at v4.20 454 lines 15 kB view raw
1/* 2 * include/asm-xtensa/pgtable.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2013 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#define __ARCH_USE_5LEVEL_HACK 15#include <asm/page.h> 16#include <asm/kmem_layout.h> 17#include <asm-generic/pgtable-nopmd.h> 18 19/* 20 * We only use two ring levels, user and kernel space. 21 */ 22 23#ifdef CONFIG_MMU 24#define USER_RING 1 /* user ring level */ 25#else 26#define USER_RING 0 27#endif 28#define KERNEL_RING 0 /* kernel ring level */ 29 30/* 31 * The Xtensa architecture port of Linux has a two-level page table system, 32 * i.e. the logical three-level Linux page table layout is folded. 33 * Each task has the following memory page tables: 34 * 35 * PGD table (page directory), ie. 3rd-level page table: 36 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 37 * (Architectures that don't have the PMD folded point to the PMD tables) 38 * 39 * The pointer to the PGD table for a given task can be retrieved from 40 * the task structure (struct task_struct*) t, e.g. current(): 41 * (t->mm ? t->mm : t->active_mm)->pgd 42 * 43 * PMD tables (page middle-directory), ie. 2nd-level page tables: 44 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 45 * 46 * PTE tables (page table entry), ie. 1st-level page tables: 47 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 48 * invalid_pte_table for absent mappings. 49 * 50 * The individual pages are 4 kB big with special pages for the empty_zero_page. 51 */ 52 53#define PGDIR_SHIFT 22 54#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 55#define PGDIR_MASK (~(PGDIR_SIZE-1)) 56 57/* 58 * Entries per page directory level: we use two-level, so 59 * we don't really have any PMD directory physically. 60 */ 61#define PTRS_PER_PTE 1024 62#define PTRS_PER_PTE_SHIFT 10 63#define PTRS_PER_PGD 1024 64#define PGD_ORDER 0 65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 66#define FIRST_USER_ADDRESS 0UL 67#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 68 69#ifdef CONFIG_MMU 70/* 71 * Virtual memory area. We keep a distance to other memory regions to be 72 * on the safe side. We also use this area for cache aliasing. 73 */ 74#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000) 75#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF) 76#define TLBTEMP_BASE_1 (VMALLOC_END + 1) 77#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE) 78#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE 79#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE) 80#else 81#define TLBTEMP_SIZE ICACHE_WAY_SIZE 82#endif 83 84#else 85 86#define VMALLOC_START __XTENSA_UL_CONST(0) 87#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff) 88 89#endif 90 91/* 92 * For the Xtensa architecture, the PTE layout is as follows: 93 * 94 * 31------12 11 10-9 8-6 5-4 3-2 1-0 95 * +-----------------------------------------+ 96 * | | Software | HARDWARE | 97 * | PPN | ADW | RI |Attribute| 98 * +-----------------------------------------+ 99 * pte_none | MBZ | 01 | 11 | 00 | 100 * +-----------------------------------------+ 101 * present | PPN | 0 | 00 | ADW | RI | CA | wx | 102 * +- - - - - - - - - - - - - - - - - - - - -+ 103 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 | 104 * +-----------------------------------------+ 105 * swap | index | type | 01 | 11 | 00 | 106 * +-----------------------------------------+ 107 * 108 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE) 109 * +-----------------------------------------+ 110 * present | PPN | 0 | 00 | ADW | RI | CA | w1 | 111 * +-----------------------------------------+ 112 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 | 113 * +-----------------------------------------+ 114 * 115 * Legend: 116 * PPN Physical Page Number 117 * ADW software: accessed (young) / dirty / writable 118 * RI ring (0=privileged, 1=user, 2 and 3 are unused) 119 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough 120 * (11 is invalid and used to mark pages that are not present) 121 * w page is writable (hw) 122 * x page is executable (hw) 123 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB) 124 * (note that the index is always non-zero) 125 * type swap type (5 bits -> 32 types) 126 * 127 * Notes: 128 * - (PROT_NONE) is a special case of 'present' but causes an exception for 129 * any access (read, write, and execute). 130 * - 'multihit-exception' has the highest priority of all MMU exceptions, 131 * so the ring must be set to 'RING_USER' even for 'non-present' pages. 132 * - on older hardware, the exectuable flag was not supported and 133 * used as a 'valid' flag, so it needs to be always set. 134 * - we need to keep track of certain flags in software (dirty and young) 135 * to do this, we use write exceptions and have a separate software w-flag. 136 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved 137 */ 138 139#define _PAGE_ATTRIB_MASK 0xf 140 141#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 142#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 143 144#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 145#define _PAGE_CA_WB (1<<2) /* write-back */ 146#define _PAGE_CA_WT (2<<2) /* write-through */ 147#define _PAGE_CA_MASK (3<<2) 148#define _PAGE_CA_INVALID (3<<2) 149 150/* We use invalid attribute values to distinguish special pte entries */ 151#if XCHAL_HW_VERSION_MAJOR < 2000 152#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */ 153#define _PAGE_NONE 0x04 154#else 155#define _PAGE_HW_VALID 0x00 156#define _PAGE_NONE 0x0f 157#endif 158 159#define _PAGE_USER (1<<4) /* user access (ring=1) */ 160 161/* Software */ 162#define _PAGE_WRITABLE_BIT 6 163#define _PAGE_WRITABLE (1<<6) /* software: page writable */ 164#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 165#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 166 167#ifdef CONFIG_MMU 168 169#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 170#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 171 172#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER) 173#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 174#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 175#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 176#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 177#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 178#define PAGE_SHARED_EXEC \ 179 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 180#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 181#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT) 182#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 183 184#if (DCACHE_WAY_SIZE > PAGE_SIZE) 185# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS) 186#else 187# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 188#endif 189 190#else /* no mmu */ 191 192# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 193# define PAGE_NONE __pgprot(0) 194# define PAGE_SHARED __pgprot(0) 195# define PAGE_COPY __pgprot(0) 196# define PAGE_READONLY __pgprot(0) 197# define PAGE_KERNEL __pgprot(0) 198 199#endif 200 201/* 202 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 203 * the MMU can't do page protection for execute, and considers that the same as 204 * read. Also, write permissions may imply read permissions. 205 * What follows is the closest we can get by reasonable means.. 206 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 207 */ 208#define __P000 PAGE_NONE /* private --- */ 209#define __P001 PAGE_READONLY /* private --r */ 210#define __P010 PAGE_COPY /* private -w- */ 211#define __P011 PAGE_COPY /* private -wr */ 212#define __P100 PAGE_READONLY_EXEC /* private x-- */ 213#define __P101 PAGE_READONLY_EXEC /* private x-r */ 214#define __P110 PAGE_COPY_EXEC /* private xw- */ 215#define __P111 PAGE_COPY_EXEC /* private xwr */ 216 217#define __S000 PAGE_NONE /* shared --- */ 218#define __S001 PAGE_READONLY /* shared --r */ 219#define __S010 PAGE_SHARED /* shared -w- */ 220#define __S011 PAGE_SHARED /* shared -wr */ 221#define __S100 PAGE_READONLY_EXEC /* shared x-- */ 222#define __S101 PAGE_READONLY_EXEC /* shared x-r */ 223#define __S110 PAGE_SHARED_EXEC /* shared xw- */ 224#define __S111 PAGE_SHARED_EXEC /* shared xwr */ 225 226#ifndef __ASSEMBLY__ 227 228#define pte_ERROR(e) \ 229 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 230#define pgd_ERROR(e) \ 231 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 232 233extern unsigned long empty_zero_page[1024]; 234 235#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 236 237#ifdef CONFIG_MMU 238extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 239extern void paging_init(void); 240#else 241# define swapper_pg_dir NULL 242static inline void paging_init(void) { } 243#endif 244static inline void pgtable_cache_init(void) { } 245 246/* 247 * The pmd contains the kernel virtual address of the pte page. 248 */ 249#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 250#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 251 252/* 253 * pte status. 254 */ 255# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER)) 256#if XCHAL_HW_VERSION_MAJOR < 2000 257# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) 258#else 259# define pte_present(pte) \ 260 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \ 261 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE)) 262#endif 263#define pte_clear(mm,addr,ptep) \ 264 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0) 265 266#define pmd_none(pmd) (!pmd_val(pmd)) 267#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 268#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 269#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 270 271static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 272static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 273static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 274static inline int pte_special(pte_t pte) { return 0; } 275 276static inline pte_t pte_wrprotect(pte_t pte) 277 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 278static inline pte_t pte_mkclean(pte_t pte) 279 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 280static inline pte_t pte_mkold(pte_t pte) 281 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 282static inline pte_t pte_mkdirty(pte_t pte) 283 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 284static inline pte_t pte_mkyoung(pte_t pte) 285 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 286static inline pte_t pte_mkwrite(pte_t pte) 287 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 288static inline pte_t pte_mkspecial(pte_t pte) 289 { return pte; } 290 291#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK)) 292 293/* 294 * Conversion functions: convert a page and protection to a page entry, 295 * and a page entry and page directory to the page they refer to. 296 */ 297 298#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 299#define pte_same(a,b) (pte_val(a) == pte_val(b)) 300#define pte_page(x) pfn_to_page(pte_pfn(x)) 301#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 302#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 303 304static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 305{ 306 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 307} 308 309/* 310 * Certain architectures need to do special things when pte's 311 * within a page table are directly modified. Thus, the following 312 * hook is made available. 313 */ 314static inline void update_pte(pte_t *ptep, pte_t pteval) 315{ 316 *ptep = pteval; 317#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 318 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 319#endif 320 321} 322 323struct mm_struct; 324 325static inline void 326set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 327{ 328 update_pte(ptep, pteval); 329} 330 331static inline void set_pte(pte_t *ptep, pte_t pteval) 332{ 333 update_pte(ptep, pteval); 334} 335 336static inline void 337set_pmd(pmd_t *pmdp, pmd_t pmdval) 338{ 339 *pmdp = pmdval; 340} 341 342struct vm_area_struct; 343 344static inline int 345ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 346 pte_t *ptep) 347{ 348 pte_t pte = *ptep; 349 if (!pte_young(pte)) 350 return 0; 351 update_pte(ptep, pte_mkold(pte)); 352 return 1; 353} 354 355static inline pte_t 356ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 357{ 358 pte_t pte = *ptep; 359 pte_clear(mm, addr, ptep); 360 return pte; 361} 362 363static inline void 364ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 365{ 366 pte_t pte = *ptep; 367 update_pte(ptep, pte_wrprotect(pte)); 368} 369 370/* to find an entry in a kernel page-table-directory */ 371#define pgd_offset_k(address) pgd_offset(&init_mm, address) 372 373/* to find an entry in a page-table-directory */ 374#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 375 376#define pgd_index(address) ((address) >> PGDIR_SHIFT) 377 378/* Find an entry in the second-level page table.. */ 379#define pmd_offset(dir,address) ((pmd_t*)(dir)) 380 381/* Find an entry in the third-level page table.. */ 382#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 383#define pte_offset_kernel(dir,addr) \ 384 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) 385#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 386#define pte_unmap(pte) do { } while (0) 387 388 389/* 390 * Encode and decode a swap and file entry. 391 */ 392#define SWP_TYPE_BITS 5 393#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) 394 395#define __swp_type(entry) (((entry).val >> 6) & 0x1f) 396#define __swp_offset(entry) ((entry).val >> 11) 397#define __swp_entry(type,offs) \ 398 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \ 399 _PAGE_CA_INVALID | _PAGE_USER}) 400#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 401#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 402 403#endif /* !defined (__ASSEMBLY__) */ 404 405 406#ifdef __ASSEMBLY__ 407 408/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 409 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 410 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 411 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 412 * 413 * Note: We require an additional temporary register which can be the same as 414 * the register that holds the address. 415 * 416 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 417 * 418 */ 419#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 420#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 421 422#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 423 _PGD_INDEX(tmp, adr); \ 424 addx4 mm, tmp, mm 425 426#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 427 srli pmd, pmd, PAGE_SHIFT; \ 428 slli pmd, pmd, PAGE_SHIFT; \ 429 addx4 pmd, tmp, pmd 430 431#else 432 433#define kern_addr_valid(addr) (1) 434 435extern void update_mmu_cache(struct vm_area_struct * vma, 436 unsigned long address, pte_t *ptep); 437 438typedef pte_t *pte_addr_t; 439 440#endif /* !defined (__ASSEMBLY__) */ 441 442#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 443#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 444#define __HAVE_ARCH_PTEP_SET_WRPROTECT 445#define __HAVE_ARCH_PTEP_MKDIRTY 446#define __HAVE_ARCH_PTE_SAME 447/* We provide our own get_unmapped_area to cope with 448 * SHM area cache aliasing for userland. 449 */ 450#define HAVE_ARCH_UNMAPPED_AREA 451 452#include <asm-generic/pgtable.h> 453 454#endif /* _XTENSA_PGTABLE_H */