at v4.20 1661 lines 50 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/bug.h> 21#include <asm/page.h> 22 23extern pgd_t swapper_pg_dir[]; 24extern void paging_init(void); 25 26enum { 27 PG_DIRECT_MAP_4K = 0, 28 PG_DIRECT_MAP_1M, 29 PG_DIRECT_MAP_2G, 30 PG_DIRECT_MAP_MAX 31}; 32 33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 34 35static inline void update_page_count(int level, long count) 36{ 37 if (IS_ENABLED(CONFIG_PROC_FS)) 38 atomic_long_add(count, &direct_pages_count[level]); 39} 40 41struct seq_file; 42void arch_report_meminfo(struct seq_file *m); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, ptep) do { } while (0) 49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 50 51/* 52 * ZERO_PAGE is a global shared page that is always zero; used 53 * for zero-mapped memory areas etc.. 54 */ 55 56extern unsigned long empty_zero_page; 57extern unsigned long zero_page_mask; 58 59#define ZERO_PAGE(vaddr) \ 60 (virt_to_page((void *)(empty_zero_page + \ 61 (((unsigned long)(vaddr)) &zero_page_mask)))) 62#define __HAVE_COLOR_ZERO_PAGE 63 64/* TODO: s390 cannot support io_remap_pfn_range... */ 65 66#define FIRST_USER_ADDRESS 0UL 67 68#define pte_ERROR(e) \ 69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 70#define pmd_ERROR(e) \ 71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 72#define pud_ERROR(e) \ 73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 74#define p4d_ERROR(e) \ 75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 76#define pgd_ERROR(e) \ 77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 78 79/* 80 * The vmalloc and module area will always be on the topmost area of the 81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 83 * modules will reside. That makes sure that inter module branches always 84 * happen without trampolines and in addition the placement within a 2GB frame 85 * is branch prediction unit friendly. 86 */ 87extern unsigned long VMALLOC_START; 88extern unsigned long VMALLOC_END; 89extern struct page *vmemmap; 90 91#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 92 93extern unsigned long MODULES_VADDR; 94extern unsigned long MODULES_END; 95#define MODULES_VADDR MODULES_VADDR 96#define MODULES_END MODULES_END 97#define MODULES_LEN (1UL << 31) 98 99static inline int is_module_addr(void *addr) 100{ 101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 102 if (addr < (void *)MODULES_VADDR) 103 return 0; 104 if (addr > (void *)MODULES_END) 105 return 0; 106 return 1; 107} 108 109/* 110 * A 64 bit pagetable entry of S390 has following format: 111 * | PFRA |0IPC| OS | 112 * 0000000000111111111122222222223333333333444444444455555555556666 113 * 0123456789012345678901234567890123456789012345678901234567890123 114 * 115 * I Page-Invalid Bit: Page is not available for address-translation 116 * P Page-Protection Bit: Store access not possible for page 117 * C Change-bit override: HW is not required to set change bit 118 * 119 * A 64 bit segmenttable entry of S390 has following format: 120 * | P-table origin | TT 121 * 0000000000111111111122222222223333333333444444444455555555556666 122 * 0123456789012345678901234567890123456789012345678901234567890123 123 * 124 * I Segment-Invalid Bit: Segment is not available for address-translation 125 * C Common-Segment Bit: Segment is not private (PoP 3-30) 126 * P Page-Protection Bit: Store access not possible for page 127 * TT Type 00 128 * 129 * A 64 bit region table entry of S390 has following format: 130 * | S-table origin | TF TTTL 131 * 0000000000111111111122222222223333333333444444444455555555556666 132 * 0123456789012345678901234567890123456789012345678901234567890123 133 * 134 * I Segment-Invalid Bit: Segment is not available for address-translation 135 * TT Type 01 136 * TF 137 * TL Table length 138 * 139 * The 64 bit regiontable origin of S390 has following format: 140 * | region table origon | DTTL 141 * 0000000000111111111122222222223333333333444444444455555555556666 142 * 0123456789012345678901234567890123456789012345678901234567890123 143 * 144 * X Space-Switch event: 145 * G Segment-Invalid Bit: 146 * P Private-Space Bit: 147 * S Storage-Alteration: 148 * R Real space 149 * TL Table-Length: 150 * 151 * A storage key has the following format: 152 * | ACC |F|R|C|0| 153 * 0 3 4 5 6 7 154 * ACC: access key 155 * F : fetch protection bit 156 * R : referenced bit 157 * C : changed bit 158 */ 159 160/* Hardware bits in the page table entry */ 161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 162#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 163#define _PAGE_INVALID 0x400 /* HW invalid bit */ 164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 165 166/* Software bits in the page table entry */ 167#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 168#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 170#define _PAGE_READ 0x010 /* SW pte read bit */ 171#define _PAGE_WRITE 0x020 /* SW pte write bit */ 172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 174 175#ifdef CONFIG_MEM_SOFT_DIRTY 176#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 177#else 178#define _PAGE_SOFT_DIRTY 0x000 179#endif 180 181/* Set of bits not changed in pte_modify */ 182#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 184 185/* 186 * handle_pte_fault uses pte_present and pte_none to find out the pte type 187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 188 * distinguish present from not-present ptes. It is changed only with the page 189 * table lock held. 190 * 191 * The following table gives the different possible bit combinations for 192 * the pte hardware and software bits in the last 12 bits of a pte 193 * (. unassigned bit, x don't care, t swap type): 194 * 195 * 842100000000 196 * 000084210000 197 * 000000008421 198 * .IR.uswrdy.p 199 * empty .10.00000000 200 * swap .11..ttttt.0 201 * prot-none, clean, old .11.xx0000.1 202 * prot-none, clean, young .11.xx0001.1 203 * prot-none, dirty, old .11.xx0010.1 204 * prot-none, dirty, young .11.xx0011.1 205 * read-only, clean, old .11.xx0100.1 206 * read-only, clean, young .01.xx0101.1 207 * read-only, dirty, old .11.xx0110.1 208 * read-only, dirty, young .01.xx0111.1 209 * read-write, clean, old .11.xx1100.1 210 * read-write, clean, young .01.xx1101.1 211 * read-write, dirty, old .10.xx1110.1 212 * read-write, dirty, young .00.xx1111.1 213 * HW-bits: R read-only, I invalid 214 * SW-bits: p present, y young, d dirty, r read, w write, s special, 215 * u unused, l large 216 * 217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 220 */ 221 222/* Bits in the segment/region table address-space-control-element */ 223#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 224#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 225#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 226#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 227#define _ASCE_REAL_SPACE 0x20 /* real space control */ 228#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 229#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 230#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 231#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 232#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 233#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 234 235/* Bits in the region table entry */ 236#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 237#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 238#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 239#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 240#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 241#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 242#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 243#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 244#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 245#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 246 247#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 248#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 249#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 250#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 251#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 252#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 253 254#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 255#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 256#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 257#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 258#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 259#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 260 261#ifdef CONFIG_MEM_SOFT_DIRTY 262#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 263#else 264#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 265#endif 266 267#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 268#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL 269 270/* Bits in the segment table entry */ 271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 272#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 273#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 274#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 275#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 276#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 277#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 278#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 279#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 280 281#define _SEGMENT_ENTRY (0) 282#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 283 284#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 285#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 286#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 287#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 288#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 292#else 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 294#endif 295 296#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 297#define _PAGE_ENTRIES 256 /* number of page table entries */ 298 299#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 300#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 301 302#define _REGION1_SHIFT 53 303#define _REGION2_SHIFT 42 304#define _REGION3_SHIFT 31 305#define _SEGMENT_SHIFT 20 306 307#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 308#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 309#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 310#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 311#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 312 313#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 314#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 315#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 316#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 317 318#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 319#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 320#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 321#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 322 323#define PMD_SHIFT _SEGMENT_SHIFT 324#define PUD_SHIFT _REGION3_SHIFT 325#define P4D_SHIFT _REGION2_SHIFT 326#define PGDIR_SHIFT _REGION1_SHIFT 327 328#define PMD_SIZE _SEGMENT_SIZE 329#define PUD_SIZE _REGION3_SIZE 330#define P4D_SIZE _REGION2_SIZE 331#define PGDIR_SIZE _REGION1_SIZE 332 333#define PMD_MASK _SEGMENT_MASK 334#define PUD_MASK _REGION3_MASK 335#define P4D_MASK _REGION2_MASK 336#define PGDIR_MASK _REGION1_MASK 337 338#define PTRS_PER_PTE _PAGE_ENTRIES 339#define PTRS_PER_PMD _CRST_ENTRIES 340#define PTRS_PER_PUD _CRST_ENTRIES 341#define PTRS_PER_P4D _CRST_ENTRIES 342#define PTRS_PER_PGD _CRST_ENTRIES 343 344#define MAX_PTRS_PER_P4D PTRS_PER_P4D 345 346/* 347 * Segment table and region3 table entry encoding 348 * (R = read-only, I = invalid, y = young bit): 349 * dy..R...I...wr 350 * prot-none, clean, old 00..1...1...00 351 * prot-none, clean, young 01..1...1...00 352 * prot-none, dirty, old 10..1...1...00 353 * prot-none, dirty, young 11..1...1...00 354 * read-only, clean, old 00..1...1...01 355 * read-only, clean, young 01..1...0...01 356 * read-only, dirty, old 10..1...1...01 357 * read-only, dirty, young 11..1...0...01 358 * read-write, clean, old 00..1...1...11 359 * read-write, clean, young 01..1...0...11 360 * read-write, dirty, old 10..0...1...11 361 * read-write, dirty, young 11..0...0...11 362 * The segment table origin is used to distinguish empty (origin==0) from 363 * read-write, old segment table entries (origin!=0) 364 * HW-bits: R read-only, I invalid 365 * SW-bits: y young, d dirty, r read, w write 366 */ 367 368/* Page status table bits for virtualization */ 369#define PGSTE_ACC_BITS 0xf000000000000000UL 370#define PGSTE_FP_BIT 0x0800000000000000UL 371#define PGSTE_PCL_BIT 0x0080000000000000UL 372#define PGSTE_HR_BIT 0x0040000000000000UL 373#define PGSTE_HC_BIT 0x0020000000000000UL 374#define PGSTE_GR_BIT 0x0004000000000000UL 375#define PGSTE_GC_BIT 0x0002000000000000UL 376#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 377#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 378#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 379 380/* Guest Page State used for virtualization */ 381#define _PGSTE_GPS_ZERO 0x0000000080000000UL 382#define _PGSTE_GPS_NODAT 0x0000000040000000UL 383#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 384#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 385#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 386#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 387#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 388 389/* 390 * A user page table pointer has the space-switch-event bit, the 391 * private-space-control bit and the storage-alteration-event-control 392 * bit set. A kernel page table pointer doesn't need them. 393 */ 394#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 395 _ASCE_ALT_EVENT) 396 397/* 398 * Page protection definitions. 399 */ 400#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 401#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 403#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 404 _PAGE_INVALID | _PAGE_PROTECT) 405#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 407#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 408 _PAGE_INVALID | _PAGE_PROTECT) 409 410#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 412#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 414#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 415 _PAGE_PROTECT | _PAGE_NOEXEC) 416#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 417 _PAGE_YOUNG | _PAGE_DIRTY) 418 419/* 420 * On s390 the page table entry has an invalid bit and a read-only bit. 421 * Read permission implies execute permission and write permission 422 * implies read permission. 423 */ 424 /*xwr*/ 425#define __P000 PAGE_NONE 426#define __P001 PAGE_RO 427#define __P010 PAGE_RO 428#define __P011 PAGE_RO 429#define __P100 PAGE_RX 430#define __P101 PAGE_RX 431#define __P110 PAGE_RX 432#define __P111 PAGE_RX 433 434#define __S000 PAGE_NONE 435#define __S001 PAGE_RO 436#define __S010 PAGE_RW 437#define __S011 PAGE_RW 438#define __S100 PAGE_RX 439#define __S101 PAGE_RX 440#define __S110 PAGE_RWX 441#define __S111 PAGE_RWX 442 443/* 444 * Segment entry (large page) protection definitions. 445 */ 446#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 447 _SEGMENT_ENTRY_PROTECT) 448#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 449 _SEGMENT_ENTRY_READ | \ 450 _SEGMENT_ENTRY_NOEXEC) 451#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 452 _SEGMENT_ENTRY_READ) 453#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 454 _SEGMENT_ENTRY_WRITE | \ 455 _SEGMENT_ENTRY_NOEXEC) 456#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 457 _SEGMENT_ENTRY_WRITE) 458#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 459 _SEGMENT_ENTRY_LARGE | \ 460 _SEGMENT_ENTRY_READ | \ 461 _SEGMENT_ENTRY_WRITE | \ 462 _SEGMENT_ENTRY_YOUNG | \ 463 _SEGMENT_ENTRY_DIRTY | \ 464 _SEGMENT_ENTRY_NOEXEC) 465#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 466 _SEGMENT_ENTRY_LARGE | \ 467 _SEGMENT_ENTRY_READ | \ 468 _SEGMENT_ENTRY_YOUNG | \ 469 _SEGMENT_ENTRY_PROTECT | \ 470 _SEGMENT_ENTRY_NOEXEC) 471#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 472 _SEGMENT_ENTRY_LARGE | \ 473 _SEGMENT_ENTRY_READ | \ 474 _SEGMENT_ENTRY_WRITE | \ 475 _SEGMENT_ENTRY_YOUNG | \ 476 _SEGMENT_ENTRY_DIRTY) 477 478/* 479 * Region3 entry (large page) protection definitions. 480 */ 481 482#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 483 _REGION3_ENTRY_LARGE | \ 484 _REGION3_ENTRY_READ | \ 485 _REGION3_ENTRY_WRITE | \ 486 _REGION3_ENTRY_YOUNG | \ 487 _REGION3_ENTRY_DIRTY | \ 488 _REGION_ENTRY_NOEXEC) 489#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 490 _REGION3_ENTRY_LARGE | \ 491 _REGION3_ENTRY_READ | \ 492 _REGION3_ENTRY_YOUNG | \ 493 _REGION_ENTRY_PROTECT | \ 494 _REGION_ENTRY_NOEXEC) 495 496static inline bool mm_p4d_folded(struct mm_struct *mm) 497{ 498 return mm->context.asce_limit <= _REGION1_SIZE; 499} 500#define mm_p4d_folded(mm) mm_p4d_folded(mm) 501 502static inline bool mm_pud_folded(struct mm_struct *mm) 503{ 504 return mm->context.asce_limit <= _REGION2_SIZE; 505} 506#define mm_pud_folded(mm) mm_pud_folded(mm) 507 508static inline bool mm_pmd_folded(struct mm_struct *mm) 509{ 510 return mm->context.asce_limit <= _REGION3_SIZE; 511} 512#define mm_pmd_folded(mm) mm_pmd_folded(mm) 513 514static inline int mm_has_pgste(struct mm_struct *mm) 515{ 516#ifdef CONFIG_PGSTE 517 if (unlikely(mm->context.has_pgste)) 518 return 1; 519#endif 520 return 0; 521} 522 523static inline int mm_alloc_pgste(struct mm_struct *mm) 524{ 525#ifdef CONFIG_PGSTE 526 if (unlikely(mm->context.alloc_pgste)) 527 return 1; 528#endif 529 return 0; 530} 531 532/* 533 * In the case that a guest uses storage keys 534 * faults should no longer be backed by zero pages 535 */ 536#define mm_forbids_zeropage mm_has_pgste 537static inline int mm_uses_skeys(struct mm_struct *mm) 538{ 539#ifdef CONFIG_PGSTE 540 if (mm->context.uses_skeys) 541 return 1; 542#endif 543 return 0; 544} 545 546static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 547{ 548 register unsigned long reg2 asm("2") = old; 549 register unsigned long reg3 asm("3") = new; 550 unsigned long address = (unsigned long)ptr | 1; 551 552 asm volatile( 553 " csp %0,%3" 554 : "+d" (reg2), "+m" (*ptr) 555 : "d" (reg3), "d" (address) 556 : "cc"); 557} 558 559static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 560{ 561 register unsigned long reg2 asm("2") = old; 562 register unsigned long reg3 asm("3") = new; 563 unsigned long address = (unsigned long)ptr | 1; 564 565 asm volatile( 566 " .insn rre,0xb98a0000,%0,%3" 567 : "+d" (reg2), "+m" (*ptr) 568 : "d" (reg3), "d" (address) 569 : "cc"); 570} 571 572#define CRDTE_DTT_PAGE 0x00UL 573#define CRDTE_DTT_SEGMENT 0x10UL 574#define CRDTE_DTT_REGION3 0x14UL 575#define CRDTE_DTT_REGION2 0x18UL 576#define CRDTE_DTT_REGION1 0x1cUL 577 578static inline void crdte(unsigned long old, unsigned long new, 579 unsigned long table, unsigned long dtt, 580 unsigned long address, unsigned long asce) 581{ 582 register unsigned long reg2 asm("2") = old; 583 register unsigned long reg3 asm("3") = new; 584 register unsigned long reg4 asm("4") = table | dtt; 585 register unsigned long reg5 asm("5") = address; 586 587 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 588 : "+d" (reg2) 589 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 590 : "memory", "cc"); 591} 592 593/* 594 * pgd/p4d/pud/pmd/pte query functions 595 */ 596static inline int pgd_folded(pgd_t pgd) 597{ 598 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 599} 600 601static inline int pgd_present(pgd_t pgd) 602{ 603 if (pgd_folded(pgd)) 604 return 1; 605 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 606} 607 608static inline int pgd_none(pgd_t pgd) 609{ 610 if (pgd_folded(pgd)) 611 return 0; 612 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 613} 614 615static inline int pgd_bad(pgd_t pgd) 616{ 617 /* 618 * With dynamic page table levels the pgd can be a region table 619 * entry or a segment table entry. Check for the bit that are 620 * invalid for either table entry. 621 */ 622 unsigned long mask = 623 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 624 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 625 return (pgd_val(pgd) & mask) != 0; 626} 627 628static inline unsigned long pgd_pfn(pgd_t pgd) 629{ 630 unsigned long origin_mask; 631 632 origin_mask = _REGION_ENTRY_ORIGIN; 633 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 634} 635 636static inline int p4d_folded(p4d_t p4d) 637{ 638 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 639} 640 641static inline int p4d_present(p4d_t p4d) 642{ 643 if (p4d_folded(p4d)) 644 return 1; 645 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 646} 647 648static inline int p4d_none(p4d_t p4d) 649{ 650 if (p4d_folded(p4d)) 651 return 0; 652 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 653} 654 655static inline unsigned long p4d_pfn(p4d_t p4d) 656{ 657 unsigned long origin_mask; 658 659 origin_mask = _REGION_ENTRY_ORIGIN; 660 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 661} 662 663static inline int pud_folded(pud_t pud) 664{ 665 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 666} 667 668static inline int pud_present(pud_t pud) 669{ 670 if (pud_folded(pud)) 671 return 1; 672 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 673} 674 675static inline int pud_none(pud_t pud) 676{ 677 if (pud_folded(pud)) 678 return 0; 679 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 680} 681 682static inline int pud_large(pud_t pud) 683{ 684 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 685 return 0; 686 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 687} 688 689static inline unsigned long pud_pfn(pud_t pud) 690{ 691 unsigned long origin_mask; 692 693 origin_mask = _REGION_ENTRY_ORIGIN; 694 if (pud_large(pud)) 695 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 696 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 697} 698 699static inline int pmd_large(pmd_t pmd) 700{ 701 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 702} 703 704static inline int pmd_bad(pmd_t pmd) 705{ 706 if (pmd_large(pmd)) 707 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 708 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 709} 710 711static inline int pud_bad(pud_t pud) 712{ 713 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 714 return pmd_bad(__pmd(pud_val(pud))); 715 if (pud_large(pud)) 716 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0; 717 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 718} 719 720static inline int p4d_bad(p4d_t p4d) 721{ 722 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 723 return pud_bad(__pud(p4d_val(p4d))); 724 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 725} 726 727static inline int pmd_present(pmd_t pmd) 728{ 729 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 730} 731 732static inline int pmd_none(pmd_t pmd) 733{ 734 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 735} 736 737static inline unsigned long pmd_pfn(pmd_t pmd) 738{ 739 unsigned long origin_mask; 740 741 origin_mask = _SEGMENT_ENTRY_ORIGIN; 742 if (pmd_large(pmd)) 743 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 744 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 745} 746 747#define pmd_write pmd_write 748static inline int pmd_write(pmd_t pmd) 749{ 750 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 751} 752 753static inline int pmd_dirty(pmd_t pmd) 754{ 755 int dirty = 1; 756 if (pmd_large(pmd)) 757 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 758 return dirty; 759} 760 761static inline int pmd_young(pmd_t pmd) 762{ 763 int young = 1; 764 if (pmd_large(pmd)) 765 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 766 return young; 767} 768 769static inline int pte_present(pte_t pte) 770{ 771 /* Bit pattern: (pte & 0x001) == 0x001 */ 772 return (pte_val(pte) & _PAGE_PRESENT) != 0; 773} 774 775static inline int pte_none(pte_t pte) 776{ 777 /* Bit pattern: pte == 0x400 */ 778 return pte_val(pte) == _PAGE_INVALID; 779} 780 781static inline int pte_swap(pte_t pte) 782{ 783 /* Bit pattern: (pte & 0x201) == 0x200 */ 784 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 785 == _PAGE_PROTECT; 786} 787 788static inline int pte_special(pte_t pte) 789{ 790 return (pte_val(pte) & _PAGE_SPECIAL); 791} 792 793#define __HAVE_ARCH_PTE_SAME 794static inline int pte_same(pte_t a, pte_t b) 795{ 796 return pte_val(a) == pte_val(b); 797} 798 799#ifdef CONFIG_NUMA_BALANCING 800static inline int pte_protnone(pte_t pte) 801{ 802 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 803} 804 805static inline int pmd_protnone(pmd_t pmd) 806{ 807 /* pmd_large(pmd) implies pmd_present(pmd) */ 808 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 809} 810#endif 811 812static inline int pte_soft_dirty(pte_t pte) 813{ 814 return pte_val(pte) & _PAGE_SOFT_DIRTY; 815} 816#define pte_swp_soft_dirty pte_soft_dirty 817 818static inline pte_t pte_mksoft_dirty(pte_t pte) 819{ 820 pte_val(pte) |= _PAGE_SOFT_DIRTY; 821 return pte; 822} 823#define pte_swp_mksoft_dirty pte_mksoft_dirty 824 825static inline pte_t pte_clear_soft_dirty(pte_t pte) 826{ 827 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 828 return pte; 829} 830#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 831 832static inline int pmd_soft_dirty(pmd_t pmd) 833{ 834 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 835} 836 837static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 838{ 839 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 840 return pmd; 841} 842 843static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 844{ 845 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 846 return pmd; 847} 848 849/* 850 * query functions pte_write/pte_dirty/pte_young only work if 851 * pte_present() is true. Undefined behaviour if not.. 852 */ 853static inline int pte_write(pte_t pte) 854{ 855 return (pte_val(pte) & _PAGE_WRITE) != 0; 856} 857 858static inline int pte_dirty(pte_t pte) 859{ 860 return (pte_val(pte) & _PAGE_DIRTY) != 0; 861} 862 863static inline int pte_young(pte_t pte) 864{ 865 return (pte_val(pte) & _PAGE_YOUNG) != 0; 866} 867 868#define __HAVE_ARCH_PTE_UNUSED 869static inline int pte_unused(pte_t pte) 870{ 871 return pte_val(pte) & _PAGE_UNUSED; 872} 873 874/* 875 * pgd/pmd/pte modification functions 876 */ 877 878static inline void pgd_clear(pgd_t *pgd) 879{ 880 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 881 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 882} 883 884static inline void p4d_clear(p4d_t *p4d) 885{ 886 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 887 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 888} 889 890static inline void pud_clear(pud_t *pud) 891{ 892 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 893 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 894} 895 896static inline void pmd_clear(pmd_t *pmdp) 897{ 898 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 899} 900 901static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 902{ 903 pte_val(*ptep) = _PAGE_INVALID; 904} 905 906/* 907 * The following pte modification functions only work if 908 * pte_present() is true. Undefined behaviour if not.. 909 */ 910static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 911{ 912 pte_val(pte) &= _PAGE_CHG_MASK; 913 pte_val(pte) |= pgprot_val(newprot); 914 /* 915 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 916 * has the invalid bit set, clear it again for readable, young pages 917 */ 918 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 919 pte_val(pte) &= ~_PAGE_INVALID; 920 /* 921 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 922 * protection bit set, clear it again for writable, dirty pages 923 */ 924 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 925 pte_val(pte) &= ~_PAGE_PROTECT; 926 return pte; 927} 928 929static inline pte_t pte_wrprotect(pte_t pte) 930{ 931 pte_val(pte) &= ~_PAGE_WRITE; 932 pte_val(pte) |= _PAGE_PROTECT; 933 return pte; 934} 935 936static inline pte_t pte_mkwrite(pte_t pte) 937{ 938 pte_val(pte) |= _PAGE_WRITE; 939 if (pte_val(pte) & _PAGE_DIRTY) 940 pte_val(pte) &= ~_PAGE_PROTECT; 941 return pte; 942} 943 944static inline pte_t pte_mkclean(pte_t pte) 945{ 946 pte_val(pte) &= ~_PAGE_DIRTY; 947 pte_val(pte) |= _PAGE_PROTECT; 948 return pte; 949} 950 951static inline pte_t pte_mkdirty(pte_t pte) 952{ 953 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 954 if (pte_val(pte) & _PAGE_WRITE) 955 pte_val(pte) &= ~_PAGE_PROTECT; 956 return pte; 957} 958 959static inline pte_t pte_mkold(pte_t pte) 960{ 961 pte_val(pte) &= ~_PAGE_YOUNG; 962 pte_val(pte) |= _PAGE_INVALID; 963 return pte; 964} 965 966static inline pte_t pte_mkyoung(pte_t pte) 967{ 968 pte_val(pte) |= _PAGE_YOUNG; 969 if (pte_val(pte) & _PAGE_READ) 970 pte_val(pte) &= ~_PAGE_INVALID; 971 return pte; 972} 973 974static inline pte_t pte_mkspecial(pte_t pte) 975{ 976 pte_val(pte) |= _PAGE_SPECIAL; 977 return pte; 978} 979 980#ifdef CONFIG_HUGETLB_PAGE 981static inline pte_t pte_mkhuge(pte_t pte) 982{ 983 pte_val(pte) |= _PAGE_LARGE; 984 return pte; 985} 986#endif 987 988#define IPTE_GLOBAL 0 989#define IPTE_LOCAL 1 990 991#define IPTE_NODAT 0x400 992#define IPTE_GUEST_ASCE 0x800 993 994static inline void __ptep_ipte(unsigned long address, pte_t *ptep, 995 unsigned long opt, unsigned long asce, 996 int local) 997{ 998 unsigned long pto = (unsigned long) ptep; 999 1000 if (__builtin_constant_p(opt) && opt == 0) { 1001 /* Invalidation + TLB flush for the pte */ 1002 asm volatile( 1003 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 1004 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1005 [m4] "i" (local)); 1006 return; 1007 } 1008 1009 /* Invalidate ptes with options + TLB flush of the ptes */ 1010 opt = opt | (asce & _ASCE_ORIGIN); 1011 asm volatile( 1012 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1013 : [r2] "+a" (address), [r3] "+a" (opt) 1014 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1015} 1016 1017static inline void __ptep_ipte_range(unsigned long address, int nr, 1018 pte_t *ptep, int local) 1019{ 1020 unsigned long pto = (unsigned long) ptep; 1021 1022 /* Invalidate a range of ptes + TLB flush of the ptes */ 1023 do { 1024 asm volatile( 1025 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1026 : [r2] "+a" (address), [r3] "+a" (nr) 1027 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1028 } while (nr != 255); 1029} 1030 1031/* 1032 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1033 * both clear the TLB for the unmapped pte. The reason is that 1034 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1035 * to modify an active pte. The sequence is 1036 * 1) ptep_get_and_clear 1037 * 2) set_pte_at 1038 * 3) flush_tlb_range 1039 * On s390 the tlb needs to get flushed with the modification of the pte 1040 * if the pte is active. The only way how this can be implemented is to 1041 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1042 * is a nop. 1043 */ 1044pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1045pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1046 1047#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1048static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1049 unsigned long addr, pte_t *ptep) 1050{ 1051 pte_t pte = *ptep; 1052 1053 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1054 return pte_young(pte); 1055} 1056 1057#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1058static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1059 unsigned long address, pte_t *ptep) 1060{ 1061 return ptep_test_and_clear_young(vma, address, ptep); 1062} 1063 1064#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1065static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1066 unsigned long addr, pte_t *ptep) 1067{ 1068 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1069} 1070 1071#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1072pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *); 1073void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t); 1074 1075#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1076static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1077 unsigned long addr, pte_t *ptep) 1078{ 1079 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1080} 1081 1082/* 1083 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1084 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1085 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1086 * cannot be accessed while the batched unmap is running. In this case 1087 * full==1 and a simple pte_clear is enough. See tlb.h. 1088 */ 1089#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1090static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1091 unsigned long addr, 1092 pte_t *ptep, int full) 1093{ 1094 if (full) { 1095 pte_t pte = *ptep; 1096 *ptep = __pte(_PAGE_INVALID); 1097 return pte; 1098 } 1099 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1100} 1101 1102#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1103static inline void ptep_set_wrprotect(struct mm_struct *mm, 1104 unsigned long addr, pte_t *ptep) 1105{ 1106 pte_t pte = *ptep; 1107 1108 if (pte_write(pte)) 1109 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1110} 1111 1112#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1113static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1114 unsigned long addr, pte_t *ptep, 1115 pte_t entry, int dirty) 1116{ 1117 if (pte_same(*ptep, entry)) 1118 return 0; 1119 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1120 return 1; 1121} 1122 1123/* 1124 * Additional functions to handle KVM guest page tables 1125 */ 1126void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1127 pte_t *ptep, pte_t entry); 1128void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1129void ptep_notify(struct mm_struct *mm, unsigned long addr, 1130 pte_t *ptep, unsigned long bits); 1131int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1132 pte_t *ptep, int prot, unsigned long bit); 1133void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1134 pte_t *ptep , int reset); 1135void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1136int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1137 pte_t *sptep, pte_t *tptep, pte_t pte); 1138void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1139 1140bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1141 pte_t *ptep); 1142int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1143 unsigned char key, bool nq); 1144int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1145 unsigned char key, unsigned char *oldkey, 1146 bool nq, bool mr, bool mc); 1147int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1148int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1149 unsigned char *key); 1150 1151int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1152 unsigned long bits, unsigned long value); 1153int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1154int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1155 unsigned long *oldpte, unsigned long *oldpgste); 1156void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1157void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1158void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1159void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1160 1161/* 1162 * Certain architectures need to do special things when PTEs 1163 * within a page table are directly modified. Thus, the following 1164 * hook is made available. 1165 */ 1166static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1167 pte_t *ptep, pte_t entry) 1168{ 1169 if (!MACHINE_HAS_NX) 1170 pte_val(entry) &= ~_PAGE_NOEXEC; 1171 if (pte_present(entry)) 1172 pte_val(entry) &= ~_PAGE_UNUSED; 1173 if (mm_has_pgste(mm)) 1174 ptep_set_pte_at(mm, addr, ptep, entry); 1175 else 1176 *ptep = entry; 1177} 1178 1179/* 1180 * Conversion functions: convert a page and protection to a page entry, 1181 * and a page entry and page directory to the page they refer to. 1182 */ 1183static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1184{ 1185 pte_t __pte; 1186 pte_val(__pte) = physpage + pgprot_val(pgprot); 1187 return pte_mkyoung(__pte); 1188} 1189 1190static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1191{ 1192 unsigned long physpage = page_to_phys(page); 1193 pte_t __pte = mk_pte_phys(physpage, pgprot); 1194 1195 if (pte_write(__pte) && PageDirty(page)) 1196 __pte = pte_mkdirty(__pte); 1197 return __pte; 1198} 1199 1200#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1201#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1202#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1203#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1204#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1205 1206#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1207#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1208#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr)) 1209 1210#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1211#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1212#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1213#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1214 1215static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1216{ 1217 p4d_t *p4d = (p4d_t *) pgd; 1218 1219 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 1220 p4d = (p4d_t *) pgd_deref(*pgd); 1221 return p4d + p4d_index(address); 1222} 1223 1224static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1225{ 1226 pud_t *pud = (pud_t *) p4d; 1227 1228 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1229 pud = (pud_t *) p4d_deref(*p4d); 1230 return pud + pud_index(address); 1231} 1232 1233static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1234{ 1235 pmd_t *pmd = (pmd_t *) pud; 1236 1237 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1238 pmd = (pmd_t *) pud_deref(*pud); 1239 return pmd + pmd_index(address); 1240} 1241 1242#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1243#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1244#define pte_page(x) pfn_to_page(pte_pfn(x)) 1245 1246#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1247#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1248#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1249#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1250 1251/* Find an entry in the lowest level page table.. */ 1252#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1253#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1254#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1255#define pte_unmap(pte) do { } while (0) 1256 1257static inline pmd_t pmd_wrprotect(pmd_t pmd) 1258{ 1259 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1260 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1261 return pmd; 1262} 1263 1264static inline pmd_t pmd_mkwrite(pmd_t pmd) 1265{ 1266 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1267 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1268 return pmd; 1269 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1270 return pmd; 1271} 1272 1273static inline pmd_t pmd_mkclean(pmd_t pmd) 1274{ 1275 if (pmd_large(pmd)) { 1276 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1277 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1278 } 1279 return pmd; 1280} 1281 1282static inline pmd_t pmd_mkdirty(pmd_t pmd) 1283{ 1284 if (pmd_large(pmd)) { 1285 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1286 _SEGMENT_ENTRY_SOFT_DIRTY; 1287 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1288 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1289 } 1290 return pmd; 1291} 1292 1293static inline pud_t pud_wrprotect(pud_t pud) 1294{ 1295 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1296 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1297 return pud; 1298} 1299 1300static inline pud_t pud_mkwrite(pud_t pud) 1301{ 1302 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1303 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY)) 1304 return pud; 1305 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1306 return pud; 1307} 1308 1309static inline pud_t pud_mkclean(pud_t pud) 1310{ 1311 if (pud_large(pud)) { 1312 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1313 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1314 } 1315 return pud; 1316} 1317 1318static inline pud_t pud_mkdirty(pud_t pud) 1319{ 1320 if (pud_large(pud)) { 1321 pud_val(pud) |= _REGION3_ENTRY_DIRTY | 1322 _REGION3_ENTRY_SOFT_DIRTY; 1323 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1324 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1325 } 1326 return pud; 1327} 1328 1329#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1330static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1331{ 1332 /* 1333 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1334 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1335 */ 1336 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1337 return pgprot_val(SEGMENT_NONE); 1338 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1339 return pgprot_val(SEGMENT_RO); 1340 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1341 return pgprot_val(SEGMENT_RX); 1342 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1343 return pgprot_val(SEGMENT_RW); 1344 return pgprot_val(SEGMENT_RWX); 1345} 1346 1347static inline pmd_t pmd_mkyoung(pmd_t pmd) 1348{ 1349 if (pmd_large(pmd)) { 1350 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1351 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1352 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1353 } 1354 return pmd; 1355} 1356 1357static inline pmd_t pmd_mkold(pmd_t pmd) 1358{ 1359 if (pmd_large(pmd)) { 1360 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1361 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1362 } 1363 return pmd; 1364} 1365 1366static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1367{ 1368 if (pmd_large(pmd)) { 1369 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1370 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1371 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1372 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1373 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1374 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1375 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1376 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1377 return pmd; 1378 } 1379 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1380 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1381 return pmd; 1382} 1383 1384static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1385{ 1386 pmd_t __pmd; 1387 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1388 return __pmd; 1389} 1390 1391#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1392 1393static inline void __pmdp_csp(pmd_t *pmdp) 1394{ 1395 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1396 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1397} 1398 1399#define IDTE_GLOBAL 0 1400#define IDTE_LOCAL 1 1401 1402#define IDTE_PTOA 0x0800 1403#define IDTE_NODAT 0x1000 1404#define IDTE_GUEST_ASCE 0x2000 1405 1406static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1407 unsigned long opt, unsigned long asce, 1408 int local) 1409{ 1410 unsigned long sto; 1411 1412 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1413 if (__builtin_constant_p(opt) && opt == 0) { 1414 /* flush without guest asce */ 1415 asm volatile( 1416 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1417 : "+m" (*pmdp) 1418 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1419 [m4] "i" (local) 1420 : "cc" ); 1421 } else { 1422 /* flush with guest asce */ 1423 asm volatile( 1424 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1425 : "+m" (*pmdp) 1426 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1427 [r3] "a" (asce), [m4] "i" (local) 1428 : "cc" ); 1429 } 1430} 1431 1432static inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1433 unsigned long opt, unsigned long asce, 1434 int local) 1435{ 1436 unsigned long r3o; 1437 1438 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1439 r3o |= _ASCE_TYPE_REGION3; 1440 if (__builtin_constant_p(opt) && opt == 0) { 1441 /* flush without guest asce */ 1442 asm volatile( 1443 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1444 : "+m" (*pudp) 1445 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1446 [m4] "i" (local) 1447 : "cc"); 1448 } else { 1449 /* flush with guest asce */ 1450 asm volatile( 1451 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1452 : "+m" (*pudp) 1453 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1454 [r3] "a" (asce), [m4] "i" (local) 1455 : "cc" ); 1456 } 1457} 1458 1459pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1460pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1461pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1462 1463#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1464 1465#define __HAVE_ARCH_PGTABLE_DEPOSIT 1466void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1467 pgtable_t pgtable); 1468 1469#define __HAVE_ARCH_PGTABLE_WITHDRAW 1470pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1471 1472#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1473static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1474 unsigned long addr, pmd_t *pmdp, 1475 pmd_t entry, int dirty) 1476{ 1477 VM_BUG_ON(addr & ~HPAGE_MASK); 1478 1479 entry = pmd_mkyoung(entry); 1480 if (dirty) 1481 entry = pmd_mkdirty(entry); 1482 if (pmd_val(*pmdp) == pmd_val(entry)) 1483 return 0; 1484 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1485 return 1; 1486} 1487 1488#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1489static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1490 unsigned long addr, pmd_t *pmdp) 1491{ 1492 pmd_t pmd = *pmdp; 1493 1494 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1495 return pmd_young(pmd); 1496} 1497 1498#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1499static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1500 unsigned long addr, pmd_t *pmdp) 1501{ 1502 VM_BUG_ON(addr & ~HPAGE_MASK); 1503 return pmdp_test_and_clear_young(vma, addr, pmdp); 1504} 1505 1506static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1507 pmd_t *pmdp, pmd_t entry) 1508{ 1509 if (!MACHINE_HAS_NX) 1510 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1511 *pmdp = entry; 1512} 1513 1514static inline pmd_t pmd_mkhuge(pmd_t pmd) 1515{ 1516 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1517 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1518 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1519 return pmd; 1520} 1521 1522#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1523static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1524 unsigned long addr, pmd_t *pmdp) 1525{ 1526 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1527} 1528 1529#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1530static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1531 unsigned long addr, 1532 pmd_t *pmdp, int full) 1533{ 1534 if (full) { 1535 pmd_t pmd = *pmdp; 1536 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1537 return pmd; 1538 } 1539 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1540} 1541 1542#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1543static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1544 unsigned long addr, pmd_t *pmdp) 1545{ 1546 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1547} 1548 1549#define __HAVE_ARCH_PMDP_INVALIDATE 1550static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1551 unsigned long addr, pmd_t *pmdp) 1552{ 1553 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1554 1555 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1556} 1557 1558#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1559static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1560 unsigned long addr, pmd_t *pmdp) 1561{ 1562 pmd_t pmd = *pmdp; 1563 1564 if (pmd_write(pmd)) 1565 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1566} 1567 1568static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1569 unsigned long address, 1570 pmd_t *pmdp) 1571{ 1572 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1573} 1574#define pmdp_collapse_flush pmdp_collapse_flush 1575 1576#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1577#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1578 1579static inline int pmd_trans_huge(pmd_t pmd) 1580{ 1581 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1582} 1583 1584#define has_transparent_hugepage has_transparent_hugepage 1585static inline int has_transparent_hugepage(void) 1586{ 1587 return MACHINE_HAS_EDAT1 ? 1 : 0; 1588} 1589#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1590 1591/* 1592 * 64 bit swap entry format: 1593 * A page-table entry has some bits we have to treat in a special way. 1594 * Bits 52 and bit 55 have to be zero, otherwise a specification 1595 * exception will occur instead of a page translation exception. The 1596 * specification exception has the bad habit not to store necessary 1597 * information in the lowcore. 1598 * Bits 54 and 63 are used to indicate the page type. 1599 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1600 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1601 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1602 * for the offset. 1603 * | offset |01100|type |00| 1604 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1605 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1606 */ 1607 1608#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1609#define __SWP_OFFSET_SHIFT 12 1610#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1611#define __SWP_TYPE_SHIFT 2 1612 1613static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1614{ 1615 pte_t pte; 1616 1617 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1618 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1619 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1620 return pte; 1621} 1622 1623static inline unsigned long __swp_type(swp_entry_t entry) 1624{ 1625 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1626} 1627 1628static inline unsigned long __swp_offset(swp_entry_t entry) 1629{ 1630 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1631} 1632 1633static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1634{ 1635 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1636} 1637 1638#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1639#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1640 1641#define kern_addr_valid(addr) (1) 1642 1643extern int vmem_add_mapping(unsigned long start, unsigned long size); 1644extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1645extern int s390_enable_sie(void); 1646extern int s390_enable_skey(void); 1647extern void s390_reset_cmma(struct mm_struct *mm); 1648 1649/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1650#define HAVE_ARCH_UNMAPPED_AREA 1651#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1652 1653/* 1654 * No page table caches to initialise 1655 */ 1656static inline void pgtable_cache_init(void) { } 1657static inline void check_pgt_cache(void) { } 1658 1659#include <asm-generic/pgtable.h> 1660 1661#endif /* _S390_PAGE_H */