Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/coredump.h>
37#include <linux/sched/signal.h>
38#include <linux/sched/numa_balancing.h>
39#include <linux/sched/task.h>
40#include <linux/pagemap.h>
41#include <linux/perf_event.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/key.h>
45#include <linux/personality.h>
46#include <linux/binfmts.h>
47#include <linux/utsname.h>
48#include <linux/pid_namespace.h>
49#include <linux/module.h>
50#include <linux/namei.h>
51#include <linux/mount.h>
52#include <linux/security.h>
53#include <linux/syscalls.h>
54#include <linux/tsacct_kern.h>
55#include <linux/cn_proc.h>
56#include <linux/audit.h>
57#include <linux/tracehook.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/pipe_fs_i.h>
62#include <linux/oom.h>
63#include <linux/compat.h>
64#include <linux/vmalloc.h>
65#include <linux/freezer.h>
66
67#include <linux/uaccess.h>
68#include <asm/mmu_context.h>
69#include <asm/tlb.h>
70
71#include <trace/events/task.h>
72#include "internal.h"
73
74#include <trace/events/sched.h>
75
76int suid_dumpable = 0;
77
78static LIST_HEAD(formats);
79static DEFINE_RWLOCK(binfmt_lock);
80
81void __register_binfmt(struct linux_binfmt * fmt, int insert)
82{
83 BUG_ON(!fmt);
84 if (WARN_ON(!fmt->load_binary))
85 return;
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
90}
91
92EXPORT_SYMBOL(__register_binfmt);
93
94void unregister_binfmt(struct linux_binfmt * fmt)
95{
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
99}
100
101EXPORT_SYMBOL(unregister_binfmt);
102
103static inline void put_binfmt(struct linux_binfmt * fmt)
104{
105 module_put(fmt->module);
106}
107
108bool path_noexec(const struct path *path)
109{
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112}
113
114#ifdef CONFIG_USELIB
115/*
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
118 *
119 * Also note that we take the address to load from from the file itself.
120 */
121SYSCALL_DEFINE1(uselib, const char __user *, library)
122{
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
132 };
133
134 if (IS_ERR(tmp))
135 goto out;
136
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
142
143 error = -EINVAL;
144 if (!S_ISREG(file_inode(file)->i_mode))
145 goto exit;
146
147 error = -EACCES;
148 if (path_noexec(&file->f_path))
149 goto exit;
150
151 fsnotify_open(file);
152
153 error = -ENOEXEC;
154
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
167 }
168 read_unlock(&binfmt_lock);
169exit:
170 fput(file);
171out:
172 return error;
173}
174#endif /* #ifdef CONFIG_USELIB */
175
176#ifdef CONFIG_MMU
177/*
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
182 */
183static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184{
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
187
188 if (!mm || !diff)
189 return;
190
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
193}
194
195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
197{
198 struct page *page;
199 int ret;
200 unsigned int gup_flags = FOLL_FORCE;
201
202#ifdef CONFIG_STACK_GROWSUP
203 if (write) {
204 ret = expand_downwards(bprm->vma, pos);
205 if (ret < 0)
206 return NULL;
207 }
208#endif
209
210 if (write)
211 gup_flags |= FOLL_WRITE;
212
213 /*
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
216 */
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 &page, NULL, NULL);
219 if (ret <= 0)
220 return NULL;
221
222 if (write) {
223 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
224 unsigned long ptr_size, limit;
225
226 /*
227 * Since the stack will hold pointers to the strings, we
228 * must account for them as well.
229 *
230 * The size calculation is the entire vma while each arg page is
231 * built, so each time we get here it's calculating how far it
232 * is currently (rather than each call being just the newly
233 * added size from the arg page). As a result, we need to
234 * always add the entire size of the pointers, so that on the
235 * last call to get_arg_page() we'll actually have the entire
236 * correct size.
237 */
238 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
239 if (ptr_size > ULONG_MAX - size)
240 goto fail;
241 size += ptr_size;
242
243 acct_arg_size(bprm, size / PAGE_SIZE);
244
245 /*
246 * We've historically supported up to 32 pages (ARG_MAX)
247 * of argument strings even with small stacks
248 */
249 if (size <= ARG_MAX)
250 return page;
251
252 /*
253 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
254 * (whichever is smaller) for the argv+env strings.
255 * This ensures that:
256 * - the remaining binfmt code will not run out of stack space,
257 * - the program will have a reasonable amount of stack left
258 * to work from.
259 */
260 limit = _STK_LIM / 4 * 3;
261 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
262 if (size > limit)
263 goto fail;
264 }
265
266 return page;
267
268fail:
269 put_page(page);
270 return NULL;
271}
272
273static void put_arg_page(struct page *page)
274{
275 put_page(page);
276}
277
278static void free_arg_pages(struct linux_binprm *bprm)
279{
280}
281
282static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 struct page *page)
284{
285 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
286}
287
288static int __bprm_mm_init(struct linux_binprm *bprm)
289{
290 int err;
291 struct vm_area_struct *vma = NULL;
292 struct mm_struct *mm = bprm->mm;
293
294 bprm->vma = vma = vm_area_alloc(mm);
295 if (!vma)
296 return -ENOMEM;
297 vma_set_anonymous(vma);
298
299 if (down_write_killable(&mm->mmap_sem)) {
300 err = -EINTR;
301 goto err_free;
302 }
303
304 /*
305 * Place the stack at the largest stack address the architecture
306 * supports. Later, we'll move this to an appropriate place. We don't
307 * use STACK_TOP because that can depend on attributes which aren't
308 * configured yet.
309 */
310 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
311 vma->vm_end = STACK_TOP_MAX;
312 vma->vm_start = vma->vm_end - PAGE_SIZE;
313 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
314 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
315
316 err = insert_vm_struct(mm, vma);
317 if (err)
318 goto err;
319
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
324 return 0;
325err:
326 up_write(&mm->mmap_sem);
327err_free:
328 bprm->vma = NULL;
329 vm_area_free(vma);
330 return err;
331}
332
333static bool valid_arg_len(struct linux_binprm *bprm, long len)
334{
335 return len <= MAX_ARG_STRLEN;
336}
337
338#else
339
340static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341{
342}
343
344static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 int write)
346{
347 struct page *page;
348
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 if (!page)
353 return NULL;
354 bprm->page[pos / PAGE_SIZE] = page;
355 }
356
357 return page;
358}
359
360static void put_arg_page(struct page *page)
361{
362}
363
364static void free_arg_page(struct linux_binprm *bprm, int i)
365{
366 if (bprm->page[i]) {
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
369 }
370}
371
372static void free_arg_pages(struct linux_binprm *bprm)
373{
374 int i;
375
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
378}
379
380static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 struct page *page)
382{
383}
384
385static int __bprm_mm_init(struct linux_binprm *bprm)
386{
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 return 0;
389}
390
391static bool valid_arg_len(struct linux_binprm *bprm, long len)
392{
393 return len <= bprm->p;
394}
395
396#endif /* CONFIG_MMU */
397
398/*
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
403 */
404static int bprm_mm_init(struct linux_binprm *bprm)
405{
406 int err;
407 struct mm_struct *mm = NULL;
408
409 bprm->mm = mm = mm_alloc();
410 err = -ENOMEM;
411 if (!mm)
412 goto err;
413
414 /* Save current stack limit for all calculations made during exec. */
415 task_lock(current->group_leader);
416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417 task_unlock(current->group_leader);
418
419 err = __bprm_mm_init(bprm);
420 if (err)
421 goto err;
422
423 return 0;
424
425err:
426 if (mm) {
427 bprm->mm = NULL;
428 mmdrop(mm);
429 }
430
431 return err;
432}
433
434struct user_arg_ptr {
435#ifdef CONFIG_COMPAT
436 bool is_compat;
437#endif
438 union {
439 const char __user *const __user *native;
440#ifdef CONFIG_COMPAT
441 const compat_uptr_t __user *compat;
442#endif
443 } ptr;
444};
445
446static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
447{
448 const char __user *native;
449
450#ifdef CONFIG_COMPAT
451 if (unlikely(argv.is_compat)) {
452 compat_uptr_t compat;
453
454 if (get_user(compat, argv.ptr.compat + nr))
455 return ERR_PTR(-EFAULT);
456
457 return compat_ptr(compat);
458 }
459#endif
460
461 if (get_user(native, argv.ptr.native + nr))
462 return ERR_PTR(-EFAULT);
463
464 return native;
465}
466
467/*
468 * count() counts the number of strings in array ARGV.
469 */
470static int count(struct user_arg_ptr argv, int max)
471{
472 int i = 0;
473
474 if (argv.ptr.native != NULL) {
475 for (;;) {
476 const char __user *p = get_user_arg_ptr(argv, i);
477
478 if (!p)
479 break;
480
481 if (IS_ERR(p))
482 return -EFAULT;
483
484 if (i >= max)
485 return -E2BIG;
486 ++i;
487
488 if (fatal_signal_pending(current))
489 return -ERESTARTNOHAND;
490 cond_resched();
491 }
492 }
493 return i;
494}
495
496/*
497 * 'copy_strings()' copies argument/environment strings from the old
498 * processes's memory to the new process's stack. The call to get_user_pages()
499 * ensures the destination page is created and not swapped out.
500 */
501static int copy_strings(int argc, struct user_arg_ptr argv,
502 struct linux_binprm *bprm)
503{
504 struct page *kmapped_page = NULL;
505 char *kaddr = NULL;
506 unsigned long kpos = 0;
507 int ret;
508
509 while (argc-- > 0) {
510 const char __user *str;
511 int len;
512 unsigned long pos;
513
514 ret = -EFAULT;
515 str = get_user_arg_ptr(argv, argc);
516 if (IS_ERR(str))
517 goto out;
518
519 len = strnlen_user(str, MAX_ARG_STRLEN);
520 if (!len)
521 goto out;
522
523 ret = -E2BIG;
524 if (!valid_arg_len(bprm, len))
525 goto out;
526
527 /* We're going to work our way backwords. */
528 pos = bprm->p;
529 str += len;
530 bprm->p -= len;
531
532 while (len > 0) {
533 int offset, bytes_to_copy;
534
535 if (fatal_signal_pending(current)) {
536 ret = -ERESTARTNOHAND;
537 goto out;
538 }
539 cond_resched();
540
541 offset = pos % PAGE_SIZE;
542 if (offset == 0)
543 offset = PAGE_SIZE;
544
545 bytes_to_copy = offset;
546 if (bytes_to_copy > len)
547 bytes_to_copy = len;
548
549 offset -= bytes_to_copy;
550 pos -= bytes_to_copy;
551 str -= bytes_to_copy;
552 len -= bytes_to_copy;
553
554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
555 struct page *page;
556
557 page = get_arg_page(bprm, pos, 1);
558 if (!page) {
559 ret = -E2BIG;
560 goto out;
561 }
562
563 if (kmapped_page) {
564 flush_kernel_dcache_page(kmapped_page);
565 kunmap(kmapped_page);
566 put_arg_page(kmapped_page);
567 }
568 kmapped_page = page;
569 kaddr = kmap(kmapped_page);
570 kpos = pos & PAGE_MASK;
571 flush_arg_page(bprm, kpos, kmapped_page);
572 }
573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
574 ret = -EFAULT;
575 goto out;
576 }
577 }
578 }
579 ret = 0;
580out:
581 if (kmapped_page) {
582 flush_kernel_dcache_page(kmapped_page);
583 kunmap(kmapped_page);
584 put_arg_page(kmapped_page);
585 }
586 return ret;
587}
588
589/*
590 * Like copy_strings, but get argv and its values from kernel memory.
591 */
592int copy_strings_kernel(int argc, const char *const *__argv,
593 struct linux_binprm *bprm)
594{
595 int r;
596 mm_segment_t oldfs = get_fs();
597 struct user_arg_ptr argv = {
598 .ptr.native = (const char __user *const __user *)__argv,
599 };
600
601 set_fs(KERNEL_DS);
602 r = copy_strings(argc, argv, bprm);
603 set_fs(oldfs);
604
605 return r;
606}
607EXPORT_SYMBOL(copy_strings_kernel);
608
609#ifdef CONFIG_MMU
610
611/*
612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
613 * the binfmt code determines where the new stack should reside, we shift it to
614 * its final location. The process proceeds as follows:
615 *
616 * 1) Use shift to calculate the new vma endpoints.
617 * 2) Extend vma to cover both the old and new ranges. This ensures the
618 * arguments passed to subsequent functions are consistent.
619 * 3) Move vma's page tables to the new range.
620 * 4) Free up any cleared pgd range.
621 * 5) Shrink the vma to cover only the new range.
622 */
623static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
624{
625 struct mm_struct *mm = vma->vm_mm;
626 unsigned long old_start = vma->vm_start;
627 unsigned long old_end = vma->vm_end;
628 unsigned long length = old_end - old_start;
629 unsigned long new_start = old_start - shift;
630 unsigned long new_end = old_end - shift;
631 struct mmu_gather tlb;
632
633 BUG_ON(new_start > new_end);
634
635 /*
636 * ensure there are no vmas between where we want to go
637 * and where we are
638 */
639 if (vma != find_vma(mm, new_start))
640 return -EFAULT;
641
642 /*
643 * cover the whole range: [new_start, old_end)
644 */
645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
646 return -ENOMEM;
647
648 /*
649 * move the page tables downwards, on failure we rely on
650 * process cleanup to remove whatever mess we made.
651 */
652 if (length != move_page_tables(vma, old_start,
653 vma, new_start, length, false))
654 return -ENOMEM;
655
656 lru_add_drain();
657 tlb_gather_mmu(&tlb, mm, old_start, old_end);
658 if (new_end > old_start) {
659 /*
660 * when the old and new regions overlap clear from new_end.
661 */
662 free_pgd_range(&tlb, new_end, old_end, new_end,
663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
664 } else {
665 /*
666 * otherwise, clean from old_start; this is done to not touch
667 * the address space in [new_end, old_start) some architectures
668 * have constraints on va-space that make this illegal (IA64) -
669 * for the others its just a little faster.
670 */
671 free_pgd_range(&tlb, old_start, old_end, new_end,
672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
673 }
674 tlb_finish_mmu(&tlb, old_start, old_end);
675
676 /*
677 * Shrink the vma to just the new range. Always succeeds.
678 */
679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680
681 return 0;
682}
683
684/*
685 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686 * the stack is optionally relocated, and some extra space is added.
687 */
688int setup_arg_pages(struct linux_binprm *bprm,
689 unsigned long stack_top,
690 int executable_stack)
691{
692 unsigned long ret;
693 unsigned long stack_shift;
694 struct mm_struct *mm = current->mm;
695 struct vm_area_struct *vma = bprm->vma;
696 struct vm_area_struct *prev = NULL;
697 unsigned long vm_flags;
698 unsigned long stack_base;
699 unsigned long stack_size;
700 unsigned long stack_expand;
701 unsigned long rlim_stack;
702
703#ifdef CONFIG_STACK_GROWSUP
704 /* Limit stack size */
705 stack_base = bprm->rlim_stack.rlim_max;
706 if (stack_base > STACK_SIZE_MAX)
707 stack_base = STACK_SIZE_MAX;
708
709 /* Add space for stack randomization. */
710 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
711
712 /* Make sure we didn't let the argument array grow too large. */
713 if (vma->vm_end - vma->vm_start > stack_base)
714 return -ENOMEM;
715
716 stack_base = PAGE_ALIGN(stack_top - stack_base);
717
718 stack_shift = vma->vm_start - stack_base;
719 mm->arg_start = bprm->p - stack_shift;
720 bprm->p = vma->vm_end - stack_shift;
721#else
722 stack_top = arch_align_stack(stack_top);
723 stack_top = PAGE_ALIGN(stack_top);
724
725 if (unlikely(stack_top < mmap_min_addr) ||
726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
727 return -ENOMEM;
728
729 stack_shift = vma->vm_end - stack_top;
730
731 bprm->p -= stack_shift;
732 mm->arg_start = bprm->p;
733#endif
734
735 if (bprm->loader)
736 bprm->loader -= stack_shift;
737 bprm->exec -= stack_shift;
738
739 if (down_write_killable(&mm->mmap_sem))
740 return -EINTR;
741
742 vm_flags = VM_STACK_FLAGS;
743
744 /*
745 * Adjust stack execute permissions; explicitly enable for
746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 * (arch default) otherwise.
748 */
749 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
750 vm_flags |= VM_EXEC;
751 else if (executable_stack == EXSTACK_DISABLE_X)
752 vm_flags &= ~VM_EXEC;
753 vm_flags |= mm->def_flags;
754 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
755
756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757 vm_flags);
758 if (ret)
759 goto out_unlock;
760 BUG_ON(prev != vma);
761
762 /* Move stack pages down in memory. */
763 if (stack_shift) {
764 ret = shift_arg_pages(vma, stack_shift);
765 if (ret)
766 goto out_unlock;
767 }
768
769 /* mprotect_fixup is overkill to remove the temporary stack flags */
770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
771
772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 stack_size = vma->vm_end - vma->vm_start;
774 /*
775 * Align this down to a page boundary as expand_stack
776 * will align it up.
777 */
778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779#ifdef CONFIG_STACK_GROWSUP
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_start + rlim_stack;
782 else
783 stack_base = vma->vm_end + stack_expand;
784#else
785 if (stack_size + stack_expand > rlim_stack)
786 stack_base = vma->vm_end - rlim_stack;
787 else
788 stack_base = vma->vm_start - stack_expand;
789#endif
790 current->mm->start_stack = bprm->p;
791 ret = expand_stack(vma, stack_base);
792 if (ret)
793 ret = -EFAULT;
794
795out_unlock:
796 up_write(&mm->mmap_sem);
797 return ret;
798}
799EXPORT_SYMBOL(setup_arg_pages);
800
801#else
802
803/*
804 * Transfer the program arguments and environment from the holding pages
805 * onto the stack. The provided stack pointer is adjusted accordingly.
806 */
807int transfer_args_to_stack(struct linux_binprm *bprm,
808 unsigned long *sp_location)
809{
810 unsigned long index, stop, sp;
811 int ret = 0;
812
813 stop = bprm->p >> PAGE_SHIFT;
814 sp = *sp_location;
815
816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818 char *src = kmap(bprm->page[index]) + offset;
819 sp -= PAGE_SIZE - offset;
820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
821 ret = -EFAULT;
822 kunmap(bprm->page[index]);
823 if (ret)
824 goto out;
825 }
826
827 *sp_location = sp;
828
829out:
830 return ret;
831}
832EXPORT_SYMBOL(transfer_args_to_stack);
833
834#endif /* CONFIG_MMU */
835
836static struct file *do_open_execat(int fd, struct filename *name, int flags)
837{
838 struct file *file;
839 int err;
840 struct open_flags open_exec_flags = {
841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842 .acc_mode = MAY_EXEC,
843 .intent = LOOKUP_OPEN,
844 .lookup_flags = LOOKUP_FOLLOW,
845 };
846
847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848 return ERR_PTR(-EINVAL);
849 if (flags & AT_SYMLINK_NOFOLLOW)
850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851 if (flags & AT_EMPTY_PATH)
852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853
854 file = do_filp_open(fd, name, &open_exec_flags);
855 if (IS_ERR(file))
856 goto out;
857
858 err = -EACCES;
859 if (!S_ISREG(file_inode(file)->i_mode))
860 goto exit;
861
862 if (path_noexec(&file->f_path))
863 goto exit;
864
865 err = deny_write_access(file);
866 if (err)
867 goto exit;
868
869 if (name->name[0] != '\0')
870 fsnotify_open(file);
871
872out:
873 return file;
874
875exit:
876 fput(file);
877 return ERR_PTR(err);
878}
879
880struct file *open_exec(const char *name)
881{
882 struct filename *filename = getname_kernel(name);
883 struct file *f = ERR_CAST(filename);
884
885 if (!IS_ERR(filename)) {
886 f = do_open_execat(AT_FDCWD, filename, 0);
887 putname(filename);
888 }
889 return f;
890}
891EXPORT_SYMBOL(open_exec);
892
893int kernel_read_file(struct file *file, void **buf, loff_t *size,
894 loff_t max_size, enum kernel_read_file_id id)
895{
896 loff_t i_size, pos;
897 ssize_t bytes = 0;
898 int ret;
899
900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901 return -EINVAL;
902
903 ret = deny_write_access(file);
904 if (ret)
905 return ret;
906
907 ret = security_kernel_read_file(file, id);
908 if (ret)
909 goto out;
910
911 i_size = i_size_read(file_inode(file));
912 if (i_size <= 0) {
913 ret = -EINVAL;
914 goto out;
915 }
916 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
917 ret = -EFBIG;
918 goto out;
919 }
920
921 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922 *buf = vmalloc(i_size);
923 if (!*buf) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 pos = 0;
929 while (pos < i_size) {
930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931 if (bytes < 0) {
932 ret = bytes;
933 goto out;
934 }
935
936 if (bytes == 0)
937 break;
938 }
939
940 if (pos != i_size) {
941 ret = -EIO;
942 goto out_free;
943 }
944
945 ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 if (!ret)
947 *size = pos;
948
949out_free:
950 if (ret < 0) {
951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952 vfree(*buf);
953 *buf = NULL;
954 }
955 }
956
957out:
958 allow_write_access(file);
959 return ret;
960}
961EXPORT_SYMBOL_GPL(kernel_read_file);
962
963int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964 loff_t max_size, enum kernel_read_file_id id)
965{
966 struct file *file;
967 int ret;
968
969 if (!path || !*path)
970 return -EINVAL;
971
972 file = filp_open(path, O_RDONLY, 0);
973 if (IS_ERR(file))
974 return PTR_ERR(file);
975
976 ret = kernel_read_file(file, buf, size, max_size, id);
977 fput(file);
978 return ret;
979}
980EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981
982int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 enum kernel_read_file_id id)
984{
985 struct fd f = fdget(fd);
986 int ret = -EBADF;
987
988 if (!f.file)
989 goto out;
990
991 ret = kernel_read_file(f.file, buf, size, max_size, id);
992out:
993 fdput(f);
994 return ret;
995}
996EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997
998ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999{
1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001 if (res > 0)
1002 flush_icache_range(addr, addr + len);
1003 return res;
1004}
1005EXPORT_SYMBOL(read_code);
1006
1007static int exec_mmap(struct mm_struct *mm)
1008{
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1011
1012 /* Notify parent that we're no longer interested in the old VM */
1013 tsk = current;
1014 old_mm = current->mm;
1015 mm_release(tsk, old_mm);
1016
1017 if (old_mm) {
1018 sync_mm_rss(old_mm);
1019 /*
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1024 */
1025 down_read(&old_mm->mmap_sem);
1026 if (unlikely(old_mm->core_state)) {
1027 up_read(&old_mm->mmap_sem);
1028 return -EINTR;
1029 }
1030 }
1031 task_lock(tsk);
1032 active_mm = tsk->active_mm;
1033 tsk->mm = mm;
1034 tsk->active_mm = mm;
1035 activate_mm(active_mm, mm);
1036 tsk->mm->vmacache_seqnum = 0;
1037 vmacache_flush(tsk);
1038 task_unlock(tsk);
1039 if (old_mm) {
1040 up_read(&old_mm->mmap_sem);
1041 BUG_ON(active_mm != old_mm);
1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 mm_update_next_owner(old_mm);
1044 mmput(old_mm);
1045 return 0;
1046 }
1047 mmdrop(active_mm);
1048 return 0;
1049}
1050
1051/*
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1056 */
1057static int de_thread(struct task_struct *tsk)
1058{
1059 struct signal_struct *sig = tsk->signal;
1060 struct sighand_struct *oldsighand = tsk->sighand;
1061 spinlock_t *lock = &oldsighand->siglock;
1062
1063 if (thread_group_empty(tsk))
1064 goto no_thread_group;
1065
1066 /*
1067 * Kill all other threads in the thread group.
1068 */
1069 spin_lock_irq(lock);
1070 if (signal_group_exit(sig)) {
1071 /*
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1074 */
1075 spin_unlock_irq(lock);
1076 return -EAGAIN;
1077 }
1078
1079 sig->group_exit_task = tsk;
1080 sig->notify_count = zap_other_threads(tsk);
1081 if (!thread_group_leader(tsk))
1082 sig->notify_count--;
1083
1084 while (sig->notify_count) {
1085 __set_current_state(TASK_KILLABLE);
1086 spin_unlock_irq(lock);
1087 freezable_schedule();
1088 if (unlikely(__fatal_signal_pending(tsk)))
1089 goto killed;
1090 spin_lock_irq(lock);
1091 }
1092 spin_unlock_irq(lock);
1093
1094 /*
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1098 */
1099 if (!thread_group_leader(tsk)) {
1100 struct task_struct *leader = tsk->group_leader;
1101
1102 for (;;) {
1103 cgroup_threadgroup_change_begin(tsk);
1104 write_lock_irq(&tasklist_lock);
1105 /*
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1108 */
1109 sig->notify_count = -1;
1110 if (likely(leader->exit_state))
1111 break;
1112 __set_current_state(TASK_KILLABLE);
1113 write_unlock_irq(&tasklist_lock);
1114 cgroup_threadgroup_change_end(tsk);
1115 freezable_schedule();
1116 if (unlikely(__fatal_signal_pending(tsk)))
1117 goto killed;
1118 }
1119
1120 /*
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1129 */
1130 tsk->start_time = leader->start_time;
1131 tsk->real_start_time = leader->real_start_time;
1132
1133 BUG_ON(!same_thread_group(leader, tsk));
1134 BUG_ON(has_group_leader_pid(tsk));
1135 /*
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1140 */
1141
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1146 */
1147 tsk->pid = leader->pid;
1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 transfer_pid(leader, tsk, PIDTYPE_TGID);
1150 transfer_pid(leader, tsk, PIDTYPE_PGID);
1151 transfer_pid(leader, tsk, PIDTYPE_SID);
1152
1153 list_replace_rcu(&leader->tasks, &tsk->tasks);
1154 list_replace_init(&leader->sibling, &tsk->sibling);
1155
1156 tsk->group_leader = tsk;
1157 leader->group_leader = tsk;
1158
1159 tsk->exit_signal = SIGCHLD;
1160 leader->exit_signal = -1;
1161
1162 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1163 leader->exit_state = EXIT_DEAD;
1164
1165 /*
1166 * We are going to release_task()->ptrace_unlink() silently,
1167 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1168 * the tracer wont't block again waiting for this thread.
1169 */
1170 if (unlikely(leader->ptrace))
1171 __wake_up_parent(leader, leader->parent);
1172 write_unlock_irq(&tasklist_lock);
1173 cgroup_threadgroup_change_end(tsk);
1174
1175 release_task(leader);
1176 }
1177
1178 sig->group_exit_task = NULL;
1179 sig->notify_count = 0;
1180
1181no_thread_group:
1182 /* we have changed execution domain */
1183 tsk->exit_signal = SIGCHLD;
1184
1185#ifdef CONFIG_POSIX_TIMERS
1186 exit_itimers(sig);
1187 flush_itimer_signals();
1188#endif
1189
1190 if (atomic_read(&oldsighand->count) != 1) {
1191 struct sighand_struct *newsighand;
1192 /*
1193 * This ->sighand is shared with the CLONE_SIGHAND
1194 * but not CLONE_THREAD task, switch to the new one.
1195 */
1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 if (!newsighand)
1198 return -ENOMEM;
1199
1200 atomic_set(&newsighand->count, 1);
1201 memcpy(newsighand->action, oldsighand->action,
1202 sizeof(newsighand->action));
1203
1204 write_lock_irq(&tasklist_lock);
1205 spin_lock(&oldsighand->siglock);
1206 rcu_assign_pointer(tsk->sighand, newsighand);
1207 spin_unlock(&oldsighand->siglock);
1208 write_unlock_irq(&tasklist_lock);
1209
1210 __cleanup_sighand(oldsighand);
1211 }
1212
1213 BUG_ON(!thread_group_leader(tsk));
1214 return 0;
1215
1216killed:
1217 /* protects against exit_notify() and __exit_signal() */
1218 read_lock(&tasklist_lock);
1219 sig->group_exit_task = NULL;
1220 sig->notify_count = 0;
1221 read_unlock(&tasklist_lock);
1222 return -EAGAIN;
1223}
1224
1225char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1226{
1227 task_lock(tsk);
1228 strncpy(buf, tsk->comm, buf_size);
1229 task_unlock(tsk);
1230 return buf;
1231}
1232EXPORT_SYMBOL_GPL(__get_task_comm);
1233
1234/*
1235 * These functions flushes out all traces of the currently running executable
1236 * so that a new one can be started
1237 */
1238
1239void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1240{
1241 task_lock(tsk);
1242 trace_task_rename(tsk, buf);
1243 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1244 task_unlock(tsk);
1245 perf_event_comm(tsk, exec);
1246}
1247
1248/*
1249 * Calling this is the point of no return. None of the failures will be
1250 * seen by userspace since either the process is already taking a fatal
1251 * signal (via de_thread() or coredump), or will have SEGV raised
1252 * (after exec_mmap()) by search_binary_handlers (see below).
1253 */
1254int flush_old_exec(struct linux_binprm * bprm)
1255{
1256 int retval;
1257
1258 /*
1259 * Make sure we have a private signal table and that
1260 * we are unassociated from the previous thread group.
1261 */
1262 retval = de_thread(current);
1263 if (retval)
1264 goto out;
1265
1266 /*
1267 * Must be called _before_ exec_mmap() as bprm->mm is
1268 * not visibile until then. This also enables the update
1269 * to be lockless.
1270 */
1271 set_mm_exe_file(bprm->mm, bprm->file);
1272
1273 /*
1274 * Release all of the old mmap stuff
1275 */
1276 acct_arg_size(bprm, 0);
1277 retval = exec_mmap(bprm->mm);
1278 if (retval)
1279 goto out;
1280
1281 /*
1282 * After clearing bprm->mm (to mark that current is using the
1283 * prepared mm now), we have nothing left of the original
1284 * process. If anything from here on returns an error, the check
1285 * in search_binary_handler() will SEGV current.
1286 */
1287 bprm->mm = NULL;
1288
1289 set_fs(USER_DS);
1290 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1291 PF_NOFREEZE | PF_NO_SETAFFINITY);
1292 flush_thread();
1293 current->personality &= ~bprm->per_clear;
1294
1295 /*
1296 * We have to apply CLOEXEC before we change whether the process is
1297 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1298 * trying to access the should-be-closed file descriptors of a process
1299 * undergoing exec(2).
1300 */
1301 do_close_on_exec(current->files);
1302 return 0;
1303
1304out:
1305 return retval;
1306}
1307EXPORT_SYMBOL(flush_old_exec);
1308
1309void would_dump(struct linux_binprm *bprm, struct file *file)
1310{
1311 struct inode *inode = file_inode(file);
1312 if (inode_permission(inode, MAY_READ) < 0) {
1313 struct user_namespace *old, *user_ns;
1314 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1315
1316 /* Ensure mm->user_ns contains the executable */
1317 user_ns = old = bprm->mm->user_ns;
1318 while ((user_ns != &init_user_ns) &&
1319 !privileged_wrt_inode_uidgid(user_ns, inode))
1320 user_ns = user_ns->parent;
1321
1322 if (old != user_ns) {
1323 bprm->mm->user_ns = get_user_ns(user_ns);
1324 put_user_ns(old);
1325 }
1326 }
1327}
1328EXPORT_SYMBOL(would_dump);
1329
1330void setup_new_exec(struct linux_binprm * bprm)
1331{
1332 /*
1333 * Once here, prepare_binrpm() will not be called any more, so
1334 * the final state of setuid/setgid/fscaps can be merged into the
1335 * secureexec flag.
1336 */
1337 bprm->secureexec |= bprm->cap_elevated;
1338
1339 if (bprm->secureexec) {
1340 /* Make sure parent cannot signal privileged process. */
1341 current->pdeath_signal = 0;
1342
1343 /*
1344 * For secureexec, reset the stack limit to sane default to
1345 * avoid bad behavior from the prior rlimits. This has to
1346 * happen before arch_pick_mmap_layout(), which examines
1347 * RLIMIT_STACK, but after the point of no return to avoid
1348 * needing to clean up the change on failure.
1349 */
1350 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1351 bprm->rlim_stack.rlim_cur = _STK_LIM;
1352 }
1353
1354 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1355
1356 current->sas_ss_sp = current->sas_ss_size = 0;
1357
1358 /*
1359 * Figure out dumpability. Note that this checking only of current
1360 * is wrong, but userspace depends on it. This should be testing
1361 * bprm->secureexec instead.
1362 */
1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 !(uid_eq(current_euid(), current_uid()) &&
1365 gid_eq(current_egid(), current_gid())))
1366 set_dumpable(current->mm, suid_dumpable);
1367 else
1368 set_dumpable(current->mm, SUID_DUMP_USER);
1369
1370 arch_setup_new_exec();
1371 perf_event_exec();
1372 __set_task_comm(current, kbasename(bprm->filename), true);
1373
1374 /* Set the new mm task size. We have to do that late because it may
1375 * depend on TIF_32BIT which is only updated in flush_thread() on
1376 * some architectures like powerpc
1377 */
1378 current->mm->task_size = TASK_SIZE;
1379
1380 /* An exec changes our domain. We are no longer part of the thread
1381 group */
1382 current->self_exec_id++;
1383 flush_signal_handlers(current, 0);
1384}
1385EXPORT_SYMBOL(setup_new_exec);
1386
1387/* Runs immediately before start_thread() takes over. */
1388void finalize_exec(struct linux_binprm *bprm)
1389{
1390 /* Store any stack rlimit changes before starting thread. */
1391 task_lock(current->group_leader);
1392 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1393 task_unlock(current->group_leader);
1394}
1395EXPORT_SYMBOL(finalize_exec);
1396
1397/*
1398 * Prepare credentials and lock ->cred_guard_mutex.
1399 * install_exec_creds() commits the new creds and drops the lock.
1400 * Or, if exec fails before, free_bprm() should release ->cred and
1401 * and unlock.
1402 */
1403int prepare_bprm_creds(struct linux_binprm *bprm)
1404{
1405 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1406 return -ERESTARTNOINTR;
1407
1408 bprm->cred = prepare_exec_creds();
1409 if (likely(bprm->cred))
1410 return 0;
1411
1412 mutex_unlock(¤t->signal->cred_guard_mutex);
1413 return -ENOMEM;
1414}
1415
1416static void free_bprm(struct linux_binprm *bprm)
1417{
1418 free_arg_pages(bprm);
1419 if (bprm->cred) {
1420 mutex_unlock(¤t->signal->cred_guard_mutex);
1421 abort_creds(bprm->cred);
1422 }
1423 if (bprm->file) {
1424 allow_write_access(bprm->file);
1425 fput(bprm->file);
1426 }
1427 /* If a binfmt changed the interp, free it. */
1428 if (bprm->interp != bprm->filename)
1429 kfree(bprm->interp);
1430 kfree(bprm);
1431}
1432
1433int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1434{
1435 /* If a binfmt changed the interp, free it first. */
1436 if (bprm->interp != bprm->filename)
1437 kfree(bprm->interp);
1438 bprm->interp = kstrdup(interp, GFP_KERNEL);
1439 if (!bprm->interp)
1440 return -ENOMEM;
1441 return 0;
1442}
1443EXPORT_SYMBOL(bprm_change_interp);
1444
1445/*
1446 * install the new credentials for this executable
1447 */
1448void install_exec_creds(struct linux_binprm *bprm)
1449{
1450 security_bprm_committing_creds(bprm);
1451
1452 commit_creds(bprm->cred);
1453 bprm->cred = NULL;
1454
1455 /*
1456 * Disable monitoring for regular users
1457 * when executing setuid binaries. Must
1458 * wait until new credentials are committed
1459 * by commit_creds() above
1460 */
1461 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1462 perf_event_exit_task(current);
1463 /*
1464 * cred_guard_mutex must be held at least to this point to prevent
1465 * ptrace_attach() from altering our determination of the task's
1466 * credentials; any time after this it may be unlocked.
1467 */
1468 security_bprm_committed_creds(bprm);
1469 mutex_unlock(¤t->signal->cred_guard_mutex);
1470}
1471EXPORT_SYMBOL(install_exec_creds);
1472
1473/*
1474 * determine how safe it is to execute the proposed program
1475 * - the caller must hold ->cred_guard_mutex to protect against
1476 * PTRACE_ATTACH or seccomp thread-sync
1477 */
1478static void check_unsafe_exec(struct linux_binprm *bprm)
1479{
1480 struct task_struct *p = current, *t;
1481 unsigned n_fs;
1482
1483 if (p->ptrace)
1484 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1485
1486 /*
1487 * This isn't strictly necessary, but it makes it harder for LSMs to
1488 * mess up.
1489 */
1490 if (task_no_new_privs(current))
1491 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1492
1493 t = p;
1494 n_fs = 1;
1495 spin_lock(&p->fs->lock);
1496 rcu_read_lock();
1497 while_each_thread(p, t) {
1498 if (t->fs == p->fs)
1499 n_fs++;
1500 }
1501 rcu_read_unlock();
1502
1503 if (p->fs->users > n_fs)
1504 bprm->unsafe |= LSM_UNSAFE_SHARE;
1505 else
1506 p->fs->in_exec = 1;
1507 spin_unlock(&p->fs->lock);
1508}
1509
1510static void bprm_fill_uid(struct linux_binprm *bprm)
1511{
1512 struct inode *inode;
1513 unsigned int mode;
1514 kuid_t uid;
1515 kgid_t gid;
1516
1517 /*
1518 * Since this can be called multiple times (via prepare_binprm),
1519 * we must clear any previous work done when setting set[ug]id
1520 * bits from any earlier bprm->file uses (for example when run
1521 * first for a setuid script then again for its interpreter).
1522 */
1523 bprm->cred->euid = current_euid();
1524 bprm->cred->egid = current_egid();
1525
1526 if (!mnt_may_suid(bprm->file->f_path.mnt))
1527 return;
1528
1529 if (task_no_new_privs(current))
1530 return;
1531
1532 inode = bprm->file->f_path.dentry->d_inode;
1533 mode = READ_ONCE(inode->i_mode);
1534 if (!(mode & (S_ISUID|S_ISGID)))
1535 return;
1536
1537 /* Be careful if suid/sgid is set */
1538 inode_lock(inode);
1539
1540 /* reload atomically mode/uid/gid now that lock held */
1541 mode = inode->i_mode;
1542 uid = inode->i_uid;
1543 gid = inode->i_gid;
1544 inode_unlock(inode);
1545
1546 /* We ignore suid/sgid if there are no mappings for them in the ns */
1547 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1548 !kgid_has_mapping(bprm->cred->user_ns, gid))
1549 return;
1550
1551 if (mode & S_ISUID) {
1552 bprm->per_clear |= PER_CLEAR_ON_SETID;
1553 bprm->cred->euid = uid;
1554 }
1555
1556 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1557 bprm->per_clear |= PER_CLEAR_ON_SETID;
1558 bprm->cred->egid = gid;
1559 }
1560}
1561
1562/*
1563 * Fill the binprm structure from the inode.
1564 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1565 *
1566 * This may be called multiple times for binary chains (scripts for example).
1567 */
1568int prepare_binprm(struct linux_binprm *bprm)
1569{
1570 int retval;
1571 loff_t pos = 0;
1572
1573 bprm_fill_uid(bprm);
1574
1575 /* fill in binprm security blob */
1576 retval = security_bprm_set_creds(bprm);
1577 if (retval)
1578 return retval;
1579 bprm->called_set_creds = 1;
1580
1581 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1582 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1583}
1584
1585EXPORT_SYMBOL(prepare_binprm);
1586
1587/*
1588 * Arguments are '\0' separated strings found at the location bprm->p
1589 * points to; chop off the first by relocating brpm->p to right after
1590 * the first '\0' encountered.
1591 */
1592int remove_arg_zero(struct linux_binprm *bprm)
1593{
1594 int ret = 0;
1595 unsigned long offset;
1596 char *kaddr;
1597 struct page *page;
1598
1599 if (!bprm->argc)
1600 return 0;
1601
1602 do {
1603 offset = bprm->p & ~PAGE_MASK;
1604 page = get_arg_page(bprm, bprm->p, 0);
1605 if (!page) {
1606 ret = -EFAULT;
1607 goto out;
1608 }
1609 kaddr = kmap_atomic(page);
1610
1611 for (; offset < PAGE_SIZE && kaddr[offset];
1612 offset++, bprm->p++)
1613 ;
1614
1615 kunmap_atomic(kaddr);
1616 put_arg_page(page);
1617 } while (offset == PAGE_SIZE);
1618
1619 bprm->p++;
1620 bprm->argc--;
1621 ret = 0;
1622
1623out:
1624 return ret;
1625}
1626EXPORT_SYMBOL(remove_arg_zero);
1627
1628#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1629/*
1630 * cycle the list of binary formats handler, until one recognizes the image
1631 */
1632int search_binary_handler(struct linux_binprm *bprm)
1633{
1634 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1635 struct linux_binfmt *fmt;
1636 int retval;
1637
1638 /* This allows 4 levels of binfmt rewrites before failing hard. */
1639 if (bprm->recursion_depth > 5)
1640 return -ELOOP;
1641
1642 retval = security_bprm_check(bprm);
1643 if (retval)
1644 return retval;
1645
1646 retval = -ENOENT;
1647 retry:
1648 read_lock(&binfmt_lock);
1649 list_for_each_entry(fmt, &formats, lh) {
1650 if (!try_module_get(fmt->module))
1651 continue;
1652 read_unlock(&binfmt_lock);
1653 bprm->recursion_depth++;
1654 retval = fmt->load_binary(bprm);
1655 read_lock(&binfmt_lock);
1656 put_binfmt(fmt);
1657 bprm->recursion_depth--;
1658 if (retval < 0 && !bprm->mm) {
1659 /* we got to flush_old_exec() and failed after it */
1660 read_unlock(&binfmt_lock);
1661 force_sigsegv(SIGSEGV, current);
1662 return retval;
1663 }
1664 if (retval != -ENOEXEC || !bprm->file) {
1665 read_unlock(&binfmt_lock);
1666 return retval;
1667 }
1668 }
1669 read_unlock(&binfmt_lock);
1670
1671 if (need_retry) {
1672 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1673 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1674 return retval;
1675 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1676 return retval;
1677 need_retry = false;
1678 goto retry;
1679 }
1680
1681 return retval;
1682}
1683EXPORT_SYMBOL(search_binary_handler);
1684
1685static int exec_binprm(struct linux_binprm *bprm)
1686{
1687 pid_t old_pid, old_vpid;
1688 int ret;
1689
1690 /* Need to fetch pid before load_binary changes it */
1691 old_pid = current->pid;
1692 rcu_read_lock();
1693 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1694 rcu_read_unlock();
1695
1696 ret = search_binary_handler(bprm);
1697 if (ret >= 0) {
1698 audit_bprm(bprm);
1699 trace_sched_process_exec(current, old_pid, bprm);
1700 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1701 proc_exec_connector(current);
1702 }
1703
1704 return ret;
1705}
1706
1707/*
1708 * sys_execve() executes a new program.
1709 */
1710static int __do_execve_file(int fd, struct filename *filename,
1711 struct user_arg_ptr argv,
1712 struct user_arg_ptr envp,
1713 int flags, struct file *file)
1714{
1715 char *pathbuf = NULL;
1716 struct linux_binprm *bprm;
1717 struct files_struct *displaced;
1718 int retval;
1719
1720 if (IS_ERR(filename))
1721 return PTR_ERR(filename);
1722
1723 /*
1724 * We move the actual failure in case of RLIMIT_NPROC excess from
1725 * set*uid() to execve() because too many poorly written programs
1726 * don't check setuid() return code. Here we additionally recheck
1727 * whether NPROC limit is still exceeded.
1728 */
1729 if ((current->flags & PF_NPROC_EXCEEDED) &&
1730 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1731 retval = -EAGAIN;
1732 goto out_ret;
1733 }
1734
1735 /* We're below the limit (still or again), so we don't want to make
1736 * further execve() calls fail. */
1737 current->flags &= ~PF_NPROC_EXCEEDED;
1738
1739 retval = unshare_files(&displaced);
1740 if (retval)
1741 goto out_ret;
1742
1743 retval = -ENOMEM;
1744 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1745 if (!bprm)
1746 goto out_files;
1747
1748 retval = prepare_bprm_creds(bprm);
1749 if (retval)
1750 goto out_free;
1751
1752 check_unsafe_exec(bprm);
1753 current->in_execve = 1;
1754
1755 if (!file)
1756 file = do_open_execat(fd, filename, flags);
1757 retval = PTR_ERR(file);
1758 if (IS_ERR(file))
1759 goto out_unmark;
1760
1761 sched_exec();
1762
1763 bprm->file = file;
1764 if (!filename) {
1765 bprm->filename = "none";
1766 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1767 bprm->filename = filename->name;
1768 } else {
1769 if (filename->name[0] == '\0')
1770 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1771 else
1772 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1773 fd, filename->name);
1774 if (!pathbuf) {
1775 retval = -ENOMEM;
1776 goto out_unmark;
1777 }
1778 /*
1779 * Record that a name derived from an O_CLOEXEC fd will be
1780 * inaccessible after exec. Relies on having exclusive access to
1781 * current->files (due to unshare_files above).
1782 */
1783 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1784 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1785 bprm->filename = pathbuf;
1786 }
1787 bprm->interp = bprm->filename;
1788
1789 retval = bprm_mm_init(bprm);
1790 if (retval)
1791 goto out_unmark;
1792
1793 bprm->argc = count(argv, MAX_ARG_STRINGS);
1794 if ((retval = bprm->argc) < 0)
1795 goto out;
1796
1797 bprm->envc = count(envp, MAX_ARG_STRINGS);
1798 if ((retval = bprm->envc) < 0)
1799 goto out;
1800
1801 retval = prepare_binprm(bprm);
1802 if (retval < 0)
1803 goto out;
1804
1805 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1806 if (retval < 0)
1807 goto out;
1808
1809 bprm->exec = bprm->p;
1810 retval = copy_strings(bprm->envc, envp, bprm);
1811 if (retval < 0)
1812 goto out;
1813
1814 retval = copy_strings(bprm->argc, argv, bprm);
1815 if (retval < 0)
1816 goto out;
1817
1818 would_dump(bprm, bprm->file);
1819
1820 retval = exec_binprm(bprm);
1821 if (retval < 0)
1822 goto out;
1823
1824 /* execve succeeded */
1825 current->fs->in_exec = 0;
1826 current->in_execve = 0;
1827 membarrier_execve(current);
1828 rseq_execve(current);
1829 acct_update_integrals(current);
1830 task_numa_free(current);
1831 free_bprm(bprm);
1832 kfree(pathbuf);
1833 if (filename)
1834 putname(filename);
1835 if (displaced)
1836 put_files_struct(displaced);
1837 return retval;
1838
1839out:
1840 if (bprm->mm) {
1841 acct_arg_size(bprm, 0);
1842 mmput(bprm->mm);
1843 }
1844
1845out_unmark:
1846 current->fs->in_exec = 0;
1847 current->in_execve = 0;
1848
1849out_free:
1850 free_bprm(bprm);
1851 kfree(pathbuf);
1852
1853out_files:
1854 if (displaced)
1855 reset_files_struct(displaced);
1856out_ret:
1857 if (filename)
1858 putname(filename);
1859 return retval;
1860}
1861
1862static int do_execveat_common(int fd, struct filename *filename,
1863 struct user_arg_ptr argv,
1864 struct user_arg_ptr envp,
1865 int flags)
1866{
1867 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1868}
1869
1870int do_execve_file(struct file *file, void *__argv, void *__envp)
1871{
1872 struct user_arg_ptr argv = { .ptr.native = __argv };
1873 struct user_arg_ptr envp = { .ptr.native = __envp };
1874
1875 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1876}
1877
1878int do_execve(struct filename *filename,
1879 const char __user *const __user *__argv,
1880 const char __user *const __user *__envp)
1881{
1882 struct user_arg_ptr argv = { .ptr.native = __argv };
1883 struct user_arg_ptr envp = { .ptr.native = __envp };
1884 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1885}
1886
1887int do_execveat(int fd, struct filename *filename,
1888 const char __user *const __user *__argv,
1889 const char __user *const __user *__envp,
1890 int flags)
1891{
1892 struct user_arg_ptr argv = { .ptr.native = __argv };
1893 struct user_arg_ptr envp = { .ptr.native = __envp };
1894
1895 return do_execveat_common(fd, filename, argv, envp, flags);
1896}
1897
1898#ifdef CONFIG_COMPAT
1899static int compat_do_execve(struct filename *filename,
1900 const compat_uptr_t __user *__argv,
1901 const compat_uptr_t __user *__envp)
1902{
1903 struct user_arg_ptr argv = {
1904 .is_compat = true,
1905 .ptr.compat = __argv,
1906 };
1907 struct user_arg_ptr envp = {
1908 .is_compat = true,
1909 .ptr.compat = __envp,
1910 };
1911 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1912}
1913
1914static int compat_do_execveat(int fd, struct filename *filename,
1915 const compat_uptr_t __user *__argv,
1916 const compat_uptr_t __user *__envp,
1917 int flags)
1918{
1919 struct user_arg_ptr argv = {
1920 .is_compat = true,
1921 .ptr.compat = __argv,
1922 };
1923 struct user_arg_ptr envp = {
1924 .is_compat = true,
1925 .ptr.compat = __envp,
1926 };
1927 return do_execveat_common(fd, filename, argv, envp, flags);
1928}
1929#endif
1930
1931void set_binfmt(struct linux_binfmt *new)
1932{
1933 struct mm_struct *mm = current->mm;
1934
1935 if (mm->binfmt)
1936 module_put(mm->binfmt->module);
1937
1938 mm->binfmt = new;
1939 if (new)
1940 __module_get(new->module);
1941}
1942EXPORT_SYMBOL(set_binfmt);
1943
1944/*
1945 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1946 */
1947void set_dumpable(struct mm_struct *mm, int value)
1948{
1949 unsigned long old, new;
1950
1951 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1952 return;
1953
1954 do {
1955 old = READ_ONCE(mm->flags);
1956 new = (old & ~MMF_DUMPABLE_MASK) | value;
1957 } while (cmpxchg(&mm->flags, old, new) != old);
1958}
1959
1960SYSCALL_DEFINE3(execve,
1961 const char __user *, filename,
1962 const char __user *const __user *, argv,
1963 const char __user *const __user *, envp)
1964{
1965 return do_execve(getname(filename), argv, envp);
1966}
1967
1968SYSCALL_DEFINE5(execveat,
1969 int, fd, const char __user *, filename,
1970 const char __user *const __user *, argv,
1971 const char __user *const __user *, envp,
1972 int, flags)
1973{
1974 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1975
1976 return do_execveat(fd,
1977 getname_flags(filename, lookup_flags, NULL),
1978 argv, envp, flags);
1979}
1980
1981#ifdef CONFIG_COMPAT
1982COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1983 const compat_uptr_t __user *, argv,
1984 const compat_uptr_t __user *, envp)
1985{
1986 return compat_do_execve(getname(filename), argv, envp);
1987}
1988
1989COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1990 const char __user *, filename,
1991 const compat_uptr_t __user *, argv,
1992 const compat_uptr_t __user *, envp,
1993 int, flags)
1994{
1995 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1996
1997 return compat_do_execveat(fd,
1998 getname_flags(filename, lookup_flags, NULL),
1999 argv, envp, flags);
2000}
2001#endif