Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/memblock.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kasan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/ratelimit.h>
33#include <linux/oom.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/vmstat.h>
42#include <linux/mempolicy.h>
43#include <linux/memremap.h>
44#include <linux/stop_machine.h>
45#include <linux/sort.h>
46#include <linux/pfn.h>
47#include <linux/backing-dev.h>
48#include <linux/fault-inject.h>
49#include <linux/page-isolation.h>
50#include <linux/page_ext.h>
51#include <linux/debugobjects.h>
52#include <linux/kmemleak.h>
53#include <linux/compaction.h>
54#include <trace/events/kmem.h>
55#include <trace/events/oom.h>
56#include <linux/prefetch.h>
57#include <linux/mm_inline.h>
58#include <linux/migrate.h>
59#include <linux/hugetlb.h>
60#include <linux/sched/rt.h>
61#include <linux/sched/mm.h>
62#include <linux/page_owner.h>
63#include <linux/kthread.h>
64#include <linux/memcontrol.h>
65#include <linux/ftrace.h>
66#include <linux/lockdep.h>
67#include <linux/nmi.h>
68#include <linux/psi.h>
69
70#include <asm/sections.h>
71#include <asm/tlbflush.h>
72#include <asm/div64.h>
73#include "internal.h"
74
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
77#define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95int _node_numa_mem_[MAX_NUMNODES];
96#endif
97
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103volatile unsigned long latent_entropy __latent_entropy;
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
107/*
108 * Array of node states.
109 */
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117#endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
127unsigned long totalram_pages __read_mostly;
128unsigned long totalreserve_pages __read_mostly;
129unsigned long totalcma_pages __read_mostly;
130
131int percpu_pagelist_fraction;
132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
161 */
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
166{
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172}
173
174void pm_restrict_gfp_mask(void)
175{
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180}
181
182bool pm_suspended_storage(void)
183{
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187}
188#endif /* CONFIG_PM_SLEEP */
189
190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191unsigned int pageblock_order __read_mostly;
192#endif
193
194static void __free_pages_ok(struct page *page, unsigned int order);
195
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208#ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210#endif
211#ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213#endif
214 [ZONE_NORMAL] = 32,
215#ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217#endif
218 [ZONE_MOVABLE] = 0,
219};
220
221EXPORT_SYMBOL(totalram_pages);
222
223static char * const zone_names[MAX_NR_ZONES] = {
224#ifdef CONFIG_ZONE_DMA
225 "DMA",
226#endif
227#ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229#endif
230 "Normal",
231#ifdef CONFIG_HIGHMEM
232 "HighMem",
233#endif
234 "Movable",
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
238};
239
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
262};
263
264int min_free_kbytes = 1024;
265int user_min_free_kbytes = -1;
266int watermark_scale_factor = 10;
267
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
271
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
276static unsigned long required_kernelcore_percent __initdata;
277static unsigned long required_movablecore __initdata;
278static unsigned long required_movablecore_percent __initdata;
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
289int nr_online_nodes __read_mostly = 1;
290EXPORT_SYMBOL(nr_node_ids);
291EXPORT_SYMBOL(nr_online_nodes);
292#endif
293
294int page_group_by_mobility_disabled __read_mostly;
295
296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297/* Returns true if the struct page for the pfn is uninitialised */
298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299{
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns true when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static bool __meminit
313defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314{
315 static unsigned long prev_end_pfn, nr_initialised;
316
317 /*
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
320 */
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
324 }
325
326 /* Always populate low zones for address-constrained allocations */
327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328 return false;
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
334 }
335 return false;
336}
337#else
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344{
345 return false;
346}
347#endif
348
349/* Return a pointer to the bitmap storing bits affecting a block of pages */
350static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
352{
353#ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355#else
356 return page_zone(page)->pageblock_flags;
357#endif /* CONFIG_SPARSEMEM */
358}
359
360static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365#else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368#endif /* CONFIG_SPARSEMEM */
369}
370
371/**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
377 *
378 * Return: pageblock_bits flags
379 */
380static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
384{
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
388
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
393
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397}
398
399unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404}
405
406static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407{
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409}
410
411/**
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
418 */
419void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423{
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
427
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
434
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
440
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
447 }
448}
449
450void set_pageblock_migratetype(struct page *page, int migratetype)
451{
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
454 migratetype = MIGRATE_UNMOVABLE;
455
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
458}
459
460#ifdef CONFIG_DEBUG_VM
461static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
462{
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
466 unsigned long sp, start_pfn;
467
468 do {
469 seq = zone_span_seqbegin(zone);
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
472 if (!zone_spans_pfn(zone, pfn))
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
475
476 if (ret)
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
480
481 return ret;
482}
483
484static int page_is_consistent(struct zone *zone, struct page *page)
485{
486 if (!pfn_valid_within(page_to_pfn(page)))
487 return 0;
488 if (zone != page_zone(page))
489 return 0;
490
491 return 1;
492}
493/*
494 * Temporary debugging check for pages not lying within a given zone.
495 */
496static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497{
498 if (page_outside_zone_boundaries(zone, page))
499 return 1;
500 if (!page_is_consistent(zone, page))
501 return 1;
502
503 return 0;
504}
505#else
506static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
507{
508 return 0;
509}
510#endif
511
512static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
514{
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
518
519 /*
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
522 */
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
527 }
528 if (nr_unshown) {
529 pr_alert(
530 "BUG: Bad page state: %lu messages suppressed\n",
531 nr_unshown);
532 nr_unshown = 0;
533 }
534 nr_shown = 0;
535 }
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
538
539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
540 current->comm, page_to_pfn(page));
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
546 dump_page_owner(page);
547
548 print_modules();
549 dump_stack();
550out:
551 /* Leave bad fields for debug, except PageBuddy could make trouble */
552 page_mapcount_reset(page); /* remove PageBuddy */
553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
554}
555
556/*
557 * Higher-order pages are called "compound pages". They are structured thusly:
558 *
559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
560 *
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
563 *
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
566 *
567 * The first tail page's ->compound_order holds the order of allocation.
568 * This usage means that zero-order pages may not be compound.
569 */
570
571void free_compound_page(struct page *page)
572{
573 __free_pages_ok(page, compound_order(page));
574}
575
576void prep_compound_page(struct page *page, unsigned int order)
577{
578 int i;
579 int nr_pages = 1 << order;
580
581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
586 set_page_count(p, 0);
587 p->mapping = TAIL_MAPPING;
588 set_compound_head(p, page);
589 }
590 atomic_set(compound_mapcount_ptr(page), -1);
591}
592
593#ifdef CONFIG_DEBUG_PAGEALLOC
594unsigned int _debug_guardpage_minorder;
595bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597EXPORT_SYMBOL(_debug_pagealloc_enabled);
598bool _debug_guardpage_enabled __read_mostly;
599
600static int __init early_debug_pagealloc(char *buf)
601{
602 if (!buf)
603 return -EINVAL;
604 return kstrtobool(buf, &_debug_pagealloc_enabled);
605}
606early_param("debug_pagealloc", early_debug_pagealloc);
607
608static bool need_debug_guardpage(void)
609{
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
613
614 if (!debug_guardpage_minorder())
615 return false;
616
617 return true;
618}
619
620static void init_debug_guardpage(void)
621{
622 if (!debug_pagealloc_enabled())
623 return;
624
625 if (!debug_guardpage_minorder())
626 return;
627
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 return 0;
647}
648early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649
650static inline bool set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
652{
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
656 return false;
657
658 if (order >= debug_guardpage_minorder())
659 return false;
660
661 page_ext = lookup_page_ext(page);
662 if (unlikely(!page_ext))
663 return false;
664
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
671
672 return true;
673}
674
675static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
677{
678 struct page_ext *page_ext;
679
680 if (!debug_guardpage_enabled())
681 return;
682
683 page_ext = lookup_page_ext(page);
684 if (unlikely(!page_ext))
685 return;
686
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
692}
693#else
694struct page_ext_operations debug_guardpage_ops;
695static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
697static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699#endif
700
701static inline void set_page_order(struct page *page, unsigned int order)
702{
703 set_page_private(page, order);
704 __SetPageBuddy(page);
705}
706
707static inline void rmv_page_order(struct page *page)
708{
709 __ClearPageBuddy(page);
710 set_page_private(page, 0);
711}
712
713/*
714 * This function checks whether a page is free && is the buddy
715 * we can coalesce a page and its buddy if
716 * (a) the buddy is not in a hole (check before calling!) &&
717 * (b) the buddy is in the buddy system &&
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
720 *
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
723 *
724 * For recording page's order, we use page_private(page).
725 */
726static inline int page_is_buddy(struct page *page, struct page *buddy,
727 unsigned int order)
728{
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
735 return 1;
736 }
737
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
749 return 1;
750 }
751 return 0;
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
769 * So when we are allocating or freeing one, we can derive the state of the
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
772 * If a block is freed, and its buddy is also free, then this
773 * triggers coalescing into a block of larger size.
774 *
775 * -- nyc
776 */
777
778static inline void __free_one_page(struct page *page,
779 unsigned long pfn,
780 struct zone *zone, unsigned int order,
781 int migratetype)
782{
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
785 struct page *buddy;
786 unsigned int max_order;
787
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
789
790 VM_BUG_ON(!zone_is_initialized(zone));
791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
792
793 VM_BUG_ON(migratetype == -1);
794 if (likely(!is_migrate_isolate(migratetype)))
795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
796
797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
799
800continue_merging:
801 while (order < max_order - 1) {
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
804
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
807 if (!page_is_buddy(page, buddy, order))
808 goto done_merging;
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy)) {
814 clear_page_guard(zone, buddy, order, migratetype);
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
819 }
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
823 order++;
824 }
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
830 *
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
833 */
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
836
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839 buddy_mt = get_pageblock_migratetype(buddy);
840
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
845 }
846 max_order++;
847 goto continue_merging;
848 }
849
850done_merging:
851 set_page_order(page, order);
852
853 /*
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
860 */
861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862 struct page *higher_page, *higher_buddy;
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
877 zone->free_area[order].nr_free++;
878}
879
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
902static void free_pages_check_bad(struct page *page)
903{
904 const char *bad_reason;
905 unsigned long bad_flags;
906
907 bad_reason = NULL;
908 bad_flags = 0;
909
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
924 bad_page(page, bad_reason, bad_flags);
925}
926
927static inline int free_pages_check(struct page *page)
928{
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
935}
936
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping may be compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * deferred_list.next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
989{
990 int bad = 0;
991
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
994 trace_mm_page_free(page, order);
995
996 /*
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
999 */
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1003
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005
1006 if (compound)
1007 ClearPageDoubleMap(page);
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
1018 if (PageMappingFlags(page))
1019 page->mapping = NULL;
1020 if (memcg_kmem_enabled() && PageKmemcg(page))
1021 memcg_kmem_uncharge(page, order);
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
1026
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
1030
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
1033 PAGE_SIZE << order);
1034 debug_check_no_obj_freed(page_address(page),
1035 PAGE_SIZE << order);
1036 }
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
1040 kasan_free_pages(page, order);
1041
1042 return true;
1043}
1044
1045#ifdef CONFIG_DEBUG_VM
1046static inline bool free_pcp_prepare(struct page *page)
1047{
1048 return free_pages_prepare(page, 0, true);
1049}
1050
1051static inline bool bulkfree_pcp_prepare(struct page *page)
1052{
1053 return false;
1054}
1055#else
1056static bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, false);
1059}
1060
1061static bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return free_pages_check(page);
1064}
1065#endif /* CONFIG_DEBUG_VM */
1066
1067static inline void prefetch_buddy(struct page *page)
1068{
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1072
1073 prefetch(buddy);
1074}
1075
1076/*
1077 * Frees a number of pages from the PCP lists
1078 * Assumes all pages on list are in same zone, and of same order.
1079 * count is the number of pages to free.
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
1087static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1089{
1090 int migratetype = 0;
1091 int batch_free = 0;
1092 int prefetch_nr = 0;
1093 bool isolated_pageblocks;
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
1096
1097 while (count) {
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete to avoid corrupting pcp list */
1121 list_del(&page->lru);
1122 pcp->count--;
1123
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
1127 list_add_tail(&page->lru, &head);
1128
1129 /*
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1137 */
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1145
1146 /*
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1149 */
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 }
1161 spin_unlock(&zone->lock);
1162}
1163
1164static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
1166 unsigned int order,
1167 int migratetype)
1168{
1169 spin_lock(&zone->lock);
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
1173 }
1174 __free_one_page(page, pfn, zone, order, migratetype);
1175 spin_unlock(&zone->lock);
1176}
1177
1178static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 unsigned long zone, int nid)
1180{
1181 mm_zero_struct_page(page);
1182 set_page_links(page, zone, nid, pfn);
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
1186
1187 INIT_LIST_HEAD(&page->lru);
1188#ifdef WANT_PAGE_VIRTUAL
1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 if (!is_highmem_idx(zone))
1191 set_page_address(page, __va(pfn << PAGE_SHIFT));
1192#endif
1193}
1194
1195#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196static void __meminit init_reserved_page(unsigned long pfn)
1197{
1198 pg_data_t *pgdat;
1199 int nid, zid;
1200
1201 if (!early_page_uninitialised(pfn))
1202 return;
1203
1204 nid = early_pfn_to_nid(pfn);
1205 pgdat = NODE_DATA(nid);
1206
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 struct zone *zone = &pgdat->node_zones[zid];
1209
1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 break;
1212 }
1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214}
1215#else
1216static inline void init_reserved_page(unsigned long pfn)
1217{
1218}
1219#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220
1221/*
1222 * Initialised pages do not have PageReserved set. This function is
1223 * called for each range allocated by the bootmem allocator and
1224 * marks the pages PageReserved. The remaining valid pages are later
1225 * sent to the buddy page allocator.
1226 */
1227void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228{
1229 unsigned long start_pfn = PFN_DOWN(start);
1230 unsigned long end_pfn = PFN_UP(end);
1231
1232 for (; start_pfn < end_pfn; start_pfn++) {
1233 if (pfn_valid(start_pfn)) {
1234 struct page *page = pfn_to_page(start_pfn);
1235
1236 init_reserved_page(start_pfn);
1237
1238 /* Avoid false-positive PageTail() */
1239 INIT_LIST_HEAD(&page->lru);
1240
1241 /*
1242 * no need for atomic set_bit because the struct
1243 * page is not visible yet so nobody should
1244 * access it yet.
1245 */
1246 __SetPageReserved(page);
1247 }
1248 }
1249}
1250
1251static void __free_pages_ok(struct page *page, unsigned int order)
1252{
1253 unsigned long flags;
1254 int migratetype;
1255 unsigned long pfn = page_to_pfn(page);
1256
1257 if (!free_pages_prepare(page, order, true))
1258 return;
1259
1260 migratetype = get_pfnblock_migratetype(page, pfn);
1261 local_irq_save(flags);
1262 __count_vm_events(PGFREE, 1 << order);
1263 free_one_page(page_zone(page), page, pfn, order, migratetype);
1264 local_irq_restore(flags);
1265}
1266
1267static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268{
1269 unsigned int nr_pages = 1 << order;
1270 struct page *p = page;
1271 unsigned int loop;
1272
1273 prefetchw(p);
1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 prefetchw(p + 1);
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
1278 }
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
1281
1282 page_zone(page)->managed_pages += nr_pages;
1283 set_page_refcounted(page);
1284 __free_pages(page, order);
1285}
1286
1287#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289
1290static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291
1292int __meminit early_pfn_to_nid(unsigned long pfn)
1293{
1294 static DEFINE_SPINLOCK(early_pfn_lock);
1295 int nid;
1296
1297 spin_lock(&early_pfn_lock);
1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299 if (nid < 0)
1300 nid = first_online_node;
1301 spin_unlock(&early_pfn_lock);
1302
1303 return nid;
1304}
1305#endif
1306
1307#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308static inline bool __meminit __maybe_unused
1309meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 int nid;
1313
1314 nid = __early_pfn_to_nid(pfn, state);
1315 if (nid >= 0 && nid != node)
1316 return false;
1317 return true;
1318}
1319
1320/* Only safe to use early in boot when initialisation is single-threaded */
1321static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322{
1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324}
1325
1326#else
1327
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return true;
1331}
1332static inline bool __meminit __maybe_unused
1333meminit_pfn_in_nid(unsigned long pfn, int node,
1334 struct mminit_pfnnid_cache *state)
1335{
1336 return true;
1337}
1338#endif
1339
1340
1341void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 unsigned int order)
1343{
1344 if (early_page_uninitialised(pfn))
1345 return;
1346 return __free_pages_boot_core(page, order);
1347}
1348
1349/*
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1354 * pageblocks.
1355 *
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357 *
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1365 */
1366struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1368{
1369 struct page *start_page;
1370 struct page *end_page;
1371
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1374
1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 return NULL;
1377
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
1381
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1384
1385 end_page = pfn_to_page(end_pfn);
1386
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1390
1391 return start_page;
1392}
1393
1394void set_zone_contiguous(struct zone *zone)
1395{
1396 unsigned long block_start_pfn = zone->zone_start_pfn;
1397 unsigned long block_end_pfn;
1398
1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 for (; block_start_pfn < zone_end_pfn(zone);
1401 block_start_pfn = block_end_pfn,
1402 block_end_pfn += pageblock_nr_pages) {
1403
1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405
1406 if (!__pageblock_pfn_to_page(block_start_pfn,
1407 block_end_pfn, zone))
1408 return;
1409 }
1410
1411 /* We confirm that there is no hole */
1412 zone->contiguous = true;
1413}
1414
1415void clear_zone_contiguous(struct zone *zone)
1416{
1417 zone->contiguous = false;
1418}
1419
1420#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421static void __init deferred_free_range(unsigned long pfn,
1422 unsigned long nr_pages)
1423{
1424 struct page *page;
1425 unsigned long i;
1426
1427 if (!nr_pages)
1428 return;
1429
1430 page = pfn_to_page(pfn);
1431
1432 /* Free a large naturally-aligned chunk if possible */
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436 __free_pages_boot_core(page, pageblock_order);
1437 return;
1438 }
1439
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, 0);
1444 }
1445}
1446
1447/* Completion tracking for deferred_init_memmap() threads */
1448static atomic_t pgdat_init_n_undone __initdata;
1449static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451static inline void __init pgdat_init_report_one_done(void)
1452{
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455}
1456
1457/*
1458 * Returns true if page needs to be initialized or freed to buddy allocator.
1459 *
1460 * First we check if pfn is valid on architectures where it is possible to have
1461 * holes within pageblock_nr_pages. On systems where it is not possible, this
1462 * function is optimized out.
1463 *
1464 * Then, we check if a current large page is valid by only checking the validity
1465 * of the head pfn.
1466 *
1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468 * within a node: a pfn is between start and end of a node, but does not belong
1469 * to this memory node.
1470 */
1471static inline bool __init
1472deferred_pfn_valid(int nid, unsigned long pfn,
1473 struct mminit_pfnnid_cache *nid_init_state)
1474{
1475 if (!pfn_valid_within(pfn))
1476 return false;
1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 return false;
1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 return false;
1481 return true;
1482}
1483
1484/*
1485 * Free pages to buddy allocator. Try to free aligned pages in
1486 * pageblock_nr_pages sizes.
1487 */
1488static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 unsigned long end_pfn)
1490{
1491 struct mminit_pfnnid_cache nid_init_state = { };
1492 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 unsigned long nr_free = 0;
1494
1495 for (; pfn < end_pfn; pfn++) {
1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 deferred_free_range(pfn - nr_free, nr_free);
1498 nr_free = 0;
1499 } else if (!(pfn & nr_pgmask)) {
1500 deferred_free_range(pfn - nr_free, nr_free);
1501 nr_free = 1;
1502 touch_nmi_watchdog();
1503 } else {
1504 nr_free++;
1505 }
1506 }
1507 /* Free the last block of pages to allocator */
1508 deferred_free_range(pfn - nr_free, nr_free);
1509}
1510
1511/*
1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1513 * by performing it only once every pageblock_nr_pages.
1514 * Return number of pages initialized.
1515 */
1516static unsigned long __init deferred_init_pages(int nid, int zid,
1517 unsigned long pfn,
1518 unsigned long end_pfn)
1519{
1520 struct mminit_pfnnid_cache nid_init_state = { };
1521 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1522 unsigned long nr_pages = 0;
1523 struct page *page = NULL;
1524
1525 for (; pfn < end_pfn; pfn++) {
1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 page = NULL;
1528 continue;
1529 } else if (!page || !(pfn & nr_pgmask)) {
1530 page = pfn_to_page(pfn);
1531 touch_nmi_watchdog();
1532 } else {
1533 page++;
1534 }
1535 __init_single_page(page, pfn, zid, nid);
1536 nr_pages++;
1537 }
1538 return (nr_pages);
1539}
1540
1541/* Initialise remaining memory on a node */
1542static int __init deferred_init_memmap(void *data)
1543{
1544 pg_data_t *pgdat = data;
1545 int nid = pgdat->node_id;
1546 unsigned long start = jiffies;
1547 unsigned long nr_pages = 0;
1548 unsigned long spfn, epfn, first_init_pfn, flags;
1549 phys_addr_t spa, epa;
1550 int zid;
1551 struct zone *zone;
1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553 u64 i;
1554
1555 /* Bind memory initialisation thread to a local node if possible */
1556 if (!cpumask_empty(cpumask))
1557 set_cpus_allowed_ptr(current, cpumask);
1558
1559 pgdat_resize_lock(pgdat, &flags);
1560 first_init_pfn = pgdat->first_deferred_pfn;
1561 if (first_init_pfn == ULONG_MAX) {
1562 pgdat_resize_unlock(pgdat, &flags);
1563 pgdat_init_report_one_done();
1564 return 0;
1565 }
1566
1567 /* Sanity check boundaries */
1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 pgdat->first_deferred_pfn = ULONG_MAX;
1571
1572 /* Only the highest zone is deferred so find it */
1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 zone = pgdat->node_zones + zid;
1575 if (first_init_pfn < zone_end_pfn(zone))
1576 break;
1577 }
1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579
1580 /*
1581 * Initialize and free pages. We do it in two loops: first we initialize
1582 * struct page, than free to buddy allocator, because while we are
1583 * freeing pages we can access pages that are ahead (computing buddy
1584 * page in __free_one_page()).
1585 */
1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 }
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 deferred_free_pages(nid, zid, spfn, epfn);
1595 }
1596 pgdat_resize_unlock(pgdat, &flags);
1597
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600
1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 jiffies_to_msecs(jiffies - start));
1603
1604 pgdat_init_report_one_done();
1605 return 0;
1606}
1607
1608/*
1609 * During boot we initialize deferred pages on-demand, as needed, but once
1610 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611 * and we can permanently disable that path.
1612 */
1613static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614
1615/*
1616 * If this zone has deferred pages, try to grow it by initializing enough
1617 * deferred pages to satisfy the allocation specified by order, rounded up to
1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1619 * of SECTION_SIZE bytes by initializing struct pages in increments of
1620 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621 *
1622 * Return true when zone was grown, otherwise return false. We return true even
1623 * when we grow less than requested, to let the caller decide if there are
1624 * enough pages to satisfy the allocation.
1625 *
1626 * Note: We use noinline because this function is needed only during boot, and
1627 * it is called from a __ref function _deferred_grow_zone. This way we are
1628 * making sure that it is not inlined into permanent text section.
1629 */
1630static noinline bool __init
1631deferred_grow_zone(struct zone *zone, unsigned int order)
1632{
1633 int zid = zone_idx(zone);
1634 int nid = zone_to_nid(zone);
1635 pg_data_t *pgdat = NODE_DATA(nid);
1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 unsigned long nr_pages = 0;
1638 unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 phys_addr_t spa, epa;
1641 u64 i;
1642
1643 /* Only the last zone may have deferred pages */
1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 return false;
1646
1647 pgdat_resize_lock(pgdat, &flags);
1648
1649 /*
1650 * If deferred pages have been initialized while we were waiting for
1651 * the lock, return true, as the zone was grown. The caller will retry
1652 * this zone. We won't return to this function since the caller also
1653 * has this static branch.
1654 */
1655 if (!static_branch_unlikely(&deferred_pages)) {
1656 pgdat_resize_unlock(pgdat, &flags);
1657 return true;
1658 }
1659
1660 /*
1661 * If someone grew this zone while we were waiting for spinlock, return
1662 * true, as there might be enough pages already.
1663 */
1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 pgdat_resize_unlock(pgdat, &flags);
1666 return true;
1667 }
1668
1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670
1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 pgdat_resize_unlock(pgdat, &flags);
1673 return false;
1674 }
1675
1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679
1680 while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 first_deferred_pfn = min(t, epfn);
1683 nr_pages += deferred_init_pages(nid, zid, spfn,
1684 first_deferred_pfn);
1685 spfn = first_deferred_pfn;
1686 }
1687
1688 if (nr_pages >= nr_pages_needed)
1689 break;
1690 }
1691
1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 deferred_free_pages(nid, zid, spfn, epfn);
1696
1697 if (first_deferred_pfn == epfn)
1698 break;
1699 }
1700 pgdat->first_deferred_pfn = first_deferred_pfn;
1701 pgdat_resize_unlock(pgdat, &flags);
1702
1703 return nr_pages > 0;
1704}
1705
1706/*
1707 * deferred_grow_zone() is __init, but it is called from
1708 * get_page_from_freelist() during early boot until deferred_pages permanently
1709 * disables this call. This is why we have refdata wrapper to avoid warning,
1710 * and to ensure that the function body gets unloaded.
1711 */
1712static bool __ref
1713_deferred_grow_zone(struct zone *zone, unsigned int order)
1714{
1715 return deferred_grow_zone(zone, order);
1716}
1717
1718#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719
1720void __init page_alloc_init_late(void)
1721{
1722 struct zone *zone;
1723
1724#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 int nid;
1726
1727 /* There will be num_node_state(N_MEMORY) threads */
1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 for_each_node_state(nid, N_MEMORY) {
1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 }
1732
1733 /* Block until all are initialised */
1734 wait_for_completion(&pgdat_init_all_done_comp);
1735
1736 /*
1737 * We initialized the rest of the deferred pages. Permanently disable
1738 * on-demand struct page initialization.
1739 */
1740 static_branch_disable(&deferred_pages);
1741
1742 /* Reinit limits that are based on free pages after the kernel is up */
1743 files_maxfiles_init();
1744#endif
1745#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 /* Discard memblock private memory */
1747 memblock_discard();
1748#endif
1749
1750 for_each_populated_zone(zone)
1751 set_zone_contiguous(zone);
1752}
1753
1754#ifdef CONFIG_CMA
1755/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756void __init init_cma_reserved_pageblock(struct page *page)
1757{
1758 unsigned i = pageblock_nr_pages;
1759 struct page *p = page;
1760
1761 do {
1762 __ClearPageReserved(p);
1763 set_page_count(p, 0);
1764 } while (++p, --i);
1765
1766 set_pageblock_migratetype(page, MIGRATE_CMA);
1767
1768 if (pageblock_order >= MAX_ORDER) {
1769 i = pageblock_nr_pages;
1770 p = page;
1771 do {
1772 set_page_refcounted(p);
1773 __free_pages(p, MAX_ORDER - 1);
1774 p += MAX_ORDER_NR_PAGES;
1775 } while (i -= MAX_ORDER_NR_PAGES);
1776 } else {
1777 set_page_refcounted(page);
1778 __free_pages(page, pageblock_order);
1779 }
1780
1781 adjust_managed_page_count(page, pageblock_nr_pages);
1782}
1783#endif
1784
1785/*
1786 * The order of subdivision here is critical for the IO subsystem.
1787 * Please do not alter this order without good reasons and regression
1788 * testing. Specifically, as large blocks of memory are subdivided,
1789 * the order in which smaller blocks are delivered depends on the order
1790 * they're subdivided in this function. This is the primary factor
1791 * influencing the order in which pages are delivered to the IO
1792 * subsystem according to empirical testing, and this is also justified
1793 * by considering the behavior of a buddy system containing a single
1794 * large block of memory acted on by a series of small allocations.
1795 * This behavior is a critical factor in sglist merging's success.
1796 *
1797 * -- nyc
1798 */
1799static inline void expand(struct zone *zone, struct page *page,
1800 int low, int high, struct free_area *area,
1801 int migratetype)
1802{
1803 unsigned long size = 1 << high;
1804
1805 while (high > low) {
1806 area--;
1807 high--;
1808 size >>= 1;
1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810
1811 /*
1812 * Mark as guard pages (or page), that will allow to
1813 * merge back to allocator when buddy will be freed.
1814 * Corresponding page table entries will not be touched,
1815 * pages will stay not present in virtual address space
1816 */
1817 if (set_page_guard(zone, &page[size], high, migratetype))
1818 continue;
1819
1820 list_add(&page[size].lru, &area->free_list[migratetype]);
1821 area->nr_free++;
1822 set_page_order(&page[size], high);
1823 }
1824}
1825
1826static void check_new_page_bad(struct page *page)
1827{
1828 const char *bad_reason = NULL;
1829 unsigned long bad_flags = 0;
1830
1831 if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 bad_reason = "nonzero mapcount";
1833 if (unlikely(page->mapping != NULL))
1834 bad_reason = "non-NULL mapping";
1835 if (unlikely(page_ref_count(page) != 0))
1836 bad_reason = "nonzero _count";
1837 if (unlikely(page->flags & __PG_HWPOISON)) {
1838 bad_reason = "HWPoisoned (hardware-corrupted)";
1839 bad_flags = __PG_HWPOISON;
1840 /* Don't complain about hwpoisoned pages */
1841 page_mapcount_reset(page); /* remove PageBuddy */
1842 return;
1843 }
1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 }
1848#ifdef CONFIG_MEMCG
1849 if (unlikely(page->mem_cgroup))
1850 bad_reason = "page still charged to cgroup";
1851#endif
1852 bad_page(page, bad_reason, bad_flags);
1853}
1854
1855/*
1856 * This page is about to be returned from the page allocator
1857 */
1858static inline int check_new_page(struct page *page)
1859{
1860 if (likely(page_expected_state(page,
1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 return 0;
1863
1864 check_new_page_bad(page);
1865 return 1;
1866}
1867
1868static inline bool free_pages_prezeroed(void)
1869{
1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871 page_poisoning_enabled();
1872}
1873
1874#ifdef CONFIG_DEBUG_VM
1875static bool check_pcp_refill(struct page *page)
1876{
1877 return false;
1878}
1879
1880static bool check_new_pcp(struct page *page)
1881{
1882 return check_new_page(page);
1883}
1884#else
1885static bool check_pcp_refill(struct page *page)
1886{
1887 return check_new_page(page);
1888}
1889static bool check_new_pcp(struct page *page)
1890{
1891 return false;
1892}
1893#endif /* CONFIG_DEBUG_VM */
1894
1895static bool check_new_pages(struct page *page, unsigned int order)
1896{
1897 int i;
1898 for (i = 0; i < (1 << order); i++) {
1899 struct page *p = page + i;
1900
1901 if (unlikely(check_new_page(p)))
1902 return true;
1903 }
1904
1905 return false;
1906}
1907
1908inline void post_alloc_hook(struct page *page, unsigned int order,
1909 gfp_t gfp_flags)
1910{
1911 set_page_private(page, 0);
1912 set_page_refcounted(page);
1913
1914 arch_alloc_page(page, order);
1915 kernel_map_pages(page, 1 << order, 1);
1916 kernel_poison_pages(page, 1 << order, 1);
1917 kasan_alloc_pages(page, order);
1918 set_page_owner(page, order, gfp_flags);
1919}
1920
1921static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922 unsigned int alloc_flags)
1923{
1924 int i;
1925
1926 post_alloc_hook(page, order, gfp_flags);
1927
1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 for (i = 0; i < (1 << order); i++)
1930 clear_highpage(page + i);
1931
1932 if (order && (gfp_flags & __GFP_COMP))
1933 prep_compound_page(page, order);
1934
1935 /*
1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 * allocate the page. The expectation is that the caller is taking
1938 * steps that will free more memory. The caller should avoid the page
1939 * being used for !PFMEMALLOC purposes.
1940 */
1941 if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 set_page_pfmemalloc(page);
1943 else
1944 clear_page_pfmemalloc(page);
1945}
1946
1947/*
1948 * Go through the free lists for the given migratetype and remove
1949 * the smallest available page from the freelists
1950 */
1951static __always_inline
1952struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 int migratetype)
1954{
1955 unsigned int current_order;
1956 struct free_area *area;
1957 struct page *page;
1958
1959 /* Find a page of the appropriate size in the preferred list */
1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 area = &(zone->free_area[current_order]);
1962 page = list_first_entry_or_null(&area->free_list[migratetype],
1963 struct page, lru);
1964 if (!page)
1965 continue;
1966 list_del(&page->lru);
1967 rmv_page_order(page);
1968 area->nr_free--;
1969 expand(zone, page, order, current_order, area, migratetype);
1970 set_pcppage_migratetype(page, migratetype);
1971 return page;
1972 }
1973
1974 return NULL;
1975}
1976
1977
1978/*
1979 * This array describes the order lists are fallen back to when
1980 * the free lists for the desirable migrate type are depleted
1981 */
1982static int fallbacks[MIGRATE_TYPES][4] = {
1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1986#ifdef CONFIG_CMA
1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1988#endif
1989#ifdef CONFIG_MEMORY_ISOLATION
1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1991#endif
1992};
1993
1994#ifdef CONFIG_CMA
1995static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 unsigned int order)
1997{
1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999}
2000#else
2001static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 unsigned int order) { return NULL; }
2003#endif
2004
2005/*
2006 * Move the free pages in a range to the free lists of the requested type.
2007 * Note that start_page and end_pages are not aligned on a pageblock
2008 * boundary. If alignment is required, use move_freepages_block()
2009 */
2010static int move_freepages(struct zone *zone,
2011 struct page *start_page, struct page *end_page,
2012 int migratetype, int *num_movable)
2013{
2014 struct page *page;
2015 unsigned int order;
2016 int pages_moved = 0;
2017
2018#ifndef CONFIG_HOLES_IN_ZONE
2019 /*
2020 * page_zone is not safe to call in this context when
2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 * anyway as we check zone boundaries in move_freepages_block().
2023 * Remove at a later date when no bug reports exist related to
2024 * grouping pages by mobility
2025 */
2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 pfn_valid(page_to_pfn(end_page)) &&
2028 page_zone(start_page) != page_zone(end_page));
2029#endif
2030 for (page = start_page; page <= end_page;) {
2031 if (!pfn_valid_within(page_to_pfn(page))) {
2032 page++;
2033 continue;
2034 }
2035
2036 /* Make sure we are not inadvertently changing nodes */
2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038
2039 if (!PageBuddy(page)) {
2040 /*
2041 * We assume that pages that could be isolated for
2042 * migration are movable. But we don't actually try
2043 * isolating, as that would be expensive.
2044 */
2045 if (num_movable &&
2046 (PageLRU(page) || __PageMovable(page)))
2047 (*num_movable)++;
2048
2049 page++;
2050 continue;
2051 }
2052
2053 order = page_order(page);
2054 list_move(&page->lru,
2055 &zone->free_area[order].free_list[migratetype]);
2056 page += 1 << order;
2057 pages_moved += 1 << order;
2058 }
2059
2060 return pages_moved;
2061}
2062
2063int move_freepages_block(struct zone *zone, struct page *page,
2064 int migratetype, int *num_movable)
2065{
2066 unsigned long start_pfn, end_pfn;
2067 struct page *start_page, *end_page;
2068
2069 if (num_movable)
2070 *num_movable = 0;
2071
2072 start_pfn = page_to_pfn(page);
2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074 start_page = pfn_to_page(start_pfn);
2075 end_page = start_page + pageblock_nr_pages - 1;
2076 end_pfn = start_pfn + pageblock_nr_pages - 1;
2077
2078 /* Do not cross zone boundaries */
2079 if (!zone_spans_pfn(zone, start_pfn))
2080 start_page = page;
2081 if (!zone_spans_pfn(zone, end_pfn))
2082 return 0;
2083
2084 return move_freepages(zone, start_page, end_page, migratetype,
2085 num_movable);
2086}
2087
2088static void change_pageblock_range(struct page *pageblock_page,
2089 int start_order, int migratetype)
2090{
2091 int nr_pageblocks = 1 << (start_order - pageblock_order);
2092
2093 while (nr_pageblocks--) {
2094 set_pageblock_migratetype(pageblock_page, migratetype);
2095 pageblock_page += pageblock_nr_pages;
2096 }
2097}
2098
2099/*
2100 * When we are falling back to another migratetype during allocation, try to
2101 * steal extra free pages from the same pageblocks to satisfy further
2102 * allocations, instead of polluting multiple pageblocks.
2103 *
2104 * If we are stealing a relatively large buddy page, it is likely there will
2105 * be more free pages in the pageblock, so try to steal them all. For
2106 * reclaimable and unmovable allocations, we steal regardless of page size,
2107 * as fragmentation caused by those allocations polluting movable pageblocks
2108 * is worse than movable allocations stealing from unmovable and reclaimable
2109 * pageblocks.
2110 */
2111static bool can_steal_fallback(unsigned int order, int start_mt)
2112{
2113 /*
2114 * Leaving this order check is intended, although there is
2115 * relaxed order check in next check. The reason is that
2116 * we can actually steal whole pageblock if this condition met,
2117 * but, below check doesn't guarantee it and that is just heuristic
2118 * so could be changed anytime.
2119 */
2120 if (order >= pageblock_order)
2121 return true;
2122
2123 if (order >= pageblock_order / 2 ||
2124 start_mt == MIGRATE_RECLAIMABLE ||
2125 start_mt == MIGRATE_UNMOVABLE ||
2126 page_group_by_mobility_disabled)
2127 return true;
2128
2129 return false;
2130}
2131
2132/*
2133 * This function implements actual steal behaviour. If order is large enough,
2134 * we can steal whole pageblock. If not, we first move freepages in this
2135 * pageblock to our migratetype and determine how many already-allocated pages
2136 * are there in the pageblock with a compatible migratetype. If at least half
2137 * of pages are free or compatible, we can change migratetype of the pageblock
2138 * itself, so pages freed in the future will be put on the correct free list.
2139 */
2140static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141 int start_type, bool whole_block)
2142{
2143 unsigned int current_order = page_order(page);
2144 struct free_area *area;
2145 int free_pages, movable_pages, alike_pages;
2146 int old_block_type;
2147
2148 old_block_type = get_pageblock_migratetype(page);
2149
2150 /*
2151 * This can happen due to races and we want to prevent broken
2152 * highatomic accounting.
2153 */
2154 if (is_migrate_highatomic(old_block_type))
2155 goto single_page;
2156
2157 /* Take ownership for orders >= pageblock_order */
2158 if (current_order >= pageblock_order) {
2159 change_pageblock_range(page, current_order, start_type);
2160 goto single_page;
2161 }
2162
2163 /* We are not allowed to try stealing from the whole block */
2164 if (!whole_block)
2165 goto single_page;
2166
2167 free_pages = move_freepages_block(zone, page, start_type,
2168 &movable_pages);
2169 /*
2170 * Determine how many pages are compatible with our allocation.
2171 * For movable allocation, it's the number of movable pages which
2172 * we just obtained. For other types it's a bit more tricky.
2173 */
2174 if (start_type == MIGRATE_MOVABLE) {
2175 alike_pages = movable_pages;
2176 } else {
2177 /*
2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 * to MOVABLE pageblock, consider all non-movable pages as
2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 * vice versa, be conservative since we can't distinguish the
2182 * exact migratetype of non-movable pages.
2183 */
2184 if (old_block_type == MIGRATE_MOVABLE)
2185 alike_pages = pageblock_nr_pages
2186 - (free_pages + movable_pages);
2187 else
2188 alike_pages = 0;
2189 }
2190
2191 /* moving whole block can fail due to zone boundary conditions */
2192 if (!free_pages)
2193 goto single_page;
2194
2195 /*
2196 * If a sufficient number of pages in the block are either free or of
2197 * comparable migratability as our allocation, claim the whole block.
2198 */
2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 page_group_by_mobility_disabled)
2201 set_pageblock_migratetype(page, start_type);
2202
2203 return;
2204
2205single_page:
2206 area = &zone->free_area[current_order];
2207 list_move(&page->lru, &area->free_list[start_type]);
2208}
2209
2210/*
2211 * Check whether there is a suitable fallback freepage with requested order.
2212 * If only_stealable is true, this function returns fallback_mt only if
2213 * we can steal other freepages all together. This would help to reduce
2214 * fragmentation due to mixed migratetype pages in one pageblock.
2215 */
2216int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 int migratetype, bool only_stealable, bool *can_steal)
2218{
2219 int i;
2220 int fallback_mt;
2221
2222 if (area->nr_free == 0)
2223 return -1;
2224
2225 *can_steal = false;
2226 for (i = 0;; i++) {
2227 fallback_mt = fallbacks[migratetype][i];
2228 if (fallback_mt == MIGRATE_TYPES)
2229 break;
2230
2231 if (list_empty(&area->free_list[fallback_mt]))
2232 continue;
2233
2234 if (can_steal_fallback(order, migratetype))
2235 *can_steal = true;
2236
2237 if (!only_stealable)
2238 return fallback_mt;
2239
2240 if (*can_steal)
2241 return fallback_mt;
2242 }
2243
2244 return -1;
2245}
2246
2247/*
2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249 * there are no empty page blocks that contain a page with a suitable order
2250 */
2251static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 unsigned int alloc_order)
2253{
2254 int mt;
2255 unsigned long max_managed, flags;
2256
2257 /*
2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 * Check is race-prone but harmless.
2260 */
2261 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2262 if (zone->nr_reserved_highatomic >= max_managed)
2263 return;
2264
2265 spin_lock_irqsave(&zone->lock, flags);
2266
2267 /* Recheck the nr_reserved_highatomic limit under the lock */
2268 if (zone->nr_reserved_highatomic >= max_managed)
2269 goto out_unlock;
2270
2271 /* Yoink! */
2272 mt = get_pageblock_migratetype(page);
2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 && !is_migrate_cma(mt)) {
2275 zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 }
2279
2280out_unlock:
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282}
2283
2284/*
2285 * Used when an allocation is about to fail under memory pressure. This
2286 * potentially hurts the reliability of high-order allocations when under
2287 * intense memory pressure but failed atomic allocations should be easier
2288 * to recover from than an OOM.
2289 *
2290 * If @force is true, try to unreserve a pageblock even though highatomic
2291 * pageblock is exhausted.
2292 */
2293static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 bool force)
2295{
2296 struct zonelist *zonelist = ac->zonelist;
2297 unsigned long flags;
2298 struct zoneref *z;
2299 struct zone *zone;
2300 struct page *page;
2301 int order;
2302 bool ret;
2303
2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 ac->nodemask) {
2306 /*
2307 * Preserve at least one pageblock unless memory pressure
2308 * is really high.
2309 */
2310 if (!force && zone->nr_reserved_highatomic <=
2311 pageblock_nr_pages)
2312 continue;
2313
2314 spin_lock_irqsave(&zone->lock, flags);
2315 for (order = 0; order < MAX_ORDER; order++) {
2316 struct free_area *area = &(zone->free_area[order]);
2317
2318 page = list_first_entry_or_null(
2319 &area->free_list[MIGRATE_HIGHATOMIC],
2320 struct page, lru);
2321 if (!page)
2322 continue;
2323
2324 /*
2325 * In page freeing path, migratetype change is racy so
2326 * we can counter several free pages in a pageblock
2327 * in this loop althoug we changed the pageblock type
2328 * from highatomic to ac->migratetype. So we should
2329 * adjust the count once.
2330 */
2331 if (is_migrate_highatomic_page(page)) {
2332 /*
2333 * It should never happen but changes to
2334 * locking could inadvertently allow a per-cpu
2335 * drain to add pages to MIGRATE_HIGHATOMIC
2336 * while unreserving so be safe and watch for
2337 * underflows.
2338 */
2339 zone->nr_reserved_highatomic -= min(
2340 pageblock_nr_pages,
2341 zone->nr_reserved_highatomic);
2342 }
2343
2344 /*
2345 * Convert to ac->migratetype and avoid the normal
2346 * pageblock stealing heuristics. Minimally, the caller
2347 * is doing the work and needs the pages. More
2348 * importantly, if the block was always converted to
2349 * MIGRATE_UNMOVABLE or another type then the number
2350 * of pageblocks that cannot be completely freed
2351 * may increase.
2352 */
2353 set_pageblock_migratetype(page, ac->migratetype);
2354 ret = move_freepages_block(zone, page, ac->migratetype,
2355 NULL);
2356 if (ret) {
2357 spin_unlock_irqrestore(&zone->lock, flags);
2358 return ret;
2359 }
2360 }
2361 spin_unlock_irqrestore(&zone->lock, flags);
2362 }
2363
2364 return false;
2365}
2366
2367/*
2368 * Try finding a free buddy page on the fallback list and put it on the free
2369 * list of requested migratetype, possibly along with other pages from the same
2370 * block, depending on fragmentation avoidance heuristics. Returns true if
2371 * fallback was found so that __rmqueue_smallest() can grab it.
2372 *
2373 * The use of signed ints for order and current_order is a deliberate
2374 * deviation from the rest of this file, to make the for loop
2375 * condition simpler.
2376 */
2377static __always_inline bool
2378__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2379{
2380 struct free_area *area;
2381 int current_order;
2382 struct page *page;
2383 int fallback_mt;
2384 bool can_steal;
2385
2386 /*
2387 * Find the largest available free page in the other list. This roughly
2388 * approximates finding the pageblock with the most free pages, which
2389 * would be too costly to do exactly.
2390 */
2391 for (current_order = MAX_ORDER - 1; current_order >= order;
2392 --current_order) {
2393 area = &(zone->free_area[current_order]);
2394 fallback_mt = find_suitable_fallback(area, current_order,
2395 start_migratetype, false, &can_steal);
2396 if (fallback_mt == -1)
2397 continue;
2398
2399 /*
2400 * We cannot steal all free pages from the pageblock and the
2401 * requested migratetype is movable. In that case it's better to
2402 * steal and split the smallest available page instead of the
2403 * largest available page, because even if the next movable
2404 * allocation falls back into a different pageblock than this
2405 * one, it won't cause permanent fragmentation.
2406 */
2407 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2408 && current_order > order)
2409 goto find_smallest;
2410
2411 goto do_steal;
2412 }
2413
2414 return false;
2415
2416find_smallest:
2417 for (current_order = order; current_order < MAX_ORDER;
2418 current_order++) {
2419 area = &(zone->free_area[current_order]);
2420 fallback_mt = find_suitable_fallback(area, current_order,
2421 start_migratetype, false, &can_steal);
2422 if (fallback_mt != -1)
2423 break;
2424 }
2425
2426 /*
2427 * This should not happen - we already found a suitable fallback
2428 * when looking for the largest page.
2429 */
2430 VM_BUG_ON(current_order == MAX_ORDER);
2431
2432do_steal:
2433 page = list_first_entry(&area->free_list[fallback_mt],
2434 struct page, lru);
2435
2436 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2437
2438 trace_mm_page_alloc_extfrag(page, order, current_order,
2439 start_migratetype, fallback_mt);
2440
2441 return true;
2442
2443}
2444
2445/*
2446 * Do the hard work of removing an element from the buddy allocator.
2447 * Call me with the zone->lock already held.
2448 */
2449static __always_inline struct page *
2450__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2451{
2452 struct page *page;
2453
2454retry:
2455 page = __rmqueue_smallest(zone, order, migratetype);
2456 if (unlikely(!page)) {
2457 if (migratetype == MIGRATE_MOVABLE)
2458 page = __rmqueue_cma_fallback(zone, order);
2459
2460 if (!page && __rmqueue_fallback(zone, order, migratetype))
2461 goto retry;
2462 }
2463
2464 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2465 return page;
2466}
2467
2468/*
2469 * Obtain a specified number of elements from the buddy allocator, all under
2470 * a single hold of the lock, for efficiency. Add them to the supplied list.
2471 * Returns the number of new pages which were placed at *list.
2472 */
2473static int rmqueue_bulk(struct zone *zone, unsigned int order,
2474 unsigned long count, struct list_head *list,
2475 int migratetype)
2476{
2477 int i, alloced = 0;
2478
2479 spin_lock(&zone->lock);
2480 for (i = 0; i < count; ++i) {
2481 struct page *page = __rmqueue(zone, order, migratetype);
2482 if (unlikely(page == NULL))
2483 break;
2484
2485 if (unlikely(check_pcp_refill(page)))
2486 continue;
2487
2488 /*
2489 * Split buddy pages returned by expand() are received here in
2490 * physical page order. The page is added to the tail of
2491 * caller's list. From the callers perspective, the linked list
2492 * is ordered by page number under some conditions. This is
2493 * useful for IO devices that can forward direction from the
2494 * head, thus also in the physical page order. This is useful
2495 * for IO devices that can merge IO requests if the physical
2496 * pages are ordered properly.
2497 */
2498 list_add_tail(&page->lru, list);
2499 alloced++;
2500 if (is_migrate_cma(get_pcppage_migratetype(page)))
2501 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2502 -(1 << order));
2503 }
2504
2505 /*
2506 * i pages were removed from the buddy list even if some leak due
2507 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2508 * on i. Do not confuse with 'alloced' which is the number of
2509 * pages added to the pcp list.
2510 */
2511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2512 spin_unlock(&zone->lock);
2513 return alloced;
2514}
2515
2516#ifdef CONFIG_NUMA
2517/*
2518 * Called from the vmstat counter updater to drain pagesets of this
2519 * currently executing processor on remote nodes after they have
2520 * expired.
2521 *
2522 * Note that this function must be called with the thread pinned to
2523 * a single processor.
2524 */
2525void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2526{
2527 unsigned long flags;
2528 int to_drain, batch;
2529
2530 local_irq_save(flags);
2531 batch = READ_ONCE(pcp->batch);
2532 to_drain = min(pcp->count, batch);
2533 if (to_drain > 0)
2534 free_pcppages_bulk(zone, to_drain, pcp);
2535 local_irq_restore(flags);
2536}
2537#endif
2538
2539/*
2540 * Drain pcplists of the indicated processor and zone.
2541 *
2542 * The processor must either be the current processor and the
2543 * thread pinned to the current processor or a processor that
2544 * is not online.
2545 */
2546static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2547{
2548 unsigned long flags;
2549 struct per_cpu_pageset *pset;
2550 struct per_cpu_pages *pcp;
2551
2552 local_irq_save(flags);
2553 pset = per_cpu_ptr(zone->pageset, cpu);
2554
2555 pcp = &pset->pcp;
2556 if (pcp->count)
2557 free_pcppages_bulk(zone, pcp->count, pcp);
2558 local_irq_restore(flags);
2559}
2560
2561/*
2562 * Drain pcplists of all zones on the indicated processor.
2563 *
2564 * The processor must either be the current processor and the
2565 * thread pinned to the current processor or a processor that
2566 * is not online.
2567 */
2568static void drain_pages(unsigned int cpu)
2569{
2570 struct zone *zone;
2571
2572 for_each_populated_zone(zone) {
2573 drain_pages_zone(cpu, zone);
2574 }
2575}
2576
2577/*
2578 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2579 *
2580 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2581 * the single zone's pages.
2582 */
2583void drain_local_pages(struct zone *zone)
2584{
2585 int cpu = smp_processor_id();
2586
2587 if (zone)
2588 drain_pages_zone(cpu, zone);
2589 else
2590 drain_pages(cpu);
2591}
2592
2593static void drain_local_pages_wq(struct work_struct *work)
2594{
2595 /*
2596 * drain_all_pages doesn't use proper cpu hotplug protection so
2597 * we can race with cpu offline when the WQ can move this from
2598 * a cpu pinned worker to an unbound one. We can operate on a different
2599 * cpu which is allright but we also have to make sure to not move to
2600 * a different one.
2601 */
2602 preempt_disable();
2603 drain_local_pages(NULL);
2604 preempt_enable();
2605}
2606
2607/*
2608 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2609 *
2610 * When zone parameter is non-NULL, spill just the single zone's pages.
2611 *
2612 * Note that this can be extremely slow as the draining happens in a workqueue.
2613 */
2614void drain_all_pages(struct zone *zone)
2615{
2616 int cpu;
2617
2618 /*
2619 * Allocate in the BSS so we wont require allocation in
2620 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2621 */
2622 static cpumask_t cpus_with_pcps;
2623
2624 /*
2625 * Make sure nobody triggers this path before mm_percpu_wq is fully
2626 * initialized.
2627 */
2628 if (WARN_ON_ONCE(!mm_percpu_wq))
2629 return;
2630
2631 /*
2632 * Do not drain if one is already in progress unless it's specific to
2633 * a zone. Such callers are primarily CMA and memory hotplug and need
2634 * the drain to be complete when the call returns.
2635 */
2636 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2637 if (!zone)
2638 return;
2639 mutex_lock(&pcpu_drain_mutex);
2640 }
2641
2642 /*
2643 * We don't care about racing with CPU hotplug event
2644 * as offline notification will cause the notified
2645 * cpu to drain that CPU pcps and on_each_cpu_mask
2646 * disables preemption as part of its processing
2647 */
2648 for_each_online_cpu(cpu) {
2649 struct per_cpu_pageset *pcp;
2650 struct zone *z;
2651 bool has_pcps = false;
2652
2653 if (zone) {
2654 pcp = per_cpu_ptr(zone->pageset, cpu);
2655 if (pcp->pcp.count)
2656 has_pcps = true;
2657 } else {
2658 for_each_populated_zone(z) {
2659 pcp = per_cpu_ptr(z->pageset, cpu);
2660 if (pcp->pcp.count) {
2661 has_pcps = true;
2662 break;
2663 }
2664 }
2665 }
2666
2667 if (has_pcps)
2668 cpumask_set_cpu(cpu, &cpus_with_pcps);
2669 else
2670 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2671 }
2672
2673 for_each_cpu(cpu, &cpus_with_pcps) {
2674 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2675 INIT_WORK(work, drain_local_pages_wq);
2676 queue_work_on(cpu, mm_percpu_wq, work);
2677 }
2678 for_each_cpu(cpu, &cpus_with_pcps)
2679 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2680
2681 mutex_unlock(&pcpu_drain_mutex);
2682}
2683
2684#ifdef CONFIG_HIBERNATION
2685
2686/*
2687 * Touch the watchdog for every WD_PAGE_COUNT pages.
2688 */
2689#define WD_PAGE_COUNT (128*1024)
2690
2691void mark_free_pages(struct zone *zone)
2692{
2693 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2694 unsigned long flags;
2695 unsigned int order, t;
2696 struct page *page;
2697
2698 if (zone_is_empty(zone))
2699 return;
2700
2701 spin_lock_irqsave(&zone->lock, flags);
2702
2703 max_zone_pfn = zone_end_pfn(zone);
2704 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2705 if (pfn_valid(pfn)) {
2706 page = pfn_to_page(pfn);
2707
2708 if (!--page_count) {
2709 touch_nmi_watchdog();
2710 page_count = WD_PAGE_COUNT;
2711 }
2712
2713 if (page_zone(page) != zone)
2714 continue;
2715
2716 if (!swsusp_page_is_forbidden(page))
2717 swsusp_unset_page_free(page);
2718 }
2719
2720 for_each_migratetype_order(order, t) {
2721 list_for_each_entry(page,
2722 &zone->free_area[order].free_list[t], lru) {
2723 unsigned long i;
2724
2725 pfn = page_to_pfn(page);
2726 for (i = 0; i < (1UL << order); i++) {
2727 if (!--page_count) {
2728 touch_nmi_watchdog();
2729 page_count = WD_PAGE_COUNT;
2730 }
2731 swsusp_set_page_free(pfn_to_page(pfn + i));
2732 }
2733 }
2734 }
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
2737#endif /* CONFIG_PM */
2738
2739static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2740{
2741 int migratetype;
2742
2743 if (!free_pcp_prepare(page))
2744 return false;
2745
2746 migratetype = get_pfnblock_migratetype(page, pfn);
2747 set_pcppage_migratetype(page, migratetype);
2748 return true;
2749}
2750
2751static void free_unref_page_commit(struct page *page, unsigned long pfn)
2752{
2753 struct zone *zone = page_zone(page);
2754 struct per_cpu_pages *pcp;
2755 int migratetype;
2756
2757 migratetype = get_pcppage_migratetype(page);
2758 __count_vm_event(PGFREE);
2759
2760 /*
2761 * We only track unmovable, reclaimable and movable on pcp lists.
2762 * Free ISOLATE pages back to the allocator because they are being
2763 * offlined but treat HIGHATOMIC as movable pages so we can get those
2764 * areas back if necessary. Otherwise, we may have to free
2765 * excessively into the page allocator
2766 */
2767 if (migratetype >= MIGRATE_PCPTYPES) {
2768 if (unlikely(is_migrate_isolate(migratetype))) {
2769 free_one_page(zone, page, pfn, 0, migratetype);
2770 return;
2771 }
2772 migratetype = MIGRATE_MOVABLE;
2773 }
2774
2775 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776 list_add(&page->lru, &pcp->lists[migratetype]);
2777 pcp->count++;
2778 if (pcp->count >= pcp->high) {
2779 unsigned long batch = READ_ONCE(pcp->batch);
2780 free_pcppages_bulk(zone, batch, pcp);
2781 }
2782}
2783
2784/*
2785 * Free a 0-order page
2786 */
2787void free_unref_page(struct page *page)
2788{
2789 unsigned long flags;
2790 unsigned long pfn = page_to_pfn(page);
2791
2792 if (!free_unref_page_prepare(page, pfn))
2793 return;
2794
2795 local_irq_save(flags);
2796 free_unref_page_commit(page, pfn);
2797 local_irq_restore(flags);
2798}
2799
2800/*
2801 * Free a list of 0-order pages
2802 */
2803void free_unref_page_list(struct list_head *list)
2804{
2805 struct page *page, *next;
2806 unsigned long flags, pfn;
2807 int batch_count = 0;
2808
2809 /* Prepare pages for freeing */
2810 list_for_each_entry_safe(page, next, list, lru) {
2811 pfn = page_to_pfn(page);
2812 if (!free_unref_page_prepare(page, pfn))
2813 list_del(&page->lru);
2814 set_page_private(page, pfn);
2815 }
2816
2817 local_irq_save(flags);
2818 list_for_each_entry_safe(page, next, list, lru) {
2819 unsigned long pfn = page_private(page);
2820
2821 set_page_private(page, 0);
2822 trace_mm_page_free_batched(page);
2823 free_unref_page_commit(page, pfn);
2824
2825 /*
2826 * Guard against excessive IRQ disabled times when we get
2827 * a large list of pages to free.
2828 */
2829 if (++batch_count == SWAP_CLUSTER_MAX) {
2830 local_irq_restore(flags);
2831 batch_count = 0;
2832 local_irq_save(flags);
2833 }
2834 }
2835 local_irq_restore(flags);
2836}
2837
2838/*
2839 * split_page takes a non-compound higher-order page, and splits it into
2840 * n (1<<order) sub-pages: page[0..n]
2841 * Each sub-page must be freed individually.
2842 *
2843 * Note: this is probably too low level an operation for use in drivers.
2844 * Please consult with lkml before using this in your driver.
2845 */
2846void split_page(struct page *page, unsigned int order)
2847{
2848 int i;
2849
2850 VM_BUG_ON_PAGE(PageCompound(page), page);
2851 VM_BUG_ON_PAGE(!page_count(page), page);
2852
2853 for (i = 1; i < (1 << order); i++)
2854 set_page_refcounted(page + i);
2855 split_page_owner(page, order);
2856}
2857EXPORT_SYMBOL_GPL(split_page);
2858
2859int __isolate_free_page(struct page *page, unsigned int order)
2860{
2861 unsigned long watermark;
2862 struct zone *zone;
2863 int mt;
2864
2865 BUG_ON(!PageBuddy(page));
2866
2867 zone = page_zone(page);
2868 mt = get_pageblock_migratetype(page);
2869
2870 if (!is_migrate_isolate(mt)) {
2871 /*
2872 * Obey watermarks as if the page was being allocated. We can
2873 * emulate a high-order watermark check with a raised order-0
2874 * watermark, because we already know our high-order page
2875 * exists.
2876 */
2877 watermark = min_wmark_pages(zone) + (1UL << order);
2878 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2879 return 0;
2880
2881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2882 }
2883
2884 /* Remove page from free list */
2885 list_del(&page->lru);
2886 zone->free_area[order].nr_free--;
2887 rmv_page_order(page);
2888
2889 /*
2890 * Set the pageblock if the isolated page is at least half of a
2891 * pageblock
2892 */
2893 if (order >= pageblock_order - 1) {
2894 struct page *endpage = page + (1 << order) - 1;
2895 for (; page < endpage; page += pageblock_nr_pages) {
2896 int mt = get_pageblock_migratetype(page);
2897 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2898 && !is_migrate_highatomic(mt))
2899 set_pageblock_migratetype(page,
2900 MIGRATE_MOVABLE);
2901 }
2902 }
2903
2904
2905 return 1UL << order;
2906}
2907
2908/*
2909 * Update NUMA hit/miss statistics
2910 *
2911 * Must be called with interrupts disabled.
2912 */
2913static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2914{
2915#ifdef CONFIG_NUMA
2916 enum numa_stat_item local_stat = NUMA_LOCAL;
2917
2918 /* skip numa counters update if numa stats is disabled */
2919 if (!static_branch_likely(&vm_numa_stat_key))
2920 return;
2921
2922 if (zone_to_nid(z) != numa_node_id())
2923 local_stat = NUMA_OTHER;
2924
2925 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2926 __inc_numa_state(z, NUMA_HIT);
2927 else {
2928 __inc_numa_state(z, NUMA_MISS);
2929 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2930 }
2931 __inc_numa_state(z, local_stat);
2932#endif
2933}
2934
2935/* Remove page from the per-cpu list, caller must protect the list */
2936static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2937 struct per_cpu_pages *pcp,
2938 struct list_head *list)
2939{
2940 struct page *page;
2941
2942 do {
2943 if (list_empty(list)) {
2944 pcp->count += rmqueue_bulk(zone, 0,
2945 pcp->batch, list,
2946 migratetype);
2947 if (unlikely(list_empty(list)))
2948 return NULL;
2949 }
2950
2951 page = list_first_entry(list, struct page, lru);
2952 list_del(&page->lru);
2953 pcp->count--;
2954 } while (check_new_pcp(page));
2955
2956 return page;
2957}
2958
2959/* Lock and remove page from the per-cpu list */
2960static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2961 struct zone *zone, unsigned int order,
2962 gfp_t gfp_flags, int migratetype)
2963{
2964 struct per_cpu_pages *pcp;
2965 struct list_head *list;
2966 struct page *page;
2967 unsigned long flags;
2968
2969 local_irq_save(flags);
2970 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2971 list = &pcp->lists[migratetype];
2972 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2973 if (page) {
2974 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2975 zone_statistics(preferred_zone, zone);
2976 }
2977 local_irq_restore(flags);
2978 return page;
2979}
2980
2981/*
2982 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2983 */
2984static inline
2985struct page *rmqueue(struct zone *preferred_zone,
2986 struct zone *zone, unsigned int order,
2987 gfp_t gfp_flags, unsigned int alloc_flags,
2988 int migratetype)
2989{
2990 unsigned long flags;
2991 struct page *page;
2992
2993 if (likely(order == 0)) {
2994 page = rmqueue_pcplist(preferred_zone, zone, order,
2995 gfp_flags, migratetype);
2996 goto out;
2997 }
2998
2999 /*
3000 * We most definitely don't want callers attempting to
3001 * allocate greater than order-1 page units with __GFP_NOFAIL.
3002 */
3003 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3004 spin_lock_irqsave(&zone->lock, flags);
3005
3006 do {
3007 page = NULL;
3008 if (alloc_flags & ALLOC_HARDER) {
3009 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3010 if (page)
3011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3012 }
3013 if (!page)
3014 page = __rmqueue(zone, order, migratetype);
3015 } while (page && check_new_pages(page, order));
3016 spin_unlock(&zone->lock);
3017 if (!page)
3018 goto failed;
3019 __mod_zone_freepage_state(zone, -(1 << order),
3020 get_pcppage_migratetype(page));
3021
3022 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3023 zone_statistics(preferred_zone, zone);
3024 local_irq_restore(flags);
3025
3026out:
3027 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3028 return page;
3029
3030failed:
3031 local_irq_restore(flags);
3032 return NULL;
3033}
3034
3035#ifdef CONFIG_FAIL_PAGE_ALLOC
3036
3037static struct {
3038 struct fault_attr attr;
3039
3040 bool ignore_gfp_highmem;
3041 bool ignore_gfp_reclaim;
3042 u32 min_order;
3043} fail_page_alloc = {
3044 .attr = FAULT_ATTR_INITIALIZER,
3045 .ignore_gfp_reclaim = true,
3046 .ignore_gfp_highmem = true,
3047 .min_order = 1,
3048};
3049
3050static int __init setup_fail_page_alloc(char *str)
3051{
3052 return setup_fault_attr(&fail_page_alloc.attr, str);
3053}
3054__setup("fail_page_alloc=", setup_fail_page_alloc);
3055
3056static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3057{
3058 if (order < fail_page_alloc.min_order)
3059 return false;
3060 if (gfp_mask & __GFP_NOFAIL)
3061 return false;
3062 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3063 return false;
3064 if (fail_page_alloc.ignore_gfp_reclaim &&
3065 (gfp_mask & __GFP_DIRECT_RECLAIM))
3066 return false;
3067
3068 return should_fail(&fail_page_alloc.attr, 1 << order);
3069}
3070
3071#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3072
3073static int __init fail_page_alloc_debugfs(void)
3074{
3075 umode_t mode = S_IFREG | 0600;
3076 struct dentry *dir;
3077
3078 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3079 &fail_page_alloc.attr);
3080 if (IS_ERR(dir))
3081 return PTR_ERR(dir);
3082
3083 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3084 &fail_page_alloc.ignore_gfp_reclaim))
3085 goto fail;
3086 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3087 &fail_page_alloc.ignore_gfp_highmem))
3088 goto fail;
3089 if (!debugfs_create_u32("min-order", mode, dir,
3090 &fail_page_alloc.min_order))
3091 goto fail;
3092
3093 return 0;
3094fail:
3095 debugfs_remove_recursive(dir);
3096
3097 return -ENOMEM;
3098}
3099
3100late_initcall(fail_page_alloc_debugfs);
3101
3102#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3103
3104#else /* CONFIG_FAIL_PAGE_ALLOC */
3105
3106static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3107{
3108 return false;
3109}
3110
3111#endif /* CONFIG_FAIL_PAGE_ALLOC */
3112
3113/*
3114 * Return true if free base pages are above 'mark'. For high-order checks it
3115 * will return true of the order-0 watermark is reached and there is at least
3116 * one free page of a suitable size. Checking now avoids taking the zone lock
3117 * to check in the allocation paths if no pages are free.
3118 */
3119bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3120 int classzone_idx, unsigned int alloc_flags,
3121 long free_pages)
3122{
3123 long min = mark;
3124 int o;
3125 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3126
3127 /* free_pages may go negative - that's OK */
3128 free_pages -= (1 << order) - 1;
3129
3130 if (alloc_flags & ALLOC_HIGH)
3131 min -= min / 2;
3132
3133 /*
3134 * If the caller does not have rights to ALLOC_HARDER then subtract
3135 * the high-atomic reserves. This will over-estimate the size of the
3136 * atomic reserve but it avoids a search.
3137 */
3138 if (likely(!alloc_harder)) {
3139 free_pages -= z->nr_reserved_highatomic;
3140 } else {
3141 /*
3142 * OOM victims can try even harder than normal ALLOC_HARDER
3143 * users on the grounds that it's definitely going to be in
3144 * the exit path shortly and free memory. Any allocation it
3145 * makes during the free path will be small and short-lived.
3146 */
3147 if (alloc_flags & ALLOC_OOM)
3148 min -= min / 2;
3149 else
3150 min -= min / 4;
3151 }
3152
3153
3154#ifdef CONFIG_CMA
3155 /* If allocation can't use CMA areas don't use free CMA pages */
3156 if (!(alloc_flags & ALLOC_CMA))
3157 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3158#endif
3159
3160 /*
3161 * Check watermarks for an order-0 allocation request. If these
3162 * are not met, then a high-order request also cannot go ahead
3163 * even if a suitable page happened to be free.
3164 */
3165 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3166 return false;
3167
3168 /* If this is an order-0 request then the watermark is fine */
3169 if (!order)
3170 return true;
3171
3172 /* For a high-order request, check at least one suitable page is free */
3173 for (o = order; o < MAX_ORDER; o++) {
3174 struct free_area *area = &z->free_area[o];
3175 int mt;
3176
3177 if (!area->nr_free)
3178 continue;
3179
3180 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3181 if (!list_empty(&area->free_list[mt]))
3182 return true;
3183 }
3184
3185#ifdef CONFIG_CMA
3186 if ((alloc_flags & ALLOC_CMA) &&
3187 !list_empty(&area->free_list[MIGRATE_CMA])) {
3188 return true;
3189 }
3190#endif
3191 if (alloc_harder &&
3192 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3193 return true;
3194 }
3195 return false;
3196}
3197
3198bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3199 int classzone_idx, unsigned int alloc_flags)
3200{
3201 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3202 zone_page_state(z, NR_FREE_PAGES));
3203}
3204
3205static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3206 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3207{
3208 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3209 long cma_pages = 0;
3210
3211#ifdef CONFIG_CMA
3212 /* If allocation can't use CMA areas don't use free CMA pages */
3213 if (!(alloc_flags & ALLOC_CMA))
3214 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3215#endif
3216
3217 /*
3218 * Fast check for order-0 only. If this fails then the reserves
3219 * need to be calculated. There is a corner case where the check
3220 * passes but only the high-order atomic reserve are free. If
3221 * the caller is !atomic then it'll uselessly search the free
3222 * list. That corner case is then slower but it is harmless.
3223 */
3224 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3225 return true;
3226
3227 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3228 free_pages);
3229}
3230
3231bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232 unsigned long mark, int classzone_idx)
3233{
3234 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3235
3236 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3237 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3238
3239 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3240 free_pages);
3241}
3242
3243#ifdef CONFIG_NUMA
3244static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3245{
3246 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3247 RECLAIM_DISTANCE;
3248}
3249#else /* CONFIG_NUMA */
3250static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251{
3252 return true;
3253}
3254#endif /* CONFIG_NUMA */
3255
3256/*
3257 * get_page_from_freelist goes through the zonelist trying to allocate
3258 * a page.
3259 */
3260static struct page *
3261get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 const struct alloc_context *ac)
3263{
3264 struct zoneref *z = ac->preferred_zoneref;
3265 struct zone *zone;
3266 struct pglist_data *last_pgdat_dirty_limit = NULL;
3267
3268 /*
3269 * Scan zonelist, looking for a zone with enough free.
3270 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3271 */
3272 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3273 ac->nodemask) {
3274 struct page *page;
3275 unsigned long mark;
3276
3277 if (cpusets_enabled() &&
3278 (alloc_flags & ALLOC_CPUSET) &&
3279 !__cpuset_zone_allowed(zone, gfp_mask))
3280 continue;
3281 /*
3282 * When allocating a page cache page for writing, we
3283 * want to get it from a node that is within its dirty
3284 * limit, such that no single node holds more than its
3285 * proportional share of globally allowed dirty pages.
3286 * The dirty limits take into account the node's
3287 * lowmem reserves and high watermark so that kswapd
3288 * should be able to balance it without having to
3289 * write pages from its LRU list.
3290 *
3291 * XXX: For now, allow allocations to potentially
3292 * exceed the per-node dirty limit in the slowpath
3293 * (spread_dirty_pages unset) before going into reclaim,
3294 * which is important when on a NUMA setup the allowed
3295 * nodes are together not big enough to reach the
3296 * global limit. The proper fix for these situations
3297 * will require awareness of nodes in the
3298 * dirty-throttling and the flusher threads.
3299 */
3300 if (ac->spread_dirty_pages) {
3301 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3302 continue;
3303
3304 if (!node_dirty_ok(zone->zone_pgdat)) {
3305 last_pgdat_dirty_limit = zone->zone_pgdat;
3306 continue;
3307 }
3308 }
3309
3310 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3311 if (!zone_watermark_fast(zone, order, mark,
3312 ac_classzone_idx(ac), alloc_flags)) {
3313 int ret;
3314
3315#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3316 /*
3317 * Watermark failed for this zone, but see if we can
3318 * grow this zone if it contains deferred pages.
3319 */
3320 if (static_branch_unlikely(&deferred_pages)) {
3321 if (_deferred_grow_zone(zone, order))
3322 goto try_this_zone;
3323 }
3324#endif
3325 /* Checked here to keep the fast path fast */
3326 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3327 if (alloc_flags & ALLOC_NO_WATERMARKS)
3328 goto try_this_zone;
3329
3330 if (node_reclaim_mode == 0 ||
3331 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3332 continue;
3333
3334 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3335 switch (ret) {
3336 case NODE_RECLAIM_NOSCAN:
3337 /* did not scan */
3338 continue;
3339 case NODE_RECLAIM_FULL:
3340 /* scanned but unreclaimable */
3341 continue;
3342 default:
3343 /* did we reclaim enough */
3344 if (zone_watermark_ok(zone, order, mark,
3345 ac_classzone_idx(ac), alloc_flags))
3346 goto try_this_zone;
3347
3348 continue;
3349 }
3350 }
3351
3352try_this_zone:
3353 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3354 gfp_mask, alloc_flags, ac->migratetype);
3355 if (page) {
3356 prep_new_page(page, order, gfp_mask, alloc_flags);
3357
3358 /*
3359 * If this is a high-order atomic allocation then check
3360 * if the pageblock should be reserved for the future
3361 */
3362 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3363 reserve_highatomic_pageblock(page, zone, order);
3364
3365 return page;
3366 } else {
3367#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3368 /* Try again if zone has deferred pages */
3369 if (static_branch_unlikely(&deferred_pages)) {
3370 if (_deferred_grow_zone(zone, order))
3371 goto try_this_zone;
3372 }
3373#endif
3374 }
3375 }
3376
3377 return NULL;
3378}
3379
3380static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3381{
3382 unsigned int filter = SHOW_MEM_FILTER_NODES;
3383 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3384
3385 if (!__ratelimit(&show_mem_rs))
3386 return;
3387
3388 /*
3389 * This documents exceptions given to allocations in certain
3390 * contexts that are allowed to allocate outside current's set
3391 * of allowed nodes.
3392 */
3393 if (!(gfp_mask & __GFP_NOMEMALLOC))
3394 if (tsk_is_oom_victim(current) ||
3395 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3396 filter &= ~SHOW_MEM_FILTER_NODES;
3397 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3398 filter &= ~SHOW_MEM_FILTER_NODES;
3399
3400 show_mem(filter, nodemask);
3401}
3402
3403void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3404{
3405 struct va_format vaf;
3406 va_list args;
3407 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3408 DEFAULT_RATELIMIT_BURST);
3409
3410 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3411 return;
3412
3413 va_start(args, fmt);
3414 vaf.fmt = fmt;
3415 vaf.va = &args;
3416 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3417 current->comm, &vaf, gfp_mask, &gfp_mask,
3418 nodemask_pr_args(nodemask));
3419 va_end(args);
3420
3421 cpuset_print_current_mems_allowed();
3422
3423 dump_stack();
3424 warn_alloc_show_mem(gfp_mask, nodemask);
3425}
3426
3427static inline struct page *
3428__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3429 unsigned int alloc_flags,
3430 const struct alloc_context *ac)
3431{
3432 struct page *page;
3433
3434 page = get_page_from_freelist(gfp_mask, order,
3435 alloc_flags|ALLOC_CPUSET, ac);
3436 /*
3437 * fallback to ignore cpuset restriction if our nodes
3438 * are depleted
3439 */
3440 if (!page)
3441 page = get_page_from_freelist(gfp_mask, order,
3442 alloc_flags, ac);
3443
3444 return page;
3445}
3446
3447static inline struct page *
3448__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3449 const struct alloc_context *ac, unsigned long *did_some_progress)
3450{
3451 struct oom_control oc = {
3452 .zonelist = ac->zonelist,
3453 .nodemask = ac->nodemask,
3454 .memcg = NULL,
3455 .gfp_mask = gfp_mask,
3456 .order = order,
3457 };
3458 struct page *page;
3459
3460 *did_some_progress = 0;
3461
3462 /*
3463 * Acquire the oom lock. If that fails, somebody else is
3464 * making progress for us.
3465 */
3466 if (!mutex_trylock(&oom_lock)) {
3467 *did_some_progress = 1;
3468 schedule_timeout_uninterruptible(1);
3469 return NULL;
3470 }
3471
3472 /*
3473 * Go through the zonelist yet one more time, keep very high watermark
3474 * here, this is only to catch a parallel oom killing, we must fail if
3475 * we're still under heavy pressure. But make sure that this reclaim
3476 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3477 * allocation which will never fail due to oom_lock already held.
3478 */
3479 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3480 ~__GFP_DIRECT_RECLAIM, order,
3481 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3482 if (page)
3483 goto out;
3484
3485 /* Coredumps can quickly deplete all memory reserves */
3486 if (current->flags & PF_DUMPCORE)
3487 goto out;
3488 /* The OOM killer will not help higher order allocs */
3489 if (order > PAGE_ALLOC_COSTLY_ORDER)
3490 goto out;
3491 /*
3492 * We have already exhausted all our reclaim opportunities without any
3493 * success so it is time to admit defeat. We will skip the OOM killer
3494 * because it is very likely that the caller has a more reasonable
3495 * fallback than shooting a random task.
3496 */
3497 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3498 goto out;
3499 /* The OOM killer does not needlessly kill tasks for lowmem */
3500 if (ac->high_zoneidx < ZONE_NORMAL)
3501 goto out;
3502 if (pm_suspended_storage())
3503 goto out;
3504 /*
3505 * XXX: GFP_NOFS allocations should rather fail than rely on
3506 * other request to make a forward progress.
3507 * We are in an unfortunate situation where out_of_memory cannot
3508 * do much for this context but let's try it to at least get
3509 * access to memory reserved if the current task is killed (see
3510 * out_of_memory). Once filesystems are ready to handle allocation
3511 * failures more gracefully we should just bail out here.
3512 */
3513
3514 /* The OOM killer may not free memory on a specific node */
3515 if (gfp_mask & __GFP_THISNODE)
3516 goto out;
3517
3518 /* Exhausted what can be done so it's blame time */
3519 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3520 *did_some_progress = 1;
3521
3522 /*
3523 * Help non-failing allocations by giving them access to memory
3524 * reserves
3525 */
3526 if (gfp_mask & __GFP_NOFAIL)
3527 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3528 ALLOC_NO_WATERMARKS, ac);
3529 }
3530out:
3531 mutex_unlock(&oom_lock);
3532 return page;
3533}
3534
3535/*
3536 * Maximum number of compaction retries wit a progress before OOM
3537 * killer is consider as the only way to move forward.
3538 */
3539#define MAX_COMPACT_RETRIES 16
3540
3541#ifdef CONFIG_COMPACTION
3542/* Try memory compaction for high-order allocations before reclaim */
3543static struct page *
3544__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 unsigned int alloc_flags, const struct alloc_context *ac,
3546 enum compact_priority prio, enum compact_result *compact_result)
3547{
3548 struct page *page;
3549 unsigned long pflags;
3550 unsigned int noreclaim_flag;
3551
3552 if (!order)
3553 return NULL;
3554
3555 psi_memstall_enter(&pflags);
3556 noreclaim_flag = memalloc_noreclaim_save();
3557
3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559 prio);
3560
3561 memalloc_noreclaim_restore(noreclaim_flag);
3562 psi_memstall_leave(&pflags);
3563
3564 if (*compact_result <= COMPACT_INACTIVE)
3565 return NULL;
3566
3567 /*
3568 * At least in one zone compaction wasn't deferred or skipped, so let's
3569 * count a compaction stall
3570 */
3571 count_vm_event(COMPACTSTALL);
3572
3573 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574
3575 if (page) {
3576 struct zone *zone = page_zone(page);
3577
3578 zone->compact_blockskip_flush = false;
3579 compaction_defer_reset(zone, order, true);
3580 count_vm_event(COMPACTSUCCESS);
3581 return page;
3582 }
3583
3584 /*
3585 * It's bad if compaction run occurs and fails. The most likely reason
3586 * is that pages exist, but not enough to satisfy watermarks.
3587 */
3588 count_vm_event(COMPACTFAIL);
3589
3590 cond_resched();
3591
3592 return NULL;
3593}
3594
3595static inline bool
3596should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3597 enum compact_result compact_result,
3598 enum compact_priority *compact_priority,
3599 int *compaction_retries)
3600{
3601 int max_retries = MAX_COMPACT_RETRIES;
3602 int min_priority;
3603 bool ret = false;
3604 int retries = *compaction_retries;
3605 enum compact_priority priority = *compact_priority;
3606
3607 if (!order)
3608 return false;
3609
3610 if (compaction_made_progress(compact_result))
3611 (*compaction_retries)++;
3612
3613 /*
3614 * compaction considers all the zone as desperately out of memory
3615 * so it doesn't really make much sense to retry except when the
3616 * failure could be caused by insufficient priority
3617 */
3618 if (compaction_failed(compact_result))
3619 goto check_priority;
3620
3621 /*
3622 * make sure the compaction wasn't deferred or didn't bail out early
3623 * due to locks contention before we declare that we should give up.
3624 * But do not retry if the given zonelist is not suitable for
3625 * compaction.
3626 */
3627 if (compaction_withdrawn(compact_result)) {
3628 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3629 goto out;
3630 }
3631
3632 /*
3633 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3634 * costly ones because they are de facto nofail and invoke OOM
3635 * killer to move on while costly can fail and users are ready
3636 * to cope with that. 1/4 retries is rather arbitrary but we
3637 * would need much more detailed feedback from compaction to
3638 * make a better decision.
3639 */
3640 if (order > PAGE_ALLOC_COSTLY_ORDER)
3641 max_retries /= 4;
3642 if (*compaction_retries <= max_retries) {
3643 ret = true;
3644 goto out;
3645 }
3646
3647 /*
3648 * Make sure there are attempts at the highest priority if we exhausted
3649 * all retries or failed at the lower priorities.
3650 */
3651check_priority:
3652 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3653 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3654
3655 if (*compact_priority > min_priority) {
3656 (*compact_priority)--;
3657 *compaction_retries = 0;
3658 ret = true;
3659 }
3660out:
3661 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3662 return ret;
3663}
3664#else
3665static inline struct page *
3666__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3667 unsigned int alloc_flags, const struct alloc_context *ac,
3668 enum compact_priority prio, enum compact_result *compact_result)
3669{
3670 *compact_result = COMPACT_SKIPPED;
3671 return NULL;
3672}
3673
3674static inline bool
3675should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3676 enum compact_result compact_result,
3677 enum compact_priority *compact_priority,
3678 int *compaction_retries)
3679{
3680 struct zone *zone;
3681 struct zoneref *z;
3682
3683 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3684 return false;
3685
3686 /*
3687 * There are setups with compaction disabled which would prefer to loop
3688 * inside the allocator rather than hit the oom killer prematurely.
3689 * Let's give them a good hope and keep retrying while the order-0
3690 * watermarks are OK.
3691 */
3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3693 ac->nodemask) {
3694 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3695 ac_classzone_idx(ac), alloc_flags))
3696 return true;
3697 }
3698 return false;
3699}
3700#endif /* CONFIG_COMPACTION */
3701
3702#ifdef CONFIG_LOCKDEP
3703static struct lockdep_map __fs_reclaim_map =
3704 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3705
3706static bool __need_fs_reclaim(gfp_t gfp_mask)
3707{
3708 gfp_mask = current_gfp_context(gfp_mask);
3709
3710 /* no reclaim without waiting on it */
3711 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3712 return false;
3713
3714 /* this guy won't enter reclaim */
3715 if (current->flags & PF_MEMALLOC)
3716 return false;
3717
3718 /* We're only interested __GFP_FS allocations for now */
3719 if (!(gfp_mask & __GFP_FS))
3720 return false;
3721
3722 if (gfp_mask & __GFP_NOLOCKDEP)
3723 return false;
3724
3725 return true;
3726}
3727
3728void __fs_reclaim_acquire(void)
3729{
3730 lock_map_acquire(&__fs_reclaim_map);
3731}
3732
3733void __fs_reclaim_release(void)
3734{
3735 lock_map_release(&__fs_reclaim_map);
3736}
3737
3738void fs_reclaim_acquire(gfp_t gfp_mask)
3739{
3740 if (__need_fs_reclaim(gfp_mask))
3741 __fs_reclaim_acquire();
3742}
3743EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3744
3745void fs_reclaim_release(gfp_t gfp_mask)
3746{
3747 if (__need_fs_reclaim(gfp_mask))
3748 __fs_reclaim_release();
3749}
3750EXPORT_SYMBOL_GPL(fs_reclaim_release);
3751#endif
3752
3753/* Perform direct synchronous page reclaim */
3754static int
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 const struct alloc_context *ac)
3757{
3758 struct reclaim_state reclaim_state;
3759 int progress;
3760 unsigned int noreclaim_flag;
3761 unsigned long pflags;
3762
3763 cond_resched();
3764
3765 /* We now go into synchronous reclaim */
3766 cpuset_memory_pressure_bump();
3767 psi_memstall_enter(&pflags);
3768 fs_reclaim_acquire(gfp_mask);
3769 noreclaim_flag = memalloc_noreclaim_save();
3770 reclaim_state.reclaimed_slab = 0;
3771 current->reclaim_state = &reclaim_state;
3772
3773 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3774 ac->nodemask);
3775
3776 current->reclaim_state = NULL;
3777 memalloc_noreclaim_restore(noreclaim_flag);
3778 fs_reclaim_release(gfp_mask);
3779 psi_memstall_leave(&pflags);
3780
3781 cond_resched();
3782
3783 return progress;
3784}
3785
3786/* The really slow allocator path where we enter direct reclaim */
3787static inline struct page *
3788__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3789 unsigned int alloc_flags, const struct alloc_context *ac,
3790 unsigned long *did_some_progress)
3791{
3792 struct page *page = NULL;
3793 bool drained = false;
3794
3795 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3796 if (unlikely(!(*did_some_progress)))
3797 return NULL;
3798
3799retry:
3800 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3801
3802 /*
3803 * If an allocation failed after direct reclaim, it could be because
3804 * pages are pinned on the per-cpu lists or in high alloc reserves.
3805 * Shrink them them and try again
3806 */
3807 if (!page && !drained) {
3808 unreserve_highatomic_pageblock(ac, false);
3809 drain_all_pages(NULL);
3810 drained = true;
3811 goto retry;
3812 }
3813
3814 return page;
3815}
3816
3817static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3818 const struct alloc_context *ac)
3819{
3820 struct zoneref *z;
3821 struct zone *zone;
3822 pg_data_t *last_pgdat = NULL;
3823 enum zone_type high_zoneidx = ac->high_zoneidx;
3824
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3826 ac->nodemask) {
3827 if (last_pgdat != zone->zone_pgdat)
3828 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3829 last_pgdat = zone->zone_pgdat;
3830 }
3831}
3832
3833static inline unsigned int
3834gfp_to_alloc_flags(gfp_t gfp_mask)
3835{
3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837
3838 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3839 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3840
3841 /*
3842 * The caller may dip into page reserves a bit more if the caller
3843 * cannot run direct reclaim, or if the caller has realtime scheduling
3844 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3845 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3846 */
3847 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3848
3849 if (gfp_mask & __GFP_ATOMIC) {
3850 /*
3851 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3852 * if it can't schedule.
3853 */
3854 if (!(gfp_mask & __GFP_NOMEMALLOC))
3855 alloc_flags |= ALLOC_HARDER;
3856 /*
3857 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3858 * comment for __cpuset_node_allowed().
3859 */
3860 alloc_flags &= ~ALLOC_CPUSET;
3861 } else if (unlikely(rt_task(current)) && !in_interrupt())
3862 alloc_flags |= ALLOC_HARDER;
3863
3864#ifdef CONFIG_CMA
3865 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3866 alloc_flags |= ALLOC_CMA;
3867#endif
3868 return alloc_flags;
3869}
3870
3871static bool oom_reserves_allowed(struct task_struct *tsk)
3872{
3873 if (!tsk_is_oom_victim(tsk))
3874 return false;
3875
3876 /*
3877 * !MMU doesn't have oom reaper so give access to memory reserves
3878 * only to the thread with TIF_MEMDIE set
3879 */
3880 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3881 return false;
3882
3883 return true;
3884}
3885
3886/*
3887 * Distinguish requests which really need access to full memory
3888 * reserves from oom victims which can live with a portion of it
3889 */
3890static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3891{
3892 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3893 return 0;
3894 if (gfp_mask & __GFP_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3897 return ALLOC_NO_WATERMARKS;
3898 if (!in_interrupt()) {
3899 if (current->flags & PF_MEMALLOC)
3900 return ALLOC_NO_WATERMARKS;
3901 else if (oom_reserves_allowed(current))
3902 return ALLOC_OOM;
3903 }
3904
3905 return 0;
3906}
3907
3908bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3909{
3910 return !!__gfp_pfmemalloc_flags(gfp_mask);
3911}
3912
3913/*
3914 * Checks whether it makes sense to retry the reclaim to make a forward progress
3915 * for the given allocation request.
3916 *
3917 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3918 * without success, or when we couldn't even meet the watermark if we
3919 * reclaimed all remaining pages on the LRU lists.
3920 *
3921 * Returns true if a retry is viable or false to enter the oom path.
3922 */
3923static inline bool
3924should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3925 struct alloc_context *ac, int alloc_flags,
3926 bool did_some_progress, int *no_progress_loops)
3927{
3928 struct zone *zone;
3929 struct zoneref *z;
3930 bool ret = false;
3931
3932 /*
3933 * Costly allocations might have made a progress but this doesn't mean
3934 * their order will become available due to high fragmentation so
3935 * always increment the no progress counter for them
3936 */
3937 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3938 *no_progress_loops = 0;
3939 else
3940 (*no_progress_loops)++;
3941
3942 /*
3943 * Make sure we converge to OOM if we cannot make any progress
3944 * several times in the row.
3945 */
3946 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3947 /* Before OOM, exhaust highatomic_reserve */
3948 return unreserve_highatomic_pageblock(ac, true);
3949 }
3950
3951 /*
3952 * Keep reclaiming pages while there is a chance this will lead
3953 * somewhere. If none of the target zones can satisfy our allocation
3954 * request even if all reclaimable pages are considered then we are
3955 * screwed and have to go OOM.
3956 */
3957 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3958 ac->nodemask) {
3959 unsigned long available;
3960 unsigned long reclaimable;
3961 unsigned long min_wmark = min_wmark_pages(zone);
3962 bool wmark;
3963
3964 available = reclaimable = zone_reclaimable_pages(zone);
3965 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3966
3967 /*
3968 * Would the allocation succeed if we reclaimed all
3969 * reclaimable pages?
3970 */
3971 wmark = __zone_watermark_ok(zone, order, min_wmark,
3972 ac_classzone_idx(ac), alloc_flags, available);
3973 trace_reclaim_retry_zone(z, order, reclaimable,
3974 available, min_wmark, *no_progress_loops, wmark);
3975 if (wmark) {
3976 /*
3977 * If we didn't make any progress and have a lot of
3978 * dirty + writeback pages then we should wait for
3979 * an IO to complete to slow down the reclaim and
3980 * prevent from pre mature OOM
3981 */
3982 if (!did_some_progress) {
3983 unsigned long write_pending;
3984
3985 write_pending = zone_page_state_snapshot(zone,
3986 NR_ZONE_WRITE_PENDING);
3987
3988 if (2 * write_pending > reclaimable) {
3989 congestion_wait(BLK_RW_ASYNC, HZ/10);
3990 return true;
3991 }
3992 }
3993
3994 ret = true;
3995 goto out;
3996 }
3997 }
3998
3999out:
4000 /*
4001 * Memory allocation/reclaim might be called from a WQ context and the
4002 * current implementation of the WQ concurrency control doesn't
4003 * recognize that a particular WQ is congested if the worker thread is
4004 * looping without ever sleeping. Therefore we have to do a short sleep
4005 * here rather than calling cond_resched().
4006 */
4007 if (current->flags & PF_WQ_WORKER)
4008 schedule_timeout_uninterruptible(1);
4009 else
4010 cond_resched();
4011 return ret;
4012}
4013
4014static inline bool
4015check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4016{
4017 /*
4018 * It's possible that cpuset's mems_allowed and the nodemask from
4019 * mempolicy don't intersect. This should be normally dealt with by
4020 * policy_nodemask(), but it's possible to race with cpuset update in
4021 * such a way the check therein was true, and then it became false
4022 * before we got our cpuset_mems_cookie here.
4023 * This assumes that for all allocations, ac->nodemask can come only
4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 * when it does not intersect with the cpuset restrictions) or the
4026 * caller can deal with a violated nodemask.
4027 */
4028 if (cpusets_enabled() && ac->nodemask &&
4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 ac->nodemask = NULL;
4031 return true;
4032 }
4033
4034 /*
4035 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 * possible to race with parallel threads in such a way that our
4037 * allocation can fail while the mask is being updated. If we are about
4038 * to fail, check if the cpuset changed during allocation and if so,
4039 * retry.
4040 */
4041 if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 return true;
4043
4044 return false;
4045}
4046
4047static inline struct page *
4048__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049 struct alloc_context *ac)
4050{
4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053 struct page *page = NULL;
4054 unsigned int alloc_flags;
4055 unsigned long did_some_progress;
4056 enum compact_priority compact_priority;
4057 enum compact_result compact_result;
4058 int compaction_retries;
4059 int no_progress_loops;
4060 unsigned int cpuset_mems_cookie;
4061 int reserve_flags;
4062
4063 /*
4064 * We also sanity check to catch abuse of atomic reserves being used by
4065 * callers that are not in atomic context.
4066 */
4067 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4068 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4069 gfp_mask &= ~__GFP_ATOMIC;
4070
4071retry_cpuset:
4072 compaction_retries = 0;
4073 no_progress_loops = 0;
4074 compact_priority = DEF_COMPACT_PRIORITY;
4075 cpuset_mems_cookie = read_mems_allowed_begin();
4076
4077 /*
4078 * The fast path uses conservative alloc_flags to succeed only until
4079 * kswapd needs to be woken up, and to avoid the cost of setting up
4080 * alloc_flags precisely. So we do that now.
4081 */
4082 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4083
4084 /*
4085 * We need to recalculate the starting point for the zonelist iterator
4086 * because we might have used different nodemask in the fast path, or
4087 * there was a cpuset modification and we are retrying - otherwise we
4088 * could end up iterating over non-eligible zones endlessly.
4089 */
4090 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4091 ac->high_zoneidx, ac->nodemask);
4092 if (!ac->preferred_zoneref->zone)
4093 goto nopage;
4094
4095 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4096 wake_all_kswapds(order, gfp_mask, ac);
4097
4098 /*
4099 * The adjusted alloc_flags might result in immediate success, so try
4100 * that first
4101 */
4102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103 if (page)
4104 goto got_pg;
4105
4106 /*
4107 * For costly allocations, try direct compaction first, as it's likely
4108 * that we have enough base pages and don't need to reclaim. For non-
4109 * movable high-order allocations, do that as well, as compaction will
4110 * try prevent permanent fragmentation by migrating from blocks of the
4111 * same migratetype.
4112 * Don't try this for allocations that are allowed to ignore
4113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114 */
4115 if (can_direct_reclaim &&
4116 (costly_order ||
4117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4119 page = __alloc_pages_direct_compact(gfp_mask, order,
4120 alloc_flags, ac,
4121 INIT_COMPACT_PRIORITY,
4122 &compact_result);
4123 if (page)
4124 goto got_pg;
4125
4126 /*
4127 * Checks for costly allocations with __GFP_NORETRY, which
4128 * includes THP page fault allocations
4129 */
4130 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131 /*
4132 * If compaction is deferred for high-order allocations,
4133 * it is because sync compaction recently failed. If
4134 * this is the case and the caller requested a THP
4135 * allocation, we do not want to heavily disrupt the
4136 * system, so we fail the allocation instead of entering
4137 * direct reclaim.
4138 */
4139 if (compact_result == COMPACT_DEFERRED)
4140 goto nopage;
4141
4142 /*
4143 * Looks like reclaim/compaction is worth trying, but
4144 * sync compaction could be very expensive, so keep
4145 * using async compaction.
4146 */
4147 compact_priority = INIT_COMPACT_PRIORITY;
4148 }
4149 }
4150
4151retry:
4152 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4153 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4154 wake_all_kswapds(order, gfp_mask, ac);
4155
4156 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4157 if (reserve_flags)
4158 alloc_flags = reserve_flags;
4159
4160 /*
4161 * Reset the nodemask and zonelist iterators if memory policies can be
4162 * ignored. These allocations are high priority and system rather than
4163 * user oriented.
4164 */
4165 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4166 ac->nodemask = NULL;
4167 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4168 ac->high_zoneidx, ac->nodemask);
4169 }
4170
4171 /* Attempt with potentially adjusted zonelist and alloc_flags */
4172 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4173 if (page)
4174 goto got_pg;
4175
4176 /* Caller is not willing to reclaim, we can't balance anything */
4177 if (!can_direct_reclaim)
4178 goto nopage;
4179
4180 /* Avoid recursion of direct reclaim */
4181 if (current->flags & PF_MEMALLOC)
4182 goto nopage;
4183
4184 /* Try direct reclaim and then allocating */
4185 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4186 &did_some_progress);
4187 if (page)
4188 goto got_pg;
4189
4190 /* Try direct compaction and then allocating */
4191 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4192 compact_priority, &compact_result);
4193 if (page)
4194 goto got_pg;
4195
4196 /* Do not loop if specifically requested */
4197 if (gfp_mask & __GFP_NORETRY)
4198 goto nopage;
4199
4200 /*
4201 * Do not retry costly high order allocations unless they are
4202 * __GFP_RETRY_MAYFAIL
4203 */
4204 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4205 goto nopage;
4206
4207 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4208 did_some_progress > 0, &no_progress_loops))
4209 goto retry;
4210
4211 /*
4212 * It doesn't make any sense to retry for the compaction if the order-0
4213 * reclaim is not able to make any progress because the current
4214 * implementation of the compaction depends on the sufficient amount
4215 * of free memory (see __compaction_suitable)
4216 */
4217 if (did_some_progress > 0 &&
4218 should_compact_retry(ac, order, alloc_flags,
4219 compact_result, &compact_priority,
4220 &compaction_retries))
4221 goto retry;
4222
4223
4224 /* Deal with possible cpuset update races before we start OOM killing */
4225 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4226 goto retry_cpuset;
4227
4228 /* Reclaim has failed us, start killing things */
4229 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4230 if (page)
4231 goto got_pg;
4232
4233 /* Avoid allocations with no watermarks from looping endlessly */
4234 if (tsk_is_oom_victim(current) &&
4235 (alloc_flags == ALLOC_OOM ||
4236 (gfp_mask & __GFP_NOMEMALLOC)))
4237 goto nopage;
4238
4239 /* Retry as long as the OOM killer is making progress */
4240 if (did_some_progress) {
4241 no_progress_loops = 0;
4242 goto retry;
4243 }
4244
4245nopage:
4246 /* Deal with possible cpuset update races before we fail */
4247 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4248 goto retry_cpuset;
4249
4250 /*
4251 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4252 * we always retry
4253 */
4254 if (gfp_mask & __GFP_NOFAIL) {
4255 /*
4256 * All existing users of the __GFP_NOFAIL are blockable, so warn
4257 * of any new users that actually require GFP_NOWAIT
4258 */
4259 if (WARN_ON_ONCE(!can_direct_reclaim))
4260 goto fail;
4261
4262 /*
4263 * PF_MEMALLOC request from this context is rather bizarre
4264 * because we cannot reclaim anything and only can loop waiting
4265 * for somebody to do a work for us
4266 */
4267 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4268
4269 /*
4270 * non failing costly orders are a hard requirement which we
4271 * are not prepared for much so let's warn about these users
4272 * so that we can identify them and convert them to something
4273 * else.
4274 */
4275 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4276
4277 /*
4278 * Help non-failing allocations by giving them access to memory
4279 * reserves but do not use ALLOC_NO_WATERMARKS because this
4280 * could deplete whole memory reserves which would just make
4281 * the situation worse
4282 */
4283 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4284 if (page)
4285 goto got_pg;
4286
4287 cond_resched();
4288 goto retry;
4289 }
4290fail:
4291 warn_alloc(gfp_mask, ac->nodemask,
4292 "page allocation failure: order:%u", order);
4293got_pg:
4294 return page;
4295}
4296
4297static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4298 int preferred_nid, nodemask_t *nodemask,
4299 struct alloc_context *ac, gfp_t *alloc_mask,
4300 unsigned int *alloc_flags)
4301{
4302 ac->high_zoneidx = gfp_zone(gfp_mask);
4303 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4304 ac->nodemask = nodemask;
4305 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4306
4307 if (cpusets_enabled()) {
4308 *alloc_mask |= __GFP_HARDWALL;
4309 if (!ac->nodemask)
4310 ac->nodemask = &cpuset_current_mems_allowed;
4311 else
4312 *alloc_flags |= ALLOC_CPUSET;
4313 }
4314
4315 fs_reclaim_acquire(gfp_mask);
4316 fs_reclaim_release(gfp_mask);
4317
4318 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4319
4320 if (should_fail_alloc_page(gfp_mask, order))
4321 return false;
4322
4323 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4324 *alloc_flags |= ALLOC_CMA;
4325
4326 return true;
4327}
4328
4329/* Determine whether to spread dirty pages and what the first usable zone */
4330static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4331{
4332 /* Dirty zone balancing only done in the fast path */
4333 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335 /*
4336 * The preferred zone is used for statistics but crucially it is
4337 * also used as the starting point for the zonelist iterator. It
4338 * may get reset for allocations that ignore memory policies.
4339 */
4340 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341 ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349 nodemask_t *nodemask)
4350{
4351 struct page *page;
4352 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354 struct alloc_context ac = { };
4355
4356 /*
4357 * There are several places where we assume that the order value is sane
4358 * so bail out early if the request is out of bound.
4359 */
4360 if (unlikely(order >= MAX_ORDER)) {
4361 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4362 return NULL;
4363 }
4364
4365 gfp_mask &= gfp_allowed_mask;
4366 alloc_mask = gfp_mask;
4367 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4368 return NULL;
4369
4370 finalise_ac(gfp_mask, &ac);
4371
4372 /* First allocation attempt */
4373 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4374 if (likely(page))
4375 goto out;
4376
4377 /*
4378 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4379 * resp. GFP_NOIO which has to be inherited for all allocation requests
4380 * from a particular context which has been marked by
4381 * memalloc_no{fs,io}_{save,restore}.
4382 */
4383 alloc_mask = current_gfp_context(gfp_mask);
4384 ac.spread_dirty_pages = false;
4385
4386 /*
4387 * Restore the original nodemask if it was potentially replaced with
4388 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4389 */
4390 if (unlikely(ac.nodemask != nodemask))
4391 ac.nodemask = nodemask;
4392
4393 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4394
4395out:
4396 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4397 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4398 __free_pages(page, order);
4399 page = NULL;
4400 }
4401
4402 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4403
4404 return page;
4405}
4406EXPORT_SYMBOL(__alloc_pages_nodemask);
4407
4408/*
4409 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4410 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4411 * you need to access high mem.
4412 */
4413unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4414{
4415 struct page *page;
4416
4417 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4418 if (!page)
4419 return 0;
4420 return (unsigned long) page_address(page);
4421}
4422EXPORT_SYMBOL(__get_free_pages);
4423
4424unsigned long get_zeroed_page(gfp_t gfp_mask)
4425{
4426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4427}
4428EXPORT_SYMBOL(get_zeroed_page);
4429
4430void __free_pages(struct page *page, unsigned int order)
4431{
4432 if (put_page_testzero(page)) {
4433 if (order == 0)
4434 free_unref_page(page);
4435 else
4436 __free_pages_ok(page, order);
4437 }
4438}
4439
4440EXPORT_SYMBOL(__free_pages);
4441
4442void free_pages(unsigned long addr, unsigned int order)
4443{
4444 if (addr != 0) {
4445 VM_BUG_ON(!virt_addr_valid((void *)addr));
4446 __free_pages(virt_to_page((void *)addr), order);
4447 }
4448}
4449
4450EXPORT_SYMBOL(free_pages);
4451
4452/*
4453 * Page Fragment:
4454 * An arbitrary-length arbitrary-offset area of memory which resides
4455 * within a 0 or higher order page. Multiple fragments within that page
4456 * are individually refcounted, in the page's reference counter.
4457 *
4458 * The page_frag functions below provide a simple allocation framework for
4459 * page fragments. This is used by the network stack and network device
4460 * drivers to provide a backing region of memory for use as either an
4461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4462 */
4463static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4464 gfp_t gfp_mask)
4465{
4466 struct page *page = NULL;
4467 gfp_t gfp = gfp_mask;
4468
4469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4471 __GFP_NOMEMALLOC;
4472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4473 PAGE_FRAG_CACHE_MAX_ORDER);
4474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4475#endif
4476 if (unlikely(!page))
4477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4478
4479 nc->va = page ? page_address(page) : NULL;
4480
4481 return page;
4482}
4483
4484void __page_frag_cache_drain(struct page *page, unsigned int count)
4485{
4486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4487
4488 if (page_ref_sub_and_test(page, count)) {
4489 unsigned int order = compound_order(page);
4490
4491 if (order == 0)
4492 free_unref_page(page);
4493 else
4494 __free_pages_ok(page, order);
4495 }
4496}
4497EXPORT_SYMBOL(__page_frag_cache_drain);
4498
4499void *page_frag_alloc(struct page_frag_cache *nc,
4500 unsigned int fragsz, gfp_t gfp_mask)
4501{
4502 unsigned int size = PAGE_SIZE;
4503 struct page *page;
4504 int offset;
4505
4506 if (unlikely(!nc->va)) {
4507refill:
4508 page = __page_frag_cache_refill(nc, gfp_mask);
4509 if (!page)
4510 return NULL;
4511
4512#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4513 /* if size can vary use size else just use PAGE_SIZE */
4514 size = nc->size;
4515#endif
4516 /* Even if we own the page, we do not use atomic_set().
4517 * This would break get_page_unless_zero() users.
4518 */
4519 page_ref_add(page, size - 1);
4520
4521 /* reset page count bias and offset to start of new frag */
4522 nc->pfmemalloc = page_is_pfmemalloc(page);
4523 nc->pagecnt_bias = size;
4524 nc->offset = size;
4525 }
4526
4527 offset = nc->offset - fragsz;
4528 if (unlikely(offset < 0)) {
4529 page = virt_to_page(nc->va);
4530
4531 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4532 goto refill;
4533
4534#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4535 /* if size can vary use size else just use PAGE_SIZE */
4536 size = nc->size;
4537#endif
4538 /* OK, page count is 0, we can safely set it */
4539 set_page_count(page, size);
4540
4541 /* reset page count bias and offset to start of new frag */
4542 nc->pagecnt_bias = size;
4543 offset = size - fragsz;
4544 }
4545
4546 nc->pagecnt_bias--;
4547 nc->offset = offset;
4548
4549 return nc->va + offset;
4550}
4551EXPORT_SYMBOL(page_frag_alloc);
4552
4553/*
4554 * Frees a page fragment allocated out of either a compound or order 0 page.
4555 */
4556void page_frag_free(void *addr)
4557{
4558 struct page *page = virt_to_head_page(addr);
4559
4560 if (unlikely(put_page_testzero(page)))
4561 __free_pages_ok(page, compound_order(page));
4562}
4563EXPORT_SYMBOL(page_frag_free);
4564
4565static void *make_alloc_exact(unsigned long addr, unsigned int order,
4566 size_t size)
4567{
4568 if (addr) {
4569 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4570 unsigned long used = addr + PAGE_ALIGN(size);
4571
4572 split_page(virt_to_page((void *)addr), order);
4573 while (used < alloc_end) {
4574 free_page(used);
4575 used += PAGE_SIZE;
4576 }
4577 }
4578 return (void *)addr;
4579}
4580
4581/**
4582 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4583 * @size: the number of bytes to allocate
4584 * @gfp_mask: GFP flags for the allocation
4585 *
4586 * This function is similar to alloc_pages(), except that it allocates the
4587 * minimum number of pages to satisfy the request. alloc_pages() can only
4588 * allocate memory in power-of-two pages.
4589 *
4590 * This function is also limited by MAX_ORDER.
4591 *
4592 * Memory allocated by this function must be released by free_pages_exact().
4593 */
4594void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4595{
4596 unsigned int order = get_order(size);
4597 unsigned long addr;
4598
4599 addr = __get_free_pages(gfp_mask, order);
4600 return make_alloc_exact(addr, order, size);
4601}
4602EXPORT_SYMBOL(alloc_pages_exact);
4603
4604/**
4605 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4606 * pages on a node.
4607 * @nid: the preferred node ID where memory should be allocated
4608 * @size: the number of bytes to allocate
4609 * @gfp_mask: GFP flags for the allocation
4610 *
4611 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4612 * back.
4613 */
4614void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4615{
4616 unsigned int order = get_order(size);
4617 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4618 if (!p)
4619 return NULL;
4620 return make_alloc_exact((unsigned long)page_address(p), order, size);
4621}
4622
4623/**
4624 * free_pages_exact - release memory allocated via alloc_pages_exact()
4625 * @virt: the value returned by alloc_pages_exact.
4626 * @size: size of allocation, same value as passed to alloc_pages_exact().
4627 *
4628 * Release the memory allocated by a previous call to alloc_pages_exact.
4629 */
4630void free_pages_exact(void *virt, size_t size)
4631{
4632 unsigned long addr = (unsigned long)virt;
4633 unsigned long end = addr + PAGE_ALIGN(size);
4634
4635 while (addr < end) {
4636 free_page(addr);
4637 addr += PAGE_SIZE;
4638 }
4639}
4640EXPORT_SYMBOL(free_pages_exact);
4641
4642/**
4643 * nr_free_zone_pages - count number of pages beyond high watermark
4644 * @offset: The zone index of the highest zone
4645 *
4646 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4647 * high watermark within all zones at or below a given zone index. For each
4648 * zone, the number of pages is calculated as:
4649 *
4650 * nr_free_zone_pages = managed_pages - high_pages
4651 */
4652static unsigned long nr_free_zone_pages(int offset)
4653{
4654 struct zoneref *z;
4655 struct zone *zone;
4656
4657 /* Just pick one node, since fallback list is circular */
4658 unsigned long sum = 0;
4659
4660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4661
4662 for_each_zone_zonelist(zone, z, zonelist, offset) {
4663 unsigned long size = zone->managed_pages;
4664 unsigned long high = high_wmark_pages(zone);
4665 if (size > high)
4666 sum += size - high;
4667 }
4668
4669 return sum;
4670}
4671
4672/**
4673 * nr_free_buffer_pages - count number of pages beyond high watermark
4674 *
4675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4676 * watermark within ZONE_DMA and ZONE_NORMAL.
4677 */
4678unsigned long nr_free_buffer_pages(void)
4679{
4680 return nr_free_zone_pages(gfp_zone(GFP_USER));
4681}
4682EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4683
4684/**
4685 * nr_free_pagecache_pages - count number of pages beyond high watermark
4686 *
4687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4688 * high watermark within all zones.
4689 */
4690unsigned long nr_free_pagecache_pages(void)
4691{
4692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4693}
4694
4695static inline void show_node(struct zone *zone)
4696{
4697 if (IS_ENABLED(CONFIG_NUMA))
4698 printk("Node %d ", zone_to_nid(zone));
4699}
4700
4701long si_mem_available(void)
4702{
4703 long available;
4704 unsigned long pagecache;
4705 unsigned long wmark_low = 0;
4706 unsigned long pages[NR_LRU_LISTS];
4707 unsigned long reclaimable;
4708 struct zone *zone;
4709 int lru;
4710
4711 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4712 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4713
4714 for_each_zone(zone)
4715 wmark_low += zone->watermark[WMARK_LOW];
4716
4717 /*
4718 * Estimate the amount of memory available for userspace allocations,
4719 * without causing swapping.
4720 */
4721 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4722
4723 /*
4724 * Not all the page cache can be freed, otherwise the system will
4725 * start swapping. Assume at least half of the page cache, or the
4726 * low watermark worth of cache, needs to stay.
4727 */
4728 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4729 pagecache -= min(pagecache / 2, wmark_low);
4730 available += pagecache;
4731
4732 /*
4733 * Part of the reclaimable slab and other kernel memory consists of
4734 * items that are in use, and cannot be freed. Cap this estimate at the
4735 * low watermark.
4736 */
4737 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4738 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4739 available += reclaimable - min(reclaimable / 2, wmark_low);
4740
4741 if (available < 0)
4742 available = 0;
4743 return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749 val->totalram = totalram_pages;
4750 val->sharedram = global_node_page_state(NR_SHMEM);
4751 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752 val->bufferram = nr_blockdev_pages();
4753 val->totalhigh = totalhigh_pages;
4754 val->freehigh = nr_free_highpages();
4755 val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763 int zone_type; /* needs to be signed */
4764 unsigned long managed_pages = 0;
4765 unsigned long managed_highpages = 0;
4766 unsigned long free_highpages = 0;
4767 pg_data_t *pgdat = NODE_DATA(nid);
4768
4769 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771 val->totalram = managed_pages;
4772 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776 struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778 if (is_highmem(zone)) {
4779 managed_highpages += zone->managed_pages;
4780 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781 }
4782 }
4783 val->totalhigh = managed_highpages;
4784 val->freehigh = free_highpages;
4785#else
4786 val->totalhigh = managed_highpages;
4787 val->freehigh = free_highpages;
4788#endif
4789 val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799 if (!(flags & SHOW_MEM_FILTER_NODES))
4800 return false;
4801
4802 /*
4803 * no node mask - aka implicit memory numa policy. Do not bother with
4804 * the synchronization - read_mems_allowed_begin - because we do not
4805 * have to be precise here.
4806 */
4807 if (!nodemask)
4808 nodemask = &cpuset_current_mems_allowed;
4809
4810 return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817 static const char types[MIGRATE_TYPES] = {
4818 [MIGRATE_UNMOVABLE] = 'U',
4819 [MIGRATE_MOVABLE] = 'M',
4820 [MIGRATE_RECLAIMABLE] = 'E',
4821 [MIGRATE_HIGHATOMIC] = 'H',
4822#ifdef CONFIG_CMA
4823 [MIGRATE_CMA] = 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826 [MIGRATE_ISOLATE] = 'I',
4827#endif
4828 };
4829 char tmp[MIGRATE_TYPES + 1];
4830 char *p = tmp;
4831 int i;
4832
4833 for (i = 0; i < MIGRATE_TYPES; i++) {
4834 if (type & (1 << i))
4835 *p++ = types[i];
4836 }
4837
4838 *p = '\0';
4839 printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 * cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853 unsigned long free_pcp = 0;
4854 int cpu;
4855 struct zone *zone;
4856 pg_data_t *pgdat;
4857
4858 for_each_populated_zone(zone) {
4859 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860 continue;
4861
4862 for_each_online_cpu(cpu)
4863 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864 }
4865
4866 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871 " free:%lu free_pcp:%lu free_cma:%lu\n",
4872 global_node_page_state(NR_ACTIVE_ANON),
4873 global_node_page_state(NR_INACTIVE_ANON),
4874 global_node_page_state(NR_ISOLATED_ANON),
4875 global_node_page_state(NR_ACTIVE_FILE),
4876 global_node_page_state(NR_INACTIVE_FILE),
4877 global_node_page_state(NR_ISOLATED_FILE),
4878 global_node_page_state(NR_UNEVICTABLE),
4879 global_node_page_state(NR_FILE_DIRTY),
4880 global_node_page_state(NR_WRITEBACK),
4881 global_node_page_state(NR_UNSTABLE_NFS),
4882 global_node_page_state(NR_SLAB_RECLAIMABLE),
4883 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884 global_node_page_state(NR_FILE_MAPPED),
4885 global_node_page_state(NR_SHMEM),
4886 global_zone_page_state(NR_PAGETABLE),
4887 global_zone_page_state(NR_BOUNCE),
4888 global_zone_page_state(NR_FREE_PAGES),
4889 free_pcp,
4890 global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892 for_each_online_pgdat(pgdat) {
4893 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894 continue;
4895
4896 printk("Node %d"
4897 " active_anon:%lukB"
4898 " inactive_anon:%lukB"
4899 " active_file:%lukB"
4900 " inactive_file:%lukB"
4901 " unevictable:%lukB"
4902 " isolated(anon):%lukB"
4903 " isolated(file):%lukB"
4904 " mapped:%lukB"
4905 " dirty:%lukB"
4906 " writeback:%lukB"
4907 " shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909 " shmem_thp: %lukB"
4910 " shmem_pmdmapped: %lukB"
4911 " anon_thp: %lukB"
4912#endif
4913 " writeback_tmp:%lukB"
4914 " unstable:%lukB"
4915 " all_unreclaimable? %s"
4916 "\n",
4917 pgdat->node_id,
4918 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927 K(node_page_state(pgdat, NR_WRITEBACK)),
4928 K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932 * HPAGE_PMD_NR),
4933 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938 "yes" : "no");
4939 }
4940
4941 for_each_populated_zone(zone) {
4942 int i;
4943
4944 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945 continue;
4946
4947 free_pcp = 0;
4948 for_each_online_cpu(cpu)
4949 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951 show_node(zone);
4952 printk(KERN_CONT
4953 "%s"
4954 " free:%lukB"
4955 " min:%lukB"
4956 " low:%lukB"
4957 " high:%lukB"
4958 " active_anon:%lukB"
4959 " inactive_anon:%lukB"
4960 " active_file:%lukB"
4961 " inactive_file:%lukB"
4962 " unevictable:%lukB"
4963 " writepending:%lukB"
4964 " present:%lukB"
4965 " managed:%lukB"
4966 " mlocked:%lukB"
4967 " kernel_stack:%lukB"
4968 " pagetables:%lukB"
4969 " bounce:%lukB"
4970 " free_pcp:%lukB"
4971 " local_pcp:%ukB"
4972 " free_cma:%lukB"
4973 "\n",
4974 zone->name,
4975 K(zone_page_state(zone, NR_FREE_PAGES)),
4976 K(min_wmark_pages(zone)),
4977 K(low_wmark_pages(zone)),
4978 K(high_wmark_pages(zone)),
4979 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985 K(zone->present_pages),
4986 K(zone->managed_pages),
4987 K(zone_page_state(zone, NR_MLOCK)),
4988 zone_page_state(zone, NR_KERNEL_STACK_KB),
4989 K(zone_page_state(zone, NR_PAGETABLE)),
4990 K(zone_page_state(zone, NR_BOUNCE)),
4991 K(free_pcp),
4992 K(this_cpu_read(zone->pageset->pcp.count)),
4993 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994 printk("lowmem_reserve[]:");
4995 for (i = 0; i < MAX_NR_ZONES; i++)
4996 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997 printk(KERN_CONT "\n");
4998 }
4999
5000 for_each_populated_zone(zone) {
5001 unsigned int order;
5002 unsigned long nr[MAX_ORDER], flags, total = 0;
5003 unsigned char types[MAX_ORDER];
5004
5005 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006 continue;
5007 show_node(zone);
5008 printk(KERN_CONT "%s: ", zone->name);
5009
5010 spin_lock_irqsave(&zone->lock, flags);
5011 for (order = 0; order < MAX_ORDER; order++) {
5012 struct free_area *area = &zone->free_area[order];
5013 int type;
5014
5015 nr[order] = area->nr_free;
5016 total += nr[order] << order;
5017
5018 types[order] = 0;
5019 for (type = 0; type < MIGRATE_TYPES; type++) {
5020 if (!list_empty(&area->free_list[type]))
5021 types[order] |= 1 << type;
5022 }
5023 }
5024 spin_unlock_irqrestore(&zone->lock, flags);
5025 for (order = 0; order < MAX_ORDER; order++) {
5026 printk(KERN_CONT "%lu*%lukB ",
5027 nr[order], K(1UL) << order);
5028 if (nr[order])
5029 show_migration_types(types[order]);
5030 }
5031 printk(KERN_CONT "= %lukB\n", K(total));
5032 }
5033
5034 hugetlb_show_meminfo();
5035
5036 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038 show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043 zoneref->zone = zone;
5044 zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054 struct zone *zone;
5055 enum zone_type zone_type = MAX_NR_ZONES;
5056 int nr_zones = 0;
5057
5058 do {
5059 zone_type--;
5060 zone = pgdat->node_zones + zone_type;
5061 if (managed_zone(zone)) {
5062 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063 check_highest_zone(zone_type);
5064 }
5065 } while (zone_type);
5066
5067 return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074 /*
5075 * We used to support different zonlists modes but they turned
5076 * out to be just not useful. Let's keep the warning in place
5077 * if somebody still use the cmd line parameter so that we do
5078 * not fail it silently
5079 */
5080 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5082 return -EINVAL;
5083 }
5084 return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089 if (!s)
5090 return 0;
5091
5092 return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102 void __user *buffer, size_t *length,
5103 loff_t *ppos)
5104{
5105 char *str;
5106 int ret;
5107
5108 if (!write)
5109 return proc_dostring(table, write, buffer, length, ppos);
5110 str = memdup_user_nul(buffer, 16);
5111 if (IS_ERR(str))
5112 return PTR_ERR(str);
5113
5114 ret = __parse_numa_zonelist_order(str);
5115 kfree(str);
5116 return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list. The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139 int n, val;
5140 int min_val = INT_MAX;
5141 int best_node = NUMA_NO_NODE;
5142 const struct cpumask *tmp = cpumask_of_node(0);
5143
5144 /* Use the local node if we haven't already */
5145 if (!node_isset(node, *used_node_mask)) {
5146 node_set(node, *used_node_mask);
5147 return node;
5148 }
5149
5150 for_each_node_state(n, N_MEMORY) {
5151
5152 /* Don't want a node to appear more than once */
5153 if (node_isset(n, *used_node_mask))
5154 continue;
5155
5156 /* Use the distance array to find the distance */
5157 val = node_distance(node, n);
5158
5159 /* Penalize nodes under us ("prefer the next node") */
5160 val += (n < node);
5161
5162 /* Give preference to headless and unused nodes */
5163 tmp = cpumask_of_node(n);
5164 if (!cpumask_empty(tmp))
5165 val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167 /* Slight preference for less loaded node */
5168 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169 val += node_load[n];
5170
5171 if (val < min_val) {
5172 min_val = val;
5173 best_node = n;
5174 }
5175 }
5176
5177 if (best_node >= 0)
5178 node_set(best_node, *used_node_mask);
5179
5180 return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190 unsigned nr_nodes)
5191{
5192 struct zoneref *zonerefs;
5193 int i;
5194
5195 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197 for (i = 0; i < nr_nodes; i++) {
5198 int nr_zones;
5199
5200 pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202 nr_zones = build_zonerefs_node(node, zonerefs);
5203 zonerefs += nr_zones;
5204 }
5205 zonerefs->zone = NULL;
5206 zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214 struct zoneref *zonerefs;
5215 int nr_zones;
5216
5217 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219 zonerefs += nr_zones;
5220 zonerefs->zone = NULL;
5221 zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233 static int node_order[MAX_NUMNODES];
5234 int node, load, nr_nodes = 0;
5235 nodemask_t used_mask;
5236 int local_node, prev_node;
5237
5238 /* NUMA-aware ordering of nodes */
5239 local_node = pgdat->node_id;
5240 load = nr_online_nodes;
5241 prev_node = local_node;
5242 nodes_clear(used_mask);
5243
5244 memset(node_order, 0, sizeof(node_order));
5245 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246 /*
5247 * We don't want to pressure a particular node.
5248 * So adding penalty to the first node in same
5249 * distance group to make it round-robin.
5250 */
5251 if (node_distance(local_node, node) !=
5252 node_distance(local_node, prev_node))
5253 node_load[node] = load;
5254
5255 node_order[nr_nodes++] = node;
5256 prev_node = node;
5257 load--;
5258 }
5259
5260 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261 build_thisnode_zonelists(pgdat);
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273 struct zoneref *z;
5274
5275 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276 gfp_zone(GFP_KERNEL),
5277 NULL);
5278 return zone_to_nid(z->zone);
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else /* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288 int node, local_node;
5289 struct zoneref *zonerefs;
5290 int nr_zones;
5291
5292 local_node = pgdat->node_id;
5293
5294 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296 zonerefs += nr_zones;
5297
5298 /*
5299 * Now we build the zonelist so that it contains the zones
5300 * of all the other nodes.
5301 * We don't want to pressure a particular node, so when
5302 * building the zones for node N, we make sure that the
5303 * zones coming right after the local ones are those from
5304 * node N+1 (modulo N)
5305 */
5306 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307 if (!node_online(node))
5308 continue;
5309 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310 zonerefs += nr_zones;
5311 }
5312 for (node = 0; node < local_node; node++) {
5313 if (!node_online(node))
5314 continue;
5315 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316 zonerefs += nr_zones;
5317 }
5318
5319 zonerefs->zone = NULL;
5320 zonerefs->zone_idx = 0;
5321}
5322
5323#endif /* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343
5344static void __build_all_zonelists(void *data)
5345{
5346 int nid;
5347 int __maybe_unused cpu;
5348 pg_data_t *self = data;
5349 static DEFINE_SPINLOCK(lock);
5350
5351 spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354 memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357 /*
5358 * This node is hotadded and no memory is yet present. So just
5359 * building zonelists is fine - no need to touch other nodes.
5360 */
5361 if (self && !node_online(self->node_id)) {
5362 build_zonelists(self);
5363 } else {
5364 for_each_online_node(nid) {
5365 pg_data_t *pgdat = NODE_DATA(nid);
5366
5367 build_zonelists(pgdat);
5368 }
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371 /*
5372 * We now know the "local memory node" for each node--
5373 * i.e., the node of the first zone in the generic zonelist.
5374 * Set up numa_mem percpu variable for on-line cpus. During
5375 * boot, only the boot cpu should be on-line; we'll init the
5376 * secondary cpus' numa_mem as they come on-line. During
5377 * node/memory hotplug, we'll fixup all on-line cpus.
5378 */
5379 for_each_online_cpu(cpu)
5380 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382 }
5383
5384 spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390 int cpu;
5391
5392 __build_all_zonelists(NULL);
5393
5394 /*
5395 * Initialize the boot_pagesets that are going to be used
5396 * for bootstrapping processors. The real pagesets for
5397 * each zone will be allocated later when the per cpu
5398 * allocator is available.
5399 *
5400 * boot_pagesets are used also for bootstrapping offline
5401 * cpus if the system is already booted because the pagesets
5402 * are needed to initialize allocators on a specific cpu too.
5403 * F.e. the percpu allocator needs the page allocator which
5404 * needs the percpu allocator in order to allocate its pagesets
5405 * (a chicken-egg dilemma).
5406 */
5407 for_each_possible_cpu(cpu)
5408 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410 mminit_verify_zonelist();
5411 cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
5422 if (system_state == SYSTEM_BOOTING) {
5423 build_all_zonelists_init();
5424 } else {
5425 __build_all_zonelists(pgdat);
5426 /* cpuset refresh routine should be here */
5427 }
5428 vm_total_pages = nr_free_pagecache_pages();
5429 /*
5430 * Disable grouping by mobility if the number of pages in the
5431 * system is too low to allow the mechanism to work. It would be
5432 * more accurate, but expensive to check per-zone. This check is
5433 * made on memory-hotadd so a system can start with mobility
5434 * disabled and enable it later
5435 */
5436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437 page_group_by_mobility_disabled = 1;
5438 else
5439 page_group_by_mobility_disabled = 0;
5440
5441 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5442 nr_online_nodes,
5443 page_group_by_mobility_disabled ? "off" : "on",
5444 vm_total_pages);
5445#ifdef CONFIG_NUMA
5446 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
5450/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5451static bool __meminit
5452overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5453{
5454#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5455 static struct memblock_region *r;
5456
5457 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5458 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5459 for_each_memblock(memory, r) {
5460 if (*pfn < memblock_region_memory_end_pfn(r))
5461 break;
5462 }
5463 }
5464 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5465 memblock_is_mirror(r)) {
5466 *pfn = memblock_region_memory_end_pfn(r);
5467 return true;
5468 }
5469 }
5470#endif
5471 return false;
5472}
5473
5474/*
5475 * Initially all pages are reserved - free ones are freed
5476 * up by memblock_free_all() once the early boot process is
5477 * done. Non-atomic initialization, single-pass.
5478 */
5479void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5480 unsigned long start_pfn, enum memmap_context context,
5481 struct vmem_altmap *altmap)
5482{
5483 unsigned long pfn, end_pfn = start_pfn + size;
5484 struct page *page;
5485
5486 if (highest_memmap_pfn < end_pfn - 1)
5487 highest_memmap_pfn = end_pfn - 1;
5488
5489#ifdef CONFIG_ZONE_DEVICE
5490 /*
5491 * Honor reservation requested by the driver for this ZONE_DEVICE
5492 * memory. We limit the total number of pages to initialize to just
5493 * those that might contain the memory mapping. We will defer the
5494 * ZONE_DEVICE page initialization until after we have released
5495 * the hotplug lock.
5496 */
5497 if (zone == ZONE_DEVICE) {
5498 if (!altmap)
5499 return;
5500
5501 if (start_pfn == altmap->base_pfn)
5502 start_pfn += altmap->reserve;
5503 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5504 }
5505#endif
5506
5507 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5508 /*
5509 * There can be holes in boot-time mem_map[]s handed to this
5510 * function. They do not exist on hotplugged memory.
5511 */
5512 if (context == MEMMAP_EARLY) {
5513 if (!early_pfn_valid(pfn))
5514 continue;
5515 if (!early_pfn_in_nid(pfn, nid))
5516 continue;
5517 if (overlap_memmap_init(zone, &pfn))
5518 continue;
5519 if (defer_init(nid, pfn, end_pfn))
5520 break;
5521 }
5522
5523 page = pfn_to_page(pfn);
5524 __init_single_page(page, pfn, zone, nid);
5525 if (context == MEMMAP_HOTPLUG)
5526 __SetPageReserved(page);
5527
5528 /*
5529 * Mark the block movable so that blocks are reserved for
5530 * movable at startup. This will force kernel allocations
5531 * to reserve their blocks rather than leaking throughout
5532 * the address space during boot when many long-lived
5533 * kernel allocations are made.
5534 *
5535 * bitmap is created for zone's valid pfn range. but memmap
5536 * can be created for invalid pages (for alignment)
5537 * check here not to call set_pageblock_migratetype() against
5538 * pfn out of zone.
5539 */
5540 if (!(pfn & (pageblock_nr_pages - 1))) {
5541 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5542 cond_resched();
5543 }
5544 }
5545}
5546
5547#ifdef CONFIG_ZONE_DEVICE
5548void __ref memmap_init_zone_device(struct zone *zone,
5549 unsigned long start_pfn,
5550 unsigned long size,
5551 struct dev_pagemap *pgmap)
5552{
5553 unsigned long pfn, end_pfn = start_pfn + size;
5554 struct pglist_data *pgdat = zone->zone_pgdat;
5555 unsigned long zone_idx = zone_idx(zone);
5556 unsigned long start = jiffies;
5557 int nid = pgdat->node_id;
5558
5559 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5560 return;
5561
5562 /*
5563 * The call to memmap_init_zone should have already taken care
5564 * of the pages reserved for the memmap, so we can just jump to
5565 * the end of that region and start processing the device pages.
5566 */
5567 if (pgmap->altmap_valid) {
5568 struct vmem_altmap *altmap = &pgmap->altmap;
5569
5570 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5571 size = end_pfn - start_pfn;
5572 }
5573
5574 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5575 struct page *page = pfn_to_page(pfn);
5576
5577 __init_single_page(page, pfn, zone_idx, nid);
5578
5579 /*
5580 * Mark page reserved as it will need to wait for onlining
5581 * phase for it to be fully associated with a zone.
5582 *
5583 * We can use the non-atomic __set_bit operation for setting
5584 * the flag as we are still initializing the pages.
5585 */
5586 __SetPageReserved(page);
5587
5588 /*
5589 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5590 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5591 * page is ever freed or placed on a driver-private list.
5592 */
5593 page->pgmap = pgmap;
5594 page->hmm_data = 0;
5595
5596 /*
5597 * Mark the block movable so that blocks are reserved for
5598 * movable at startup. This will force kernel allocations
5599 * to reserve their blocks rather than leaking throughout
5600 * the address space during boot when many long-lived
5601 * kernel allocations are made.
5602 *
5603 * bitmap is created for zone's valid pfn range. but memmap
5604 * can be created for invalid pages (for alignment)
5605 * check here not to call set_pageblock_migratetype() against
5606 * pfn out of zone.
5607 *
5608 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5609 * because this is done early in sparse_add_one_section
5610 */
5611 if (!(pfn & (pageblock_nr_pages - 1))) {
5612 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5613 cond_resched();
5614 }
5615 }
5616
5617 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5618 size, jiffies_to_msecs(jiffies - start));
5619}
5620
5621#endif
5622static void __meminit zone_init_free_lists(struct zone *zone)
5623{
5624 unsigned int order, t;
5625 for_each_migratetype_order(order, t) {
5626 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5627 zone->free_area[order].nr_free = 0;
5628 }
5629}
5630
5631void __meminit __weak memmap_init(unsigned long size, int nid,
5632 unsigned long zone, unsigned long start_pfn)
5633{
5634 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5635}
5636
5637static int zone_batchsize(struct zone *zone)
5638{
5639#ifdef CONFIG_MMU
5640 int batch;
5641
5642 /*
5643 * The per-cpu-pages pools are set to around 1000th of the
5644 * size of the zone.
5645 */
5646 batch = zone->managed_pages / 1024;
5647 /* But no more than a meg. */
5648 if (batch * PAGE_SIZE > 1024 * 1024)
5649 batch = (1024 * 1024) / PAGE_SIZE;
5650 batch /= 4; /* We effectively *= 4 below */
5651 if (batch < 1)
5652 batch = 1;
5653
5654 /*
5655 * Clamp the batch to a 2^n - 1 value. Having a power
5656 * of 2 value was found to be more likely to have
5657 * suboptimal cache aliasing properties in some cases.
5658 *
5659 * For example if 2 tasks are alternately allocating
5660 * batches of pages, one task can end up with a lot
5661 * of pages of one half of the possible page colors
5662 * and the other with pages of the other colors.
5663 */
5664 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5665
5666 return batch;
5667
5668#else
5669 /* The deferral and batching of frees should be suppressed under NOMMU
5670 * conditions.
5671 *
5672 * The problem is that NOMMU needs to be able to allocate large chunks
5673 * of contiguous memory as there's no hardware page translation to
5674 * assemble apparent contiguous memory from discontiguous pages.
5675 *
5676 * Queueing large contiguous runs of pages for batching, however,
5677 * causes the pages to actually be freed in smaller chunks. As there
5678 * can be a significant delay between the individual batches being
5679 * recycled, this leads to the once large chunks of space being
5680 * fragmented and becoming unavailable for high-order allocations.
5681 */
5682 return 0;
5683#endif
5684}
5685
5686/*
5687 * pcp->high and pcp->batch values are related and dependent on one another:
5688 * ->batch must never be higher then ->high.
5689 * The following function updates them in a safe manner without read side
5690 * locking.
5691 *
5692 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5693 * those fields changing asynchronously (acording the the above rule).
5694 *
5695 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5696 * outside of boot time (or some other assurance that no concurrent updaters
5697 * exist).
5698 */
5699static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5700 unsigned long batch)
5701{
5702 /* start with a fail safe value for batch */
5703 pcp->batch = 1;
5704 smp_wmb();
5705
5706 /* Update high, then batch, in order */
5707 pcp->high = high;
5708 smp_wmb();
5709
5710 pcp->batch = batch;
5711}
5712
5713/* a companion to pageset_set_high() */
5714static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5715{
5716 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5717}
5718
5719static void pageset_init(struct per_cpu_pageset *p)
5720{
5721 struct per_cpu_pages *pcp;
5722 int migratetype;
5723
5724 memset(p, 0, sizeof(*p));
5725
5726 pcp = &p->pcp;
5727 pcp->count = 0;
5728 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5729 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5730}
5731
5732static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5733{
5734 pageset_init(p);
5735 pageset_set_batch(p, batch);
5736}
5737
5738/*
5739 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5740 * to the value high for the pageset p.
5741 */
5742static void pageset_set_high(struct per_cpu_pageset *p,
5743 unsigned long high)
5744{
5745 unsigned long batch = max(1UL, high / 4);
5746 if ((high / 4) > (PAGE_SHIFT * 8))
5747 batch = PAGE_SHIFT * 8;
5748
5749 pageset_update(&p->pcp, high, batch);
5750}
5751
5752static void pageset_set_high_and_batch(struct zone *zone,
5753 struct per_cpu_pageset *pcp)
5754{
5755 if (percpu_pagelist_fraction)
5756 pageset_set_high(pcp,
5757 (zone->managed_pages /
5758 percpu_pagelist_fraction));
5759 else
5760 pageset_set_batch(pcp, zone_batchsize(zone));
5761}
5762
5763static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5764{
5765 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5766
5767 pageset_init(pcp);
5768 pageset_set_high_and_batch(zone, pcp);
5769}
5770
5771void __meminit setup_zone_pageset(struct zone *zone)
5772{
5773 int cpu;
5774 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5775 for_each_possible_cpu(cpu)
5776 zone_pageset_init(zone, cpu);
5777}
5778
5779/*
5780 * Allocate per cpu pagesets and initialize them.
5781 * Before this call only boot pagesets were available.
5782 */
5783void __init setup_per_cpu_pageset(void)
5784{
5785 struct pglist_data *pgdat;
5786 struct zone *zone;
5787
5788 for_each_populated_zone(zone)
5789 setup_zone_pageset(zone);
5790
5791 for_each_online_pgdat(pgdat)
5792 pgdat->per_cpu_nodestats =
5793 alloc_percpu(struct per_cpu_nodestat);
5794}
5795
5796static __meminit void zone_pcp_init(struct zone *zone)
5797{
5798 /*
5799 * per cpu subsystem is not up at this point. The following code
5800 * relies on the ability of the linker to provide the
5801 * offset of a (static) per cpu variable into the per cpu area.
5802 */
5803 zone->pageset = &boot_pageset;
5804
5805 if (populated_zone(zone))
5806 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5807 zone->name, zone->present_pages,
5808 zone_batchsize(zone));
5809}
5810
5811void __meminit init_currently_empty_zone(struct zone *zone,
5812 unsigned long zone_start_pfn,
5813 unsigned long size)
5814{
5815 struct pglist_data *pgdat = zone->zone_pgdat;
5816
5817 pgdat->nr_zones = zone_idx(zone) + 1;
5818
5819 zone->zone_start_pfn = zone_start_pfn;
5820
5821 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5822 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5823 pgdat->node_id,
5824 (unsigned long)zone_idx(zone),
5825 zone_start_pfn, (zone_start_pfn + size));
5826
5827 zone_init_free_lists(zone);
5828 zone->initialized = 1;
5829}
5830
5831#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5832#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5833
5834/*
5835 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5836 */
5837int __meminit __early_pfn_to_nid(unsigned long pfn,
5838 struct mminit_pfnnid_cache *state)
5839{
5840 unsigned long start_pfn, end_pfn;
5841 int nid;
5842
5843 if (state->last_start <= pfn && pfn < state->last_end)
5844 return state->last_nid;
5845
5846 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5847 if (nid != -1) {
5848 state->last_start = start_pfn;
5849 state->last_end = end_pfn;
5850 state->last_nid = nid;
5851 }
5852
5853 return nid;
5854}
5855#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5856
5857/**
5858 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5859 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5860 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5861 *
5862 * If an architecture guarantees that all ranges registered contain no holes
5863 * and may be freed, this this function may be used instead of calling
5864 * memblock_free_early_nid() manually.
5865 */
5866void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5867{
5868 unsigned long start_pfn, end_pfn;
5869 int i, this_nid;
5870
5871 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5872 start_pfn = min(start_pfn, max_low_pfn);
5873 end_pfn = min(end_pfn, max_low_pfn);
5874
5875 if (start_pfn < end_pfn)
5876 memblock_free_early_nid(PFN_PHYS(start_pfn),
5877 (end_pfn - start_pfn) << PAGE_SHIFT,
5878 this_nid);
5879 }
5880}
5881
5882/**
5883 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5884 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5885 *
5886 * If an architecture guarantees that all ranges registered contain no holes and may
5887 * be freed, this function may be used instead of calling memory_present() manually.
5888 */
5889void __init sparse_memory_present_with_active_regions(int nid)
5890{
5891 unsigned long start_pfn, end_pfn;
5892 int i, this_nid;
5893
5894 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5895 memory_present(this_nid, start_pfn, end_pfn);
5896}
5897
5898/**
5899 * get_pfn_range_for_nid - Return the start and end page frames for a node
5900 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5901 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5902 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5903 *
5904 * It returns the start and end page frame of a node based on information
5905 * provided by memblock_set_node(). If called for a node
5906 * with no available memory, a warning is printed and the start and end
5907 * PFNs will be 0.
5908 */
5909void __meminit get_pfn_range_for_nid(unsigned int nid,
5910 unsigned long *start_pfn, unsigned long *end_pfn)
5911{
5912 unsigned long this_start_pfn, this_end_pfn;
5913 int i;
5914
5915 *start_pfn = -1UL;
5916 *end_pfn = 0;
5917
5918 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5919 *start_pfn = min(*start_pfn, this_start_pfn);
5920 *end_pfn = max(*end_pfn, this_end_pfn);
5921 }
5922
5923 if (*start_pfn == -1UL)
5924 *start_pfn = 0;
5925}
5926
5927/*
5928 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5929 * assumption is made that zones within a node are ordered in monotonic
5930 * increasing memory addresses so that the "highest" populated zone is used
5931 */
5932static void __init find_usable_zone_for_movable(void)
5933{
5934 int zone_index;
5935 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5936 if (zone_index == ZONE_MOVABLE)
5937 continue;
5938
5939 if (arch_zone_highest_possible_pfn[zone_index] >
5940 arch_zone_lowest_possible_pfn[zone_index])
5941 break;
5942 }
5943
5944 VM_BUG_ON(zone_index == -1);
5945 movable_zone = zone_index;
5946}
5947
5948/*
5949 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5950 * because it is sized independent of architecture. Unlike the other zones,
5951 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5952 * in each node depending on the size of each node and how evenly kernelcore
5953 * is distributed. This helper function adjusts the zone ranges
5954 * provided by the architecture for a given node by using the end of the
5955 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5956 * zones within a node are in order of monotonic increases memory addresses
5957 */
5958static void __meminit adjust_zone_range_for_zone_movable(int nid,
5959 unsigned long zone_type,
5960 unsigned long node_start_pfn,
5961 unsigned long node_end_pfn,
5962 unsigned long *zone_start_pfn,
5963 unsigned long *zone_end_pfn)
5964{
5965 /* Only adjust if ZONE_MOVABLE is on this node */
5966 if (zone_movable_pfn[nid]) {
5967 /* Size ZONE_MOVABLE */
5968 if (zone_type == ZONE_MOVABLE) {
5969 *zone_start_pfn = zone_movable_pfn[nid];
5970 *zone_end_pfn = min(node_end_pfn,
5971 arch_zone_highest_possible_pfn[movable_zone]);
5972
5973 /* Adjust for ZONE_MOVABLE starting within this range */
5974 } else if (!mirrored_kernelcore &&
5975 *zone_start_pfn < zone_movable_pfn[nid] &&
5976 *zone_end_pfn > zone_movable_pfn[nid]) {
5977 *zone_end_pfn = zone_movable_pfn[nid];
5978
5979 /* Check if this whole range is within ZONE_MOVABLE */
5980 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5981 *zone_start_pfn = *zone_end_pfn;
5982 }
5983}
5984
5985/*
5986 * Return the number of pages a zone spans in a node, including holes
5987 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5988 */
5989static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5990 unsigned long zone_type,
5991 unsigned long node_start_pfn,
5992 unsigned long node_end_pfn,
5993 unsigned long *zone_start_pfn,
5994 unsigned long *zone_end_pfn,
5995 unsigned long *ignored)
5996{
5997 /* When hotadd a new node from cpu_up(), the node should be empty */
5998 if (!node_start_pfn && !node_end_pfn)
5999 return 0;
6000
6001 /* Get the start and end of the zone */
6002 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6003 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6004 adjust_zone_range_for_zone_movable(nid, zone_type,
6005 node_start_pfn, node_end_pfn,
6006 zone_start_pfn, zone_end_pfn);
6007
6008 /* Check that this node has pages within the zone's required range */
6009 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6010 return 0;
6011
6012 /* Move the zone boundaries inside the node if necessary */
6013 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6014 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6015
6016 /* Return the spanned pages */
6017 return *zone_end_pfn - *zone_start_pfn;
6018}
6019
6020/*
6021 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6022 * then all holes in the requested range will be accounted for.
6023 */
6024unsigned long __meminit __absent_pages_in_range(int nid,
6025 unsigned long range_start_pfn,
6026 unsigned long range_end_pfn)
6027{
6028 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6029 unsigned long start_pfn, end_pfn;
6030 int i;
6031
6032 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6033 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6034 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6035 nr_absent -= end_pfn - start_pfn;
6036 }
6037 return nr_absent;
6038}
6039
6040/**
6041 * absent_pages_in_range - Return number of page frames in holes within a range
6042 * @start_pfn: The start PFN to start searching for holes
6043 * @end_pfn: The end PFN to stop searching for holes
6044 *
6045 * It returns the number of pages frames in memory holes within a range.
6046 */
6047unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6048 unsigned long end_pfn)
6049{
6050 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6051}
6052
6053/* Return the number of page frames in holes in a zone on a node */
6054static unsigned long __meminit zone_absent_pages_in_node(int nid,
6055 unsigned long zone_type,
6056 unsigned long node_start_pfn,
6057 unsigned long node_end_pfn,
6058 unsigned long *ignored)
6059{
6060 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6061 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6062 unsigned long zone_start_pfn, zone_end_pfn;
6063 unsigned long nr_absent;
6064
6065 /* When hotadd a new node from cpu_up(), the node should be empty */
6066 if (!node_start_pfn && !node_end_pfn)
6067 return 0;
6068
6069 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6070 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6071
6072 adjust_zone_range_for_zone_movable(nid, zone_type,
6073 node_start_pfn, node_end_pfn,
6074 &zone_start_pfn, &zone_end_pfn);
6075 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6076
6077 /*
6078 * ZONE_MOVABLE handling.
6079 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6080 * and vice versa.
6081 */
6082 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6083 unsigned long start_pfn, end_pfn;
6084 struct memblock_region *r;
6085
6086 for_each_memblock(memory, r) {
6087 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6088 zone_start_pfn, zone_end_pfn);
6089 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6090 zone_start_pfn, zone_end_pfn);
6091
6092 if (zone_type == ZONE_MOVABLE &&
6093 memblock_is_mirror(r))
6094 nr_absent += end_pfn - start_pfn;
6095
6096 if (zone_type == ZONE_NORMAL &&
6097 !memblock_is_mirror(r))
6098 nr_absent += end_pfn - start_pfn;
6099 }
6100 }
6101
6102 return nr_absent;
6103}
6104
6105#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6106static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6107 unsigned long zone_type,
6108 unsigned long node_start_pfn,
6109 unsigned long node_end_pfn,
6110 unsigned long *zone_start_pfn,
6111 unsigned long *zone_end_pfn,
6112 unsigned long *zones_size)
6113{
6114 unsigned int zone;
6115
6116 *zone_start_pfn = node_start_pfn;
6117 for (zone = 0; zone < zone_type; zone++)
6118 *zone_start_pfn += zones_size[zone];
6119
6120 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6121
6122 return zones_size[zone_type];
6123}
6124
6125static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6126 unsigned long zone_type,
6127 unsigned long node_start_pfn,
6128 unsigned long node_end_pfn,
6129 unsigned long *zholes_size)
6130{
6131 if (!zholes_size)
6132 return 0;
6133
6134 return zholes_size[zone_type];
6135}
6136
6137#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6138
6139static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6140 unsigned long node_start_pfn,
6141 unsigned long node_end_pfn,
6142 unsigned long *zones_size,
6143 unsigned long *zholes_size)
6144{
6145 unsigned long realtotalpages = 0, totalpages = 0;
6146 enum zone_type i;
6147
6148 for (i = 0; i < MAX_NR_ZONES; i++) {
6149 struct zone *zone = pgdat->node_zones + i;
6150 unsigned long zone_start_pfn, zone_end_pfn;
6151 unsigned long size, real_size;
6152
6153 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6154 node_start_pfn,
6155 node_end_pfn,
6156 &zone_start_pfn,
6157 &zone_end_pfn,
6158 zones_size);
6159 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6160 node_start_pfn, node_end_pfn,
6161 zholes_size);
6162 if (size)
6163 zone->zone_start_pfn = zone_start_pfn;
6164 else
6165 zone->zone_start_pfn = 0;
6166 zone->spanned_pages = size;
6167 zone->present_pages = real_size;
6168
6169 totalpages += size;
6170 realtotalpages += real_size;
6171 }
6172
6173 pgdat->node_spanned_pages = totalpages;
6174 pgdat->node_present_pages = realtotalpages;
6175 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6176 realtotalpages);
6177}
6178
6179#ifndef CONFIG_SPARSEMEM
6180/*
6181 * Calculate the size of the zone->blockflags rounded to an unsigned long
6182 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6183 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6184 * round what is now in bits to nearest long in bits, then return it in
6185 * bytes.
6186 */
6187static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6188{
6189 unsigned long usemapsize;
6190
6191 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6192 usemapsize = roundup(zonesize, pageblock_nr_pages);
6193 usemapsize = usemapsize >> pageblock_order;
6194 usemapsize *= NR_PAGEBLOCK_BITS;
6195 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6196
6197 return usemapsize / 8;
6198}
6199
6200static void __ref setup_usemap(struct pglist_data *pgdat,
6201 struct zone *zone,
6202 unsigned long zone_start_pfn,
6203 unsigned long zonesize)
6204{
6205 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6206 zone->pageblock_flags = NULL;
6207 if (usemapsize)
6208 zone->pageblock_flags =
6209 memblock_alloc_node_nopanic(usemapsize,
6210 pgdat->node_id);
6211}
6212#else
6213static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6214 unsigned long zone_start_pfn, unsigned long zonesize) {}
6215#endif /* CONFIG_SPARSEMEM */
6216
6217#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6218
6219/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6220void __init set_pageblock_order(void)
6221{
6222 unsigned int order;
6223
6224 /* Check that pageblock_nr_pages has not already been setup */
6225 if (pageblock_order)
6226 return;
6227
6228 if (HPAGE_SHIFT > PAGE_SHIFT)
6229 order = HUGETLB_PAGE_ORDER;
6230 else
6231 order = MAX_ORDER - 1;
6232
6233 /*
6234 * Assume the largest contiguous order of interest is a huge page.
6235 * This value may be variable depending on boot parameters on IA64 and
6236 * powerpc.
6237 */
6238 pageblock_order = order;
6239}
6240#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6241
6242/*
6243 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6244 * is unused as pageblock_order is set at compile-time. See
6245 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6246 * the kernel config
6247 */
6248void __init set_pageblock_order(void)
6249{
6250}
6251
6252#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6253
6254static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6255 unsigned long present_pages)
6256{
6257 unsigned long pages = spanned_pages;
6258
6259 /*
6260 * Provide a more accurate estimation if there are holes within
6261 * the zone and SPARSEMEM is in use. If there are holes within the
6262 * zone, each populated memory region may cost us one or two extra
6263 * memmap pages due to alignment because memmap pages for each
6264 * populated regions may not be naturally aligned on page boundary.
6265 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6266 */
6267 if (spanned_pages > present_pages + (present_pages >> 4) &&
6268 IS_ENABLED(CONFIG_SPARSEMEM))
6269 pages = present_pages;
6270
6271 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6272}
6273
6274#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6275static void pgdat_init_split_queue(struct pglist_data *pgdat)
6276{
6277 spin_lock_init(&pgdat->split_queue_lock);
6278 INIT_LIST_HEAD(&pgdat->split_queue);
6279 pgdat->split_queue_len = 0;
6280}
6281#else
6282static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6283#endif
6284
6285#ifdef CONFIG_COMPACTION
6286static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6287{
6288 init_waitqueue_head(&pgdat->kcompactd_wait);
6289}
6290#else
6291static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6292#endif
6293
6294static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6295{
6296 pgdat_resize_init(pgdat);
6297
6298 pgdat_init_split_queue(pgdat);
6299 pgdat_init_kcompactd(pgdat);
6300
6301 init_waitqueue_head(&pgdat->kswapd_wait);
6302 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6303
6304 pgdat_page_ext_init(pgdat);
6305 spin_lock_init(&pgdat->lru_lock);
6306 lruvec_init(node_lruvec(pgdat));
6307}
6308
6309static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6310 unsigned long remaining_pages)
6311{
6312 zone->managed_pages = remaining_pages;
6313 zone_set_nid(zone, nid);
6314 zone->name = zone_names[idx];
6315 zone->zone_pgdat = NODE_DATA(nid);
6316 spin_lock_init(&zone->lock);
6317 zone_seqlock_init(zone);
6318 zone_pcp_init(zone);
6319}
6320
6321/*
6322 * Set up the zone data structures
6323 * - init pgdat internals
6324 * - init all zones belonging to this node
6325 *
6326 * NOTE: this function is only called during memory hotplug
6327 */
6328#ifdef CONFIG_MEMORY_HOTPLUG
6329void __ref free_area_init_core_hotplug(int nid)
6330{
6331 enum zone_type z;
6332 pg_data_t *pgdat = NODE_DATA(nid);
6333
6334 pgdat_init_internals(pgdat);
6335 for (z = 0; z < MAX_NR_ZONES; z++)
6336 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6337}
6338#endif
6339
6340/*
6341 * Set up the zone data structures:
6342 * - mark all pages reserved
6343 * - mark all memory queues empty
6344 * - clear the memory bitmaps
6345 *
6346 * NOTE: pgdat should get zeroed by caller.
6347 * NOTE: this function is only called during early init.
6348 */
6349static void __init free_area_init_core(struct pglist_data *pgdat)
6350{
6351 enum zone_type j;
6352 int nid = pgdat->node_id;
6353
6354 pgdat_init_internals(pgdat);
6355 pgdat->per_cpu_nodestats = &boot_nodestats;
6356
6357 for (j = 0; j < MAX_NR_ZONES; j++) {
6358 struct zone *zone = pgdat->node_zones + j;
6359 unsigned long size, freesize, memmap_pages;
6360 unsigned long zone_start_pfn = zone->zone_start_pfn;
6361
6362 size = zone->spanned_pages;
6363 freesize = zone->present_pages;
6364
6365 /*
6366 * Adjust freesize so that it accounts for how much memory
6367 * is used by this zone for memmap. This affects the watermark
6368 * and per-cpu initialisations
6369 */
6370 memmap_pages = calc_memmap_size(size, freesize);
6371 if (!is_highmem_idx(j)) {
6372 if (freesize >= memmap_pages) {
6373 freesize -= memmap_pages;
6374 if (memmap_pages)
6375 printk(KERN_DEBUG
6376 " %s zone: %lu pages used for memmap\n",
6377 zone_names[j], memmap_pages);
6378 } else
6379 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6380 zone_names[j], memmap_pages, freesize);
6381 }
6382
6383 /* Account for reserved pages */
6384 if (j == 0 && freesize > dma_reserve) {
6385 freesize -= dma_reserve;
6386 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6387 zone_names[0], dma_reserve);
6388 }
6389
6390 if (!is_highmem_idx(j))
6391 nr_kernel_pages += freesize;
6392 /* Charge for highmem memmap if there are enough kernel pages */
6393 else if (nr_kernel_pages > memmap_pages * 2)
6394 nr_kernel_pages -= memmap_pages;
6395 nr_all_pages += freesize;
6396
6397 /*
6398 * Set an approximate value for lowmem here, it will be adjusted
6399 * when the bootmem allocator frees pages into the buddy system.
6400 * And all highmem pages will be managed by the buddy system.
6401 */
6402 zone_init_internals(zone, j, nid, freesize);
6403
6404 if (!size)
6405 continue;
6406
6407 set_pageblock_order();
6408 setup_usemap(pgdat, zone, zone_start_pfn, size);
6409 init_currently_empty_zone(zone, zone_start_pfn, size);
6410 memmap_init(size, nid, j, zone_start_pfn);
6411 }
6412}
6413
6414#ifdef CONFIG_FLAT_NODE_MEM_MAP
6415static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6416{
6417 unsigned long __maybe_unused start = 0;
6418 unsigned long __maybe_unused offset = 0;
6419
6420 /* Skip empty nodes */
6421 if (!pgdat->node_spanned_pages)
6422 return;
6423
6424 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6425 offset = pgdat->node_start_pfn - start;
6426 /* ia64 gets its own node_mem_map, before this, without bootmem */
6427 if (!pgdat->node_mem_map) {
6428 unsigned long size, end;
6429 struct page *map;
6430
6431 /*
6432 * The zone's endpoints aren't required to be MAX_ORDER
6433 * aligned but the node_mem_map endpoints must be in order
6434 * for the buddy allocator to function correctly.
6435 */
6436 end = pgdat_end_pfn(pgdat);
6437 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6438 size = (end - start) * sizeof(struct page);
6439 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6440 pgdat->node_mem_map = map + offset;
6441 }
6442 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6443 __func__, pgdat->node_id, (unsigned long)pgdat,
6444 (unsigned long)pgdat->node_mem_map);
6445#ifndef CONFIG_NEED_MULTIPLE_NODES
6446 /*
6447 * With no DISCONTIG, the global mem_map is just set as node 0's
6448 */
6449 if (pgdat == NODE_DATA(0)) {
6450 mem_map = NODE_DATA(0)->node_mem_map;
6451#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6452 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6453 mem_map -= offset;
6454#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6455 }
6456#endif
6457}
6458#else
6459static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6460#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6461
6462#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6463static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6464{
6465 /*
6466 * We start only with one section of pages, more pages are added as
6467 * needed until the rest of deferred pages are initialized.
6468 */
6469 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6470 pgdat->node_spanned_pages);
6471 pgdat->first_deferred_pfn = ULONG_MAX;
6472}
6473#else
6474static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6475#endif
6476
6477void __init free_area_init_node(int nid, unsigned long *zones_size,
6478 unsigned long node_start_pfn,
6479 unsigned long *zholes_size)
6480{
6481 pg_data_t *pgdat = NODE_DATA(nid);
6482 unsigned long start_pfn = 0;
6483 unsigned long end_pfn = 0;
6484
6485 /* pg_data_t should be reset to zero when it's allocated */
6486 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6487
6488 pgdat->node_id = nid;
6489 pgdat->node_start_pfn = node_start_pfn;
6490 pgdat->per_cpu_nodestats = NULL;
6491#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6492 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6493 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6494 (u64)start_pfn << PAGE_SHIFT,
6495 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6496#else
6497 start_pfn = node_start_pfn;
6498#endif
6499 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6500 zones_size, zholes_size);
6501
6502 alloc_node_mem_map(pgdat);
6503 pgdat_set_deferred_range(pgdat);
6504
6505 free_area_init_core(pgdat);
6506}
6507
6508#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6509/*
6510 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6511 * pages zeroed
6512 */
6513static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6514{
6515 unsigned long pfn;
6516 u64 pgcnt = 0;
6517
6518 for (pfn = spfn; pfn < epfn; pfn++) {
6519 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6520 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6521 + pageblock_nr_pages - 1;
6522 continue;
6523 }
6524 mm_zero_struct_page(pfn_to_page(pfn));
6525 pgcnt++;
6526 }
6527
6528 return pgcnt;
6529}
6530
6531/*
6532 * Only struct pages that are backed by physical memory are zeroed and
6533 * initialized by going through __init_single_page(). But, there are some
6534 * struct pages which are reserved in memblock allocator and their fields
6535 * may be accessed (for example page_to_pfn() on some configuration accesses
6536 * flags). We must explicitly zero those struct pages.
6537 *
6538 * This function also addresses a similar issue where struct pages are left
6539 * uninitialized because the physical address range is not covered by
6540 * memblock.memory or memblock.reserved. That could happen when memblock
6541 * layout is manually configured via memmap=.
6542 */
6543void __init zero_resv_unavail(void)
6544{
6545 phys_addr_t start, end;
6546 u64 i, pgcnt;
6547 phys_addr_t next = 0;
6548
6549 /*
6550 * Loop through unavailable ranges not covered by memblock.memory.
6551 */
6552 pgcnt = 0;
6553 for_each_mem_range(i, &memblock.memory, NULL,
6554 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6555 if (next < start)
6556 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6557 next = end;
6558 }
6559 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6560
6561 /*
6562 * Struct pages that do not have backing memory. This could be because
6563 * firmware is using some of this memory, or for some other reasons.
6564 */
6565 if (pgcnt)
6566 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6567}
6568#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6569
6570#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6571
6572#if MAX_NUMNODES > 1
6573/*
6574 * Figure out the number of possible node ids.
6575 */
6576void __init setup_nr_node_ids(void)
6577{
6578 unsigned int highest;
6579
6580 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6581 nr_node_ids = highest + 1;
6582}
6583#endif
6584
6585/**
6586 * node_map_pfn_alignment - determine the maximum internode alignment
6587 *
6588 * This function should be called after node map is populated and sorted.
6589 * It calculates the maximum power of two alignment which can distinguish
6590 * all the nodes.
6591 *
6592 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6593 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6594 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6595 * shifted, 1GiB is enough and this function will indicate so.
6596 *
6597 * This is used to test whether pfn -> nid mapping of the chosen memory
6598 * model has fine enough granularity to avoid incorrect mapping for the
6599 * populated node map.
6600 *
6601 * Returns the determined alignment in pfn's. 0 if there is no alignment
6602 * requirement (single node).
6603 */
6604unsigned long __init node_map_pfn_alignment(void)
6605{
6606 unsigned long accl_mask = 0, last_end = 0;
6607 unsigned long start, end, mask;
6608 int last_nid = -1;
6609 int i, nid;
6610
6611 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6612 if (!start || last_nid < 0 || last_nid == nid) {
6613 last_nid = nid;
6614 last_end = end;
6615 continue;
6616 }
6617
6618 /*
6619 * Start with a mask granular enough to pin-point to the
6620 * start pfn and tick off bits one-by-one until it becomes
6621 * too coarse to separate the current node from the last.
6622 */
6623 mask = ~((1 << __ffs(start)) - 1);
6624 while (mask && last_end <= (start & (mask << 1)))
6625 mask <<= 1;
6626
6627 /* accumulate all internode masks */
6628 accl_mask |= mask;
6629 }
6630
6631 /* convert mask to number of pages */
6632 return ~accl_mask + 1;
6633}
6634
6635/* Find the lowest pfn for a node */
6636static unsigned long __init find_min_pfn_for_node(int nid)
6637{
6638 unsigned long min_pfn = ULONG_MAX;
6639 unsigned long start_pfn;
6640 int i;
6641
6642 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6643 min_pfn = min(min_pfn, start_pfn);
6644
6645 if (min_pfn == ULONG_MAX) {
6646 pr_warn("Could not find start_pfn for node %d\n", nid);
6647 return 0;
6648 }
6649
6650 return min_pfn;
6651}
6652
6653/**
6654 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6655 *
6656 * It returns the minimum PFN based on information provided via
6657 * memblock_set_node().
6658 */
6659unsigned long __init find_min_pfn_with_active_regions(void)
6660{
6661 return find_min_pfn_for_node(MAX_NUMNODES);
6662}
6663
6664/*
6665 * early_calculate_totalpages()
6666 * Sum pages in active regions for movable zone.
6667 * Populate N_MEMORY for calculating usable_nodes.
6668 */
6669static unsigned long __init early_calculate_totalpages(void)
6670{
6671 unsigned long totalpages = 0;
6672 unsigned long start_pfn, end_pfn;
6673 int i, nid;
6674
6675 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6676 unsigned long pages = end_pfn - start_pfn;
6677
6678 totalpages += pages;
6679 if (pages)
6680 node_set_state(nid, N_MEMORY);
6681 }
6682 return totalpages;
6683}
6684
6685/*
6686 * Find the PFN the Movable zone begins in each node. Kernel memory
6687 * is spread evenly between nodes as long as the nodes have enough
6688 * memory. When they don't, some nodes will have more kernelcore than
6689 * others
6690 */
6691static void __init find_zone_movable_pfns_for_nodes(void)
6692{
6693 int i, nid;
6694 unsigned long usable_startpfn;
6695 unsigned long kernelcore_node, kernelcore_remaining;
6696 /* save the state before borrow the nodemask */
6697 nodemask_t saved_node_state = node_states[N_MEMORY];
6698 unsigned long totalpages = early_calculate_totalpages();
6699 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6700 struct memblock_region *r;
6701
6702 /* Need to find movable_zone earlier when movable_node is specified. */
6703 find_usable_zone_for_movable();
6704
6705 /*
6706 * If movable_node is specified, ignore kernelcore and movablecore
6707 * options.
6708 */
6709 if (movable_node_is_enabled()) {
6710 for_each_memblock(memory, r) {
6711 if (!memblock_is_hotpluggable(r))
6712 continue;
6713
6714 nid = r->nid;
6715
6716 usable_startpfn = PFN_DOWN(r->base);
6717 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6718 min(usable_startpfn, zone_movable_pfn[nid]) :
6719 usable_startpfn;
6720 }
6721
6722 goto out2;
6723 }
6724
6725 /*
6726 * If kernelcore=mirror is specified, ignore movablecore option
6727 */
6728 if (mirrored_kernelcore) {
6729 bool mem_below_4gb_not_mirrored = false;
6730
6731 for_each_memblock(memory, r) {
6732 if (memblock_is_mirror(r))
6733 continue;
6734
6735 nid = r->nid;
6736
6737 usable_startpfn = memblock_region_memory_base_pfn(r);
6738
6739 if (usable_startpfn < 0x100000) {
6740 mem_below_4gb_not_mirrored = true;
6741 continue;
6742 }
6743
6744 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6745 min(usable_startpfn, zone_movable_pfn[nid]) :
6746 usable_startpfn;
6747 }
6748
6749 if (mem_below_4gb_not_mirrored)
6750 pr_warn("This configuration results in unmirrored kernel memory.");
6751
6752 goto out2;
6753 }
6754
6755 /*
6756 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6757 * amount of necessary memory.
6758 */
6759 if (required_kernelcore_percent)
6760 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6761 10000UL;
6762 if (required_movablecore_percent)
6763 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6764 10000UL;
6765
6766 /*
6767 * If movablecore= was specified, calculate what size of
6768 * kernelcore that corresponds so that memory usable for
6769 * any allocation type is evenly spread. If both kernelcore
6770 * and movablecore are specified, then the value of kernelcore
6771 * will be used for required_kernelcore if it's greater than
6772 * what movablecore would have allowed.
6773 */
6774 if (required_movablecore) {
6775 unsigned long corepages;
6776
6777 /*
6778 * Round-up so that ZONE_MOVABLE is at least as large as what
6779 * was requested by the user
6780 */
6781 required_movablecore =
6782 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6783 required_movablecore = min(totalpages, required_movablecore);
6784 corepages = totalpages - required_movablecore;
6785
6786 required_kernelcore = max(required_kernelcore, corepages);
6787 }
6788
6789 /*
6790 * If kernelcore was not specified or kernelcore size is larger
6791 * than totalpages, there is no ZONE_MOVABLE.
6792 */
6793 if (!required_kernelcore || required_kernelcore >= totalpages)
6794 goto out;
6795
6796 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6797 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6798
6799restart:
6800 /* Spread kernelcore memory as evenly as possible throughout nodes */
6801 kernelcore_node = required_kernelcore / usable_nodes;
6802 for_each_node_state(nid, N_MEMORY) {
6803 unsigned long start_pfn, end_pfn;
6804
6805 /*
6806 * Recalculate kernelcore_node if the division per node
6807 * now exceeds what is necessary to satisfy the requested
6808 * amount of memory for the kernel
6809 */
6810 if (required_kernelcore < kernelcore_node)
6811 kernelcore_node = required_kernelcore / usable_nodes;
6812
6813 /*
6814 * As the map is walked, we track how much memory is usable
6815 * by the kernel using kernelcore_remaining. When it is
6816 * 0, the rest of the node is usable by ZONE_MOVABLE
6817 */
6818 kernelcore_remaining = kernelcore_node;
6819
6820 /* Go through each range of PFNs within this node */
6821 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6822 unsigned long size_pages;
6823
6824 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6825 if (start_pfn >= end_pfn)
6826 continue;
6827
6828 /* Account for what is only usable for kernelcore */
6829 if (start_pfn < usable_startpfn) {
6830 unsigned long kernel_pages;
6831 kernel_pages = min(end_pfn, usable_startpfn)
6832 - start_pfn;
6833
6834 kernelcore_remaining -= min(kernel_pages,
6835 kernelcore_remaining);
6836 required_kernelcore -= min(kernel_pages,
6837 required_kernelcore);
6838
6839 /* Continue if range is now fully accounted */
6840 if (end_pfn <= usable_startpfn) {
6841
6842 /*
6843 * Push zone_movable_pfn to the end so
6844 * that if we have to rebalance
6845 * kernelcore across nodes, we will
6846 * not double account here
6847 */
6848 zone_movable_pfn[nid] = end_pfn;
6849 continue;
6850 }
6851 start_pfn = usable_startpfn;
6852 }
6853
6854 /*
6855 * The usable PFN range for ZONE_MOVABLE is from
6856 * start_pfn->end_pfn. Calculate size_pages as the
6857 * number of pages used as kernelcore
6858 */
6859 size_pages = end_pfn - start_pfn;
6860 if (size_pages > kernelcore_remaining)
6861 size_pages = kernelcore_remaining;
6862 zone_movable_pfn[nid] = start_pfn + size_pages;
6863
6864 /*
6865 * Some kernelcore has been met, update counts and
6866 * break if the kernelcore for this node has been
6867 * satisfied
6868 */
6869 required_kernelcore -= min(required_kernelcore,
6870 size_pages);
6871 kernelcore_remaining -= size_pages;
6872 if (!kernelcore_remaining)
6873 break;
6874 }
6875 }
6876
6877 /*
6878 * If there is still required_kernelcore, we do another pass with one
6879 * less node in the count. This will push zone_movable_pfn[nid] further
6880 * along on the nodes that still have memory until kernelcore is
6881 * satisfied
6882 */
6883 usable_nodes--;
6884 if (usable_nodes && required_kernelcore > usable_nodes)
6885 goto restart;
6886
6887out2:
6888 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6889 for (nid = 0; nid < MAX_NUMNODES; nid++)
6890 zone_movable_pfn[nid] =
6891 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6892
6893out:
6894 /* restore the node_state */
6895 node_states[N_MEMORY] = saved_node_state;
6896}
6897
6898/* Any regular or high memory on that node ? */
6899static void check_for_memory(pg_data_t *pgdat, int nid)
6900{
6901 enum zone_type zone_type;
6902
6903 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6904 struct zone *zone = &pgdat->node_zones[zone_type];
6905 if (populated_zone(zone)) {
6906 if (IS_ENABLED(CONFIG_HIGHMEM))
6907 node_set_state(nid, N_HIGH_MEMORY);
6908 if (zone_type <= ZONE_NORMAL)
6909 node_set_state(nid, N_NORMAL_MEMORY);
6910 break;
6911 }
6912 }
6913}
6914
6915/**
6916 * free_area_init_nodes - Initialise all pg_data_t and zone data
6917 * @max_zone_pfn: an array of max PFNs for each zone
6918 *
6919 * This will call free_area_init_node() for each active node in the system.
6920 * Using the page ranges provided by memblock_set_node(), the size of each
6921 * zone in each node and their holes is calculated. If the maximum PFN
6922 * between two adjacent zones match, it is assumed that the zone is empty.
6923 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6924 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6925 * starts where the previous one ended. For example, ZONE_DMA32 starts
6926 * at arch_max_dma_pfn.
6927 */
6928void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6929{
6930 unsigned long start_pfn, end_pfn;
6931 int i, nid;
6932
6933 /* Record where the zone boundaries are */
6934 memset(arch_zone_lowest_possible_pfn, 0,
6935 sizeof(arch_zone_lowest_possible_pfn));
6936 memset(arch_zone_highest_possible_pfn, 0,
6937 sizeof(arch_zone_highest_possible_pfn));
6938
6939 start_pfn = find_min_pfn_with_active_regions();
6940
6941 for (i = 0; i < MAX_NR_ZONES; i++) {
6942 if (i == ZONE_MOVABLE)
6943 continue;
6944
6945 end_pfn = max(max_zone_pfn[i], start_pfn);
6946 arch_zone_lowest_possible_pfn[i] = start_pfn;
6947 arch_zone_highest_possible_pfn[i] = end_pfn;
6948
6949 start_pfn = end_pfn;
6950 }
6951
6952 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6953 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6954 find_zone_movable_pfns_for_nodes();
6955
6956 /* Print out the zone ranges */
6957 pr_info("Zone ranges:\n");
6958 for (i = 0; i < MAX_NR_ZONES; i++) {
6959 if (i == ZONE_MOVABLE)
6960 continue;
6961 pr_info(" %-8s ", zone_names[i]);
6962 if (arch_zone_lowest_possible_pfn[i] ==
6963 arch_zone_highest_possible_pfn[i])
6964 pr_cont("empty\n");
6965 else
6966 pr_cont("[mem %#018Lx-%#018Lx]\n",
6967 (u64)arch_zone_lowest_possible_pfn[i]
6968 << PAGE_SHIFT,
6969 ((u64)arch_zone_highest_possible_pfn[i]
6970 << PAGE_SHIFT) - 1);
6971 }
6972
6973 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6974 pr_info("Movable zone start for each node\n");
6975 for (i = 0; i < MAX_NUMNODES; i++) {
6976 if (zone_movable_pfn[i])
6977 pr_info(" Node %d: %#018Lx\n", i,
6978 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6979 }
6980
6981 /* Print out the early node map */
6982 pr_info("Early memory node ranges\n");
6983 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6984 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6985 (u64)start_pfn << PAGE_SHIFT,
6986 ((u64)end_pfn << PAGE_SHIFT) - 1);
6987
6988 /* Initialise every node */
6989 mminit_verify_pageflags_layout();
6990 setup_nr_node_ids();
6991 zero_resv_unavail();
6992 for_each_online_node(nid) {
6993 pg_data_t *pgdat = NODE_DATA(nid);
6994 free_area_init_node(nid, NULL,
6995 find_min_pfn_for_node(nid), NULL);
6996
6997 /* Any memory on that node */
6998 if (pgdat->node_present_pages)
6999 node_set_state(nid, N_MEMORY);
7000 check_for_memory(pgdat, nid);
7001 }
7002}
7003
7004static int __init cmdline_parse_core(char *p, unsigned long *core,
7005 unsigned long *percent)
7006{
7007 unsigned long long coremem;
7008 char *endptr;
7009
7010 if (!p)
7011 return -EINVAL;
7012
7013 /* Value may be a percentage of total memory, otherwise bytes */
7014 coremem = simple_strtoull(p, &endptr, 0);
7015 if (*endptr == '%') {
7016 /* Paranoid check for percent values greater than 100 */
7017 WARN_ON(coremem > 100);
7018
7019 *percent = coremem;
7020 } else {
7021 coremem = memparse(p, &p);
7022 /* Paranoid check that UL is enough for the coremem value */
7023 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7024
7025 *core = coremem >> PAGE_SHIFT;
7026 *percent = 0UL;
7027 }
7028 return 0;
7029}
7030
7031/*
7032 * kernelcore=size sets the amount of memory for use for allocations that
7033 * cannot be reclaimed or migrated.
7034 */
7035static int __init cmdline_parse_kernelcore(char *p)
7036{
7037 /* parse kernelcore=mirror */
7038 if (parse_option_str(p, "mirror")) {
7039 mirrored_kernelcore = true;
7040 return 0;
7041 }
7042
7043 return cmdline_parse_core(p, &required_kernelcore,
7044 &required_kernelcore_percent);
7045}
7046
7047/*
7048 * movablecore=size sets the amount of memory for use for allocations that
7049 * can be reclaimed or migrated.
7050 */
7051static int __init cmdline_parse_movablecore(char *p)
7052{
7053 return cmdline_parse_core(p, &required_movablecore,
7054 &required_movablecore_percent);
7055}
7056
7057early_param("kernelcore", cmdline_parse_kernelcore);
7058early_param("movablecore", cmdline_parse_movablecore);
7059
7060#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7061
7062void adjust_managed_page_count(struct page *page, long count)
7063{
7064 spin_lock(&managed_page_count_lock);
7065 page_zone(page)->managed_pages += count;
7066 totalram_pages += count;
7067#ifdef CONFIG_HIGHMEM
7068 if (PageHighMem(page))
7069 totalhigh_pages += count;
7070#endif
7071 spin_unlock(&managed_page_count_lock);
7072}
7073EXPORT_SYMBOL(adjust_managed_page_count);
7074
7075unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7076{
7077 void *pos;
7078 unsigned long pages = 0;
7079
7080 start = (void *)PAGE_ALIGN((unsigned long)start);
7081 end = (void *)((unsigned long)end & PAGE_MASK);
7082 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7083 struct page *page = virt_to_page(pos);
7084 void *direct_map_addr;
7085
7086 /*
7087 * 'direct_map_addr' might be different from 'pos'
7088 * because some architectures' virt_to_page()
7089 * work with aliases. Getting the direct map
7090 * address ensures that we get a _writeable_
7091 * alias for the memset().
7092 */
7093 direct_map_addr = page_address(page);
7094 if ((unsigned int)poison <= 0xFF)
7095 memset(direct_map_addr, poison, PAGE_SIZE);
7096
7097 free_reserved_page(page);
7098 }
7099
7100 if (pages && s)
7101 pr_info("Freeing %s memory: %ldK\n",
7102 s, pages << (PAGE_SHIFT - 10));
7103
7104 return pages;
7105}
7106EXPORT_SYMBOL(free_reserved_area);
7107
7108#ifdef CONFIG_HIGHMEM
7109void free_highmem_page(struct page *page)
7110{
7111 __free_reserved_page(page);
7112 totalram_pages++;
7113 page_zone(page)->managed_pages++;
7114 totalhigh_pages++;
7115}
7116#endif
7117
7118
7119void __init mem_init_print_info(const char *str)
7120{
7121 unsigned long physpages, codesize, datasize, rosize, bss_size;
7122 unsigned long init_code_size, init_data_size;
7123
7124 physpages = get_num_physpages();
7125 codesize = _etext - _stext;
7126 datasize = _edata - _sdata;
7127 rosize = __end_rodata - __start_rodata;
7128 bss_size = __bss_stop - __bss_start;
7129 init_data_size = __init_end - __init_begin;
7130 init_code_size = _einittext - _sinittext;
7131
7132 /*
7133 * Detect special cases and adjust section sizes accordingly:
7134 * 1) .init.* may be embedded into .data sections
7135 * 2) .init.text.* may be out of [__init_begin, __init_end],
7136 * please refer to arch/tile/kernel/vmlinux.lds.S.
7137 * 3) .rodata.* may be embedded into .text or .data sections.
7138 */
7139#define adj_init_size(start, end, size, pos, adj) \
7140 do { \
7141 if (start <= pos && pos < end && size > adj) \
7142 size -= adj; \
7143 } while (0)
7144
7145 adj_init_size(__init_begin, __init_end, init_data_size,
7146 _sinittext, init_code_size);
7147 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7148 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7149 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7150 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7151
7152#undef adj_init_size
7153
7154 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7155#ifdef CONFIG_HIGHMEM
7156 ", %luK highmem"
7157#endif
7158 "%s%s)\n",
7159 nr_free_pages() << (PAGE_SHIFT - 10),
7160 physpages << (PAGE_SHIFT - 10),
7161 codesize >> 10, datasize >> 10, rosize >> 10,
7162 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7163 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7164 totalcma_pages << (PAGE_SHIFT - 10),
7165#ifdef CONFIG_HIGHMEM
7166 totalhigh_pages << (PAGE_SHIFT - 10),
7167#endif
7168 str ? ", " : "", str ? str : "");
7169}
7170
7171/**
7172 * set_dma_reserve - set the specified number of pages reserved in the first zone
7173 * @new_dma_reserve: The number of pages to mark reserved
7174 *
7175 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7176 * In the DMA zone, a significant percentage may be consumed by kernel image
7177 * and other unfreeable allocations which can skew the watermarks badly. This
7178 * function may optionally be used to account for unfreeable pages in the
7179 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7180 * smaller per-cpu batchsize.
7181 */
7182void __init set_dma_reserve(unsigned long new_dma_reserve)
7183{
7184 dma_reserve = new_dma_reserve;
7185}
7186
7187void __init free_area_init(unsigned long *zones_size)
7188{
7189 zero_resv_unavail();
7190 free_area_init_node(0, zones_size,
7191 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7192}
7193
7194static int page_alloc_cpu_dead(unsigned int cpu)
7195{
7196
7197 lru_add_drain_cpu(cpu);
7198 drain_pages(cpu);
7199
7200 /*
7201 * Spill the event counters of the dead processor
7202 * into the current processors event counters.
7203 * This artificially elevates the count of the current
7204 * processor.
7205 */
7206 vm_events_fold_cpu(cpu);
7207
7208 /*
7209 * Zero the differential counters of the dead processor
7210 * so that the vm statistics are consistent.
7211 *
7212 * This is only okay since the processor is dead and cannot
7213 * race with what we are doing.
7214 */
7215 cpu_vm_stats_fold(cpu);
7216 return 0;
7217}
7218
7219void __init page_alloc_init(void)
7220{
7221 int ret;
7222
7223 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7224 "mm/page_alloc:dead", NULL,
7225 page_alloc_cpu_dead);
7226 WARN_ON(ret < 0);
7227}
7228
7229/*
7230 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7231 * or min_free_kbytes changes.
7232 */
7233static void calculate_totalreserve_pages(void)
7234{
7235 struct pglist_data *pgdat;
7236 unsigned long reserve_pages = 0;
7237 enum zone_type i, j;
7238
7239 for_each_online_pgdat(pgdat) {
7240
7241 pgdat->totalreserve_pages = 0;
7242
7243 for (i = 0; i < MAX_NR_ZONES; i++) {
7244 struct zone *zone = pgdat->node_zones + i;
7245 long max = 0;
7246
7247 /* Find valid and maximum lowmem_reserve in the zone */
7248 for (j = i; j < MAX_NR_ZONES; j++) {
7249 if (zone->lowmem_reserve[j] > max)
7250 max = zone->lowmem_reserve[j];
7251 }
7252
7253 /* we treat the high watermark as reserved pages. */
7254 max += high_wmark_pages(zone);
7255
7256 if (max > zone->managed_pages)
7257 max = zone->managed_pages;
7258
7259 pgdat->totalreserve_pages += max;
7260
7261 reserve_pages += max;
7262 }
7263 }
7264 totalreserve_pages = reserve_pages;
7265}
7266
7267/*
7268 * setup_per_zone_lowmem_reserve - called whenever
7269 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7270 * has a correct pages reserved value, so an adequate number of
7271 * pages are left in the zone after a successful __alloc_pages().
7272 */
7273static void setup_per_zone_lowmem_reserve(void)
7274{
7275 struct pglist_data *pgdat;
7276 enum zone_type j, idx;
7277
7278 for_each_online_pgdat(pgdat) {
7279 for (j = 0; j < MAX_NR_ZONES; j++) {
7280 struct zone *zone = pgdat->node_zones + j;
7281 unsigned long managed_pages = zone->managed_pages;
7282
7283 zone->lowmem_reserve[j] = 0;
7284
7285 idx = j;
7286 while (idx) {
7287 struct zone *lower_zone;
7288
7289 idx--;
7290 lower_zone = pgdat->node_zones + idx;
7291
7292 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7293 sysctl_lowmem_reserve_ratio[idx] = 0;
7294 lower_zone->lowmem_reserve[j] = 0;
7295 } else {
7296 lower_zone->lowmem_reserve[j] =
7297 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7298 }
7299 managed_pages += lower_zone->managed_pages;
7300 }
7301 }
7302 }
7303
7304 /* update totalreserve_pages */
7305 calculate_totalreserve_pages();
7306}
7307
7308static void __setup_per_zone_wmarks(void)
7309{
7310 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7311 unsigned long lowmem_pages = 0;
7312 struct zone *zone;
7313 unsigned long flags;
7314
7315 /* Calculate total number of !ZONE_HIGHMEM pages */
7316 for_each_zone(zone) {
7317 if (!is_highmem(zone))
7318 lowmem_pages += zone->managed_pages;
7319 }
7320
7321 for_each_zone(zone) {
7322 u64 tmp;
7323
7324 spin_lock_irqsave(&zone->lock, flags);
7325 tmp = (u64)pages_min * zone->managed_pages;
7326 do_div(tmp, lowmem_pages);
7327 if (is_highmem(zone)) {
7328 /*
7329 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7330 * need highmem pages, so cap pages_min to a small
7331 * value here.
7332 *
7333 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7334 * deltas control asynch page reclaim, and so should
7335 * not be capped for highmem.
7336 */
7337 unsigned long min_pages;
7338
7339 min_pages = zone->managed_pages / 1024;
7340 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7341 zone->watermark[WMARK_MIN] = min_pages;
7342 } else {
7343 /*
7344 * If it's a lowmem zone, reserve a number of pages
7345 * proportionate to the zone's size.
7346 */
7347 zone->watermark[WMARK_MIN] = tmp;
7348 }
7349
7350 /*
7351 * Set the kswapd watermarks distance according to the
7352 * scale factor in proportion to available memory, but
7353 * ensure a minimum size on small systems.
7354 */
7355 tmp = max_t(u64, tmp >> 2,
7356 mult_frac(zone->managed_pages,
7357 watermark_scale_factor, 10000));
7358
7359 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7360 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7361
7362 spin_unlock_irqrestore(&zone->lock, flags);
7363 }
7364
7365 /* update totalreserve_pages */
7366 calculate_totalreserve_pages();
7367}
7368
7369/**
7370 * setup_per_zone_wmarks - called when min_free_kbytes changes
7371 * or when memory is hot-{added|removed}
7372 *
7373 * Ensures that the watermark[min,low,high] values for each zone are set
7374 * correctly with respect to min_free_kbytes.
7375 */
7376void setup_per_zone_wmarks(void)
7377{
7378 static DEFINE_SPINLOCK(lock);
7379
7380 spin_lock(&lock);
7381 __setup_per_zone_wmarks();
7382 spin_unlock(&lock);
7383}
7384
7385/*
7386 * Initialise min_free_kbytes.
7387 *
7388 * For small machines we want it small (128k min). For large machines
7389 * we want it large (64MB max). But it is not linear, because network
7390 * bandwidth does not increase linearly with machine size. We use
7391 *
7392 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7393 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7394 *
7395 * which yields
7396 *
7397 * 16MB: 512k
7398 * 32MB: 724k
7399 * 64MB: 1024k
7400 * 128MB: 1448k
7401 * 256MB: 2048k
7402 * 512MB: 2896k
7403 * 1024MB: 4096k
7404 * 2048MB: 5792k
7405 * 4096MB: 8192k
7406 * 8192MB: 11584k
7407 * 16384MB: 16384k
7408 */
7409int __meminit init_per_zone_wmark_min(void)
7410{
7411 unsigned long lowmem_kbytes;
7412 int new_min_free_kbytes;
7413
7414 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7415 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7416
7417 if (new_min_free_kbytes > user_min_free_kbytes) {
7418 min_free_kbytes = new_min_free_kbytes;
7419 if (min_free_kbytes < 128)
7420 min_free_kbytes = 128;
7421 if (min_free_kbytes > 65536)
7422 min_free_kbytes = 65536;
7423 } else {
7424 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7425 new_min_free_kbytes, user_min_free_kbytes);
7426 }
7427 setup_per_zone_wmarks();
7428 refresh_zone_stat_thresholds();
7429 setup_per_zone_lowmem_reserve();
7430
7431#ifdef CONFIG_NUMA
7432 setup_min_unmapped_ratio();
7433 setup_min_slab_ratio();
7434#endif
7435
7436 return 0;
7437}
7438core_initcall(init_per_zone_wmark_min)
7439
7440/*
7441 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7442 * that we can call two helper functions whenever min_free_kbytes
7443 * changes.
7444 */
7445int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7446 void __user *buffer, size_t *length, loff_t *ppos)
7447{
7448 int rc;
7449
7450 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7451 if (rc)
7452 return rc;
7453
7454 if (write) {
7455 user_min_free_kbytes = min_free_kbytes;
7456 setup_per_zone_wmarks();
7457 }
7458 return 0;
7459}
7460
7461int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7462 void __user *buffer, size_t *length, loff_t *ppos)
7463{
7464 int rc;
7465
7466 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7467 if (rc)
7468 return rc;
7469
7470 if (write)
7471 setup_per_zone_wmarks();
7472
7473 return 0;
7474}
7475
7476#ifdef CONFIG_NUMA
7477static void setup_min_unmapped_ratio(void)
7478{
7479 pg_data_t *pgdat;
7480 struct zone *zone;
7481
7482 for_each_online_pgdat(pgdat)
7483 pgdat->min_unmapped_pages = 0;
7484
7485 for_each_zone(zone)
7486 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7487 sysctl_min_unmapped_ratio) / 100;
7488}
7489
7490
7491int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7492 void __user *buffer, size_t *length, loff_t *ppos)
7493{
7494 int rc;
7495
7496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7497 if (rc)
7498 return rc;
7499
7500 setup_min_unmapped_ratio();
7501
7502 return 0;
7503}
7504
7505static void setup_min_slab_ratio(void)
7506{
7507 pg_data_t *pgdat;
7508 struct zone *zone;
7509
7510 for_each_online_pgdat(pgdat)
7511 pgdat->min_slab_pages = 0;
7512
7513 for_each_zone(zone)
7514 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7515 sysctl_min_slab_ratio) / 100;
7516}
7517
7518int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7519 void __user *buffer, size_t *length, loff_t *ppos)
7520{
7521 int rc;
7522
7523 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7524 if (rc)
7525 return rc;
7526
7527 setup_min_slab_ratio();
7528
7529 return 0;
7530}
7531#endif
7532
7533/*
7534 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7535 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7536 * whenever sysctl_lowmem_reserve_ratio changes.
7537 *
7538 * The reserve ratio obviously has absolutely no relation with the
7539 * minimum watermarks. The lowmem reserve ratio can only make sense
7540 * if in function of the boot time zone sizes.
7541 */
7542int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7543 void __user *buffer, size_t *length, loff_t *ppos)
7544{
7545 proc_dointvec_minmax(table, write, buffer, length, ppos);
7546 setup_per_zone_lowmem_reserve();
7547 return 0;
7548}
7549
7550/*
7551 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7552 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7553 * pagelist can have before it gets flushed back to buddy allocator.
7554 */
7555int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7556 void __user *buffer, size_t *length, loff_t *ppos)
7557{
7558 struct zone *zone;
7559 int old_percpu_pagelist_fraction;
7560 int ret;
7561
7562 mutex_lock(&pcp_batch_high_lock);
7563 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7564
7565 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7566 if (!write || ret < 0)
7567 goto out;
7568
7569 /* Sanity checking to avoid pcp imbalance */
7570 if (percpu_pagelist_fraction &&
7571 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7572 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7573 ret = -EINVAL;
7574 goto out;
7575 }
7576
7577 /* No change? */
7578 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7579 goto out;
7580
7581 for_each_populated_zone(zone) {
7582 unsigned int cpu;
7583
7584 for_each_possible_cpu(cpu)
7585 pageset_set_high_and_batch(zone,
7586 per_cpu_ptr(zone->pageset, cpu));
7587 }
7588out:
7589 mutex_unlock(&pcp_batch_high_lock);
7590 return ret;
7591}
7592
7593#ifdef CONFIG_NUMA
7594int hashdist = HASHDIST_DEFAULT;
7595
7596static int __init set_hashdist(char *str)
7597{
7598 if (!str)
7599 return 0;
7600 hashdist = simple_strtoul(str, &str, 0);
7601 return 1;
7602}
7603__setup("hashdist=", set_hashdist);
7604#endif
7605
7606#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7607/*
7608 * Returns the number of pages that arch has reserved but
7609 * is not known to alloc_large_system_hash().
7610 */
7611static unsigned long __init arch_reserved_kernel_pages(void)
7612{
7613 return 0;
7614}
7615#endif
7616
7617/*
7618 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7619 * machines. As memory size is increased the scale is also increased but at
7620 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7621 * quadruples the scale is increased by one, which means the size of hash table
7622 * only doubles, instead of quadrupling as well.
7623 * Because 32-bit systems cannot have large physical memory, where this scaling
7624 * makes sense, it is disabled on such platforms.
7625 */
7626#if __BITS_PER_LONG > 32
7627#define ADAPT_SCALE_BASE (64ul << 30)
7628#define ADAPT_SCALE_SHIFT 2
7629#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7630#endif
7631
7632/*
7633 * allocate a large system hash table from bootmem
7634 * - it is assumed that the hash table must contain an exact power-of-2
7635 * quantity of entries
7636 * - limit is the number of hash buckets, not the total allocation size
7637 */
7638void *__init alloc_large_system_hash(const char *tablename,
7639 unsigned long bucketsize,
7640 unsigned long numentries,
7641 int scale,
7642 int flags,
7643 unsigned int *_hash_shift,
7644 unsigned int *_hash_mask,
7645 unsigned long low_limit,
7646 unsigned long high_limit)
7647{
7648 unsigned long long max = high_limit;
7649 unsigned long log2qty, size;
7650 void *table = NULL;
7651 gfp_t gfp_flags;
7652
7653 /* allow the kernel cmdline to have a say */
7654 if (!numentries) {
7655 /* round applicable memory size up to nearest megabyte */
7656 numentries = nr_kernel_pages;
7657 numentries -= arch_reserved_kernel_pages();
7658
7659 /* It isn't necessary when PAGE_SIZE >= 1MB */
7660 if (PAGE_SHIFT < 20)
7661 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7662
7663#if __BITS_PER_LONG > 32
7664 if (!high_limit) {
7665 unsigned long adapt;
7666
7667 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7668 adapt <<= ADAPT_SCALE_SHIFT)
7669 scale++;
7670 }
7671#endif
7672
7673 /* limit to 1 bucket per 2^scale bytes of low memory */
7674 if (scale > PAGE_SHIFT)
7675 numentries >>= (scale - PAGE_SHIFT);
7676 else
7677 numentries <<= (PAGE_SHIFT - scale);
7678
7679 /* Make sure we've got at least a 0-order allocation.. */
7680 if (unlikely(flags & HASH_SMALL)) {
7681 /* Makes no sense without HASH_EARLY */
7682 WARN_ON(!(flags & HASH_EARLY));
7683 if (!(numentries >> *_hash_shift)) {
7684 numentries = 1UL << *_hash_shift;
7685 BUG_ON(!numentries);
7686 }
7687 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7688 numentries = PAGE_SIZE / bucketsize;
7689 }
7690 numentries = roundup_pow_of_two(numentries);
7691
7692 /* limit allocation size to 1/16 total memory by default */
7693 if (max == 0) {
7694 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7695 do_div(max, bucketsize);
7696 }
7697 max = min(max, 0x80000000ULL);
7698
7699 if (numentries < low_limit)
7700 numentries = low_limit;
7701 if (numentries > max)
7702 numentries = max;
7703
7704 log2qty = ilog2(numentries);
7705
7706 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7707 do {
7708 size = bucketsize << log2qty;
7709 if (flags & HASH_EARLY) {
7710 if (flags & HASH_ZERO)
7711 table = memblock_alloc_nopanic(size,
7712 SMP_CACHE_BYTES);
7713 else
7714 table = memblock_alloc_raw(size,
7715 SMP_CACHE_BYTES);
7716 } else if (hashdist) {
7717 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7718 } else {
7719 /*
7720 * If bucketsize is not a power-of-two, we may free
7721 * some pages at the end of hash table which
7722 * alloc_pages_exact() automatically does
7723 */
7724 if (get_order(size) < MAX_ORDER) {
7725 table = alloc_pages_exact(size, gfp_flags);
7726 kmemleak_alloc(table, size, 1, gfp_flags);
7727 }
7728 }
7729 } while (!table && size > PAGE_SIZE && --log2qty);
7730
7731 if (!table)
7732 panic("Failed to allocate %s hash table\n", tablename);
7733
7734 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7735 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7736
7737 if (_hash_shift)
7738 *_hash_shift = log2qty;
7739 if (_hash_mask)
7740 *_hash_mask = (1 << log2qty) - 1;
7741
7742 return table;
7743}
7744
7745/*
7746 * This function checks whether pageblock includes unmovable pages or not.
7747 * If @count is not zero, it is okay to include less @count unmovable pages
7748 *
7749 * PageLRU check without isolation or lru_lock could race so that
7750 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7751 * check without lock_page also may miss some movable non-lru pages at
7752 * race condition. So you can't expect this function should be exact.
7753 */
7754bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7755 int migratetype,
7756 bool skip_hwpoisoned_pages)
7757{
7758 unsigned long pfn, iter, found;
7759
7760 /*
7761 * TODO we could make this much more efficient by not checking every
7762 * page in the range if we know all of them are in MOVABLE_ZONE and
7763 * that the movable zone guarantees that pages are migratable but
7764 * the later is not the case right now unfortunatelly. E.g. movablecore
7765 * can still lead to having bootmem allocations in zone_movable.
7766 */
7767
7768 /*
7769 * CMA allocations (alloc_contig_range) really need to mark isolate
7770 * CMA pageblocks even when they are not movable in fact so consider
7771 * them movable here.
7772 */
7773 if (is_migrate_cma(migratetype) &&
7774 is_migrate_cma(get_pageblock_migratetype(page)))
7775 return false;
7776
7777 pfn = page_to_pfn(page);
7778 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7779 unsigned long check = pfn + iter;
7780
7781 if (!pfn_valid_within(check))
7782 continue;
7783
7784 page = pfn_to_page(check);
7785
7786 if (PageReserved(page))
7787 goto unmovable;
7788
7789 /*
7790 * If the zone is movable and we have ruled out all reserved
7791 * pages then it should be reasonably safe to assume the rest
7792 * is movable.
7793 */
7794 if (zone_idx(zone) == ZONE_MOVABLE)
7795 continue;
7796
7797 /*
7798 * Hugepages are not in LRU lists, but they're movable.
7799 * We need not scan over tail pages bacause we don't
7800 * handle each tail page individually in migration.
7801 */
7802 if (PageHuge(page)) {
7803
7804 if (!hugepage_migration_supported(page_hstate(page)))
7805 goto unmovable;
7806
7807 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7808 continue;
7809 }
7810
7811 /*
7812 * We can't use page_count without pin a page
7813 * because another CPU can free compound page.
7814 * This check already skips compound tails of THP
7815 * because their page->_refcount is zero at all time.
7816 */
7817 if (!page_ref_count(page)) {
7818 if (PageBuddy(page))
7819 iter += (1 << page_order(page)) - 1;
7820 continue;
7821 }
7822
7823 /*
7824 * The HWPoisoned page may be not in buddy system, and
7825 * page_count() is not 0.
7826 */
7827 if (skip_hwpoisoned_pages && PageHWPoison(page))
7828 continue;
7829
7830 if (__PageMovable(page))
7831 continue;
7832
7833 if (!PageLRU(page))
7834 found++;
7835 /*
7836 * If there are RECLAIMABLE pages, we need to check
7837 * it. But now, memory offline itself doesn't call
7838 * shrink_node_slabs() and it still to be fixed.
7839 */
7840 /*
7841 * If the page is not RAM, page_count()should be 0.
7842 * we don't need more check. This is an _used_ not-movable page.
7843 *
7844 * The problematic thing here is PG_reserved pages. PG_reserved
7845 * is set to both of a memory hole page and a _used_ kernel
7846 * page at boot.
7847 */
7848 if (found > count)
7849 goto unmovable;
7850 }
7851 return false;
7852unmovable:
7853 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7854 return true;
7855}
7856
7857#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7858
7859static unsigned long pfn_max_align_down(unsigned long pfn)
7860{
7861 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7862 pageblock_nr_pages) - 1);
7863}
7864
7865static unsigned long pfn_max_align_up(unsigned long pfn)
7866{
7867 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7868 pageblock_nr_pages));
7869}
7870
7871/* [start, end) must belong to a single zone. */
7872static int __alloc_contig_migrate_range(struct compact_control *cc,
7873 unsigned long start, unsigned long end)
7874{
7875 /* This function is based on compact_zone() from compaction.c. */
7876 unsigned long nr_reclaimed;
7877 unsigned long pfn = start;
7878 unsigned int tries = 0;
7879 int ret = 0;
7880
7881 migrate_prep();
7882
7883 while (pfn < end || !list_empty(&cc->migratepages)) {
7884 if (fatal_signal_pending(current)) {
7885 ret = -EINTR;
7886 break;
7887 }
7888
7889 if (list_empty(&cc->migratepages)) {
7890 cc->nr_migratepages = 0;
7891 pfn = isolate_migratepages_range(cc, pfn, end);
7892 if (!pfn) {
7893 ret = -EINTR;
7894 break;
7895 }
7896 tries = 0;
7897 } else if (++tries == 5) {
7898 ret = ret < 0 ? ret : -EBUSY;
7899 break;
7900 }
7901
7902 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7903 &cc->migratepages);
7904 cc->nr_migratepages -= nr_reclaimed;
7905
7906 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7907 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7908 }
7909 if (ret < 0) {
7910 putback_movable_pages(&cc->migratepages);
7911 return ret;
7912 }
7913 return 0;
7914}
7915
7916/**
7917 * alloc_contig_range() -- tries to allocate given range of pages
7918 * @start: start PFN to allocate
7919 * @end: one-past-the-last PFN to allocate
7920 * @migratetype: migratetype of the underlaying pageblocks (either
7921 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7922 * in range must have the same migratetype and it must
7923 * be either of the two.
7924 * @gfp_mask: GFP mask to use during compaction
7925 *
7926 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7927 * aligned. The PFN range must belong to a single zone.
7928 *
7929 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7930 * pageblocks in the range. Once isolated, the pageblocks should not
7931 * be modified by others.
7932 *
7933 * Returns zero on success or negative error code. On success all
7934 * pages which PFN is in [start, end) are allocated for the caller and
7935 * need to be freed with free_contig_range().
7936 */
7937int alloc_contig_range(unsigned long start, unsigned long end,
7938 unsigned migratetype, gfp_t gfp_mask)
7939{
7940 unsigned long outer_start, outer_end;
7941 unsigned int order;
7942 int ret = 0;
7943
7944 struct compact_control cc = {
7945 .nr_migratepages = 0,
7946 .order = -1,
7947 .zone = page_zone(pfn_to_page(start)),
7948 .mode = MIGRATE_SYNC,
7949 .ignore_skip_hint = true,
7950 .no_set_skip_hint = true,
7951 .gfp_mask = current_gfp_context(gfp_mask),
7952 };
7953 INIT_LIST_HEAD(&cc.migratepages);
7954
7955 /*
7956 * What we do here is we mark all pageblocks in range as
7957 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7958 * have different sizes, and due to the way page allocator
7959 * work, we align the range to biggest of the two pages so
7960 * that page allocator won't try to merge buddies from
7961 * different pageblocks and change MIGRATE_ISOLATE to some
7962 * other migration type.
7963 *
7964 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7965 * migrate the pages from an unaligned range (ie. pages that
7966 * we are interested in). This will put all the pages in
7967 * range back to page allocator as MIGRATE_ISOLATE.
7968 *
7969 * When this is done, we take the pages in range from page
7970 * allocator removing them from the buddy system. This way
7971 * page allocator will never consider using them.
7972 *
7973 * This lets us mark the pageblocks back as
7974 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7975 * aligned range but not in the unaligned, original range are
7976 * put back to page allocator so that buddy can use them.
7977 */
7978
7979 ret = start_isolate_page_range(pfn_max_align_down(start),
7980 pfn_max_align_up(end), migratetype,
7981 false);
7982 if (ret)
7983 return ret;
7984
7985 /*
7986 * In case of -EBUSY, we'd like to know which page causes problem.
7987 * So, just fall through. test_pages_isolated() has a tracepoint
7988 * which will report the busy page.
7989 *
7990 * It is possible that busy pages could become available before
7991 * the call to test_pages_isolated, and the range will actually be
7992 * allocated. So, if we fall through be sure to clear ret so that
7993 * -EBUSY is not accidentally used or returned to caller.
7994 */
7995 ret = __alloc_contig_migrate_range(&cc, start, end);
7996 if (ret && ret != -EBUSY)
7997 goto done;
7998 ret =0;
7999
8000 /*
8001 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8002 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8003 * more, all pages in [start, end) are free in page allocator.
8004 * What we are going to do is to allocate all pages from
8005 * [start, end) (that is remove them from page allocator).
8006 *
8007 * The only problem is that pages at the beginning and at the
8008 * end of interesting range may be not aligned with pages that
8009 * page allocator holds, ie. they can be part of higher order
8010 * pages. Because of this, we reserve the bigger range and
8011 * once this is done free the pages we are not interested in.
8012 *
8013 * We don't have to hold zone->lock here because the pages are
8014 * isolated thus they won't get removed from buddy.
8015 */
8016
8017 lru_add_drain_all();
8018 drain_all_pages(cc.zone);
8019
8020 order = 0;
8021 outer_start = start;
8022 while (!PageBuddy(pfn_to_page(outer_start))) {
8023 if (++order >= MAX_ORDER) {
8024 outer_start = start;
8025 break;
8026 }
8027 outer_start &= ~0UL << order;
8028 }
8029
8030 if (outer_start != start) {
8031 order = page_order(pfn_to_page(outer_start));
8032
8033 /*
8034 * outer_start page could be small order buddy page and
8035 * it doesn't include start page. Adjust outer_start
8036 * in this case to report failed page properly
8037 * on tracepoint in test_pages_isolated()
8038 */
8039 if (outer_start + (1UL << order) <= start)
8040 outer_start = start;
8041 }
8042
8043 /* Make sure the range is really isolated. */
8044 if (test_pages_isolated(outer_start, end, false)) {
8045 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8046 __func__, outer_start, end);
8047 ret = -EBUSY;
8048 goto done;
8049 }
8050
8051 /* Grab isolated pages from freelists. */
8052 outer_end = isolate_freepages_range(&cc, outer_start, end);
8053 if (!outer_end) {
8054 ret = -EBUSY;
8055 goto done;
8056 }
8057
8058 /* Free head and tail (if any) */
8059 if (start != outer_start)
8060 free_contig_range(outer_start, start - outer_start);
8061 if (end != outer_end)
8062 free_contig_range(end, outer_end - end);
8063
8064done:
8065 undo_isolate_page_range(pfn_max_align_down(start),
8066 pfn_max_align_up(end), migratetype);
8067 return ret;
8068}
8069
8070void free_contig_range(unsigned long pfn, unsigned nr_pages)
8071{
8072 unsigned int count = 0;
8073
8074 for (; nr_pages--; pfn++) {
8075 struct page *page = pfn_to_page(pfn);
8076
8077 count += page_count(page) != 1;
8078 __free_page(page);
8079 }
8080 WARN(count != 0, "%d pages are still in use!\n", count);
8081}
8082#endif
8083
8084#ifdef CONFIG_MEMORY_HOTPLUG
8085/*
8086 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8087 * page high values need to be recalulated.
8088 */
8089void __meminit zone_pcp_update(struct zone *zone)
8090{
8091 unsigned cpu;
8092 mutex_lock(&pcp_batch_high_lock);
8093 for_each_possible_cpu(cpu)
8094 pageset_set_high_and_batch(zone,
8095 per_cpu_ptr(zone->pageset, cpu));
8096 mutex_unlock(&pcp_batch_high_lock);
8097}
8098#endif
8099
8100void zone_pcp_reset(struct zone *zone)
8101{
8102 unsigned long flags;
8103 int cpu;
8104 struct per_cpu_pageset *pset;
8105
8106 /* avoid races with drain_pages() */
8107 local_irq_save(flags);
8108 if (zone->pageset != &boot_pageset) {
8109 for_each_online_cpu(cpu) {
8110 pset = per_cpu_ptr(zone->pageset, cpu);
8111 drain_zonestat(zone, pset);
8112 }
8113 free_percpu(zone->pageset);
8114 zone->pageset = &boot_pageset;
8115 }
8116 local_irq_restore(flags);
8117}
8118
8119#ifdef CONFIG_MEMORY_HOTREMOVE
8120/*
8121 * All pages in the range must be in a single zone and isolated
8122 * before calling this.
8123 */
8124void
8125__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8126{
8127 struct page *page;
8128 struct zone *zone;
8129 unsigned int order, i;
8130 unsigned long pfn;
8131 unsigned long flags;
8132 /* find the first valid pfn */
8133 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8134 if (pfn_valid(pfn))
8135 break;
8136 if (pfn == end_pfn)
8137 return;
8138 offline_mem_sections(pfn, end_pfn);
8139 zone = page_zone(pfn_to_page(pfn));
8140 spin_lock_irqsave(&zone->lock, flags);
8141 pfn = start_pfn;
8142 while (pfn < end_pfn) {
8143 if (!pfn_valid(pfn)) {
8144 pfn++;
8145 continue;
8146 }
8147 page = pfn_to_page(pfn);
8148 /*
8149 * The HWPoisoned page may be not in buddy system, and
8150 * page_count() is not 0.
8151 */
8152 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8153 pfn++;
8154 SetPageReserved(page);
8155 continue;
8156 }
8157
8158 BUG_ON(page_count(page));
8159 BUG_ON(!PageBuddy(page));
8160 order = page_order(page);
8161#ifdef CONFIG_DEBUG_VM
8162 pr_info("remove from free list %lx %d %lx\n",
8163 pfn, 1 << order, end_pfn);
8164#endif
8165 list_del(&page->lru);
8166 rmv_page_order(page);
8167 zone->free_area[order].nr_free--;
8168 for (i = 0; i < (1 << order); i++)
8169 SetPageReserved((page+i));
8170 pfn += (1 << order);
8171 }
8172 spin_unlock_irqrestore(&zone->lock, flags);
8173}
8174#endif
8175
8176bool is_free_buddy_page(struct page *page)
8177{
8178 struct zone *zone = page_zone(page);
8179 unsigned long pfn = page_to_pfn(page);
8180 unsigned long flags;
8181 unsigned int order;
8182
8183 spin_lock_irqsave(&zone->lock, flags);
8184 for (order = 0; order < MAX_ORDER; order++) {
8185 struct page *page_head = page - (pfn & ((1 << order) - 1));
8186
8187 if (PageBuddy(page_head) && page_order(page_head) >= order)
8188 break;
8189 }
8190 spin_unlock_irqrestore(&zone->lock, flags);
8191
8192 return order < MAX_ORDER;
8193}
8194
8195#ifdef CONFIG_MEMORY_FAILURE
8196/*
8197 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8198 * test is performed under the zone lock to prevent a race against page
8199 * allocation.
8200 */
8201bool set_hwpoison_free_buddy_page(struct page *page)
8202{
8203 struct zone *zone = page_zone(page);
8204 unsigned long pfn = page_to_pfn(page);
8205 unsigned long flags;
8206 unsigned int order;
8207 bool hwpoisoned = false;
8208
8209 spin_lock_irqsave(&zone->lock, flags);
8210 for (order = 0; order < MAX_ORDER; order++) {
8211 struct page *page_head = page - (pfn & ((1 << order) - 1));
8212
8213 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8214 if (!TestSetPageHWPoison(page))
8215 hwpoisoned = true;
8216 break;
8217 }
8218 }
8219 spin_unlock_irqrestore(&zone->lock, flags);
8220
8221 return hwpoisoned;
8222}
8223#endif