at v4.20-rc7 1312 lines 36 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/workqueue.h> 25#include <linux/can.h> 26#include <linux/can/dev.h> 27#include <linux/can/skb.h> 28#include <linux/can/netlink.h> 29#include <linux/can/led.h> 30#include <linux/of.h> 31#include <net/rtnetlink.h> 32 33#define MOD_DESC "CAN device driver interface" 34 35MODULE_DESCRIPTION(MOD_DESC); 36MODULE_LICENSE("GPL v2"); 37MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 38 39/* CAN DLC to real data length conversion helpers */ 40 41static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 42 8, 12, 16, 20, 24, 32, 48, 64}; 43 44/* get data length from can_dlc with sanitized can_dlc */ 45u8 can_dlc2len(u8 can_dlc) 46{ 47 return dlc2len[can_dlc & 0x0F]; 48} 49EXPORT_SYMBOL_GPL(can_dlc2len); 50 51static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 52 9, 9, 9, 9, /* 9 - 12 */ 53 10, 10, 10, 10, /* 13 - 16 */ 54 11, 11, 11, 11, /* 17 - 20 */ 55 12, 12, 12, 12, /* 21 - 24 */ 56 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 58 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 59 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 60 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 61 62/* map the sanitized data length to an appropriate data length code */ 63u8 can_len2dlc(u8 len) 64{ 65 if (unlikely(len > 64)) 66 return 0xF; 67 68 return len2dlc[len]; 69} 70EXPORT_SYMBOL_GPL(can_len2dlc); 71 72#ifdef CONFIG_CAN_CALC_BITTIMING 73#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 74#define CAN_CALC_SYNC_SEG 1 75 76/* 77 * Bit-timing calculation derived from: 78 * 79 * Code based on LinCAN sources and H8S2638 project 80 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 81 * Copyright 2005 Stanislav Marek 82 * email: pisa@cmp.felk.cvut.cz 83 * 84 * Calculates proper bit-timing parameters for a specified bit-rate 85 * and sample-point, which can then be used to set the bit-timing 86 * registers of the CAN controller. You can find more information 87 * in the header file linux/can/netlink.h. 88 */ 89static int can_update_sample_point(const struct can_bittiming_const *btc, 90 unsigned int sample_point_nominal, unsigned int tseg, 91 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 92 unsigned int *sample_point_error_ptr) 93{ 94 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 95 unsigned int sample_point, best_sample_point = 0; 96 unsigned int tseg1, tseg2; 97 int i; 98 99 for (i = 0; i <= 1; i++) { 100 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 101 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 102 tseg1 = tseg - tseg2; 103 if (tseg1 > btc->tseg1_max) { 104 tseg1 = btc->tseg1_max; 105 tseg2 = tseg - tseg1; 106 } 107 108 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 109 sample_point_error = abs(sample_point_nominal - sample_point); 110 111 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 112 best_sample_point = sample_point; 113 best_sample_point_error = sample_point_error; 114 *tseg1_ptr = tseg1; 115 *tseg2_ptr = tseg2; 116 } 117 } 118 119 if (sample_point_error_ptr) 120 *sample_point_error_ptr = best_sample_point_error; 121 122 return best_sample_point; 123} 124 125static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 126 const struct can_bittiming_const *btc) 127{ 128 struct can_priv *priv = netdev_priv(dev); 129 unsigned int bitrate; /* current bitrate */ 130 unsigned int bitrate_error; /* difference between current and nominal value */ 131 unsigned int best_bitrate_error = UINT_MAX; 132 unsigned int sample_point_error; /* difference between current and nominal value */ 133 unsigned int best_sample_point_error = UINT_MAX; 134 unsigned int sample_point_nominal; /* nominal sample point */ 135 unsigned int best_tseg = 0; /* current best value for tseg */ 136 unsigned int best_brp = 0; /* current best value for brp */ 137 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 138 u64 v64; 139 140 /* Use CiA recommended sample points */ 141 if (bt->sample_point) { 142 sample_point_nominal = bt->sample_point; 143 } else { 144 if (bt->bitrate > 800000) 145 sample_point_nominal = 750; 146 else if (bt->bitrate > 500000) 147 sample_point_nominal = 800; 148 else 149 sample_point_nominal = 875; 150 } 151 152 /* tseg even = round down, odd = round up */ 153 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 154 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 155 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 156 157 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 158 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 159 160 /* choose brp step which is possible in system */ 161 brp = (brp / btc->brp_inc) * btc->brp_inc; 162 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 163 continue; 164 165 bitrate = priv->clock.freq / (brp * tsegall); 166 bitrate_error = abs(bt->bitrate - bitrate); 167 168 /* tseg brp biterror */ 169 if (bitrate_error > best_bitrate_error) 170 continue; 171 172 /* reset sample point error if we have a better bitrate */ 173 if (bitrate_error < best_bitrate_error) 174 best_sample_point_error = UINT_MAX; 175 176 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 177 if (sample_point_error > best_sample_point_error) 178 continue; 179 180 best_sample_point_error = sample_point_error; 181 best_bitrate_error = bitrate_error; 182 best_tseg = tseg / 2; 183 best_brp = brp; 184 185 if (bitrate_error == 0 && sample_point_error == 0) 186 break; 187 } 188 189 if (best_bitrate_error) { 190 /* Error in one-tenth of a percent */ 191 v64 = (u64)best_bitrate_error * 1000; 192 do_div(v64, bt->bitrate); 193 bitrate_error = (u32)v64; 194 if (bitrate_error > CAN_CALC_MAX_ERROR) { 195 netdev_err(dev, 196 "bitrate error %d.%d%% too high\n", 197 bitrate_error / 10, bitrate_error % 10); 198 return -EDOM; 199 } 200 netdev_warn(dev, "bitrate error %d.%d%%\n", 201 bitrate_error / 10, bitrate_error % 10); 202 } 203 204 /* real sample point */ 205 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 206 &tseg1, &tseg2, NULL); 207 208 v64 = (u64)best_brp * 1000 * 1000 * 1000; 209 do_div(v64, priv->clock.freq); 210 bt->tq = (u32)v64; 211 bt->prop_seg = tseg1 / 2; 212 bt->phase_seg1 = tseg1 - bt->prop_seg; 213 bt->phase_seg2 = tseg2; 214 215 /* check for sjw user settings */ 216 if (!bt->sjw || !btc->sjw_max) { 217 bt->sjw = 1; 218 } else { 219 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 220 if (bt->sjw > btc->sjw_max) 221 bt->sjw = btc->sjw_max; 222 /* bt->sjw must not be higher than tseg2 */ 223 if (tseg2 < bt->sjw) 224 bt->sjw = tseg2; 225 } 226 227 bt->brp = best_brp; 228 229 /* real bitrate */ 230 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 231 232 return 0; 233} 234#else /* !CONFIG_CAN_CALC_BITTIMING */ 235static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 236 const struct can_bittiming_const *btc) 237{ 238 netdev_err(dev, "bit-timing calculation not available\n"); 239 return -EINVAL; 240} 241#endif /* CONFIG_CAN_CALC_BITTIMING */ 242 243/* 244 * Checks the validity of the specified bit-timing parameters prop_seg, 245 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 246 * prescaler value brp. You can find more information in the header 247 * file linux/can/netlink.h. 248 */ 249static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 250 const struct can_bittiming_const *btc) 251{ 252 struct can_priv *priv = netdev_priv(dev); 253 int tseg1, alltseg; 254 u64 brp64; 255 256 tseg1 = bt->prop_seg + bt->phase_seg1; 257 if (!bt->sjw) 258 bt->sjw = 1; 259 if (bt->sjw > btc->sjw_max || 260 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 261 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 262 return -ERANGE; 263 264 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 265 if (btc->brp_inc > 1) 266 do_div(brp64, btc->brp_inc); 267 brp64 += 500000000UL - 1; 268 do_div(brp64, 1000000000UL); /* the practicable BRP */ 269 if (btc->brp_inc > 1) 270 brp64 *= btc->brp_inc; 271 bt->brp = (u32)brp64; 272 273 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 274 return -EINVAL; 275 276 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 277 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 278 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 279 280 return 0; 281} 282 283/* Checks the validity of predefined bitrate settings */ 284static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 285 const u32 *bitrate_const, 286 const unsigned int bitrate_const_cnt) 287{ 288 struct can_priv *priv = netdev_priv(dev); 289 unsigned int i; 290 291 for (i = 0; i < bitrate_const_cnt; i++) { 292 if (bt->bitrate == bitrate_const[i]) 293 break; 294 } 295 296 if (i >= priv->bitrate_const_cnt) 297 return -EINVAL; 298 299 return 0; 300} 301 302static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 303 const struct can_bittiming_const *btc, 304 const u32 *bitrate_const, 305 const unsigned int bitrate_const_cnt) 306{ 307 int err; 308 309 /* 310 * Depending on the given can_bittiming parameter structure the CAN 311 * timing parameters are calculated based on the provided bitrate OR 312 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 313 * provided directly which are then checked and fixed up. 314 */ 315 if (!bt->tq && bt->bitrate && btc) 316 err = can_calc_bittiming(dev, bt, btc); 317 else if (bt->tq && !bt->bitrate && btc) 318 err = can_fixup_bittiming(dev, bt, btc); 319 else if (!bt->tq && bt->bitrate && bitrate_const) 320 err = can_validate_bitrate(dev, bt, bitrate_const, 321 bitrate_const_cnt); 322 else 323 err = -EINVAL; 324 325 return err; 326} 327 328static void can_update_state_error_stats(struct net_device *dev, 329 enum can_state new_state) 330{ 331 struct can_priv *priv = netdev_priv(dev); 332 333 if (new_state <= priv->state) 334 return; 335 336 switch (new_state) { 337 case CAN_STATE_ERROR_WARNING: 338 priv->can_stats.error_warning++; 339 break; 340 case CAN_STATE_ERROR_PASSIVE: 341 priv->can_stats.error_passive++; 342 break; 343 case CAN_STATE_BUS_OFF: 344 priv->can_stats.bus_off++; 345 break; 346 default: 347 break; 348 } 349} 350 351static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 352{ 353 switch (state) { 354 case CAN_STATE_ERROR_ACTIVE: 355 return CAN_ERR_CRTL_ACTIVE; 356 case CAN_STATE_ERROR_WARNING: 357 return CAN_ERR_CRTL_TX_WARNING; 358 case CAN_STATE_ERROR_PASSIVE: 359 return CAN_ERR_CRTL_TX_PASSIVE; 360 default: 361 return 0; 362 } 363} 364 365static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 366{ 367 switch (state) { 368 case CAN_STATE_ERROR_ACTIVE: 369 return CAN_ERR_CRTL_ACTIVE; 370 case CAN_STATE_ERROR_WARNING: 371 return CAN_ERR_CRTL_RX_WARNING; 372 case CAN_STATE_ERROR_PASSIVE: 373 return CAN_ERR_CRTL_RX_PASSIVE; 374 default: 375 return 0; 376 } 377} 378 379void can_change_state(struct net_device *dev, struct can_frame *cf, 380 enum can_state tx_state, enum can_state rx_state) 381{ 382 struct can_priv *priv = netdev_priv(dev); 383 enum can_state new_state = max(tx_state, rx_state); 384 385 if (unlikely(new_state == priv->state)) { 386 netdev_warn(dev, "%s: oops, state did not change", __func__); 387 return; 388 } 389 390 netdev_dbg(dev, "New error state: %d\n", new_state); 391 392 can_update_state_error_stats(dev, new_state); 393 priv->state = new_state; 394 395 if (!cf) 396 return; 397 398 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 399 cf->can_id |= CAN_ERR_BUSOFF; 400 return; 401 } 402 403 cf->can_id |= CAN_ERR_CRTL; 404 cf->data[1] |= tx_state >= rx_state ? 405 can_tx_state_to_frame(dev, tx_state) : 0; 406 cf->data[1] |= tx_state <= rx_state ? 407 can_rx_state_to_frame(dev, rx_state) : 0; 408} 409EXPORT_SYMBOL_GPL(can_change_state); 410 411/* 412 * Local echo of CAN messages 413 * 414 * CAN network devices *should* support a local echo functionality 415 * (see Documentation/networking/can.rst). To test the handling of CAN 416 * interfaces that do not support the local echo both driver types are 417 * implemented. In the case that the driver does not support the echo 418 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 419 * to perform the echo as a fallback solution. 420 */ 421static void can_flush_echo_skb(struct net_device *dev) 422{ 423 struct can_priv *priv = netdev_priv(dev); 424 struct net_device_stats *stats = &dev->stats; 425 int i; 426 427 for (i = 0; i < priv->echo_skb_max; i++) { 428 if (priv->echo_skb[i]) { 429 kfree_skb(priv->echo_skb[i]); 430 priv->echo_skb[i] = NULL; 431 stats->tx_dropped++; 432 stats->tx_aborted_errors++; 433 } 434 } 435} 436 437/* 438 * Put the skb on the stack to be looped backed locally lateron 439 * 440 * The function is typically called in the start_xmit function 441 * of the device driver. The driver must protect access to 442 * priv->echo_skb, if necessary. 443 */ 444void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 445 unsigned int idx) 446{ 447 struct can_priv *priv = netdev_priv(dev); 448 449 BUG_ON(idx >= priv->echo_skb_max); 450 451 /* check flag whether this packet has to be looped back */ 452 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 453 (skb->protocol != htons(ETH_P_CAN) && 454 skb->protocol != htons(ETH_P_CANFD))) { 455 kfree_skb(skb); 456 return; 457 } 458 459 if (!priv->echo_skb[idx]) { 460 461 skb = can_create_echo_skb(skb); 462 if (!skb) 463 return; 464 465 /* make settings for echo to reduce code in irq context */ 466 skb->pkt_type = PACKET_BROADCAST; 467 skb->ip_summed = CHECKSUM_UNNECESSARY; 468 skb->dev = dev; 469 470 /* save this skb for tx interrupt echo handling */ 471 priv->echo_skb[idx] = skb; 472 } else { 473 /* locking problem with netif_stop_queue() ?? */ 474 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 475 kfree_skb(skb); 476 } 477} 478EXPORT_SYMBOL_GPL(can_put_echo_skb); 479 480struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 481{ 482 struct can_priv *priv = netdev_priv(dev); 483 struct sk_buff *skb = priv->echo_skb[idx]; 484 struct canfd_frame *cf; 485 486 if (idx >= priv->echo_skb_max) { 487 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 488 __func__, idx, priv->echo_skb_max); 489 return NULL; 490 } 491 492 if (!skb) { 493 netdev_err(dev, "%s: BUG! Trying to echo non existing skb: can_priv::echo_skb[%u]\n", 494 __func__, idx); 495 return NULL; 496 } 497 498 /* Using "struct canfd_frame::len" for the frame 499 * length is supported on both CAN and CANFD frames. 500 */ 501 cf = (struct canfd_frame *)skb->data; 502 *len_ptr = cf->len; 503 priv->echo_skb[idx] = NULL; 504 505 return skb; 506} 507 508/* 509 * Get the skb from the stack and loop it back locally 510 * 511 * The function is typically called when the TX done interrupt 512 * is handled in the device driver. The driver must protect 513 * access to priv->echo_skb, if necessary. 514 */ 515unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 516{ 517 struct sk_buff *skb; 518 u8 len; 519 520 skb = __can_get_echo_skb(dev, idx, &len); 521 if (!skb) 522 return 0; 523 524 netif_rx(skb); 525 526 return len; 527} 528EXPORT_SYMBOL_GPL(can_get_echo_skb); 529 530/* 531 * Remove the skb from the stack and free it. 532 * 533 * The function is typically called when TX failed. 534 */ 535void can_free_echo_skb(struct net_device *dev, unsigned int idx) 536{ 537 struct can_priv *priv = netdev_priv(dev); 538 539 BUG_ON(idx >= priv->echo_skb_max); 540 541 if (priv->echo_skb[idx]) { 542 dev_kfree_skb_any(priv->echo_skb[idx]); 543 priv->echo_skb[idx] = NULL; 544 } 545} 546EXPORT_SYMBOL_GPL(can_free_echo_skb); 547 548/* 549 * CAN device restart for bus-off recovery 550 */ 551static void can_restart(struct net_device *dev) 552{ 553 struct can_priv *priv = netdev_priv(dev); 554 struct net_device_stats *stats = &dev->stats; 555 struct sk_buff *skb; 556 struct can_frame *cf; 557 int err; 558 559 BUG_ON(netif_carrier_ok(dev)); 560 561 /* 562 * No synchronization needed because the device is bus-off and 563 * no messages can come in or go out. 564 */ 565 can_flush_echo_skb(dev); 566 567 /* send restart message upstream */ 568 skb = alloc_can_err_skb(dev, &cf); 569 if (skb == NULL) { 570 err = -ENOMEM; 571 goto restart; 572 } 573 cf->can_id |= CAN_ERR_RESTARTED; 574 575 netif_rx(skb); 576 577 stats->rx_packets++; 578 stats->rx_bytes += cf->can_dlc; 579 580restart: 581 netdev_dbg(dev, "restarted\n"); 582 priv->can_stats.restarts++; 583 584 /* Now restart the device */ 585 err = priv->do_set_mode(dev, CAN_MODE_START); 586 587 netif_carrier_on(dev); 588 if (err) 589 netdev_err(dev, "Error %d during restart", err); 590} 591 592static void can_restart_work(struct work_struct *work) 593{ 594 struct delayed_work *dwork = to_delayed_work(work); 595 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 596 597 can_restart(priv->dev); 598} 599 600int can_restart_now(struct net_device *dev) 601{ 602 struct can_priv *priv = netdev_priv(dev); 603 604 /* 605 * A manual restart is only permitted if automatic restart is 606 * disabled and the device is in the bus-off state 607 */ 608 if (priv->restart_ms) 609 return -EINVAL; 610 if (priv->state != CAN_STATE_BUS_OFF) 611 return -EBUSY; 612 613 cancel_delayed_work_sync(&priv->restart_work); 614 can_restart(dev); 615 616 return 0; 617} 618 619/* 620 * CAN bus-off 621 * 622 * This functions should be called when the device goes bus-off to 623 * tell the netif layer that no more packets can be sent or received. 624 * If enabled, a timer is started to trigger bus-off recovery. 625 */ 626void can_bus_off(struct net_device *dev) 627{ 628 struct can_priv *priv = netdev_priv(dev); 629 630 netdev_info(dev, "bus-off\n"); 631 632 netif_carrier_off(dev); 633 634 if (priv->restart_ms) 635 schedule_delayed_work(&priv->restart_work, 636 msecs_to_jiffies(priv->restart_ms)); 637} 638EXPORT_SYMBOL_GPL(can_bus_off); 639 640static void can_setup(struct net_device *dev) 641{ 642 dev->type = ARPHRD_CAN; 643 dev->mtu = CAN_MTU; 644 dev->hard_header_len = 0; 645 dev->addr_len = 0; 646 dev->tx_queue_len = 10; 647 648 /* New-style flags. */ 649 dev->flags = IFF_NOARP; 650 dev->features = NETIF_F_HW_CSUM; 651} 652 653struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 654{ 655 struct sk_buff *skb; 656 657 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 658 sizeof(struct can_frame)); 659 if (unlikely(!skb)) 660 return NULL; 661 662 skb->protocol = htons(ETH_P_CAN); 663 skb->pkt_type = PACKET_BROADCAST; 664 skb->ip_summed = CHECKSUM_UNNECESSARY; 665 666 skb_reset_mac_header(skb); 667 skb_reset_network_header(skb); 668 skb_reset_transport_header(skb); 669 670 can_skb_reserve(skb); 671 can_skb_prv(skb)->ifindex = dev->ifindex; 672 can_skb_prv(skb)->skbcnt = 0; 673 674 *cf = skb_put_zero(skb, sizeof(struct can_frame)); 675 676 return skb; 677} 678EXPORT_SYMBOL_GPL(alloc_can_skb); 679 680struct sk_buff *alloc_canfd_skb(struct net_device *dev, 681 struct canfd_frame **cfd) 682{ 683 struct sk_buff *skb; 684 685 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 686 sizeof(struct canfd_frame)); 687 if (unlikely(!skb)) 688 return NULL; 689 690 skb->protocol = htons(ETH_P_CANFD); 691 skb->pkt_type = PACKET_BROADCAST; 692 skb->ip_summed = CHECKSUM_UNNECESSARY; 693 694 skb_reset_mac_header(skb); 695 skb_reset_network_header(skb); 696 skb_reset_transport_header(skb); 697 698 can_skb_reserve(skb); 699 can_skb_prv(skb)->ifindex = dev->ifindex; 700 can_skb_prv(skb)->skbcnt = 0; 701 702 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); 703 704 return skb; 705} 706EXPORT_SYMBOL_GPL(alloc_canfd_skb); 707 708struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 709{ 710 struct sk_buff *skb; 711 712 skb = alloc_can_skb(dev, cf); 713 if (unlikely(!skb)) 714 return NULL; 715 716 (*cf)->can_id = CAN_ERR_FLAG; 717 (*cf)->can_dlc = CAN_ERR_DLC; 718 719 return skb; 720} 721EXPORT_SYMBOL_GPL(alloc_can_err_skb); 722 723/* 724 * Allocate and setup space for the CAN network device 725 */ 726struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max, 727 unsigned int txqs, unsigned int rxqs) 728{ 729 struct net_device *dev; 730 struct can_priv *priv; 731 int size; 732 733 if (echo_skb_max) 734 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 735 echo_skb_max * sizeof(struct sk_buff *); 736 else 737 size = sizeof_priv; 738 739 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup, 740 txqs, rxqs); 741 if (!dev) 742 return NULL; 743 744 priv = netdev_priv(dev); 745 priv->dev = dev; 746 747 if (echo_skb_max) { 748 priv->echo_skb_max = echo_skb_max; 749 priv->echo_skb = (void *)priv + 750 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 751 } 752 753 priv->state = CAN_STATE_STOPPED; 754 755 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 756 757 return dev; 758} 759EXPORT_SYMBOL_GPL(alloc_candev_mqs); 760 761/* 762 * Free space of the CAN network device 763 */ 764void free_candev(struct net_device *dev) 765{ 766 free_netdev(dev); 767} 768EXPORT_SYMBOL_GPL(free_candev); 769 770/* 771 * changing MTU and control mode for CAN/CANFD devices 772 */ 773int can_change_mtu(struct net_device *dev, int new_mtu) 774{ 775 struct can_priv *priv = netdev_priv(dev); 776 777 /* Do not allow changing the MTU while running */ 778 if (dev->flags & IFF_UP) 779 return -EBUSY; 780 781 /* allow change of MTU according to the CANFD ability of the device */ 782 switch (new_mtu) { 783 case CAN_MTU: 784 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 785 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 786 return -EINVAL; 787 788 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 789 break; 790 791 case CANFD_MTU: 792 /* check for potential CANFD ability */ 793 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 794 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 795 return -EINVAL; 796 797 priv->ctrlmode |= CAN_CTRLMODE_FD; 798 break; 799 800 default: 801 return -EINVAL; 802 } 803 804 dev->mtu = new_mtu; 805 return 0; 806} 807EXPORT_SYMBOL_GPL(can_change_mtu); 808 809/* 810 * Common open function when the device gets opened. 811 * 812 * This function should be called in the open function of the device 813 * driver. 814 */ 815int open_candev(struct net_device *dev) 816{ 817 struct can_priv *priv = netdev_priv(dev); 818 819 if (!priv->bittiming.bitrate) { 820 netdev_err(dev, "bit-timing not yet defined\n"); 821 return -EINVAL; 822 } 823 824 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 825 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 826 (!priv->data_bittiming.bitrate || 827 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 828 netdev_err(dev, "incorrect/missing data bit-timing\n"); 829 return -EINVAL; 830 } 831 832 /* Switch carrier on if device was stopped while in bus-off state */ 833 if (!netif_carrier_ok(dev)) 834 netif_carrier_on(dev); 835 836 return 0; 837} 838EXPORT_SYMBOL_GPL(open_candev); 839 840#ifdef CONFIG_OF 841/* Common function that can be used to understand the limitation of 842 * a transceiver when it provides no means to determine these limitations 843 * at runtime. 844 */ 845void of_can_transceiver(struct net_device *dev) 846{ 847 struct device_node *dn; 848 struct can_priv *priv = netdev_priv(dev); 849 struct device_node *np = dev->dev.parent->of_node; 850 int ret; 851 852 dn = of_get_child_by_name(np, "can-transceiver"); 853 if (!dn) 854 return; 855 856 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 857 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 858 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 859} 860EXPORT_SYMBOL_GPL(of_can_transceiver); 861#endif 862 863/* 864 * Common close function for cleanup before the device gets closed. 865 * 866 * This function should be called in the close function of the device 867 * driver. 868 */ 869void close_candev(struct net_device *dev) 870{ 871 struct can_priv *priv = netdev_priv(dev); 872 873 cancel_delayed_work_sync(&priv->restart_work); 874 can_flush_echo_skb(dev); 875} 876EXPORT_SYMBOL_GPL(close_candev); 877 878/* 879 * CAN netlink interface 880 */ 881static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 882 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 883 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 884 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 885 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 886 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 887 [IFLA_CAN_BITTIMING_CONST] 888 = { .len = sizeof(struct can_bittiming_const) }, 889 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 890 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 891 [IFLA_CAN_DATA_BITTIMING] 892 = { .len = sizeof(struct can_bittiming) }, 893 [IFLA_CAN_DATA_BITTIMING_CONST] 894 = { .len = sizeof(struct can_bittiming_const) }, 895}; 896 897static int can_validate(struct nlattr *tb[], struct nlattr *data[], 898 struct netlink_ext_ack *extack) 899{ 900 bool is_can_fd = false; 901 902 /* Make sure that valid CAN FD configurations always consist of 903 * - nominal/arbitration bittiming 904 * - data bittiming 905 * - control mode with CAN_CTRLMODE_FD set 906 */ 907 908 if (!data) 909 return 0; 910 911 if (data[IFLA_CAN_CTRLMODE]) { 912 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 913 914 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 915 } 916 917 if (is_can_fd) { 918 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 919 return -EOPNOTSUPP; 920 } 921 922 if (data[IFLA_CAN_DATA_BITTIMING]) { 923 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 924 return -EOPNOTSUPP; 925 } 926 927 return 0; 928} 929 930static int can_changelink(struct net_device *dev, struct nlattr *tb[], 931 struct nlattr *data[], 932 struct netlink_ext_ack *extack) 933{ 934 struct can_priv *priv = netdev_priv(dev); 935 int err; 936 937 /* We need synchronization with dev->stop() */ 938 ASSERT_RTNL(); 939 940 if (data[IFLA_CAN_BITTIMING]) { 941 struct can_bittiming bt; 942 943 /* Do not allow changing bittiming while running */ 944 if (dev->flags & IFF_UP) 945 return -EBUSY; 946 947 /* Calculate bittiming parameters based on 948 * bittiming_const if set, otherwise pass bitrate 949 * directly via do_set_bitrate(). Bail out if neither 950 * is given. 951 */ 952 if (!priv->bittiming_const && !priv->do_set_bittiming) 953 return -EOPNOTSUPP; 954 955 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 956 err = can_get_bittiming(dev, &bt, 957 priv->bittiming_const, 958 priv->bitrate_const, 959 priv->bitrate_const_cnt); 960 if (err) 961 return err; 962 963 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 964 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 965 priv->bitrate_max); 966 return -EINVAL; 967 } 968 969 memcpy(&priv->bittiming, &bt, sizeof(bt)); 970 971 if (priv->do_set_bittiming) { 972 /* Finally, set the bit-timing registers */ 973 err = priv->do_set_bittiming(dev); 974 if (err) 975 return err; 976 } 977 } 978 979 if (data[IFLA_CAN_CTRLMODE]) { 980 struct can_ctrlmode *cm; 981 u32 ctrlstatic; 982 u32 maskedflags; 983 984 /* Do not allow changing controller mode while running */ 985 if (dev->flags & IFF_UP) 986 return -EBUSY; 987 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 988 ctrlstatic = priv->ctrlmode_static; 989 maskedflags = cm->flags & cm->mask; 990 991 /* check whether provided bits are allowed to be passed */ 992 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 993 return -EOPNOTSUPP; 994 995 /* do not check for static fd-non-iso if 'fd' is disabled */ 996 if (!(maskedflags & CAN_CTRLMODE_FD)) 997 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 998 999 /* make sure static options are provided by configuration */ 1000 if ((maskedflags & ctrlstatic) != ctrlstatic) 1001 return -EOPNOTSUPP; 1002 1003 /* clear bits to be modified and copy the flag values */ 1004 priv->ctrlmode &= ~cm->mask; 1005 priv->ctrlmode |= maskedflags; 1006 1007 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 1008 if (priv->ctrlmode & CAN_CTRLMODE_FD) 1009 dev->mtu = CANFD_MTU; 1010 else 1011 dev->mtu = CAN_MTU; 1012 } 1013 1014 if (data[IFLA_CAN_RESTART_MS]) { 1015 /* Do not allow changing restart delay while running */ 1016 if (dev->flags & IFF_UP) 1017 return -EBUSY; 1018 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 1019 } 1020 1021 if (data[IFLA_CAN_RESTART]) { 1022 /* Do not allow a restart while not running */ 1023 if (!(dev->flags & IFF_UP)) 1024 return -EINVAL; 1025 err = can_restart_now(dev); 1026 if (err) 1027 return err; 1028 } 1029 1030 if (data[IFLA_CAN_DATA_BITTIMING]) { 1031 struct can_bittiming dbt; 1032 1033 /* Do not allow changing bittiming while running */ 1034 if (dev->flags & IFF_UP) 1035 return -EBUSY; 1036 1037 /* Calculate bittiming parameters based on 1038 * data_bittiming_const if set, otherwise pass bitrate 1039 * directly via do_set_bitrate(). Bail out if neither 1040 * is given. 1041 */ 1042 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1043 return -EOPNOTSUPP; 1044 1045 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1046 sizeof(dbt)); 1047 err = can_get_bittiming(dev, &dbt, 1048 priv->data_bittiming_const, 1049 priv->data_bitrate_const, 1050 priv->data_bitrate_const_cnt); 1051 if (err) 1052 return err; 1053 1054 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1055 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1056 priv->bitrate_max); 1057 return -EINVAL; 1058 } 1059 1060 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1061 1062 if (priv->do_set_data_bittiming) { 1063 /* Finally, set the bit-timing registers */ 1064 err = priv->do_set_data_bittiming(dev); 1065 if (err) 1066 return err; 1067 } 1068 } 1069 1070 if (data[IFLA_CAN_TERMINATION]) { 1071 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1072 const unsigned int num_term = priv->termination_const_cnt; 1073 unsigned int i; 1074 1075 if (!priv->do_set_termination) 1076 return -EOPNOTSUPP; 1077 1078 /* check whether given value is supported by the interface */ 1079 for (i = 0; i < num_term; i++) { 1080 if (termval == priv->termination_const[i]) 1081 break; 1082 } 1083 if (i >= num_term) 1084 return -EINVAL; 1085 1086 /* Finally, set the termination value */ 1087 err = priv->do_set_termination(dev, termval); 1088 if (err) 1089 return err; 1090 1091 priv->termination = termval; 1092 } 1093 1094 return 0; 1095} 1096 1097static size_t can_get_size(const struct net_device *dev) 1098{ 1099 struct can_priv *priv = netdev_priv(dev); 1100 size_t size = 0; 1101 1102 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1103 size += nla_total_size(sizeof(struct can_bittiming)); 1104 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1105 size += nla_total_size(sizeof(struct can_bittiming_const)); 1106 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1107 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1108 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1109 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1110 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1111 size += nla_total_size(sizeof(struct can_berr_counter)); 1112 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1113 size += nla_total_size(sizeof(struct can_bittiming)); 1114 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1115 size += nla_total_size(sizeof(struct can_bittiming_const)); 1116 if (priv->termination_const) { 1117 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1118 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1119 priv->termination_const_cnt); 1120 } 1121 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1122 size += nla_total_size(sizeof(*priv->bitrate_const) * 1123 priv->bitrate_const_cnt); 1124 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1125 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1126 priv->data_bitrate_const_cnt); 1127 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1128 1129 return size; 1130} 1131 1132static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1133{ 1134 struct can_priv *priv = netdev_priv(dev); 1135 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1136 struct can_berr_counter bec; 1137 enum can_state state = priv->state; 1138 1139 if (priv->do_get_state) 1140 priv->do_get_state(dev, &state); 1141 1142 if ((priv->bittiming.bitrate && 1143 nla_put(skb, IFLA_CAN_BITTIMING, 1144 sizeof(priv->bittiming), &priv->bittiming)) || 1145 1146 (priv->bittiming_const && 1147 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1148 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1149 1150 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1151 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1152 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1153 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1154 1155 (priv->do_get_berr_counter && 1156 !priv->do_get_berr_counter(dev, &bec) && 1157 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1158 1159 (priv->data_bittiming.bitrate && 1160 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1161 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1162 1163 (priv->data_bittiming_const && 1164 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1165 sizeof(*priv->data_bittiming_const), 1166 priv->data_bittiming_const)) || 1167 1168 (priv->termination_const && 1169 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1170 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1171 sizeof(*priv->termination_const) * 1172 priv->termination_const_cnt, 1173 priv->termination_const))) || 1174 1175 (priv->bitrate_const && 1176 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1177 sizeof(*priv->bitrate_const) * 1178 priv->bitrate_const_cnt, 1179 priv->bitrate_const)) || 1180 1181 (priv->data_bitrate_const && 1182 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1183 sizeof(*priv->data_bitrate_const) * 1184 priv->data_bitrate_const_cnt, 1185 priv->data_bitrate_const)) || 1186 1187 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1188 sizeof(priv->bitrate_max), 1189 &priv->bitrate_max)) 1190 ) 1191 1192 return -EMSGSIZE; 1193 1194 return 0; 1195} 1196 1197static size_t can_get_xstats_size(const struct net_device *dev) 1198{ 1199 return sizeof(struct can_device_stats); 1200} 1201 1202static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1203{ 1204 struct can_priv *priv = netdev_priv(dev); 1205 1206 if (nla_put(skb, IFLA_INFO_XSTATS, 1207 sizeof(priv->can_stats), &priv->can_stats)) 1208 goto nla_put_failure; 1209 return 0; 1210 1211nla_put_failure: 1212 return -EMSGSIZE; 1213} 1214 1215static int can_newlink(struct net *src_net, struct net_device *dev, 1216 struct nlattr *tb[], struct nlattr *data[], 1217 struct netlink_ext_ack *extack) 1218{ 1219 return -EOPNOTSUPP; 1220} 1221 1222static void can_dellink(struct net_device *dev, struct list_head *head) 1223{ 1224 return; 1225} 1226 1227static struct rtnl_link_ops can_link_ops __read_mostly = { 1228 .kind = "can", 1229 .maxtype = IFLA_CAN_MAX, 1230 .policy = can_policy, 1231 .setup = can_setup, 1232 .validate = can_validate, 1233 .newlink = can_newlink, 1234 .changelink = can_changelink, 1235 .dellink = can_dellink, 1236 .get_size = can_get_size, 1237 .fill_info = can_fill_info, 1238 .get_xstats_size = can_get_xstats_size, 1239 .fill_xstats = can_fill_xstats, 1240}; 1241 1242/* 1243 * Register the CAN network device 1244 */ 1245int register_candev(struct net_device *dev) 1246{ 1247 struct can_priv *priv = netdev_priv(dev); 1248 1249 /* Ensure termination_const, termination_const_cnt and 1250 * do_set_termination consistency. All must be either set or 1251 * unset. 1252 */ 1253 if ((!priv->termination_const != !priv->termination_const_cnt) || 1254 (!priv->termination_const != !priv->do_set_termination)) 1255 return -EINVAL; 1256 1257 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1258 return -EINVAL; 1259 1260 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1261 return -EINVAL; 1262 1263 dev->rtnl_link_ops = &can_link_ops; 1264 return register_netdev(dev); 1265} 1266EXPORT_SYMBOL_GPL(register_candev); 1267 1268/* 1269 * Unregister the CAN network device 1270 */ 1271void unregister_candev(struct net_device *dev) 1272{ 1273 unregister_netdev(dev); 1274} 1275EXPORT_SYMBOL_GPL(unregister_candev); 1276 1277/* 1278 * Test if a network device is a candev based device 1279 * and return the can_priv* if so. 1280 */ 1281struct can_priv *safe_candev_priv(struct net_device *dev) 1282{ 1283 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1284 return NULL; 1285 1286 return netdev_priv(dev); 1287} 1288EXPORT_SYMBOL_GPL(safe_candev_priv); 1289 1290static __init int can_dev_init(void) 1291{ 1292 int err; 1293 1294 can_led_notifier_init(); 1295 1296 err = rtnl_link_register(&can_link_ops); 1297 if (!err) 1298 printk(KERN_INFO MOD_DESC "\n"); 1299 1300 return err; 1301} 1302module_init(can_dev_init); 1303 1304static __exit void can_dev_exit(void) 1305{ 1306 rtnl_link_unregister(&can_link_ops); 1307 1308 can_led_notifier_exit(); 1309} 1310module_exit(can_dev_exit); 1311 1312MODULE_ALIAS_RTNL_LINK("can");