_slice_timer)) { 3304 cfqq = NULL; 3305 goto keep_queue; 3306 } 3307 3308 /* 3309 * This is a deep seek queue, but the device is much faster than 3310 * the queue can deliver, don't idle 3311 **/ 3312 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && 3313 (cfq_cfqq_slice_new(cfqq) || 3314 (cfqq->slice_end - now > now - cfqq->slice_start))) { 3315 cfq_clear_cfqq_deep(cfqq); 3316 cfq_clear_cfqq_idle_window(cfqq); 3317 } 3318 3319 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3320 cfqq = NULL; 3321 goto keep_queue; 3322 } 3323 3324 /* 3325 * If group idle is enabled and there are requests dispatched from 3326 * this group, wait for requests to complete. 3327 */ 3328check_group_idle: 3329 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && 3330 cfqq->cfqg->dispatched && 3331 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { 3332 cfqq = NULL; 3333 goto keep_queue; 3334 } 3335 3336expire: 3337 cfq_slice_expired(cfqd, 0); 3338new_queue: 3339 /* 3340 * Current queue expired. Check if we have to switch to a new 3341 * service tree 3342 */ 3343 if (!new_cfqq) 3344 cfq_choose_cfqg(cfqd); 3345 3346 cfqq = cfq_set_active_queue(cfqd, new_cfqq); 3347keep_queue: 3348 return cfqq; 3349} 3350 3351static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) 3352{ 3353 int dispatched = 0; 3354 3355 while (cfqq->next_rq) { 3356 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); 3357 dispatched++; 3358 } 3359 3360 BUG_ON(!list_empty(&cfqq->fifo)); 3361 3362 /* By default cfqq is not expired if it is empty. Do it explicitly */ 3363 __cfq_slice_expired(cfqq->cfqd, cfqq, 0); 3364 return dispatched; 3365} 3366 3367/* 3368 * Drain our current requests. Used for barriers and when switching 3369 * io schedulers on-the-fly. 3370 */ 3371static int cfq_forced_dispatch(struct cfq_data *cfqd) 3372{ 3373 struct cfq_queue *cfqq; 3374 int dispatched = 0; 3375 3376 /* Expire the timeslice of the current active queue first */ 3377 cfq_slice_expired(cfqd, 0); 3378 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { 3379 __cfq_set_active_queue(cfqd, cfqq); 3380 dispatched += __cfq_forced_dispatch_cfqq(cfqq); 3381 } 3382 3383 BUG_ON(cfqd->busy_queues); 3384 3385 cfq_log(cfqd, "forced_dispatch=%d", dispatched); 3386 return dispatched; 3387} 3388 3389static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, 3390 struct cfq_queue *cfqq) 3391{ 3392 u64 now = ktime_get_ns(); 3393 3394 /* the queue hasn't finished any request, can't estimate */ 3395 if (cfq_cfqq_slice_new(cfqq)) 3396 return true; 3397 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end) 3398 return true; 3399 3400 return false; 3401} 3402 3403static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3404{ 3405 unsigned int max_dispatch; 3406 3407 if (cfq_cfqq_must_dispatch(cfqq)) 3408 return true; 3409 3410 /* 3411 * Drain async requests before we start sync IO 3412 */ 3413 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) 3414 return false; 3415 3416 /* 3417 * If this is an async queue and we have sync IO in flight, let it wait 3418 */ 3419 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) 3420 return false; 3421 3422 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); 3423 if (cfq_class_idle(cfqq)) 3424 max_dispatch = 1; 3425 3426 /* 3427 * Does this cfqq already have too much IO in flight? 3428 */ 3429 if (cfqq->dispatched >= max_dispatch) { 3430 bool promote_sync = false; 3431 /* 3432 * idle queue must always only have a single IO in flight 3433 */ 3434 if (cfq_class_idle(cfqq)) 3435 return false; 3436 3437 /* 3438 * If there is only one sync queue 3439 * we can ignore async queue here and give the sync 3440 * queue no dispatch limit. The reason is a sync queue can 3441 * preempt async queue, limiting the sync queue doesn't make 3442 * sense. This is useful for aiostress test. 3443 */ 3444 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) 3445 promote_sync = true; 3446 3447 /* 3448 * We have other queues, don't allow more IO from this one 3449 */ 3450 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && 3451 !promote_sync) 3452 return false; 3453 3454 /* 3455 * Sole queue user, no limit 3456 */ 3457 if (cfqd->busy_queues == 1 || promote_sync) 3458 max_dispatch = -1; 3459 else 3460 /* 3461 * Normally we start throttling cfqq when cfq_quantum/2 3462 * requests have been dispatched. But we can drive 3463 * deeper queue depths at the beginning of slice 3464 * subjected to upper limit of cfq_quantum. 3465 * */ 3466 max_dispatch = cfqd->cfq_quantum; 3467 } 3468 3469 /* 3470 * Async queues must wait a bit before being allowed dispatch. 3471 * We also ramp up the dispatch depth gradually for async IO, 3472 * based on the last sync IO we serviced 3473 */ 3474 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { 3475 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync; 3476 unsigned int depth; 3477 3478 depth = div64_u64(last_sync, cfqd->cfq_slice[1]); 3479 if (!depth && !cfqq->dispatched) 3480 depth = 1; 3481 if (depth < max_dispatch) 3482 max_dispatch = depth; 3483 } 3484 3485 /* 3486 * If we're below the current max, allow a dispatch 3487 */ 3488 return cfqq->dispatched < max_dispatch; 3489} 3490 3491/* 3492 * Dispatch a request from cfqq, moving them to the request queue 3493 * dispatch list. 3494 */ 3495static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3496{ 3497 struct request *rq; 3498 3499 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); 3500 3501 rq = cfq_check_fifo(cfqq); 3502 if (rq) 3503 cfq_mark_cfqq_must_dispatch(cfqq); 3504 3505 if (!cfq_may_dispatch(cfqd, cfqq)) 3506 return false; 3507 3508 /* 3509 * follow expired path, else get first next available 3510 */ 3511 if (!rq) 3512 rq = cfqq->next_rq; 3513 else 3514 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); 3515 3516 /* 3517 * insert request into driver dispatch list 3518 */ 3519 cfq_dispatch_insert(cfqd->queue, rq); 3520 3521 if (!cfqd->active_cic) { 3522 struct cfq_io_cq *cic = RQ_CIC(rq); 3523 3524 atomic_long_inc(&cic->icq.ioc->refcount); 3525 cfqd->active_cic = cic; 3526 } 3527 3528 return true; 3529} 3530 3531/* 3532 * Find the cfqq that we need to service and move a request from that to the 3533 * dispatch list 3534 */ 3535static int cfq_dispatch_requests(struct request_queue *q, int force) 3536{ 3537 struct cfq_data *cfqd = q->elevator->elevator_data; 3538 struct cfq_queue *cfqq; 3539 3540 if (!cfqd->busy_queues) 3541 return 0; 3542 3543 if (unlikely(force)) 3544 return cfq_forced_dispatch(cfqd); 3545 3546 cfqq = cfq_select_queue(cfqd); 3547 if (!cfqq) 3548 return 0; 3549 3550 /* 3551 * Dispatch a request from this cfqq, if it is allowed 3552 */ 3553 if (!cfq_dispatch_request(cfqd, cfqq)) 3554 return 0; 3555 3556 cfqq->slice_dispatch++; 3557 cfq_clear_cfqq_must_dispatch(cfqq); 3558 3559 /* 3560 * expire an async queue immediately if it has used up its slice. idle 3561 * queue always expire after 1 dispatch round. 3562 */ 3563 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && 3564 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || 3565 cfq_class_idle(cfqq))) { 3566 cfqq->slice_end = ktime_get_ns() + 1; 3567 cfq_slice_expired(cfqd, 0); 3568 } 3569 3570 cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); 3571 return 1; 3572} 3573 3574/* 3575 * task holds one reference to the queue, dropped when task exits. each rq 3576 * in-flight on this queue also holds a reference, dropped when rq is freed. 3577 * 3578 * Each cfq queue took a reference on the parent group. Drop it now. 3579 * queue lock must be held here. 3580 */ 3581static void cfq_put_queue(struct cfq_queue *cfqq) 3582{ 3583 struct cfq_data *cfqd = cfqq->cfqd; 3584 struct cfq_group *cfqg; 3585 3586 BUG_ON(cfqq->ref <= 0); 3587 3588 cfqq->ref--; 3589 if (cfqq->ref) 3590 return; 3591 3592 cfq_log_cfqq(cfqd, cfqq, "put_queue"); 3593 BUG_ON(rb_first(&cfqq->sort_list)); 3594 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); 3595 cfqg = cfqq->cfqg; 3596 3597 if (unlikely(cfqd->active_queue == cfqq)) { 3598 __cfq_slice_expired(cfqd, cfqq, 0); 3599 cfq_schedule_dispatch(cfqd); 3600 } 3601 3602 BUG_ON(cfq_cfqq_on_rr(cfqq)); 3603 kmem_cache_free(cfq_pool, cfqq); 3604 cfqg_put(cfqg); 3605} 3606 3607static void cfq_put_cooperator(struct cfq_queue *cfqq) 3608{ 3609 struct cfq_queue *__cfqq, *next; 3610 3611 /* 3612 * If this queue was scheduled to merge with another queue, be 3613 * sure to drop the reference taken on that queue (and others in 3614 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs. 3615 */ 3616 __cfqq = cfqq->new_cfqq; 3617 while (__cfqq) { 3618 if (__cfqq == cfqq) { 3619 WARN(1, "cfqq->new_cfqq loop detected\n"); 3620 break; 3621 } 3622 next = __cfqq->new_cfqq; 3623 cfq_put_queue(__cfqq); 3624 __cfqq = next; 3625 } 3626} 3627 3628static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3629{ 3630 if (unlikely(cfqq == cfqd->active_queue)) { 3631 __cfq_slice_expired(cfqd, cfqq, 0); 3632 cfq_schedule_dispatch(cfqd); 3633 } 3634 3635 cfq_put_cooperator(cfqq); 3636 3637 cfq_put_queue(cfqq); 3638} 3639 3640static void cfq_init_icq(struct io_cq *icq) 3641{ 3642 struct cfq_io_cq *cic = icq_to_cic(icq); 3643 3644 cic->ttime.last_end_request = ktime_get_ns(); 3645} 3646 3647static void cfq_exit_icq(struct io_cq *icq) 3648{ 3649 struct cfq_io_cq *cic = icq_to_cic(icq); 3650 struct cfq_data *cfqd = cic_to_cfqd(cic); 3651 3652 if (cic_to_cfqq(cic, false)) { 3653 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false)); 3654 cic_set_cfqq(cic, NULL, false); 3655 } 3656 3657 if (cic_to_cfqq(cic, true)) { 3658 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true)); 3659 cic_set_cfqq(cic, NULL, true); 3660 } 3661} 3662 3663static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) 3664{ 3665 struct task_struct *tsk = current; 3666 int ioprio_class; 3667 3668 if (!cfq_cfqq_prio_changed(cfqq)) 3669 return; 3670 3671 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3672 switch (ioprio_class) { 3673 default: 3674 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); 3675 /* fall through */ 3676 case IOPRIO_CLASS_NONE: 3677 /* 3678 * no prio set, inherit CPU scheduling settings 3679 */ 3680 cfqq->ioprio = task_nice_ioprio(tsk); 3681 cfqq->ioprio_class = task_nice_ioclass(tsk); 3682 break; 3683 case IOPRIO_CLASS_RT: 3684 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3685 cfqq->ioprio_class = IOPRIO_CLASS_RT; 3686 break; 3687 case IOPRIO_CLASS_BE: 3688 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3689 cfqq->ioprio_class = IOPRIO_CLASS_BE; 3690 break; 3691 case IOPRIO_CLASS_IDLE: 3692 cfqq->ioprio_class = IOPRIO_CLASS_IDLE; 3693 cfqq->ioprio = 7; 3694 cfq_clear_cfqq_idle_window(cfqq); 3695 break; 3696 } 3697 3698 /* 3699 * keep track of original prio settings in case we have to temporarily 3700 * elevate the priority of this queue 3701 */ 3702 cfqq->org_ioprio = cfqq->ioprio; 3703 cfqq->org_ioprio_class = cfqq->ioprio_class; 3704 cfq_clear_cfqq_prio_changed(cfqq); 3705} 3706 3707static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) 3708{ 3709 int ioprio = cic->icq.ioc->ioprio; 3710 struct cfq_data *cfqd = cic_to_cfqd(cic); 3711 struct cfq_queue *cfqq; 3712 3713 /* 3714 * Check whether ioprio has changed. The condition may trigger 3715 * spuriously on a newly created cic but there's no harm. 3716 */ 3717 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) 3718 return; 3719 3720 cfqq = cic_to_cfqq(cic, false); 3721 if (cfqq) { 3722 cfq_put_queue(cfqq); 3723 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio); 3724 cic_set_cfqq(cic, cfqq, false); 3725 } 3726 3727 cfqq = cic_to_cfqq(cic, true); 3728 if (cfqq) 3729 cfq_mark_cfqq_prio_changed(cfqq); 3730 3731 cic->ioprio = ioprio; 3732} 3733 3734static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3735 pid_t pid, bool is_sync) 3736{ 3737 RB_CLEAR_NODE(&cfqq->rb_node); 3738 RB_CLEAR_NODE(&cfqq->p_node); 3739 INIT_LIST_HEAD(&cfqq->fifo); 3740 3741 cfqq->ref = 0; 3742 cfqq->cfqd = cfqd; 3743 3744 cfq_mark_cfqq_prio_changed(cfqq); 3745 3746 if (is_sync) { 3747 if (!cfq_class_idle(cfqq)) 3748 cfq_mark_cfqq_idle_window(cfqq); 3749 cfq_mark_cfqq_sync(cfqq); 3750 } 3751 cfqq->pid = pid; 3752} 3753 3754#ifdef CONFIG_CFQ_GROUP_IOSCHED 3755static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3756{ 3757 struct cfq_data *cfqd = cic_to_cfqd(cic); 3758 struct cfq_queue *cfqq; 3759 uint64_t serial_nr; 3760 3761 rcu_read_lock(); 3762 serial_nr = bio_blkcg(bio)->css.serial_nr; 3763 rcu_read_unlock(); 3764 3765 /* 3766 * Check whether blkcg has changed. The condition may trigger 3767 * spuriously on a newly created cic but there's no harm. 3768 */ 3769 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr)) 3770 return; 3771 3772 /* 3773 * Drop reference to queues. New queues will be assigned in new 3774 * group upon arrival of fresh requests. 3775 */ 3776 cfqq = cic_to_cfqq(cic, false); 3777 if (cfqq) { 3778 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3779 cic_set_cfqq(cic, NULL, false); 3780 cfq_put_queue(cfqq); 3781 } 3782 3783 cfqq = cic_to_cfqq(cic, true); 3784 if (cfqq) { 3785 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3786 cic_set_cfqq(cic, NULL, true); 3787 cfq_put_queue(cfqq); 3788 } 3789 3790 cic->blkcg_serial_nr = serial_nr; 3791} 3792#else 3793static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3794{ 3795} 3796#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 3797 3798static struct cfq_queue ** 3799cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio) 3800{ 3801 switch (ioprio_class) { 3802 case IOPRIO_CLASS_RT: 3803 return &cfqg->async_cfqq[0][ioprio]; 3804 case IOPRIO_CLASS_NONE: 3805 ioprio = IOPRIO_NORM; 3806 /* fall through */ 3807 case IOPRIO_CLASS_BE: 3808 return &cfqg->async_cfqq[1][ioprio]; 3809 case IOPRIO_CLASS_IDLE: 3810 return &cfqg->async_idle_cfqq; 3811 default: 3812 BUG(); 3813 } 3814} 3815 3816static struct cfq_queue * 3817cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, 3818 struct bio *bio) 3819{ 3820 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3821 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3822 struct cfq_queue **async_cfqq = NULL; 3823 struct cfq_queue *cfqq; 3824 struct cfq_group *cfqg; 3825 3826 rcu_read_lock(); 3827 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio)); 3828 if (!cfqg) { 3829 cfqq = &cfqd->oom_cfqq; 3830 goto out; 3831 } 3832 3833 if (!is_sync) { 3834 if (!ioprio_valid(cic->ioprio)) { 3835 struct task_struct *tsk = current; 3836 ioprio = task_nice_ioprio(tsk); 3837 ioprio_class = task_nice_ioclass(tsk); 3838 } 3839 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio); 3840 cfqq = *async_cfqq; 3841 if (cfqq) 3842 goto out; 3843 } 3844 3845 cfqq = kmem_cache_alloc_node(cfq_pool, 3846 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3847 cfqd->queue->node); 3848 if (!cfqq) { 3849 cfqq = &cfqd->oom_cfqq; 3850 goto out; 3851 } 3852 3853 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */ 3854 cfqq->ioprio_class = IOPRIO_CLASS_NONE; 3855 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); 3856 cfq_init_prio_data(cfqq, cic); 3857 cfq_link_cfqq_cfqg(cfqq, cfqg); 3858 cfq_log_cfqq(cfqd, cfqq, "alloced"); 3859 3860 if (async_cfqq) { 3861 /* a new async queue is created, pin and remember */ 3862 cfqq->ref++; 3863 *async_cfqq = cfqq; 3864 } 3865out: 3866 cfqq->ref++; 3867 rcu_read_unlock(); 3868 return cfqq; 3869} 3870 3871static void 3872__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle) 3873{ 3874 u64 elapsed = ktime_get_ns() - ttime->last_end_request; 3875 elapsed = min(elapsed, 2UL * slice_idle); 3876 3877 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; 3878 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3879 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3880 ttime->ttime_samples); 3881} 3882 3883static void 3884cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3885 struct cfq_io_cq *cic) 3886{ 3887 if (cfq_cfqq_sync(cfqq)) { 3888 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); 3889 __cfq_update_io_thinktime(&cfqq->service_tree->ttime, 3890 cfqd->cfq_slice_idle); 3891 } 3892#ifdef CONFIG_CFQ_GROUP_IOSCHED 3893 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); 3894#endif 3895} 3896 3897static void 3898cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3899 struct request *rq) 3900{ 3901 sector_t sdist = 0; 3902 sector_t n_sec = blk_rq_sectors(rq); 3903 if (cfqq->last_request_pos) { 3904 if (cfqq->last_request_pos < blk_rq_pos(rq)) 3905 sdist = blk_rq_pos(rq) - cfqq->last_request_pos; 3906 else 3907 sdist = cfqq->last_request_pos - blk_rq_pos(rq); 3908 } 3909 3910 cfqq->seek_history <<= 1; 3911 if (blk_queue_nonrot(cfqd->queue)) 3912 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); 3913 else 3914 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); 3915} 3916 3917static inline bool req_noidle(struct request *req) 3918{ 3919 return req_op(req) == REQ_OP_WRITE && 3920 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC; 3921} 3922 3923/* 3924 * Disable idle window if the process thinks too long or seeks so much that 3925 * it doesn't matter 3926 */ 3927static void 3928cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3929 struct cfq_io_cq *cic) 3930{ 3931 int old_idle, enable_idle; 3932 3933 /* 3934 * Don't idle for async or idle io prio class 3935 */ 3936 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) 3937 return; 3938 3939 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); 3940 3941 if (cfqq->queued[0] + cfqq->queued[1] >= 4) 3942 cfq_mark_cfqq_deep(cfqq); 3943 3944 if (cfqq->next_rq && req_noidle(cfqq->next_rq)) 3945 enable_idle = 0; 3946 else if (!atomic_read(&cic->icq.ioc->active_ref) || 3947 !cfqd->cfq_slice_idle || 3948 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) 3949 enable_idle = 0; 3950 else if (sample_valid(cic->ttime.ttime_samples)) { 3951 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) 3952 enable_idle = 0; 3953 else 3954 enable_idle = 1; 3955 } 3956 3957 if (old_idle != enable_idle) { 3958 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); 3959 if (enable_idle) 3960 cfq_mark_cfqq_idle_window(cfqq); 3961 else 3962 cfq_clear_cfqq_idle_window(cfqq); 3963 } 3964} 3965 3966/* 3967 * Check if new_cfqq should preempt the currently active queue. Return 0 for 3968 * no or if we aren't sure, a 1 will cause a preempt. 3969 */ 3970static bool 3971cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, 3972 struct request *rq) 3973{ 3974 struct cfq_queue *cfqq; 3975 3976 cfqq = cfqd->active_queue; 3977 if (!cfqq) 3978 return false; 3979 3980 if (cfq_class_idle(new_cfqq)) 3981 return false; 3982 3983 if (cfq_class_idle(cfqq)) 3984 return true; 3985 3986 /* 3987 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. 3988 */ 3989 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) 3990 return false; 3991 3992 /* 3993 * if the new request is sync, but the currently running queue is 3994 * not, let the sync request have priority. 3995 */ 3996 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) 3997 return true; 3998 3999 /* 4000 * Treat ancestors of current cgroup the same way as current cgroup. 4001 * For anybody else we disallow preemption to guarantee service 4002 * fairness among cgroups. 4003 */ 4004 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg)) 4005 return false; 4006 4007 if (cfq_slice_used(cfqq)) 4008 return true; 4009 4010 /* 4011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. 4012 */ 4013 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) 4014 return true; 4015 4016 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class); 4017 /* Allow preemption only if we are idling on sync-noidle tree */ 4018 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && 4019 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && 4020 RB_EMPTY_ROOT(&cfqq->sort_list)) 4021 return true; 4022 4023 /* 4024 * So both queues are sync. Let the new request get disk time if 4025 * it's a metadata request and the current queue is doing regular IO. 4026 */ 4027 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) 4028 return true; 4029 4030 /* An idle queue should not be idle now for some reason */ 4031 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) 4032 return true; 4033 4034 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) 4035 return false; 4036 4037 /* 4038 * if this request is as-good as one we would expect from the 4039 * current cfqq, let it preempt 4040 */ 4041 if (cfq_rq_close(cfqd, cfqq, rq)) 4042 return true; 4043 4044 return false; 4045} 4046 4047/* 4048 * cfqq preempts the active queue. if we allowed preempt with no slice left, 4049 * let it have half of its nominal slice. 4050 */ 4051static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4052{ 4053 enum wl_type_t old_type = cfqq_type(cfqd->active_queue); 4054 4055 cfq_log_cfqq(cfqd, cfqq, "preempt"); 4056 cfq_slice_expired(cfqd, 1); 4057 4058 /* 4059 * workload type is changed, don't save slice, otherwise preempt 4060 * doesn't happen 4061 */ 4062 if (old_type != cfqq_type(cfqq)) 4063 cfqq->cfqg->saved_wl_slice = 0; 4064 4065 /* 4066 * Put the new queue at the front of the of the current list, 4067 * so we know that it will be selected next. 4068 */ 4069 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 4070 4071 cfq_service_tree_add(cfqd, cfqq, 1); 4072 4073 cfqq->slice_end = 0; 4074 cfq_mark_cfqq_slice_new(cfqq); 4075} 4076 4077/* 4078 * Called when a new fs request (rq) is added (to cfqq). Check if there's 4079 * something we should do about it 4080 */ 4081static void 4082cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, 4083 struct request *rq) 4084{ 4085 struct cfq_io_cq *cic = RQ_CIC(rq); 4086 4087 cfqd->rq_queued++; 4088 if (rq->cmd_flags & REQ_PRIO) 4089 cfqq->prio_pending++; 4090 4091 cfq_update_io_thinktime(cfqd, cfqq, cic); 4092 cfq_update_io_seektime(cfqd, cfqq, rq); 4093 cfq_update_idle_window(cfqd, cfqq, cic); 4094 4095 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4096 4097 if (cfqq == cfqd->active_queue) { 4098 /* 4099 * Remember that we saw a request from this process, but 4100 * don't start queuing just yet. Otherwise we risk seeing lots 4101 * of tiny requests, because we disrupt the normal plugging 4102 * and merging. If the request is already larger than a single 4103 * page, let it rip immediately. For that case we assume that 4104 * merging is already done. Ditto for a busy system that 4105 * has other work pending, don't risk delaying until the 4106 * idle timer unplug to continue working. 4107 */ 4108 if (cfq_cfqq_wait_request(cfqq)) { 4109 if (blk_rq_bytes(rq) > PAGE_SIZE || 4110 cfqd->busy_queues > 1) { 4111 cfq_del_timer(cfqd, cfqq); 4112 cfq_clear_cfqq_wait_request(cfqq); 4113 __blk_run_queue(cfqd->queue); 4114 } else { 4115 cfqg_stats_update_idle_time(cfqq->cfqg); 4116 cfq_mark_cfqq_must_dispatch(cfqq); 4117 } 4118 } 4119 } else if (cfq_should_preempt(cfqd, cfqq, rq)) { 4120 /* 4121 * not the active queue - expire current slice if it is 4122 * idle and has expired it's mean thinktime or this new queue 4123 * has some old slice time left and is of higher priority or 4124 * this new queue is RT and the current one is BE 4125 */ 4126 cfq_preempt_queue(cfqd, cfqq); 4127 __blk_run_queue(cfqd->queue); 4128 } 4129} 4130 4131static void cfq_insert_request(struct request_queue *q, struct request *rq) 4132{ 4133 struct cfq_data *cfqd = q->elevator->elevator_data; 4134 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4135 4136 cfq_log_cfqq(cfqd, cfqq, "insert_request"); 4137 cfq_init_prio_data(cfqq, RQ_CIC(rq)); 4138 4139 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)]; 4140 list_add_tail(&rq->queuelist, &cfqq->fifo); 4141 cfq_add_rq_rb(rq); 4142 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, 4143 rq->cmd_flags); 4144 cfq_rq_enqueued(cfqd, cfqq, rq); 4145} 4146 4147/* 4148 * Update hw_tag based on peak queue depth over 50 samples under 4149 * sufficient load. 4150 */ 4151static void cfq_update_hw_tag(struct cfq_data *cfqd) 4152{ 4153 struct cfq_queue *cfqq = cfqd->active_queue; 4154 4155 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) 4156 cfqd->hw_tag_est_depth = cfqd->rq_in_driver; 4157 4158 if (cfqd->hw_tag == 1) 4159 return; 4160 4161 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && 4162 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) 4163 return; 4164 4165 /* 4166 * If active queue hasn't enough requests and can idle, cfq might not 4167 * dispatch sufficient requests to hardware. Don't zero hw_tag in this 4168 * case 4169 */ 4170 if (cfqq && cfq_cfqq_idle_window(cfqq) && 4171 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < 4172 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) 4173 return; 4174 4175 if (cfqd->hw_tag_samples++ < 50) 4176 return; 4177 4178 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) 4179 cfqd->hw_tag = 1; 4180 else 4181 cfqd->hw_tag = 0; 4182} 4183 4184static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4185{ 4186 struct cfq_io_cq *cic = cfqd->active_cic; 4187 u64 now = ktime_get_ns(); 4188 4189 /* If the queue already has requests, don't wait */ 4190 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4191 return false; 4192 4193 /* If there are other queues in the group, don't wait */ 4194 if (cfqq->cfqg->nr_cfqq > 1) 4195 return false; 4196 4197 /* the only queue in the group, but think time is big */ 4198 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) 4199 return false; 4200 4201 if (cfq_slice_used(cfqq)) 4202 return true; 4203 4204 /* if slice left is less than think time, wait busy */ 4205 if (cic && sample_valid(cic->ttime.ttime_samples) 4206 && (cfqq->slice_end - now < cic->ttime.ttime_mean)) 4207 return true; 4208 4209 /* 4210 * If think times is less than a jiffy than ttime_mean=0 and above 4211 * will not be true. It might happen that slice has not expired yet 4212 * but will expire soon (4-5 ns) during select_queue(). To cover the 4213 * case where think time is less than a jiffy, mark the queue wait 4214 * busy if only 1 jiffy is left in the slice. 4215 */ 4216 if (cfqq->slice_end - now <= jiffies_to_nsecs(1)) 4217 return true; 4218 4219 return false; 4220} 4221 4222static void cfq_completed_request(struct request_queue *q, struct request *rq) 4223{ 4224 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4225 struct cfq_data *cfqd = cfqq->cfqd; 4226 const int sync = rq_is_sync(rq); 4227 u64 now = ktime_get_ns(); 4228 4229 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq)); 4230 4231 cfq_update_hw_tag(cfqd); 4232 4233 WARN_ON(!cfqd->rq_in_driver); 4234 WARN_ON(!cfqq->dispatched); 4235 cfqd->rq_in_driver--; 4236 cfqq->dispatched--; 4237 (RQ_CFQG(rq))->dispatched--; 4238 cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns, 4239 rq->io_start_time_ns, rq->cmd_flags); 4240 4241 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; 4242 4243 if (sync) { 4244 struct cfq_rb_root *st; 4245 4246 RQ_CIC(rq)->ttime.last_end_request = now; 4247 4248 if (cfq_cfqq_on_rr(cfqq)) 4249 st = cfqq->service_tree; 4250 else 4251 st = st_for(cfqq->cfqg, cfqq_class(cfqq), 4252 cfqq_type(cfqq)); 4253 4254 st->ttime.last_end_request = now; 4255 if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now) 4256 cfqd->last_delayed_sync = now; 4257 } 4258 4259#ifdef CONFIG_CFQ_GROUP_IOSCHED 4260 cfqq->cfqg->ttime.last_end_request = now; 4261#endif 4262 4263 /* 4264 * If this is the active queue, check if it needs to be expired, 4265 * or if we want to idle in case it has no pending requests. 4266 */ 4267 if (cfqd->active_queue == cfqq) { 4268 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); 4269 4270 if (cfq_cfqq_slice_new(cfqq)) { 4271 cfq_set_prio_slice(cfqd, cfqq); 4272 cfq_clear_cfqq_slice_new(cfqq); 4273 } 4274 4275 /* 4276 * Should we wait for next request to come in before we expire 4277 * the queue. 4278 */ 4279 if (cfq_should_wait_busy(cfqd, cfqq)) { 4280 u64 extend_sl = cfqd->cfq_slice_idle; 4281 if (!cfqd->cfq_slice_idle) 4282 extend_sl = cfqd->cfq_group_idle; 4283 cfqq->slice_end = now + extend_sl; 4284 cfq_mark_cfqq_wait_busy(cfqq); 4285 cfq_log_cfqq(cfqd, cfqq, "will busy wait"); 4286 } 4287 4288 /* 4289 * Idling is not enabled on: 4290 * - expired queues 4291 * - idle-priority queues 4292 * - async queues 4293 * - queues with still some requests queued 4294 * - when there is a close cooperator 4295 */ 4296 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) 4297 cfq_slice_expired(cfqd, 1); 4298 else if (sync && cfqq_empty && 4299 !cfq_close_cooperator(cfqd, cfqq)) { 4300 cfq_arm_slice_timer(cfqd); 4301 } 4302 } 4303 4304 if (!cfqd->rq_in_driver) 4305 cfq_schedule_dispatch(cfqd); 4306} 4307 4308static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op) 4309{ 4310 /* 4311 * If REQ_PRIO is set, boost class and prio level, if it's below 4312 * BE/NORM. If prio is not set, restore the potentially boosted 4313 * class/prio level. 4314 */ 4315 if (!(op & REQ_PRIO)) { 4316 cfqq->ioprio_class = cfqq->org_ioprio_class; 4317 cfqq->ioprio = cfqq->org_ioprio; 4318 } else { 4319 if (cfq_class_idle(cfqq)) 4320 cfqq->ioprio_class = IOPRIO_CLASS_BE; 4321 if (cfqq->ioprio > IOPRIO_NORM) 4322 cfqq->ioprio = IOPRIO_NORM; 4323 } 4324} 4325 4326static inline int __cfq_may_queue(struct cfq_queue *cfqq) 4327{ 4328 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { 4329 cfq_mark_cfqq_must_alloc_slice(cfqq); 4330 return ELV_MQUEUE_MUST; 4331 } 4332 4333 return ELV_MQUEUE_MAY; 4334} 4335 4336static int cfq_may_queue(struct request_queue *q, unsigned int op) 4337{ 4338 struct cfq_data *cfqd = q->elevator->elevator_data; 4339 struct task_struct *tsk = current; 4340 struct cfq_io_cq *cic; 4341 struct cfq_queue *cfqq; 4342 4343 /* 4344 * don't force setup of a queue from here, as a call to may_queue 4345 * does not necessarily imply that a request actually will be queued. 4346 * so just lookup a possibly existing queue, or return 'may queue' 4347 * if that fails 4348 */ 4349 cic = cfq_cic_lookup(cfqd, tsk->io_context); 4350 if (!cic) 4351 return ELV_MQUEUE_MAY; 4352 4353 cfqq = cic_to_cfqq(cic, op_is_sync(op)); 4354 if (cfqq) { 4355 cfq_init_prio_data(cfqq, cic); 4356 cfqq_boost_on_prio(cfqq, op); 4357 4358 return __cfq_may_queue(cfqq); 4359 } 4360 4361 return ELV_MQUEUE_MAY; 4362} 4363 4364/* 4365 * queue lock held here 4366 */ 4367static void cfq_put_request(struct request *rq) 4368{ 4369 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4370 4371 if (cfqq) { 4372 const int rw = rq_data_dir(rq); 4373 4374 BUG_ON(!cfqq->allocated[rw]); 4375 cfqq->allocated[rw]--; 4376 4377 /* Put down rq reference on cfqg */ 4378 cfqg_put(RQ_CFQG(rq)); 4379 rq->elv.priv[0] = NULL; 4380 rq->elv.priv[1] = NULL; 4381 4382 cfq_put_queue(cfqq); 4383 } 4384} 4385 4386static struct cfq_queue * 4387cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, 4388 struct cfq_queue *cfqq) 4389{ 4390 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); 4391 cic_set_cfqq(cic, cfqq->new_cfqq, 1); 4392 cfq_mark_cfqq_coop(cfqq->new_cfqq); 4393 cfq_put_queue(cfqq); 4394 return cic_to_cfqq(cic, 1); 4395} 4396 4397/* 4398 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this 4399 * was the last process referring to said cfqq. 4400 */ 4401static struct cfq_queue * 4402split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) 4403{ 4404 if (cfqq_process_refs(cfqq) == 1) { 4405 cfqq->pid = current->pid; 4406 cfq_clear_cfqq_coop(cfqq); 4407 cfq_clear_cfqq_split_coop(cfqq); 4408 return cfqq; 4409 } 4410 4411 cic_set_cfqq(cic, NULL, 1); 4412 4413 cfq_put_cooperator(cfqq); 4414 4415 cfq_put_queue(cfqq); 4416 return NULL; 4417} 4418/* 4419 * Allocate cfq data structures associated with this request. 4420 */ 4421static int 4422cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, 4423 gfp_t gfp_mask) 4424{ 4425 struct cfq_data *cfqd = q->elevator->elevator_data; 4426 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); 4427 const int rw = rq_data_dir(rq); 4428 const bool is_sync = rq_is_sync(rq); 4429 struct cfq_queue *cfqq; 4430 4431 spin_lock_irq(q->queue_lock); 4432 4433 check_ioprio_changed(cic, bio); 4434 check_blkcg_changed(cic, bio); 4435new_queue: 4436 cfqq = cic_to_cfqq(cic, is_sync); 4437 if (!cfqq || cfqq == &cfqd->oom_cfqq) { 4438 if (cfqq) 4439 cfq_put_queue(cfqq); 4440 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio); 4441 cic_set_cfqq(cic, cfqq, is_sync); 4442 } else { 4443 /* 4444 * If the queue was seeky for too long, break it apart. 4445 */ 4446 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { 4447 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); 4448 cfqq = split_cfqq(cic, cfqq); 4449 if (!cfqq) 4450 goto new_queue; 4451 } 4452 4453 /* 4454 * Check to see if this queue is scheduled to merge with 4455 * another, closely cooperating queue. The merging of 4456 * queues happens here as it must be done in process context. 4457 * The reference on new_cfqq was taken in merge_cfqqs. 4458 */ 4459 if (cfqq->new_cfqq) 4460 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); 4461 } 4462 4463 cfqq->allocated[rw]++; 4464 4465 cfqq->ref++; 4466 cfqg_get(cfqq->cfqg); 4467 rq->elv.priv[0] = cfqq; 4468 rq->elv.priv[1] = cfqq->cfqg; 4469 spin_unlock_irq(q->queue_lock); 4470 4471 return 0; 4472} 4473 4474static void cfq_kick_queue(struct work_struct *work) 4475{ 4476 struct cfq_data *cfqd = 4477 container_of(work, struct cfq_data, unplug_work); 4478 struct request_queue *q = cfqd->queue; 4479 4480 spin_lock_irq(q->queue_lock); 4481 __blk_run_queue(cfqd->queue); 4482 spin_unlock_irq(q->queue_lock); 4483} 4484 4485/* 4486 * Timer running if the active_queue is currently idling inside its time slice 4487 */ 4488static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer) 4489{ 4490 struct cfq_data *cfqd = container_of(timer, struct cfq_data, 4491 idle_slice_timer); 4492 struct cfq_queue *cfqq; 4493 unsigned long flags; 4494 int timed_out = 1; 4495 4496 cfq_log(cfqd, "idle timer fired"); 4497 4498 spin_lock_irqsave(cfqd->queue->queue_lock, flags); 4499 4500 cfqq = cfqd->active_queue; 4501 if (cfqq) { 4502 timed_out = 0; 4503 4504 /* 4505 * We saw a request before the queue expired, let it through 4506 */ 4507 if (cfq_cfqq_must_dispatch(cfqq)) 4508 goto out_kick; 4509 4510 /* 4511 * expired 4512 */ 4513 if (cfq_slice_used(cfqq)) 4514 goto expire; 4515 4516 /* 4517 * only expire and reinvoke request handler, if there are 4518 * other queues with pending requests 4519 */ 4520 if (!cfqd->busy_queues) 4521 goto out_cont; 4522 4523 /* 4524 * not expired and it has a request pending, let it dispatch 4525 */ 4526 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4527 goto out_kick; 4528 4529 /* 4530 * Queue depth flag is reset only when the idle didn't succeed 4531 */ 4532 cfq_clear_cfqq_deep(cfqq); 4533 } 4534expire: 4535 cfq_slice_expired(cfqd, timed_out); 4536out_kick: 4537 cfq_schedule_dispatch(cfqd); 4538out_cont: 4539 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); 4540 return HRTIMER_NORESTART; 4541} 4542 4543static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) 4544{ 4545 hrtimer_cancel(&cfqd->idle_slice_timer); 4546 cancel_work_sync(&cfqd->unplug_work); 4547} 4548 4549static void cfq_exit_queue(struct elevator_queue *e) 4550{ 4551 struct cfq_data *cfqd = e->elevator_data; 4552 struct request_queue *q = cfqd->queue; 4553 4554 cfq_shutdown_timer_wq(cfqd); 4555 4556 spin_lock_irq(q->queue_lock); 4557 4558 if (cfqd->active_queue) 4559 __cfq_slice_expired(cfqd, cfqd->active_queue, 0); 4560 4561 spin_unlock_irq(q->queue_lock); 4562 4563 cfq_shutdown_timer_wq(cfqd); 4564 4565#ifdef CONFIG_CFQ_GROUP_IOSCHED 4566 blkcg_deactivate_policy(q, &blkcg_policy_cfq); 4567#else 4568 kfree(cfqd->root_group); 4569#endif 4570 kfree(cfqd); 4571} 4572 4573static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) 4574{ 4575 struct cfq_data *cfqd; 4576 struct blkcg_gq *blkg __maybe_unused; 4577 int i, ret; 4578 struct elevator_queue *eq; 4579 4580 eq = elevator_alloc(q, e); 4581 if (!eq) 4582 return -ENOMEM; 4583 4584 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); 4585 if (!cfqd) { 4586 kobject_put(&eq->kobj); 4587 return -ENOMEM; 4588 } 4589 eq->elevator_data = cfqd; 4590 4591 cfqd->queue = q; 4592 spin_lock_irq(q->queue_lock); 4593 q->elevator = eq; 4594 spin_unlock_irq(q->queue_lock); 4595 4596 /* Init root service tree */ 4597 cfqd->grp_service_tree = CFQ_RB_ROOT; 4598 4599 /* Init root group and prefer root group over other groups by default */ 4600#ifdef CONFIG_CFQ_GROUP_IOSCHED 4601 ret = blkcg_activate_policy(q, &blkcg_policy_cfq); 4602 if (ret) 4603 goto out_free; 4604 4605 cfqd->root_group = blkg_to_cfqg(q->root_blkg); 4606#else 4607 ret = -ENOMEM; 4608 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), 4609 GFP_KERNEL, cfqd->queue->node); 4610 if (!cfqd->root_group) 4611 goto out_free; 4612 4613 cfq_init_cfqg_base(cfqd->root_group); 4614 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4615 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4616#endif 4617 4618 /* 4619 * Not strictly needed (since RB_ROOT just clears the node and we 4620 * zeroed cfqd on alloc), but better be safe in case someone decides 4621 * to add magic to the rb code 4622 */ 4623 for (i = 0; i < CFQ_PRIO_LISTS; i++) 4624 cfqd->prio_trees[i] = RB_ROOT; 4625 4626 /* 4627 * Our fallback cfqq if cfq_get_queue() runs into OOM issues. 4628 * Grab a permanent reference to it, so that the normal code flow 4629 * will not attempt to free it. oom_cfqq is linked to root_group 4630 * but shouldn't hold a reference as it'll never be unlinked. Lose 4631 * the reference from linking right away. 4632 */ 4633 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); 4634 cfqd->oom_cfqq.ref++; 4635 4636 spin_lock_irq(q->queue_lock); 4637 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); 4638 cfqg_put(cfqd->root_group); 4639 spin_unlock_irq(q->queue_lock); 4640 4641 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC, 4642 HRTIMER_MODE_REL); 4643 cfqd->idle_slice_timer.function = cfq_idle_slice_timer; 4644 4645 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); 4646 4647 cfqd->cfq_quantum = cfq_quantum; 4648 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; 4649 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; 4650 cfqd->cfq_back_max = cfq_back_max; 4651 cfqd->cfq_back_penalty = cfq_back_penalty; 4652 cfqd->cfq_slice[0] = cfq_slice_async; 4653 cfqd->cfq_slice[1] = cfq_slice_sync; 4654 cfqd->cfq_target_latency = cfq_target_latency; 4655 cfqd->cfq_slice_async_rq = cfq_slice_async_rq; 4656 cfqd->cfq_slice_idle = cfq_slice_idle; 4657 cfqd->cfq_group_idle = cfq_group_idle; 4658 cfqd->cfq_latency = 1; 4659 cfqd->hw_tag = -1; 4660 /* 4661 * we optimistically start assuming sync ops weren't delayed in last 4662 * second, in order to have larger depth for async operations. 4663 */ 4664 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC; 4665 return 0; 4666 4667out_free: 4668 kfree(cfqd); 4669 kobject_put(&eq->kobj); 4670 return ret; 4671} 4672 4673static void cfq_registered_queue(struct request_queue *q) 4674{ 4675 struct elevator_queue *e = q->elevator; 4676 struct cfq_data *cfqd = e->elevator_data; 4677 4678 /* 4679 * Default to IOPS mode with no idling for SSDs 4680 */ 4681 if (blk_queue_nonrot(q)) 4682 cfqd->cfq_slice_idle = 0; 4683 wbt_disable_default(q); 4684} 4685 4686/* 4687 * sysfs parts below --> 4688 */ 4689static ssize_t 4690cfq_var_show(unsigned int var, char *page) 4691{ 4692 return sprintf(page, "%u\n", var); 4693} 4694 4695static void 4696cfq_var_store(unsigned int *var, const char *page) 4697{ 4698 char *p = (char *) page; 4699 4700 *var = simple_strtoul(p, &p, 10); 4701} 4702 4703#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4704static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4705{ \ 4706 struct cfq_data *cfqd = e->elevator_data; \ 4707 u64 __data = __VAR; \ 4708 if (__CONV) \ 4709 __data = div_u64(__data, NSEC_PER_MSEC); \ 4710 return cfq_var_show(__data, (page)); \ 4711} 4712SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); 4713SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); 4714SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); 4715SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); 4716SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); 4717SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); 4718SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); 4719SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); 4720SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); 4721SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); 4722SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); 4723SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); 4724#undef SHOW_FUNCTION 4725 4726#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4727static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4728{ \ 4729 struct cfq_data *cfqd = e->elevator_data; \ 4730 u64 __data = __VAR; \ 4731 __data = div_u64(__data, NSEC_PER_USEC); \ 4732 return cfq_var_show(__data, (page)); \ 4733} 4734USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle); 4735USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle); 4736USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]); 4737USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]); 4738USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency); 4739#undef USEC_SHOW_FUNCTION 4740 4741#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4742static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4743{ \ 4744 struct cfq_data *cfqd = e->elevator_data; \ 4745 unsigned int __data, __min = (MIN), __max = (MAX); \ 4746 \ 4747 cfq_var_store(&__data, (page)); \ 4748 if (__data < __min) \ 4749 __data = __min; \ 4750 else if (__data > __max) \ 4751 __data = __max; \ 4752 if (__CONV) \ 4753 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4754 else \ 4755 *(__PTR) = __data; \ 4756 return count; \ 4757} 4758STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); 4759STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, 4760 UINT_MAX, 1); 4761STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, 4762 UINT_MAX, 1); 4763STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); 4764STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, 4765 UINT_MAX, 0); 4766STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); 4767STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); 4768STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); 4769STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); 4770STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, 4771 UINT_MAX, 0); 4772STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); 4773STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); 4774#undef STORE_FUNCTION 4775 4776#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4777static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4778{ \ 4779 struct cfq_data *cfqd = e->elevator_data; \ 4780 unsigned int __data, __min = (MIN), __max = (MAX); \ 4781 \ 4782 cfq_var_store(&__data, (page)); \ 4783 if (__data < __min) \ 4784 __data = __min; \ 4785 else if (__data > __max) \ 4786 __data = __max; \ 4787 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4788 return count; \ 4789} 4790USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX); 4791USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX); 4792USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX); 4793USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX); 4794USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX); 4795#undef USEC_STORE_FUNCTION 4796 4797#define CFQ_ATTR(name) \ 4798 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store) 4799 4800static struct elv_fs_entry cfq_attrs[] = { 4801 CFQ_ATTR(quantum), 4802 CFQ_ATTR(fifo_expire_sync), 4803 CFQ_ATTR(fifo_expire_async), 4804 CFQ_ATTR(back_seek_max), 4805 CFQ_ATTR(back_seek_penalty), 4806 CFQ_ATTR(slice_sync), 4807 CFQ_ATTR(slice_sync_us), 4808 CFQ_ATTR(slice_async), 4809 CFQ_ATTR(slice_async_us), 4810 CFQ_ATTR(slice_async_rq), 4811 CFQ_ATTR(slice_idle), 4812 CFQ_ATTR(slice_idle_us), 4813 CFQ_ATTR(group_idle), 4814 CFQ_ATTR(group_idle_us), 4815 CFQ_ATTR(low_latency), 4816 CFQ_ATTR(target_latency), 4817 CFQ_ATTR(target_latency_us), 4818 __ATTR_NULL 4819}; 4820 4821static struct elevator_type iosched_cfq = { 4822 .ops.sq = { 4823 .elevator_merge_fn = cfq_merge, 4824 .elevator_merged_fn = cfq_merged_request, 4825 .elevator_merge_req_fn = cfq_merged_requests, 4826 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge, 4827 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge, 4828 .elevator_bio_merged_fn = cfq_bio_merged, 4829 .elevator_dispatch_fn = cfq_dispatch_requests, 4830 .elevator_add_req_fn = cfq_insert_request, 4831 .elevator_activate_req_fn = cfq_activate_request, 4832 .elevator_deactivate_req_fn = cfq_deactivate_request, 4833 .elevator_completed_req_fn = cfq_completed_request, 4834 .elevator_former_req_fn = elv_rb_former_request, 4835 .elevator_latter_req_fn = elv_rb_latter_request, 4836 .elevator_init_icq_fn = cfq_init_icq, 4837 .elevator_exit_icq_fn = cfq_exit_icq, 4838 .elevator_set_req_fn = cfq_set_request, 4839 .elevator_put_req_fn = cfq_put_request, 4840 .elevator_may_queue_fn = cfq_may_queue, 4841 .elevator_init_fn = cfq_init_queue, 4842 .elevator_exit_fn = cfq_exit_queue, 4843 .elevator_registered_fn = cfq_registered_queue, 4844 }, 4845 .icq_size = sizeof(struct cfq_io_cq), 4846 .icq_align = __alignof__(struct cfq_io_cq), 4847 .elevator_attrs = cfq_attrs, 4848 .elevator_name = "cfq", 4849 .elevator_owner = THIS_MODULE, 4850}; 4851 4852#ifdef CONFIG_CFQ_GROUP_IOSCHED 4853static struct blkcg_policy blkcg_policy_cfq = { 4854 .dfl_cftypes = cfq_blkcg_files, 4855 .legacy_cftypes = cfq_blkcg_legacy_files, 4856 4857 .cpd_alloc_fn = cfq_cpd_alloc, 4858 .cpd_init_fn = cfq_cpd_init, 4859 .cpd_free_fn = cfq_cpd_free, 4860 .cpd_bind_fn = cfq_cpd_bind, 4861 4862 .pd_alloc_fn = cfq_pd_alloc, 4863 .pd_init_fn = cfq_pd_init, 4864 .pd_offline_fn = cfq_pd_offline, 4865 .pd_free_fn = cfq_pd_free, 4866 .pd_reset_stats_fn = cfq_pd_reset_stats, 4867}; 4868#endif 4869 4870static int __init cfq_init(void) 4871{ 4872 int ret; 4873 4874#ifdef CONFIG_CFQ_GROUP_IOSCHED 4875 ret = blkcg_policy_register(&blkcg_policy_cfq); 4876 if (ret) 4877 return ret; 4878#else 4879 cfq_group_idle = 0; 4880#endif 4881 4882 ret = -ENOMEM; 4883 cfq_pool = KMEM_CACHE(cfq_queue, 0); 4884 if (!cfq_pool) 4885 goto err_pol_unreg; 4886 4887 ret = elv_register(&iosched_cfq); 4888 if (ret) 4889 goto err_free_pool; 4890 4891 return 0; 4892 4893err_free_pool: 4894 kmem_cache_destroy(cfq_pool); 4895err_pol_unreg: 4896#ifdef CONFIG_CFQ_GROUP_IOSCHED 4897 blkcg_policy_unregister(&blkcg_policy_cfq); 4898#endif 4899 return ret; 4900} 4901 4902static void __exit cfq_exit(void) 4903{ 4904#ifdef CONFIG_CFQ_GROUP_IOSCHED 4905 blkcg_policy_unregister(&blkcg_policy_cfq); 4906#endif 4907 elv_unregister(&iosched_cfq); 4908 kmem_cache_destroy(cfq_pool); 4909} 4910 4911module_init(cfq_init); 4912module_exit(cfq_exit); 4913 4914MODULE_AUTHOR("Jens Axboe"); 4915MODULE_LICENSE("GPL"); 4916MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");