Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
89extern struct page *vmemmap;
90
91#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92
93extern unsigned long MODULES_VADDR;
94extern unsigned long MODULES_END;
95#define MODULES_VADDR MODULES_VADDR
96#define MODULES_END MODULES_END
97#define MODULES_LEN (1UL << 31)
98
99static inline int is_module_addr(void *addr)
100{
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107}
108
109/*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160/* Hardware bits in the page table entry */
161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162#define _PAGE_PROTECT 0x200 /* HW read-only bit */
163#define _PAGE_INVALID 0x400 /* HW invalid bit */
164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166/* Software bits in the page table entry */
167#define _PAGE_PRESENT 0x001 /* SW pte present bit */
168#define _PAGE_YOUNG 0x004 /* SW pte young bit */
169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170#define _PAGE_READ 0x010 /* SW pte read bit */
171#define _PAGE_WRITE 0x020 /* SW pte write bit */
172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174
175#ifdef CONFIG_MEM_SOFT_DIRTY
176#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
177#else
178#define _PAGE_SOFT_DIRTY 0x000
179#endif
180
181/* Set of bits not changed in pte_modify */
182#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
184
185/*
186 * handle_pte_fault uses pte_present and pte_none to find out the pte type
187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188 * distinguish present from not-present ptes. It is changed only with the page
189 * table lock held.
190 *
191 * The following table gives the different possible bit combinations for
192 * the pte hardware and software bits in the last 12 bits of a pte
193 * (. unassigned bit, x don't care, t swap type):
194 *
195 * 842100000000
196 * 000084210000
197 * 000000008421
198 * .IR.uswrdy.p
199 * empty .10.00000000
200 * swap .11..ttttt.0
201 * prot-none, clean, old .11.xx0000.1
202 * prot-none, clean, young .11.xx0001.1
203 * prot-none, dirty, old .11.xx0010.1
204 * prot-none, dirty, young .11.xx0011.1
205 * read-only, clean, old .11.xx0100.1
206 * read-only, clean, young .01.xx0101.1
207 * read-only, dirty, old .11.xx0110.1
208 * read-only, dirty, young .01.xx0111.1
209 * read-write, clean, old .11.xx1100.1
210 * read-write, clean, young .01.xx1101.1
211 * read-write, dirty, old .10.xx1110.1
212 * read-write, dirty, young .00.xx1111.1
213 * HW-bits: R read-only, I invalid
214 * SW-bits: p present, y young, d dirty, r read, w write, s special,
215 * u unused, l large
216 *
217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
220 */
221
222/* Bits in the segment/region table address-space-control-element */
223#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
224#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
225#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
226#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
227#define _ASCE_REAL_SPACE 0x20 /* real space control */
228#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
229#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
230#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
231#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
232#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
233#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
234
235/* Bits in the region table entry */
236#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
237#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
238#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
239#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
240#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
241#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
242#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
243#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
244#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
245#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
246
247#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
253
254#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
255#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
256#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
257#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
258#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
259#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
260
261#ifdef CONFIG_MEM_SOFT_DIRTY
262#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263#else
264#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265#endif
266
267#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
268#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
269
270/* Bits in the segment table entry */
271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
274#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
275#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
276#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
277#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
278#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
279#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
280
281#define _SEGMENT_ENTRY (0)
282#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
283
284#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
285#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
286#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
287#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
288#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
289
290#ifdef CONFIG_MEM_SOFT_DIRTY
291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292#else
293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294#endif
295
296#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
297#define _PAGE_ENTRIES 256 /* number of page table entries */
298
299#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301
302#define _REGION1_SHIFT 53
303#define _REGION2_SHIFT 42
304#define _REGION3_SHIFT 31
305#define _SEGMENT_SHIFT 20
306
307#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
308#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
309#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
310#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
311#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
312
313#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
314#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
315#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
316#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
317
318#define _REGION1_MASK (~(_REGION1_SIZE - 1))
319#define _REGION2_MASK (~(_REGION2_SIZE - 1))
320#define _REGION3_MASK (~(_REGION3_SIZE - 1))
321#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
322
323#define PMD_SHIFT _SEGMENT_SHIFT
324#define PUD_SHIFT _REGION3_SHIFT
325#define P4D_SHIFT _REGION2_SHIFT
326#define PGDIR_SHIFT _REGION1_SHIFT
327
328#define PMD_SIZE _SEGMENT_SIZE
329#define PUD_SIZE _REGION3_SIZE
330#define P4D_SIZE _REGION2_SIZE
331#define PGDIR_SIZE _REGION1_SIZE
332
333#define PMD_MASK _SEGMENT_MASK
334#define PUD_MASK _REGION3_MASK
335#define P4D_MASK _REGION2_MASK
336#define PGDIR_MASK _REGION1_MASK
337
338#define PTRS_PER_PTE _PAGE_ENTRIES
339#define PTRS_PER_PMD _CRST_ENTRIES
340#define PTRS_PER_PUD _CRST_ENTRIES
341#define PTRS_PER_P4D _CRST_ENTRIES
342#define PTRS_PER_PGD _CRST_ENTRIES
343
344#define MAX_PTRS_PER_P4D PTRS_PER_P4D
345
346/*
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
349 * dy..R...I...wr
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
366 */
367
368/* Page status table bits for virtualization */
369#define PGSTE_ACC_BITS 0xf000000000000000UL
370#define PGSTE_FP_BIT 0x0800000000000000UL
371#define PGSTE_PCL_BIT 0x0080000000000000UL
372#define PGSTE_HR_BIT 0x0040000000000000UL
373#define PGSTE_HC_BIT 0x0020000000000000UL
374#define PGSTE_GR_BIT 0x0004000000000000UL
375#define PGSTE_GC_BIT 0x0002000000000000UL
376#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
379
380/* Guest Page State used for virtualization */
381#define _PGSTE_GPS_ZERO 0x0000000080000000UL
382#define _PGSTE_GPS_NODAT 0x0000000040000000UL
383#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
388
389/*
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
393 */
394#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 _ASCE_ALT_EVENT)
396
397/*
398 * Page protection definitions.
399 */
400#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
409
410#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
418
419/*
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
423 */
424 /*xwr*/
425#define __P000 PAGE_NONE
426#define __P001 PAGE_RO
427#define __P010 PAGE_RO
428#define __P011 PAGE_RO
429#define __P100 PAGE_RX
430#define __P101 PAGE_RX
431#define __P110 PAGE_RX
432#define __P111 PAGE_RX
433
434#define __S000 PAGE_NONE
435#define __S001 PAGE_RO
436#define __S010 PAGE_RW
437#define __S011 PAGE_RW
438#define __S100 PAGE_RX
439#define __S101 PAGE_RX
440#define __S110 PAGE_RWX
441#define __S111 PAGE_RWX
442
443/*
444 * Segment entry (large page) protection definitions.
445 */
446#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ)
453#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
477
478/*
479 * Region3 entry (large page) protection definitions.
480 */
481
482#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
495
496static inline bool mm_p4d_folded(struct mm_struct *mm)
497{
498 return mm->context.asce_limit <= _REGION1_SIZE;
499}
500#define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
502static inline bool mm_pud_folded(struct mm_struct *mm)
503{
504 return mm->context.asce_limit <= _REGION2_SIZE;
505}
506#define mm_pud_folded(mm) mm_pud_folded(mm)
507
508static inline bool mm_pmd_folded(struct mm_struct *mm)
509{
510 return mm->context.asce_limit <= _REGION3_SIZE;
511}
512#define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
514static inline int mm_has_pgste(struct mm_struct *mm)
515{
516#ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519#endif
520 return 0;
521}
522
523static inline int mm_alloc_pgste(struct mm_struct *mm)
524{
525#ifdef CONFIG_PGSTE
526 if (unlikely(mm->context.alloc_pgste))
527 return 1;
528#endif
529 return 0;
530}
531
532/*
533 * In the case that a guest uses storage keys
534 * faults should no longer be backed by zero pages
535 */
536#define mm_forbids_zeropage mm_has_pgste
537static inline int mm_uses_skeys(struct mm_struct *mm)
538{
539#ifdef CONFIG_PGSTE
540 if (mm->context.uses_skeys)
541 return 1;
542#endif
543 return 0;
544}
545
546static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
547{
548 register unsigned long reg2 asm("2") = old;
549 register unsigned long reg3 asm("3") = new;
550 unsigned long address = (unsigned long)ptr | 1;
551
552 asm volatile(
553 " csp %0,%3"
554 : "+d" (reg2), "+m" (*ptr)
555 : "d" (reg3), "d" (address)
556 : "cc");
557}
558
559static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
560{
561 register unsigned long reg2 asm("2") = old;
562 register unsigned long reg3 asm("3") = new;
563 unsigned long address = (unsigned long)ptr | 1;
564
565 asm volatile(
566 " .insn rre,0xb98a0000,%0,%3"
567 : "+d" (reg2), "+m" (*ptr)
568 : "d" (reg3), "d" (address)
569 : "cc");
570}
571
572#define CRDTE_DTT_PAGE 0x00UL
573#define CRDTE_DTT_SEGMENT 0x10UL
574#define CRDTE_DTT_REGION3 0x14UL
575#define CRDTE_DTT_REGION2 0x18UL
576#define CRDTE_DTT_REGION1 0x1cUL
577
578static inline void crdte(unsigned long old, unsigned long new,
579 unsigned long table, unsigned long dtt,
580 unsigned long address, unsigned long asce)
581{
582 register unsigned long reg2 asm("2") = old;
583 register unsigned long reg3 asm("3") = new;
584 register unsigned long reg4 asm("4") = table | dtt;
585 register unsigned long reg5 asm("5") = address;
586
587 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
588 : "+d" (reg2)
589 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
590 : "memory", "cc");
591}
592
593/*
594 * pgd/p4d/pud/pmd/pte query functions
595 */
596static inline int pgd_folded(pgd_t pgd)
597{
598 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
599}
600
601static inline int pgd_present(pgd_t pgd)
602{
603 if (pgd_folded(pgd))
604 return 1;
605 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
606}
607
608static inline int pgd_none(pgd_t pgd)
609{
610 if (pgd_folded(pgd))
611 return 0;
612 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
613}
614
615static inline int pgd_bad(pgd_t pgd)
616{
617 /*
618 * With dynamic page table levels the pgd can be a region table
619 * entry or a segment table entry. Check for the bit that are
620 * invalid for either table entry.
621 */
622 unsigned long mask =
623 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
624 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
625 return (pgd_val(pgd) & mask) != 0;
626}
627
628static inline unsigned long pgd_pfn(pgd_t pgd)
629{
630 unsigned long origin_mask;
631
632 origin_mask = _REGION_ENTRY_ORIGIN;
633 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
634}
635
636static inline int p4d_folded(p4d_t p4d)
637{
638 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
639}
640
641static inline int p4d_present(p4d_t p4d)
642{
643 if (p4d_folded(p4d))
644 return 1;
645 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
646}
647
648static inline int p4d_none(p4d_t p4d)
649{
650 if (p4d_folded(p4d))
651 return 0;
652 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
653}
654
655static inline unsigned long p4d_pfn(p4d_t p4d)
656{
657 unsigned long origin_mask;
658
659 origin_mask = _REGION_ENTRY_ORIGIN;
660 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
661}
662
663static inline int pud_folded(pud_t pud)
664{
665 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
666}
667
668static inline int pud_present(pud_t pud)
669{
670 if (pud_folded(pud))
671 return 1;
672 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
673}
674
675static inline int pud_none(pud_t pud)
676{
677 if (pud_folded(pud))
678 return 0;
679 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
680}
681
682static inline int pud_large(pud_t pud)
683{
684 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
685 return 0;
686 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
687}
688
689static inline unsigned long pud_pfn(pud_t pud)
690{
691 unsigned long origin_mask;
692
693 origin_mask = _REGION_ENTRY_ORIGIN;
694 if (pud_large(pud))
695 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
696 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
697}
698
699static inline int pmd_large(pmd_t pmd)
700{
701 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
702}
703
704static inline int pmd_bad(pmd_t pmd)
705{
706 if (pmd_large(pmd))
707 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
708 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
709}
710
711static inline int pud_bad(pud_t pud)
712{
713 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
714 return pmd_bad(__pmd(pud_val(pud)));
715 if (pud_large(pud))
716 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
717 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
718}
719
720static inline int p4d_bad(p4d_t p4d)
721{
722 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
723 return pud_bad(__pud(p4d_val(p4d)));
724 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
725}
726
727static inline int pmd_present(pmd_t pmd)
728{
729 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
730}
731
732static inline int pmd_none(pmd_t pmd)
733{
734 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
735}
736
737static inline unsigned long pmd_pfn(pmd_t pmd)
738{
739 unsigned long origin_mask;
740
741 origin_mask = _SEGMENT_ENTRY_ORIGIN;
742 if (pmd_large(pmd))
743 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
744 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
745}
746
747#define pmd_write pmd_write
748static inline int pmd_write(pmd_t pmd)
749{
750 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
751}
752
753static inline int pmd_dirty(pmd_t pmd)
754{
755 int dirty = 1;
756 if (pmd_large(pmd))
757 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
758 return dirty;
759}
760
761static inline int pmd_young(pmd_t pmd)
762{
763 int young = 1;
764 if (pmd_large(pmd))
765 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
766 return young;
767}
768
769static inline int pte_present(pte_t pte)
770{
771 /* Bit pattern: (pte & 0x001) == 0x001 */
772 return (pte_val(pte) & _PAGE_PRESENT) != 0;
773}
774
775static inline int pte_none(pte_t pte)
776{
777 /* Bit pattern: pte == 0x400 */
778 return pte_val(pte) == _PAGE_INVALID;
779}
780
781static inline int pte_swap(pte_t pte)
782{
783 /* Bit pattern: (pte & 0x201) == 0x200 */
784 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
785 == _PAGE_PROTECT;
786}
787
788static inline int pte_special(pte_t pte)
789{
790 return (pte_val(pte) & _PAGE_SPECIAL);
791}
792
793#define __HAVE_ARCH_PTE_SAME
794static inline int pte_same(pte_t a, pte_t b)
795{
796 return pte_val(a) == pte_val(b);
797}
798
799#ifdef CONFIG_NUMA_BALANCING
800static inline int pte_protnone(pte_t pte)
801{
802 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
803}
804
805static inline int pmd_protnone(pmd_t pmd)
806{
807 /* pmd_large(pmd) implies pmd_present(pmd) */
808 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
809}
810#endif
811
812static inline int pte_soft_dirty(pte_t pte)
813{
814 return pte_val(pte) & _PAGE_SOFT_DIRTY;
815}
816#define pte_swp_soft_dirty pte_soft_dirty
817
818static inline pte_t pte_mksoft_dirty(pte_t pte)
819{
820 pte_val(pte) |= _PAGE_SOFT_DIRTY;
821 return pte;
822}
823#define pte_swp_mksoft_dirty pte_mksoft_dirty
824
825static inline pte_t pte_clear_soft_dirty(pte_t pte)
826{
827 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
828 return pte;
829}
830#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
831
832static inline int pmd_soft_dirty(pmd_t pmd)
833{
834 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
835}
836
837static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
838{
839 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
840 return pmd;
841}
842
843static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
844{
845 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
846 return pmd;
847}
848
849/*
850 * query functions pte_write/pte_dirty/pte_young only work if
851 * pte_present() is true. Undefined behaviour if not..
852 */
853static inline int pte_write(pte_t pte)
854{
855 return (pte_val(pte) & _PAGE_WRITE) != 0;
856}
857
858static inline int pte_dirty(pte_t pte)
859{
860 return (pte_val(pte) & _PAGE_DIRTY) != 0;
861}
862
863static inline int pte_young(pte_t pte)
864{
865 return (pte_val(pte) & _PAGE_YOUNG) != 0;
866}
867
868#define __HAVE_ARCH_PTE_UNUSED
869static inline int pte_unused(pte_t pte)
870{
871 return pte_val(pte) & _PAGE_UNUSED;
872}
873
874/*
875 * pgd/pmd/pte modification functions
876 */
877
878static inline void pgd_clear(pgd_t *pgd)
879{
880 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
881 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
882}
883
884static inline void p4d_clear(p4d_t *p4d)
885{
886 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
887 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
888}
889
890static inline void pud_clear(pud_t *pud)
891{
892 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
893 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
894}
895
896static inline void pmd_clear(pmd_t *pmdp)
897{
898 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
899}
900
901static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
902{
903 pte_val(*ptep) = _PAGE_INVALID;
904}
905
906/*
907 * The following pte modification functions only work if
908 * pte_present() is true. Undefined behaviour if not..
909 */
910static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
911{
912 pte_val(pte) &= _PAGE_CHG_MASK;
913 pte_val(pte) |= pgprot_val(newprot);
914 /*
915 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
916 * has the invalid bit set, clear it again for readable, young pages
917 */
918 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
919 pte_val(pte) &= ~_PAGE_INVALID;
920 /*
921 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
922 * protection bit set, clear it again for writable, dirty pages
923 */
924 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
925 pte_val(pte) &= ~_PAGE_PROTECT;
926 return pte;
927}
928
929static inline pte_t pte_wrprotect(pte_t pte)
930{
931 pte_val(pte) &= ~_PAGE_WRITE;
932 pte_val(pte) |= _PAGE_PROTECT;
933 return pte;
934}
935
936static inline pte_t pte_mkwrite(pte_t pte)
937{
938 pte_val(pte) |= _PAGE_WRITE;
939 if (pte_val(pte) & _PAGE_DIRTY)
940 pte_val(pte) &= ~_PAGE_PROTECT;
941 return pte;
942}
943
944static inline pte_t pte_mkclean(pte_t pte)
945{
946 pte_val(pte) &= ~_PAGE_DIRTY;
947 pte_val(pte) |= _PAGE_PROTECT;
948 return pte;
949}
950
951static inline pte_t pte_mkdirty(pte_t pte)
952{
953 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
954 if (pte_val(pte) & _PAGE_WRITE)
955 pte_val(pte) &= ~_PAGE_PROTECT;
956 return pte;
957}
958
959static inline pte_t pte_mkold(pte_t pte)
960{
961 pte_val(pte) &= ~_PAGE_YOUNG;
962 pte_val(pte) |= _PAGE_INVALID;
963 return pte;
964}
965
966static inline pte_t pte_mkyoung(pte_t pte)
967{
968 pte_val(pte) |= _PAGE_YOUNG;
969 if (pte_val(pte) & _PAGE_READ)
970 pte_val(pte) &= ~_PAGE_INVALID;
971 return pte;
972}
973
974static inline pte_t pte_mkspecial(pte_t pte)
975{
976 pte_val(pte) |= _PAGE_SPECIAL;
977 return pte;
978}
979
980#ifdef CONFIG_HUGETLB_PAGE
981static inline pte_t pte_mkhuge(pte_t pte)
982{
983 pte_val(pte) |= _PAGE_LARGE;
984 return pte;
985}
986#endif
987
988#define IPTE_GLOBAL 0
989#define IPTE_LOCAL 1
990
991#define IPTE_NODAT 0x400
992#define IPTE_GUEST_ASCE 0x800
993
994static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
995 unsigned long opt, unsigned long asce,
996 int local)
997{
998 unsigned long pto = (unsigned long) ptep;
999
1000 if (__builtin_constant_p(opt) && opt == 0) {
1001 /* Invalidation + TLB flush for the pte */
1002 asm volatile(
1003 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1004 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1005 [m4] "i" (local));
1006 return;
1007 }
1008
1009 /* Invalidate ptes with options + TLB flush of the ptes */
1010 opt = opt | (asce & _ASCE_ORIGIN);
1011 asm volatile(
1012 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1013 : [r2] "+a" (address), [r3] "+a" (opt)
1014 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1015}
1016
1017static inline void __ptep_ipte_range(unsigned long address, int nr,
1018 pte_t *ptep, int local)
1019{
1020 unsigned long pto = (unsigned long) ptep;
1021
1022 /* Invalidate a range of ptes + TLB flush of the ptes */
1023 do {
1024 asm volatile(
1025 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1026 : [r2] "+a" (address), [r3] "+a" (nr)
1027 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1028 } while (nr != 255);
1029}
1030
1031/*
1032 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1033 * both clear the TLB for the unmapped pte. The reason is that
1034 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1035 * to modify an active pte. The sequence is
1036 * 1) ptep_get_and_clear
1037 * 2) set_pte_at
1038 * 3) flush_tlb_range
1039 * On s390 the tlb needs to get flushed with the modification of the pte
1040 * if the pte is active. The only way how this can be implemented is to
1041 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1042 * is a nop.
1043 */
1044pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1045pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1046
1047#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1048static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1049 unsigned long addr, pte_t *ptep)
1050{
1051 pte_t pte = *ptep;
1052
1053 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1054 return pte_young(pte);
1055}
1056
1057#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1058static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1059 unsigned long address, pte_t *ptep)
1060{
1061 return ptep_test_and_clear_young(vma, address, ptep);
1062}
1063
1064#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1065static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1066 unsigned long addr, pte_t *ptep)
1067{
1068 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1069}
1070
1071#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1072pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1073void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1074
1075#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1076static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1077 unsigned long addr, pte_t *ptep)
1078{
1079 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1080}
1081
1082/*
1083 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1084 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1085 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1086 * cannot be accessed while the batched unmap is running. In this case
1087 * full==1 and a simple pte_clear is enough. See tlb.h.
1088 */
1089#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1090static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1091 unsigned long addr,
1092 pte_t *ptep, int full)
1093{
1094 if (full) {
1095 pte_t pte = *ptep;
1096 *ptep = __pte(_PAGE_INVALID);
1097 return pte;
1098 }
1099 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1100}
1101
1102#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1103static inline void ptep_set_wrprotect(struct mm_struct *mm,
1104 unsigned long addr, pte_t *ptep)
1105{
1106 pte_t pte = *ptep;
1107
1108 if (pte_write(pte))
1109 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1110}
1111
1112#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1113static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1114 unsigned long addr, pte_t *ptep,
1115 pte_t entry, int dirty)
1116{
1117 if (pte_same(*ptep, entry))
1118 return 0;
1119 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1120 return 1;
1121}
1122
1123/*
1124 * Additional functions to handle KVM guest page tables
1125 */
1126void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1127 pte_t *ptep, pte_t entry);
1128void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1129void ptep_notify(struct mm_struct *mm, unsigned long addr,
1130 pte_t *ptep, unsigned long bits);
1131int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1132 pte_t *ptep, int prot, unsigned long bit);
1133void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1134 pte_t *ptep , int reset);
1135void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1137 pte_t *sptep, pte_t *tptep, pte_t pte);
1138void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1139
1140bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1141 pte_t *ptep);
1142int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1143 unsigned char key, bool nq);
1144int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1145 unsigned char key, unsigned char *oldkey,
1146 bool nq, bool mr, bool mc);
1147int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1148int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1149 unsigned char *key);
1150
1151int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1152 unsigned long bits, unsigned long value);
1153int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1154int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1155 unsigned long *oldpte, unsigned long *oldpgste);
1156void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1157void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1158void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1159void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1160
1161/*
1162 * Certain architectures need to do special things when PTEs
1163 * within a page table are directly modified. Thus, the following
1164 * hook is made available.
1165 */
1166static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1167 pte_t *ptep, pte_t entry)
1168{
1169 if (!MACHINE_HAS_NX)
1170 pte_val(entry) &= ~_PAGE_NOEXEC;
1171 if (pte_present(entry))
1172 pte_val(entry) &= ~_PAGE_UNUSED;
1173 if (mm_has_pgste(mm))
1174 ptep_set_pte_at(mm, addr, ptep, entry);
1175 else
1176 *ptep = entry;
1177}
1178
1179/*
1180 * Conversion functions: convert a page and protection to a page entry,
1181 * and a page entry and page directory to the page they refer to.
1182 */
1183static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1184{
1185 pte_t __pte;
1186 pte_val(__pte) = physpage + pgprot_val(pgprot);
1187 return pte_mkyoung(__pte);
1188}
1189
1190static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1191{
1192 unsigned long physpage = page_to_phys(page);
1193 pte_t __pte = mk_pte_phys(physpage, pgprot);
1194
1195 if (pte_write(__pte) && PageDirty(page))
1196 __pte = pte_mkdirty(__pte);
1197 return __pte;
1198}
1199
1200#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1201#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1202#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1203#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1204#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1205
1206#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1207#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1208#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
1209
1210#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1211#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1212#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1213#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1214
1215static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1216{
1217 p4d_t *p4d = (p4d_t *) pgd;
1218
1219 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1220 p4d = (p4d_t *) pgd_deref(*pgd);
1221 return p4d + p4d_index(address);
1222}
1223
1224static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1225{
1226 pud_t *pud = (pud_t *) p4d;
1227
1228 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1229 pud = (pud_t *) p4d_deref(*p4d);
1230 return pud + pud_index(address);
1231}
1232
1233static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1234{
1235 pmd_t *pmd = (pmd_t *) pud;
1236
1237 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1238 pmd = (pmd_t *) pud_deref(*pud);
1239 return pmd + pmd_index(address);
1240}
1241
1242#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1243#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1244#define pte_page(x) pfn_to_page(pte_pfn(x))
1245
1246#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1247#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1248#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1249#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1250
1251/* Find an entry in the lowest level page table.. */
1252#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1253#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1254#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1255#define pte_unmap(pte) do { } while (0)
1256
1257static inline pmd_t pmd_wrprotect(pmd_t pmd)
1258{
1259 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1260 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1261 return pmd;
1262}
1263
1264static inline pmd_t pmd_mkwrite(pmd_t pmd)
1265{
1266 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1267 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1268 return pmd;
1269 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1270 return pmd;
1271}
1272
1273static inline pmd_t pmd_mkclean(pmd_t pmd)
1274{
1275 if (pmd_large(pmd)) {
1276 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1277 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1278 }
1279 return pmd;
1280}
1281
1282static inline pmd_t pmd_mkdirty(pmd_t pmd)
1283{
1284 if (pmd_large(pmd)) {
1285 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1286 _SEGMENT_ENTRY_SOFT_DIRTY;
1287 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1288 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1289 }
1290 return pmd;
1291}
1292
1293static inline pud_t pud_wrprotect(pud_t pud)
1294{
1295 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1296 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1297 return pud;
1298}
1299
1300static inline pud_t pud_mkwrite(pud_t pud)
1301{
1302 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1303 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1304 return pud;
1305 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1306 return pud;
1307}
1308
1309static inline pud_t pud_mkclean(pud_t pud)
1310{
1311 if (pud_large(pud)) {
1312 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1313 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1314 }
1315 return pud;
1316}
1317
1318static inline pud_t pud_mkdirty(pud_t pud)
1319{
1320 if (pud_large(pud)) {
1321 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1322 _REGION3_ENTRY_SOFT_DIRTY;
1323 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1324 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1325 }
1326 return pud;
1327}
1328
1329#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1330static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1331{
1332 /*
1333 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1334 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1335 */
1336 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1337 return pgprot_val(SEGMENT_NONE);
1338 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1339 return pgprot_val(SEGMENT_RO);
1340 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1341 return pgprot_val(SEGMENT_RX);
1342 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1343 return pgprot_val(SEGMENT_RW);
1344 return pgprot_val(SEGMENT_RWX);
1345}
1346
1347static inline pmd_t pmd_mkyoung(pmd_t pmd)
1348{
1349 if (pmd_large(pmd)) {
1350 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1351 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1352 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1353 }
1354 return pmd;
1355}
1356
1357static inline pmd_t pmd_mkold(pmd_t pmd)
1358{
1359 if (pmd_large(pmd)) {
1360 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1361 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1362 }
1363 return pmd;
1364}
1365
1366static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1367{
1368 if (pmd_large(pmd)) {
1369 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1370 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1371 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1372 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1373 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1374 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1375 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1376 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1377 return pmd;
1378 }
1379 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1380 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1381 return pmd;
1382}
1383
1384static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1385{
1386 pmd_t __pmd;
1387 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1388 return __pmd;
1389}
1390
1391#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1392
1393static inline void __pmdp_csp(pmd_t *pmdp)
1394{
1395 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1396 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1397}
1398
1399#define IDTE_GLOBAL 0
1400#define IDTE_LOCAL 1
1401
1402#define IDTE_PTOA 0x0800
1403#define IDTE_NODAT 0x1000
1404#define IDTE_GUEST_ASCE 0x2000
1405
1406static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1407 unsigned long opt, unsigned long asce,
1408 int local)
1409{
1410 unsigned long sto;
1411
1412 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1413 if (__builtin_constant_p(opt) && opt == 0) {
1414 /* flush without guest asce */
1415 asm volatile(
1416 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1417 : "+m" (*pmdp)
1418 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1419 [m4] "i" (local)
1420 : "cc" );
1421 } else {
1422 /* flush with guest asce */
1423 asm volatile(
1424 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1425 : "+m" (*pmdp)
1426 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1427 [r3] "a" (asce), [m4] "i" (local)
1428 : "cc" );
1429 }
1430}
1431
1432static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1433 unsigned long opt, unsigned long asce,
1434 int local)
1435{
1436 unsigned long r3o;
1437
1438 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1439 r3o |= _ASCE_TYPE_REGION3;
1440 if (__builtin_constant_p(opt) && opt == 0) {
1441 /* flush without guest asce */
1442 asm volatile(
1443 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1444 : "+m" (*pudp)
1445 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1446 [m4] "i" (local)
1447 : "cc");
1448 } else {
1449 /* flush with guest asce */
1450 asm volatile(
1451 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1452 : "+m" (*pudp)
1453 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1454 [r3] "a" (asce), [m4] "i" (local)
1455 : "cc" );
1456 }
1457}
1458
1459pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1460pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1461pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1462
1463#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1464
1465#define __HAVE_ARCH_PGTABLE_DEPOSIT
1466void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1467 pgtable_t pgtable);
1468
1469#define __HAVE_ARCH_PGTABLE_WITHDRAW
1470pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1471
1472#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1473static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1474 unsigned long addr, pmd_t *pmdp,
1475 pmd_t entry, int dirty)
1476{
1477 VM_BUG_ON(addr & ~HPAGE_MASK);
1478
1479 entry = pmd_mkyoung(entry);
1480 if (dirty)
1481 entry = pmd_mkdirty(entry);
1482 if (pmd_val(*pmdp) == pmd_val(entry))
1483 return 0;
1484 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1485 return 1;
1486}
1487
1488#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1489static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1490 unsigned long addr, pmd_t *pmdp)
1491{
1492 pmd_t pmd = *pmdp;
1493
1494 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1495 return pmd_young(pmd);
1496}
1497
1498#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1499static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1500 unsigned long addr, pmd_t *pmdp)
1501{
1502 VM_BUG_ON(addr & ~HPAGE_MASK);
1503 return pmdp_test_and_clear_young(vma, addr, pmdp);
1504}
1505
1506static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1507 pmd_t *pmdp, pmd_t entry)
1508{
1509 if (!MACHINE_HAS_NX)
1510 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1511 *pmdp = entry;
1512}
1513
1514static inline pmd_t pmd_mkhuge(pmd_t pmd)
1515{
1516 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1517 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1518 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1519 return pmd;
1520}
1521
1522#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1523static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1524 unsigned long addr, pmd_t *pmdp)
1525{
1526 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1527}
1528
1529#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1530static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1531 unsigned long addr,
1532 pmd_t *pmdp, int full)
1533{
1534 if (full) {
1535 pmd_t pmd = *pmdp;
1536 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1537 return pmd;
1538 }
1539 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1540}
1541
1542#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1543static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1544 unsigned long addr, pmd_t *pmdp)
1545{
1546 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1547}
1548
1549#define __HAVE_ARCH_PMDP_INVALIDATE
1550static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1551 unsigned long addr, pmd_t *pmdp)
1552{
1553 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1554
1555 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1556}
1557
1558#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1559static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1560 unsigned long addr, pmd_t *pmdp)
1561{
1562 pmd_t pmd = *pmdp;
1563
1564 if (pmd_write(pmd))
1565 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1566}
1567
1568static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1569 unsigned long address,
1570 pmd_t *pmdp)
1571{
1572 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1573}
1574#define pmdp_collapse_flush pmdp_collapse_flush
1575
1576#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1577#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1578
1579static inline int pmd_trans_huge(pmd_t pmd)
1580{
1581 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1582}
1583
1584#define has_transparent_hugepage has_transparent_hugepage
1585static inline int has_transparent_hugepage(void)
1586{
1587 return MACHINE_HAS_EDAT1 ? 1 : 0;
1588}
1589#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1590
1591/*
1592 * 64 bit swap entry format:
1593 * A page-table entry has some bits we have to treat in a special way.
1594 * Bits 52 and bit 55 have to be zero, otherwise a specification
1595 * exception will occur instead of a page translation exception. The
1596 * specification exception has the bad habit not to store necessary
1597 * information in the lowcore.
1598 * Bits 54 and 63 are used to indicate the page type.
1599 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1600 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1601 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1602 * for the offset.
1603 * | offset |01100|type |00|
1604 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1605 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1606 */
1607
1608#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1609#define __SWP_OFFSET_SHIFT 12
1610#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1611#define __SWP_TYPE_SHIFT 2
1612
1613static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1614{
1615 pte_t pte;
1616
1617 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1618 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1619 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1620 return pte;
1621}
1622
1623static inline unsigned long __swp_type(swp_entry_t entry)
1624{
1625 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1626}
1627
1628static inline unsigned long __swp_offset(swp_entry_t entry)
1629{
1630 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1631}
1632
1633static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1634{
1635 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1636}
1637
1638#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1639#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1640
1641#define kern_addr_valid(addr) (1)
1642
1643extern int vmem_add_mapping(unsigned long start, unsigned long size);
1644extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1645extern int s390_enable_sie(void);
1646extern int s390_enable_skey(void);
1647extern void s390_reset_cmma(struct mm_struct *mm);
1648
1649/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1650#define HAVE_ARCH_UNMAPPED_AREA
1651#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1652
1653/*
1654 * No page table caches to initialise
1655 */
1656static inline void pgtable_cache_init(void) { }
1657static inline void check_pgt_cache(void) { }
1658
1659#include <asm-generic/pgtable.h>
1660
1661#endif /* _S390_PAGE_H */