at v4.20 523 lines 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_BITOPS_H 3#define _ASM_X86_BITOPS_H 4 5/* 6 * Copyright 1992, Linus Torvalds. 7 * 8 * Note: inlines with more than a single statement should be marked 9 * __always_inline to avoid problems with older gcc's inlining heuristics. 10 */ 11 12#ifndef _LINUX_BITOPS_H 13#error only <linux/bitops.h> can be included directly 14#endif 15 16#include <linux/compiler.h> 17#include <asm/alternative.h> 18#include <asm/rmwcc.h> 19#include <asm/barrier.h> 20 21#if BITS_PER_LONG == 32 22# define _BITOPS_LONG_SHIFT 5 23#elif BITS_PER_LONG == 64 24# define _BITOPS_LONG_SHIFT 6 25#else 26# error "Unexpected BITS_PER_LONG" 27#endif 28 29#define BIT_64(n) (U64_C(1) << (n)) 30 31/* 32 * These have to be done with inline assembly: that way the bit-setting 33 * is guaranteed to be atomic. All bit operations return 0 if the bit 34 * was cleared before the operation and != 0 if it was not. 35 * 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 37 */ 38 39#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) 40/* Technically wrong, but this avoids compilation errors on some gcc 41 versions. */ 42#define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) 43#else 44#define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) 45#endif 46 47#define ADDR BITOP_ADDR(addr) 48 49/* 50 * We do the locked ops that don't return the old value as 51 * a mask operation on a byte. 52 */ 53#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 54#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) 55#define CONST_MASK(nr) (1 << ((nr) & 7)) 56 57/** 58 * set_bit - Atomically set a bit in memory 59 * @nr: the bit to set 60 * @addr: the address to start counting from 61 * 62 * This function is atomic and may not be reordered. See __set_bit() 63 * if you do not require the atomic guarantees. 64 * 65 * Note: there are no guarantees that this function will not be reordered 66 * on non x86 architectures, so if you are writing portable code, 67 * make sure not to rely on its reordering guarantees. 68 * 69 * Note that @nr may be almost arbitrarily large; this function is not 70 * restricted to acting on a single-word quantity. 71 */ 72static __always_inline void 73set_bit(long nr, volatile unsigned long *addr) 74{ 75 if (IS_IMMEDIATE(nr)) { 76 asm volatile(LOCK_PREFIX "orb %1,%0" 77 : CONST_MASK_ADDR(nr, addr) 78 : "iq" ((u8)CONST_MASK(nr)) 79 : "memory"); 80 } else { 81 asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" 82 : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); 83 } 84} 85 86/** 87 * __set_bit - Set a bit in memory 88 * @nr: the bit to set 89 * @addr: the address to start counting from 90 * 91 * Unlike set_bit(), this function is non-atomic and may be reordered. 92 * If it's called on the same region of memory simultaneously, the effect 93 * may be that only one operation succeeds. 94 */ 95static __always_inline void __set_bit(long nr, volatile unsigned long *addr) 96{ 97 asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory"); 98} 99 100/** 101 * clear_bit - Clears a bit in memory 102 * @nr: Bit to clear 103 * @addr: Address to start counting from 104 * 105 * clear_bit() is atomic and may not be reordered. However, it does 106 * not contain a memory barrier, so if it is used for locking purposes, 107 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic() 108 * in order to ensure changes are visible on other processors. 109 */ 110static __always_inline void 111clear_bit(long nr, volatile unsigned long *addr) 112{ 113 if (IS_IMMEDIATE(nr)) { 114 asm volatile(LOCK_PREFIX "andb %1,%0" 115 : CONST_MASK_ADDR(nr, addr) 116 : "iq" ((u8)~CONST_MASK(nr))); 117 } else { 118 asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" 119 : BITOP_ADDR(addr) 120 : "Ir" (nr)); 121 } 122} 123 124/* 125 * clear_bit_unlock - Clears a bit in memory 126 * @nr: Bit to clear 127 * @addr: Address to start counting from 128 * 129 * clear_bit() is atomic and implies release semantics before the memory 130 * operation. It can be used for an unlock. 131 */ 132static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr) 133{ 134 barrier(); 135 clear_bit(nr, addr); 136} 137 138static __always_inline void __clear_bit(long nr, volatile unsigned long *addr) 139{ 140 asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr)); 141} 142 143static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) 144{ 145 bool negative; 146 asm volatile(LOCK_PREFIX "andb %2,%1" 147 CC_SET(s) 148 : CC_OUT(s) (negative), ADDR 149 : "ir" ((char) ~(1 << nr)) : "memory"); 150 return negative; 151} 152 153// Let everybody know we have it 154#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte 155 156/* 157 * __clear_bit_unlock - Clears a bit in memory 158 * @nr: Bit to clear 159 * @addr: Address to start counting from 160 * 161 * __clear_bit() is non-atomic and implies release semantics before the memory 162 * operation. It can be used for an unlock if no other CPUs can concurrently 163 * modify other bits in the word. 164 * 165 * No memory barrier is required here, because x86 cannot reorder stores past 166 * older loads. Same principle as spin_unlock. 167 */ 168static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) 169{ 170 barrier(); 171 __clear_bit(nr, addr); 172} 173 174/** 175 * __change_bit - Toggle a bit in memory 176 * @nr: the bit to change 177 * @addr: the address to start counting from 178 * 179 * Unlike change_bit(), this function is non-atomic and may be reordered. 180 * If it's called on the same region of memory simultaneously, the effect 181 * may be that only one operation succeeds. 182 */ 183static __always_inline void __change_bit(long nr, volatile unsigned long *addr) 184{ 185 asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr)); 186} 187 188/** 189 * change_bit - Toggle a bit in memory 190 * @nr: Bit to change 191 * @addr: Address to start counting from 192 * 193 * change_bit() is atomic and may not be reordered. 194 * Note that @nr may be almost arbitrarily large; this function is not 195 * restricted to acting on a single-word quantity. 196 */ 197static __always_inline void change_bit(long nr, volatile unsigned long *addr) 198{ 199 if (IS_IMMEDIATE(nr)) { 200 asm volatile(LOCK_PREFIX "xorb %1,%0" 201 : CONST_MASK_ADDR(nr, addr) 202 : "iq" ((u8)CONST_MASK(nr))); 203 } else { 204 asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" 205 : BITOP_ADDR(addr) 206 : "Ir" (nr)); 207 } 208} 209 210/** 211 * test_and_set_bit - Set a bit and return its old value 212 * @nr: Bit to set 213 * @addr: Address to count from 214 * 215 * This operation is atomic and cannot be reordered. 216 * It also implies a memory barrier. 217 */ 218static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr) 219{ 220 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); 221} 222 223/** 224 * test_and_set_bit_lock - Set a bit and return its old value for lock 225 * @nr: Bit to set 226 * @addr: Address to count from 227 * 228 * This is the same as test_and_set_bit on x86. 229 */ 230static __always_inline bool 231test_and_set_bit_lock(long nr, volatile unsigned long *addr) 232{ 233 return test_and_set_bit(nr, addr); 234} 235 236/** 237 * __test_and_set_bit - Set a bit and return its old value 238 * @nr: Bit to set 239 * @addr: Address to count from 240 * 241 * This operation is non-atomic and can be reordered. 242 * If two examples of this operation race, one can appear to succeed 243 * but actually fail. You must protect multiple accesses with a lock. 244 */ 245static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) 246{ 247 bool oldbit; 248 249 asm(__ASM_SIZE(bts) " %2,%1" 250 CC_SET(c) 251 : CC_OUT(c) (oldbit), ADDR 252 : "Ir" (nr)); 253 return oldbit; 254} 255 256/** 257 * test_and_clear_bit - Clear a bit and return its old value 258 * @nr: Bit to clear 259 * @addr: Address to count from 260 * 261 * This operation is atomic and cannot be reordered. 262 * It also implies a memory barrier. 263 */ 264static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) 265{ 266 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); 267} 268 269/** 270 * __test_and_clear_bit - Clear a bit and return its old value 271 * @nr: Bit to clear 272 * @addr: Address to count from 273 * 274 * This operation is non-atomic and can be reordered. 275 * If two examples of this operation race, one can appear to succeed 276 * but actually fail. You must protect multiple accesses with a lock. 277 * 278 * Note: the operation is performed atomically with respect to 279 * the local CPU, but not other CPUs. Portable code should not 280 * rely on this behaviour. 281 * KVM relies on this behaviour on x86 for modifying memory that is also 282 * accessed from a hypervisor on the same CPU if running in a VM: don't change 283 * this without also updating arch/x86/kernel/kvm.c 284 */ 285static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) 286{ 287 bool oldbit; 288 289 asm volatile(__ASM_SIZE(btr) " %2,%1" 290 CC_SET(c) 291 : CC_OUT(c) (oldbit), ADDR 292 : "Ir" (nr)); 293 return oldbit; 294} 295 296/* WARNING: non atomic and it can be reordered! */ 297static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) 298{ 299 bool oldbit; 300 301 asm volatile(__ASM_SIZE(btc) " %2,%1" 302 CC_SET(c) 303 : CC_OUT(c) (oldbit), ADDR 304 : "Ir" (nr) : "memory"); 305 306 return oldbit; 307} 308 309/** 310 * test_and_change_bit - Change a bit and return its old value 311 * @nr: Bit to change 312 * @addr: Address to count from 313 * 314 * This operation is atomic and cannot be reordered. 315 * It also implies a memory barrier. 316 */ 317static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr) 318{ 319 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); 320} 321 322static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) 323{ 324 return ((1UL << (nr & (BITS_PER_LONG-1))) & 325 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; 326} 327 328static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) 329{ 330 bool oldbit; 331 332 asm volatile(__ASM_SIZE(bt) " %2,%1" 333 CC_SET(c) 334 : CC_OUT(c) (oldbit) 335 : "m" (*(unsigned long *)addr), "Ir" (nr)); 336 337 return oldbit; 338} 339 340#if 0 /* Fool kernel-doc since it doesn't do macros yet */ 341/** 342 * test_bit - Determine whether a bit is set 343 * @nr: bit number to test 344 * @addr: Address to start counting from 345 */ 346static bool test_bit(int nr, const volatile unsigned long *addr); 347#endif 348 349#define test_bit(nr, addr) \ 350 (__builtin_constant_p((nr)) \ 351 ? constant_test_bit((nr), (addr)) \ 352 : variable_test_bit((nr), (addr))) 353 354/** 355 * __ffs - find first set bit in word 356 * @word: The word to search 357 * 358 * Undefined if no bit exists, so code should check against 0 first. 359 */ 360static __always_inline unsigned long __ffs(unsigned long word) 361{ 362 asm("rep; bsf %1,%0" 363 : "=r" (word) 364 : "rm" (word)); 365 return word; 366} 367 368/** 369 * ffz - find first zero bit in word 370 * @word: The word to search 371 * 372 * Undefined if no zero exists, so code should check against ~0UL first. 373 */ 374static __always_inline unsigned long ffz(unsigned long word) 375{ 376 asm("rep; bsf %1,%0" 377 : "=r" (word) 378 : "r" (~word)); 379 return word; 380} 381 382/* 383 * __fls: find last set bit in word 384 * @word: The word to search 385 * 386 * Undefined if no set bit exists, so code should check against 0 first. 387 */ 388static __always_inline unsigned long __fls(unsigned long word) 389{ 390 asm("bsr %1,%0" 391 : "=r" (word) 392 : "rm" (word)); 393 return word; 394} 395 396#undef ADDR 397 398#ifdef __KERNEL__ 399/** 400 * ffs - find first set bit in word 401 * @x: the word to search 402 * 403 * This is defined the same way as the libc and compiler builtin ffs 404 * routines, therefore differs in spirit from the other bitops. 405 * 406 * ffs(value) returns 0 if value is 0 or the position of the first 407 * set bit if value is nonzero. The first (least significant) bit 408 * is at position 1. 409 */ 410static __always_inline int ffs(int x) 411{ 412 int r; 413 414#ifdef CONFIG_X86_64 415 /* 416 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the 417 * dest reg is undefined if x==0, but their CPU architect says its 418 * value is written to set it to the same as before, except that the 419 * top 32 bits will be cleared. 420 * 421 * We cannot do this on 32 bits because at the very least some 422 * 486 CPUs did not behave this way. 423 */ 424 asm("bsfl %1,%0" 425 : "=r" (r) 426 : "rm" (x), "0" (-1)); 427#elif defined(CONFIG_X86_CMOV) 428 asm("bsfl %1,%0\n\t" 429 "cmovzl %2,%0" 430 : "=&r" (r) : "rm" (x), "r" (-1)); 431#else 432 asm("bsfl %1,%0\n\t" 433 "jnz 1f\n\t" 434 "movl $-1,%0\n" 435 "1:" : "=r" (r) : "rm" (x)); 436#endif 437 return r + 1; 438} 439 440/** 441 * fls - find last set bit in word 442 * @x: the word to search 443 * 444 * This is defined in a similar way as the libc and compiler builtin 445 * ffs, but returns the position of the most significant set bit. 446 * 447 * fls(value) returns 0 if value is 0 or the position of the last 448 * set bit if value is nonzero. The last (most significant) bit is 449 * at position 32. 450 */ 451static __always_inline int fls(int x) 452{ 453 int r; 454 455#ifdef CONFIG_X86_64 456 /* 457 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the 458 * dest reg is undefined if x==0, but their CPU architect says its 459 * value is written to set it to the same as before, except that the 460 * top 32 bits will be cleared. 461 * 462 * We cannot do this on 32 bits because at the very least some 463 * 486 CPUs did not behave this way. 464 */ 465 asm("bsrl %1,%0" 466 : "=r" (r) 467 : "rm" (x), "0" (-1)); 468#elif defined(CONFIG_X86_CMOV) 469 asm("bsrl %1,%0\n\t" 470 "cmovzl %2,%0" 471 : "=&r" (r) : "rm" (x), "rm" (-1)); 472#else 473 asm("bsrl %1,%0\n\t" 474 "jnz 1f\n\t" 475 "movl $-1,%0\n" 476 "1:" : "=r" (r) : "rm" (x)); 477#endif 478 return r + 1; 479} 480 481/** 482 * fls64 - find last set bit in a 64-bit word 483 * @x: the word to search 484 * 485 * This is defined in a similar way as the libc and compiler builtin 486 * ffsll, but returns the position of the most significant set bit. 487 * 488 * fls64(value) returns 0 if value is 0 or the position of the last 489 * set bit if value is nonzero. The last (most significant) bit is 490 * at position 64. 491 */ 492#ifdef CONFIG_X86_64 493static __always_inline int fls64(__u64 x) 494{ 495 int bitpos = -1; 496 /* 497 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the 498 * dest reg is undefined if x==0, but their CPU architect says its 499 * value is written to set it to the same as before. 500 */ 501 asm("bsrq %1,%q0" 502 : "+r" (bitpos) 503 : "rm" (x)); 504 return bitpos + 1; 505} 506#else 507#include <asm-generic/bitops/fls64.h> 508#endif 509 510#include <asm-generic/bitops/find.h> 511 512#include <asm-generic/bitops/sched.h> 513 514#include <asm/arch_hweight.h> 515 516#include <asm-generic/bitops/const_hweight.h> 517 518#include <asm-generic/bitops/le.h> 519 520#include <asm-generic/bitops/ext2-atomic-setbit.h> 521 522#endif /* __KERNEL__ */ 523#endif /* _ASM_X86_BITOPS_H */