Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/dst_metadata.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148
149#include "net-sysfs.h"
150
151#define MAX_GRO_SKBS 8
152
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156static DEFINE_SPINLOCK(ptype_lock);
157static DEFINE_SPINLOCK(offload_lock);
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
160static struct list_head offload_base __read_mostly;
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231/* Device list insertion */
232static void list_netdevice(struct net_device *dev)
233{
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246}
247
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263}
264
265/*
266 * Our notifier list
267 */
268
269static RAW_NOTIFIER_HEAD(netdev_chain);
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279#ifdef CONFIG_LOCKDEP
280/*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
351#else
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357{
358}
359#endif
360
361/*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391}
392
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413}
414EXPORT_SYMBOL(dev_add_pack);
415
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444out:
445 spin_unlock(&ptype_lock);
446}
447EXPORT_SYMBOL(__dev_remove_pack);
448
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466}
467EXPORT_SYMBOL(dev_remove_pack);
468
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
509static void __dev_remove_offload(struct packet_offload *po)
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
525 spin_unlock(&offload_lock);
526}
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
548/******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609}
610EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613/**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722/**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
734struct net_device *__dev_get_by_name(struct net *net, const char *name)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_name);
746
747/**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772/**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
784struct net_device *dev_get_by_name(struct net *net, const char *name)
785{
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794}
795EXPORT_SYMBOL(dev_get_by_name);
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810{
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819}
820EXPORT_SYMBOL(__dev_get_by_index);
821
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847/**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
858struct net_device *dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868}
869EXPORT_SYMBOL(dev_get_by_index);
870
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
930/**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946{
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959{
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968}
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972{
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984}
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000{
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 p = strchr(name, '%');
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1082
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1122}
1123
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1146{
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1178
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1181
1182 net = dev_net(dev);
1183 if (dev->flags & IFF_UP)
1184 return -EBUSY;
1185
1186 write_seqcount_begin(&devnet_rename_seq);
1187
1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 write_seqcount_end(&devnet_rename_seq);
1190 return 0;
1191 }
1192
1193 memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195 err = dev_get_valid_name(net, dev, newname);
1196 if (err < 0) {
1197 write_seqcount_end(&devnet_rename_seq);
1198 return err;
1199 }
1200
1201 if (oldname[0] && !strchr(oldname, '%'))
1202 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204 old_assign_type = dev->name_assign_type;
1205 dev->name_assign_type = NET_NAME_RENAMED;
1206
1207rollback:
1208 ret = device_rename(&dev->dev, dev->name);
1209 if (ret) {
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 write_seqcount_end(&devnet_rename_seq);
1213 return ret;
1214 }
1215
1216 write_seqcount_end(&devnet_rename_seq);
1217
1218 netdev_adjacent_rename_links(dev, oldname);
1219
1220 write_lock_bh(&dev_base_lock);
1221 hlist_del_rcu(&dev->name_hlist);
1222 write_unlock_bh(&dev_base_lock);
1223
1224 synchronize_rcu();
1225
1226 write_lock_bh(&dev_base_lock);
1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 write_unlock_bh(&dev_base_lock);
1229
1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 ret = notifier_to_errno(ret);
1232
1233 if (ret) {
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235 if (err >= 0) {
1236 err = ret;
1237 write_seqcount_begin(&devnet_rename_seq);
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 memcpy(oldname, newname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 old_assign_type = NET_NAME_RENAMED;
1242 goto rollback;
1243 } else {
1244 pr_err("%s: name change rollback failed: %d\n",
1245 dev->name, ret);
1246 }
1247 }
1248
1249 return err;
1250}
1251
1252/**
1253 * dev_set_alias - change ifalias of a device
1254 * @dev: device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1257 *
1258 * Set ifalias for a device,
1259 */
1260int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261{
1262 struct dev_ifalias *new_alias = NULL;
1263
1264 if (len >= IFALIASZ)
1265 return -EINVAL;
1266
1267 if (len) {
1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 if (!new_alias)
1270 return -ENOMEM;
1271
1272 memcpy(new_alias->ifalias, alias, len);
1273 new_alias->ifalias[len] = 0;
1274 }
1275
1276 mutex_lock(&ifalias_mutex);
1277 rcu_swap_protected(dev->ifalias, new_alias,
1278 mutex_is_locked(&ifalias_mutex));
1279 mutex_unlock(&ifalias_mutex);
1280
1281 if (new_alias)
1282 kfree_rcu(new_alias, rcuhead);
1283
1284 return len;
1285}
1286EXPORT_SYMBOL(dev_set_alias);
1287
1288/**
1289 * dev_get_alias - get ifalias of a device
1290 * @dev: device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1293 *
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1296 */
1297int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298{
1299 const struct dev_ifalias *alias;
1300 int ret = 0;
1301
1302 rcu_read_lock();
1303 alias = rcu_dereference(dev->ifalias);
1304 if (alias)
1305 ret = snprintf(name, len, "%s", alias->ifalias);
1306 rcu_read_unlock();
1307
1308 return ret;
1309}
1310
1311/**
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1314 *
1315 * Called to indicate a device has changed features.
1316 */
1317void netdev_features_change(struct net_device *dev)
1318{
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320}
1321EXPORT_SYMBOL(netdev_features_change);
1322
1323/**
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1326 *
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1330 */
1331void netdev_state_change(struct net_device *dev)
1332{
1333 if (dev->flags & IFF_UP) {
1334 struct netdev_notifier_change_info change_info = {
1335 .info.dev = dev,
1336 };
1337
1338 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 &change_info.info);
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 }
1342}
1343EXPORT_SYMBOL(netdev_state_change);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 rtnl_unlock();
1361}
1362EXPORT_SYMBOL(netdev_notify_peers);
1363
1364static int __dev_open(struct net_device *dev)
1365{
1366 const struct net_device_ops *ops = dev->netdev_ops;
1367 int ret;
1368
1369 ASSERT_RTNL();
1370
1371 if (!netif_device_present(dev))
1372 return -ENODEV;
1373
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1377 */
1378 netpoll_poll_disable(dev);
1379
1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 ret = notifier_to_errno(ret);
1382 if (ret)
1383 return ret;
1384
1385 set_bit(__LINK_STATE_START, &dev->state);
1386
1387 if (ops->ndo_validate_addr)
1388 ret = ops->ndo_validate_addr(dev);
1389
1390 if (!ret && ops->ndo_open)
1391 ret = ops->ndo_open(dev);
1392
1393 netpoll_poll_enable(dev);
1394
1395 if (ret)
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397 else {
1398 dev->flags |= IFF_UP;
1399 dev_set_rx_mode(dev);
1400 dev_activate(dev);
1401 add_device_randomness(dev->dev_addr, dev->addr_len);
1402 }
1403
1404 return ret;
1405}
1406
1407/**
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1410 *
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1415 *
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1418 */
1419int dev_open(struct net_device *dev)
1420{
1421 int ret;
1422
1423 if (dev->flags & IFF_UP)
1424 return 0;
1425
1426 ret = __dev_open(dev);
1427 if (ret < 0)
1428 return ret;
1429
1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433 return ret;
1434}
1435EXPORT_SYMBOL(dev_open);
1436
1437static void __dev_close_many(struct list_head *head)
1438{
1439 struct net_device *dev;
1440
1441 ASSERT_RTNL();
1442 might_sleep();
1443
1444 list_for_each_entry(dev, head, close_list) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev);
1447
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1454 *
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1457 */
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1459 }
1460
1461 dev_deactivate_many(head);
1462
1463 list_for_each_entry(dev, head, close_list) {
1464 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466 /*
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1469 *
1470 * We allow it to be called even after a DETACH hot-plug
1471 * event.
1472 */
1473 if (ops->ndo_stop)
1474 ops->ndo_stop(dev);
1475
1476 dev->flags &= ~IFF_UP;
1477 netpoll_poll_enable(dev);
1478 }
1479}
1480
1481static void __dev_close(struct net_device *dev)
1482{
1483 LIST_HEAD(single);
1484
1485 list_add(&dev->close_list, &single);
1486 __dev_close_many(&single);
1487 list_del(&single);
1488}
1489
1490void dev_close_many(struct list_head *head, bool unlink)
1491{
1492 struct net_device *dev, *tmp;
1493
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev, tmp, head, close_list)
1496 if (!(dev->flags & IFF_UP))
1497 list_del_init(&dev->close_list);
1498
1499 __dev_close_many(head);
1500
1501 list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 if (unlink)
1505 list_del_init(&dev->close_list);
1506 }
1507}
1508EXPORT_SYMBOL(dev_close_many);
1509
1510/**
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1513 *
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517 * chain.
1518 */
1519void dev_close(struct net_device *dev)
1520{
1521 if (dev->flags & IFF_UP) {
1522 LIST_HEAD(single);
1523
1524 list_add(&dev->close_list, &single);
1525 dev_close_many(&single, true);
1526 list_del(&single);
1527 }
1528}
1529EXPORT_SYMBOL(dev_close);
1530
1531
1532/**
1533 * dev_disable_lro - disable Large Receive Offload on a device
1534 * @dev: device
1535 *
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1539 */
1540void dev_disable_lro(struct net_device *dev)
1541{
1542 struct net_device *lower_dev;
1543 struct list_head *iter;
1544
1545 dev->wanted_features &= ~NETIF_F_LRO;
1546 netdev_update_features(dev);
1547
1548 if (unlikely(dev->features & NETIF_F_LRO))
1549 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551 netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 dev_disable_lro(lower_dev);
1553}
1554EXPORT_SYMBOL(dev_disable_lro);
1555
1556/**
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558 * @dev: device
1559 *
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1562 * the device.
1563 */
1564static void dev_disable_gro_hw(struct net_device *dev)
1565{
1566 dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 netdev_update_features(dev);
1568
1569 if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571}
1572
1573const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574{
1575#define N(val) \
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1578 switch (cmd) {
1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 }
1589#undef N
1590 return "UNKNOWN_NETDEV_EVENT";
1591}
1592EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 struct net_device *dev)
1596{
1597 struct netdev_notifier_info info = {
1598 .dev = dev,
1599 };
1600
1601 return nb->notifier_call(nb, val, &info);
1602}
1603
1604static int dev_boot_phase = 1;
1605
1606/**
1607 * register_netdevice_notifier - register a network notifier block
1608 * @nb: notifier
1609 *
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1618 */
1619
1620int register_netdevice_notifier(struct notifier_block *nb)
1621{
1622 struct net_device *dev;
1623 struct net_device *last;
1624 struct net *net;
1625 int err;
1626
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem);
1629 rtnl_lock();
1630 err = raw_notifier_chain_register(&netdev_chain, nb);
1631 if (err)
1632 goto unlock;
1633 if (dev_boot_phase)
1634 goto unlock;
1635 for_each_net(net) {
1636 for_each_netdev(net, dev) {
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 goto rollback;
1641
1642 if (!(dev->flags & IFF_UP))
1643 continue;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 }
1647 }
1648
1649unlock:
1650 rtnl_unlock();
1651 up_write(&pernet_ops_rwsem);
1652 return err;
1653
1654rollback:
1655 last = dev;
1656 for_each_net(net) {
1657 for_each_netdev(net, dev) {
1658 if (dev == last)
1659 goto outroll;
1660
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 dev);
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 }
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 }
1669
1670outroll:
1671 raw_notifier_chain_unregister(&netdev_chain, nb);
1672 goto unlock;
1673}
1674EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676/**
1677 * unregister_netdevice_notifier - unregister a network notifier block
1678 * @nb: notifier
1679 *
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1684 *
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1688 */
1689
1690int unregister_netdevice_notifier(struct notifier_block *nb)
1691{
1692 struct net_device *dev;
1693 struct net *net;
1694 int err;
1695
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1698 rtnl_lock();
1699 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 if (err)
1701 goto unlock;
1702
1703 for_each_net(net) {
1704 for_each_netdev(net, dev) {
1705 if (dev->flags & IFF_UP) {
1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 dev);
1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 }
1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 }
1712 }
1713unlock:
1714 rtnl_unlock();
1715 up_write(&pernet_ops_rwsem);
1716 return err;
1717}
1718EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720/**
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1724 *
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1727 */
1728
1729static int call_netdevice_notifiers_info(unsigned long val,
1730 struct netdev_notifier_info *info)
1731{
1732 ASSERT_RTNL();
1733 return raw_notifier_call_chain(&netdev_chain, val, info);
1734}
1735
1736/**
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1745int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746{
1747 struct netdev_notifier_info info = {
1748 .dev = dev,
1749 };
1750
1751 return call_netdevice_notifiers_info(val, &info);
1752}
1753EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755/**
1756 * call_netdevice_notifiers_mtu - call all network notifier blocks
1757 * @val: value passed unmodified to notifier function
1758 * @dev: net_device pointer passed unmodified to notifier function
1759 * @arg: additional u32 argument passed to the notifier function
1760 *
1761 * Call all network notifier blocks. Parameters and return value
1762 * are as for raw_notifier_call_chain().
1763 */
1764static int call_netdevice_notifiers_mtu(unsigned long val,
1765 struct net_device *dev, u32 arg)
1766{
1767 struct netdev_notifier_info_ext info = {
1768 .info.dev = dev,
1769 .ext.mtu = arg,
1770 };
1771
1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774 return call_netdevice_notifiers_info(val, &info.info);
1775}
1776
1777#ifdef CONFIG_NET_INGRESS
1778static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780void net_inc_ingress_queue(void)
1781{
1782 static_branch_inc(&ingress_needed_key);
1783}
1784EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786void net_dec_ingress_queue(void)
1787{
1788 static_branch_dec(&ingress_needed_key);
1789}
1790EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791#endif
1792
1793#ifdef CONFIG_NET_EGRESS
1794static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796void net_inc_egress_queue(void)
1797{
1798 static_branch_inc(&egress_needed_key);
1799}
1800EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802void net_dec_egress_queue(void)
1803{
1804 static_branch_dec(&egress_needed_key);
1805}
1806EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807#endif
1808
1809static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810#ifdef HAVE_JUMP_LABEL
1811static atomic_t netstamp_needed_deferred;
1812static atomic_t netstamp_wanted;
1813static void netstamp_clear(struct work_struct *work)
1814{
1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 int wanted;
1817
1818 wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 if (wanted > 0)
1820 static_branch_enable(&netstamp_needed_key);
1821 else
1822 static_branch_disable(&netstamp_needed_key);
1823}
1824static DECLARE_WORK(netstamp_work, netstamp_clear);
1825#endif
1826
1827void net_enable_timestamp(void)
1828{
1829#ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 0)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 return;
1838 }
1839 atomic_inc(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841#else
1842 static_branch_inc(&netstamp_needed_key);
1843#endif
1844}
1845EXPORT_SYMBOL(net_enable_timestamp);
1846
1847void net_disable_timestamp(void)
1848{
1849#ifdef HAVE_JUMP_LABEL
1850 int wanted;
1851
1852 while (1) {
1853 wanted = atomic_read(&netstamp_wanted);
1854 if (wanted <= 1)
1855 break;
1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 return;
1858 }
1859 atomic_dec(&netstamp_needed_deferred);
1860 schedule_work(&netstamp_work);
1861#else
1862 static_branch_dec(&netstamp_needed_key);
1863#endif
1864}
1865EXPORT_SYMBOL(net_disable_timestamp);
1866
1867static inline void net_timestamp_set(struct sk_buff *skb)
1868{
1869 skb->tstamp = 0;
1870 if (static_branch_unlikely(&netstamp_needed_key))
1871 __net_timestamp(skb);
1872}
1873
1874#define net_timestamp_check(COND, SKB) \
1875 if (static_branch_unlikely(&netstamp_needed_key)) { \
1876 if ((COND) && !(SKB)->tstamp) \
1877 __net_timestamp(SKB); \
1878 } \
1879
1880bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881{
1882 unsigned int len;
1883
1884 if (!(dev->flags & IFF_UP))
1885 return false;
1886
1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 if (skb->len <= len)
1889 return true;
1890
1891 /* if TSO is enabled, we don't care about the length as the packet
1892 * could be forwarded without being segmented before
1893 */
1894 if (skb_is_gso(skb))
1895 return true;
1896
1897 return false;
1898}
1899EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902{
1903 int ret = ____dev_forward_skb(dev, skb);
1904
1905 if (likely(!ret)) {
1906 skb->protocol = eth_type_trans(skb, dev);
1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 }
1909
1910 return ret;
1911}
1912EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914/**
1915 * dev_forward_skb - loopback an skb to another netif
1916 *
1917 * @dev: destination network device
1918 * @skb: buffer to forward
1919 *
1920 * return values:
1921 * NET_RX_SUCCESS (no congestion)
1922 * NET_RX_DROP (packet was dropped, but freed)
1923 *
1924 * dev_forward_skb can be used for injecting an skb from the
1925 * start_xmit function of one device into the receive queue
1926 * of another device.
1927 *
1928 * The receiving device may be in another namespace, so
1929 * we have to clear all information in the skb that could
1930 * impact namespace isolation.
1931 */
1932int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933{
1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935}
1936EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938static inline int deliver_skb(struct sk_buff *skb,
1939 struct packet_type *pt_prev,
1940 struct net_device *orig_dev)
1941{
1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 return -ENOMEM;
1944 refcount_inc(&skb->users);
1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946}
1947
1948static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 struct packet_type **pt,
1950 struct net_device *orig_dev,
1951 __be16 type,
1952 struct list_head *ptype_list)
1953{
1954 struct packet_type *ptype, *pt_prev = *pt;
1955
1956 list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 if (ptype->type != type)
1958 continue;
1959 if (pt_prev)
1960 deliver_skb(skb, pt_prev, orig_dev);
1961 pt_prev = ptype;
1962 }
1963 *pt = pt_prev;
1964}
1965
1966static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967{
1968 if (!ptype->af_packet_priv || !skb->sk)
1969 return false;
1970
1971 if (ptype->id_match)
1972 return ptype->id_match(ptype, skb->sk);
1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 return true;
1975
1976 return false;
1977}
1978
1979/**
1980 * dev_nit_active - return true if any network interface taps are in use
1981 *
1982 * @dev: network device to check for the presence of taps
1983 */
1984bool dev_nit_active(struct net_device *dev)
1985{
1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987}
1988EXPORT_SYMBOL_GPL(dev_nit_active);
1989
1990/*
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1993 */
1994
1995void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996{
1997 struct packet_type *ptype;
1998 struct sk_buff *skb2 = NULL;
1999 struct packet_type *pt_prev = NULL;
2000 struct list_head *ptype_list = &ptype_all;
2001
2002 rcu_read_lock();
2003again:
2004 list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 if (ptype->ignore_outgoing)
2006 continue;
2007
2008 /* Never send packets back to the socket
2009 * they originated from - MvS (miquels@drinkel.ow.org)
2010 */
2011 if (skb_loop_sk(ptype, skb))
2012 continue;
2013
2014 if (pt_prev) {
2015 deliver_skb(skb2, pt_prev, skb->dev);
2016 pt_prev = ptype;
2017 continue;
2018 }
2019
2020 /* need to clone skb, done only once */
2021 skb2 = skb_clone(skb, GFP_ATOMIC);
2022 if (!skb2)
2023 goto out_unlock;
2024
2025 net_timestamp_set(skb2);
2026
2027 /* skb->nh should be correctly
2028 * set by sender, so that the second statement is
2029 * just protection against buggy protocols.
2030 */
2031 skb_reset_mac_header(skb2);
2032
2033 if (skb_network_header(skb2) < skb2->data ||
2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 ntohs(skb2->protocol),
2037 dev->name);
2038 skb_reset_network_header(skb2);
2039 }
2040
2041 skb2->transport_header = skb2->network_header;
2042 skb2->pkt_type = PACKET_OUTGOING;
2043 pt_prev = ptype;
2044 }
2045
2046 if (ptype_list == &ptype_all) {
2047 ptype_list = &dev->ptype_all;
2048 goto again;
2049 }
2050out_unlock:
2051 if (pt_prev) {
2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054 else
2055 kfree_skb(skb2);
2056 }
2057 rcu_read_unlock();
2058}
2059EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060
2061/**
2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063 * @dev: Network device
2064 * @txq: number of queues available
2065 *
2066 * If real_num_tx_queues is changed the tc mappings may no longer be
2067 * valid. To resolve this verify the tc mapping remains valid and if
2068 * not NULL the mapping. With no priorities mapping to this
2069 * offset/count pair it will no longer be used. In the worst case TC0
2070 * is invalid nothing can be done so disable priority mappings. If is
2071 * expected that drivers will fix this mapping if they can before
2072 * calling netif_set_real_num_tx_queues.
2073 */
2074static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075{
2076 int i;
2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078
2079 /* If TC0 is invalidated disable TC mapping */
2080 if (tc->offset + tc->count > txq) {
2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082 dev->num_tc = 0;
2083 return;
2084 }
2085
2086 /* Invalidated prio to tc mappings set to TC0 */
2087 for (i = 1; i < TC_BITMASK + 1; i++) {
2088 int q = netdev_get_prio_tc_map(dev, i);
2089
2090 tc = &dev->tc_to_txq[q];
2091 if (tc->offset + tc->count > txq) {
2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093 i, q);
2094 netdev_set_prio_tc_map(dev, i, 0);
2095 }
2096 }
2097}
2098
2099int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100{
2101 if (dev->num_tc) {
2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 int i;
2104
2105 /* walk through the TCs and see if it falls into any of them */
2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107 if ((txq - tc->offset) < tc->count)
2108 return i;
2109 }
2110
2111 /* didn't find it, just return -1 to indicate no match */
2112 return -1;
2113 }
2114
2115 return 0;
2116}
2117EXPORT_SYMBOL(netdev_txq_to_tc);
2118
2119#ifdef CONFIG_XPS
2120struct static_key xps_needed __read_mostly;
2121EXPORT_SYMBOL(xps_needed);
2122struct static_key xps_rxqs_needed __read_mostly;
2123EXPORT_SYMBOL(xps_rxqs_needed);
2124static DEFINE_MUTEX(xps_map_mutex);
2125#define xmap_dereference(P) \
2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127
2128static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129 int tci, u16 index)
2130{
2131 struct xps_map *map = NULL;
2132 int pos;
2133
2134 if (dev_maps)
2135 map = xmap_dereference(dev_maps->attr_map[tci]);
2136 if (!map)
2137 return false;
2138
2139 for (pos = map->len; pos--;) {
2140 if (map->queues[pos] != index)
2141 continue;
2142
2143 if (map->len > 1) {
2144 map->queues[pos] = map->queues[--map->len];
2145 break;
2146 }
2147
2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149 kfree_rcu(map, rcu);
2150 return false;
2151 }
2152
2153 return true;
2154}
2155
2156static bool remove_xps_queue_cpu(struct net_device *dev,
2157 struct xps_dev_maps *dev_maps,
2158 int cpu, u16 offset, u16 count)
2159{
2160 int num_tc = dev->num_tc ? : 1;
2161 bool active = false;
2162 int tci;
2163
2164 for (tci = cpu * num_tc; num_tc--; tci++) {
2165 int i, j;
2166
2167 for (i = count, j = offset; i--; j++) {
2168 if (!remove_xps_queue(dev_maps, tci, j))
2169 break;
2170 }
2171
2172 active |= i < 0;
2173 }
2174
2175 return active;
2176}
2177
2178static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2179 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2180 u16 offset, u16 count, bool is_rxqs_map)
2181{
2182 bool active = false;
2183 int i, j;
2184
2185 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2186 j < nr_ids;)
2187 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2188 count);
2189 if (!active) {
2190 if (is_rxqs_map) {
2191 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2192 } else {
2193 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2194
2195 for (i = offset + (count - 1); count--; i--)
2196 netdev_queue_numa_node_write(
2197 netdev_get_tx_queue(dev, i),
2198 NUMA_NO_NODE);
2199 }
2200 kfree_rcu(dev_maps, rcu);
2201 }
2202}
2203
2204static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2205 u16 count)
2206{
2207 const unsigned long *possible_mask = NULL;
2208 struct xps_dev_maps *dev_maps;
2209 unsigned int nr_ids;
2210
2211 if (!static_key_false(&xps_needed))
2212 return;
2213
2214 cpus_read_lock();
2215 mutex_lock(&xps_map_mutex);
2216
2217 if (static_key_false(&xps_rxqs_needed)) {
2218 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2219 if (dev_maps) {
2220 nr_ids = dev->num_rx_queues;
2221 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2222 offset, count, true);
2223 }
2224 }
2225
2226 dev_maps = xmap_dereference(dev->xps_cpus_map);
2227 if (!dev_maps)
2228 goto out_no_maps;
2229
2230 if (num_possible_cpus() > 1)
2231 possible_mask = cpumask_bits(cpu_possible_mask);
2232 nr_ids = nr_cpu_ids;
2233 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2234 false);
2235
2236out_no_maps:
2237 if (static_key_enabled(&xps_rxqs_needed))
2238 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2239
2240 static_key_slow_dec_cpuslocked(&xps_needed);
2241 mutex_unlock(&xps_map_mutex);
2242 cpus_read_unlock();
2243}
2244
2245static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2246{
2247 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2248}
2249
2250static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2251 u16 index, bool is_rxqs_map)
2252{
2253 struct xps_map *new_map;
2254 int alloc_len = XPS_MIN_MAP_ALLOC;
2255 int i, pos;
2256
2257 for (pos = 0; map && pos < map->len; pos++) {
2258 if (map->queues[pos] != index)
2259 continue;
2260 return map;
2261 }
2262
2263 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2264 if (map) {
2265 if (pos < map->alloc_len)
2266 return map;
2267
2268 alloc_len = map->alloc_len * 2;
2269 }
2270
2271 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2272 * map
2273 */
2274 if (is_rxqs_map)
2275 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2276 else
2277 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2278 cpu_to_node(attr_index));
2279 if (!new_map)
2280 return NULL;
2281
2282 for (i = 0; i < pos; i++)
2283 new_map->queues[i] = map->queues[i];
2284 new_map->alloc_len = alloc_len;
2285 new_map->len = pos;
2286
2287 return new_map;
2288}
2289
2290/* Must be called under cpus_read_lock */
2291int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2292 u16 index, bool is_rxqs_map)
2293{
2294 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2295 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2296 int i, j, tci, numa_node_id = -2;
2297 int maps_sz, num_tc = 1, tc = 0;
2298 struct xps_map *map, *new_map;
2299 bool active = false;
2300 unsigned int nr_ids;
2301
2302 if (dev->num_tc) {
2303 /* Do not allow XPS on subordinate device directly */
2304 num_tc = dev->num_tc;
2305 if (num_tc < 0)
2306 return -EINVAL;
2307
2308 /* If queue belongs to subordinate dev use its map */
2309 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2310
2311 tc = netdev_txq_to_tc(dev, index);
2312 if (tc < 0)
2313 return -EINVAL;
2314 }
2315
2316 mutex_lock(&xps_map_mutex);
2317 if (is_rxqs_map) {
2318 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2319 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2320 nr_ids = dev->num_rx_queues;
2321 } else {
2322 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2323 if (num_possible_cpus() > 1) {
2324 online_mask = cpumask_bits(cpu_online_mask);
2325 possible_mask = cpumask_bits(cpu_possible_mask);
2326 }
2327 dev_maps = xmap_dereference(dev->xps_cpus_map);
2328 nr_ids = nr_cpu_ids;
2329 }
2330
2331 if (maps_sz < L1_CACHE_BYTES)
2332 maps_sz = L1_CACHE_BYTES;
2333
2334 /* allocate memory for queue storage */
2335 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2336 j < nr_ids;) {
2337 if (!new_dev_maps)
2338 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2339 if (!new_dev_maps) {
2340 mutex_unlock(&xps_map_mutex);
2341 return -ENOMEM;
2342 }
2343
2344 tci = j * num_tc + tc;
2345 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2346 NULL;
2347
2348 map = expand_xps_map(map, j, index, is_rxqs_map);
2349 if (!map)
2350 goto error;
2351
2352 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2353 }
2354
2355 if (!new_dev_maps)
2356 goto out_no_new_maps;
2357
2358 static_key_slow_inc_cpuslocked(&xps_needed);
2359 if (is_rxqs_map)
2360 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2361
2362 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2363 j < nr_ids;) {
2364 /* copy maps belonging to foreign traffic classes */
2365 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2366 /* fill in the new device map from the old device map */
2367 map = xmap_dereference(dev_maps->attr_map[tci]);
2368 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2369 }
2370
2371 /* We need to explicitly update tci as prevous loop
2372 * could break out early if dev_maps is NULL.
2373 */
2374 tci = j * num_tc + tc;
2375
2376 if (netif_attr_test_mask(j, mask, nr_ids) &&
2377 netif_attr_test_online(j, online_mask, nr_ids)) {
2378 /* add tx-queue to CPU/rx-queue maps */
2379 int pos = 0;
2380
2381 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2382 while ((pos < map->len) && (map->queues[pos] != index))
2383 pos++;
2384
2385 if (pos == map->len)
2386 map->queues[map->len++] = index;
2387#ifdef CONFIG_NUMA
2388 if (!is_rxqs_map) {
2389 if (numa_node_id == -2)
2390 numa_node_id = cpu_to_node(j);
2391 else if (numa_node_id != cpu_to_node(j))
2392 numa_node_id = -1;
2393 }
2394#endif
2395 } else if (dev_maps) {
2396 /* fill in the new device map from the old device map */
2397 map = xmap_dereference(dev_maps->attr_map[tci]);
2398 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2399 }
2400
2401 /* copy maps belonging to foreign traffic classes */
2402 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2403 /* fill in the new device map from the old device map */
2404 map = xmap_dereference(dev_maps->attr_map[tci]);
2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406 }
2407 }
2408
2409 if (is_rxqs_map)
2410 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2411 else
2412 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2413
2414 /* Cleanup old maps */
2415 if (!dev_maps)
2416 goto out_no_old_maps;
2417
2418 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2419 j < nr_ids;) {
2420 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2421 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2422 map = xmap_dereference(dev_maps->attr_map[tci]);
2423 if (map && map != new_map)
2424 kfree_rcu(map, rcu);
2425 }
2426 }
2427
2428 kfree_rcu(dev_maps, rcu);
2429
2430out_no_old_maps:
2431 dev_maps = new_dev_maps;
2432 active = true;
2433
2434out_no_new_maps:
2435 if (!is_rxqs_map) {
2436 /* update Tx queue numa node */
2437 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2438 (numa_node_id >= 0) ?
2439 numa_node_id : NUMA_NO_NODE);
2440 }
2441
2442 if (!dev_maps)
2443 goto out_no_maps;
2444
2445 /* removes tx-queue from unused CPUs/rx-queues */
2446 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2447 j < nr_ids;) {
2448 for (i = tc, tci = j * num_tc; i--; tci++)
2449 active |= remove_xps_queue(dev_maps, tci, index);
2450 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2451 !netif_attr_test_online(j, online_mask, nr_ids))
2452 active |= remove_xps_queue(dev_maps, tci, index);
2453 for (i = num_tc - tc, tci++; --i; tci++)
2454 active |= remove_xps_queue(dev_maps, tci, index);
2455 }
2456
2457 /* free map if not active */
2458 if (!active) {
2459 if (is_rxqs_map)
2460 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2461 else
2462 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2463 kfree_rcu(dev_maps, rcu);
2464 }
2465
2466out_no_maps:
2467 mutex_unlock(&xps_map_mutex);
2468
2469 return 0;
2470error:
2471 /* remove any maps that we added */
2472 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2473 j < nr_ids;) {
2474 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2475 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2476 map = dev_maps ?
2477 xmap_dereference(dev_maps->attr_map[tci]) :
2478 NULL;
2479 if (new_map && new_map != map)
2480 kfree(new_map);
2481 }
2482 }
2483
2484 mutex_unlock(&xps_map_mutex);
2485
2486 kfree(new_dev_maps);
2487 return -ENOMEM;
2488}
2489EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2490
2491int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2492 u16 index)
2493{
2494 int ret;
2495
2496 cpus_read_lock();
2497 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2498 cpus_read_unlock();
2499
2500 return ret;
2501}
2502EXPORT_SYMBOL(netif_set_xps_queue);
2503
2504#endif
2505static void netdev_unbind_all_sb_channels(struct net_device *dev)
2506{
2507 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2508
2509 /* Unbind any subordinate channels */
2510 while (txq-- != &dev->_tx[0]) {
2511 if (txq->sb_dev)
2512 netdev_unbind_sb_channel(dev, txq->sb_dev);
2513 }
2514}
2515
2516void netdev_reset_tc(struct net_device *dev)
2517{
2518#ifdef CONFIG_XPS
2519 netif_reset_xps_queues_gt(dev, 0);
2520#endif
2521 netdev_unbind_all_sb_channels(dev);
2522
2523 /* Reset TC configuration of device */
2524 dev->num_tc = 0;
2525 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2526 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2527}
2528EXPORT_SYMBOL(netdev_reset_tc);
2529
2530int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2531{
2532 if (tc >= dev->num_tc)
2533 return -EINVAL;
2534
2535#ifdef CONFIG_XPS
2536 netif_reset_xps_queues(dev, offset, count);
2537#endif
2538 dev->tc_to_txq[tc].count = count;
2539 dev->tc_to_txq[tc].offset = offset;
2540 return 0;
2541}
2542EXPORT_SYMBOL(netdev_set_tc_queue);
2543
2544int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2545{
2546 if (num_tc > TC_MAX_QUEUE)
2547 return -EINVAL;
2548
2549#ifdef CONFIG_XPS
2550 netif_reset_xps_queues_gt(dev, 0);
2551#endif
2552 netdev_unbind_all_sb_channels(dev);
2553
2554 dev->num_tc = num_tc;
2555 return 0;
2556}
2557EXPORT_SYMBOL(netdev_set_num_tc);
2558
2559void netdev_unbind_sb_channel(struct net_device *dev,
2560 struct net_device *sb_dev)
2561{
2562 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2563
2564#ifdef CONFIG_XPS
2565 netif_reset_xps_queues_gt(sb_dev, 0);
2566#endif
2567 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2568 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2569
2570 while (txq-- != &dev->_tx[0]) {
2571 if (txq->sb_dev == sb_dev)
2572 txq->sb_dev = NULL;
2573 }
2574}
2575EXPORT_SYMBOL(netdev_unbind_sb_channel);
2576
2577int netdev_bind_sb_channel_queue(struct net_device *dev,
2578 struct net_device *sb_dev,
2579 u8 tc, u16 count, u16 offset)
2580{
2581 /* Make certain the sb_dev and dev are already configured */
2582 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2583 return -EINVAL;
2584
2585 /* We cannot hand out queues we don't have */
2586 if ((offset + count) > dev->real_num_tx_queues)
2587 return -EINVAL;
2588
2589 /* Record the mapping */
2590 sb_dev->tc_to_txq[tc].count = count;
2591 sb_dev->tc_to_txq[tc].offset = offset;
2592
2593 /* Provide a way for Tx queue to find the tc_to_txq map or
2594 * XPS map for itself.
2595 */
2596 while (count--)
2597 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2598
2599 return 0;
2600}
2601EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2602
2603int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2604{
2605 /* Do not use a multiqueue device to represent a subordinate channel */
2606 if (netif_is_multiqueue(dev))
2607 return -ENODEV;
2608
2609 /* We allow channels 1 - 32767 to be used for subordinate channels.
2610 * Channel 0 is meant to be "native" mode and used only to represent
2611 * the main root device. We allow writing 0 to reset the device back
2612 * to normal mode after being used as a subordinate channel.
2613 */
2614 if (channel > S16_MAX)
2615 return -EINVAL;
2616
2617 dev->num_tc = -channel;
2618
2619 return 0;
2620}
2621EXPORT_SYMBOL(netdev_set_sb_channel);
2622
2623/*
2624 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2625 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2626 */
2627int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2628{
2629 bool disabling;
2630 int rc;
2631
2632 disabling = txq < dev->real_num_tx_queues;
2633
2634 if (txq < 1 || txq > dev->num_tx_queues)
2635 return -EINVAL;
2636
2637 if (dev->reg_state == NETREG_REGISTERED ||
2638 dev->reg_state == NETREG_UNREGISTERING) {
2639 ASSERT_RTNL();
2640
2641 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2642 txq);
2643 if (rc)
2644 return rc;
2645
2646 if (dev->num_tc)
2647 netif_setup_tc(dev, txq);
2648
2649 dev->real_num_tx_queues = txq;
2650
2651 if (disabling) {
2652 synchronize_net();
2653 qdisc_reset_all_tx_gt(dev, txq);
2654#ifdef CONFIG_XPS
2655 netif_reset_xps_queues_gt(dev, txq);
2656#endif
2657 }
2658 } else {
2659 dev->real_num_tx_queues = txq;
2660 }
2661
2662 return 0;
2663}
2664EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2665
2666#ifdef CONFIG_SYSFS
2667/**
2668 * netif_set_real_num_rx_queues - set actual number of RX queues used
2669 * @dev: Network device
2670 * @rxq: Actual number of RX queues
2671 *
2672 * This must be called either with the rtnl_lock held or before
2673 * registration of the net device. Returns 0 on success, or a
2674 * negative error code. If called before registration, it always
2675 * succeeds.
2676 */
2677int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2678{
2679 int rc;
2680
2681 if (rxq < 1 || rxq > dev->num_rx_queues)
2682 return -EINVAL;
2683
2684 if (dev->reg_state == NETREG_REGISTERED) {
2685 ASSERT_RTNL();
2686
2687 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2688 rxq);
2689 if (rc)
2690 return rc;
2691 }
2692
2693 dev->real_num_rx_queues = rxq;
2694 return 0;
2695}
2696EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2697#endif
2698
2699/**
2700 * netif_get_num_default_rss_queues - default number of RSS queues
2701 *
2702 * This routine should set an upper limit on the number of RSS queues
2703 * used by default by multiqueue devices.
2704 */
2705int netif_get_num_default_rss_queues(void)
2706{
2707 return is_kdump_kernel() ?
2708 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2709}
2710EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2711
2712static void __netif_reschedule(struct Qdisc *q)
2713{
2714 struct softnet_data *sd;
2715 unsigned long flags;
2716
2717 local_irq_save(flags);
2718 sd = this_cpu_ptr(&softnet_data);
2719 q->next_sched = NULL;
2720 *sd->output_queue_tailp = q;
2721 sd->output_queue_tailp = &q->next_sched;
2722 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2723 local_irq_restore(flags);
2724}
2725
2726void __netif_schedule(struct Qdisc *q)
2727{
2728 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2729 __netif_reschedule(q);
2730}
2731EXPORT_SYMBOL(__netif_schedule);
2732
2733struct dev_kfree_skb_cb {
2734 enum skb_free_reason reason;
2735};
2736
2737static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2738{
2739 return (struct dev_kfree_skb_cb *)skb->cb;
2740}
2741
2742void netif_schedule_queue(struct netdev_queue *txq)
2743{
2744 rcu_read_lock();
2745 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2746 struct Qdisc *q = rcu_dereference(txq->qdisc);
2747
2748 __netif_schedule(q);
2749 }
2750 rcu_read_unlock();
2751}
2752EXPORT_SYMBOL(netif_schedule_queue);
2753
2754void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2755{
2756 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2757 struct Qdisc *q;
2758
2759 rcu_read_lock();
2760 q = rcu_dereference(dev_queue->qdisc);
2761 __netif_schedule(q);
2762 rcu_read_unlock();
2763 }
2764}
2765EXPORT_SYMBOL(netif_tx_wake_queue);
2766
2767void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2768{
2769 unsigned long flags;
2770
2771 if (unlikely(!skb))
2772 return;
2773
2774 if (likely(refcount_read(&skb->users) == 1)) {
2775 smp_rmb();
2776 refcount_set(&skb->users, 0);
2777 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2778 return;
2779 }
2780 get_kfree_skb_cb(skb)->reason = reason;
2781 local_irq_save(flags);
2782 skb->next = __this_cpu_read(softnet_data.completion_queue);
2783 __this_cpu_write(softnet_data.completion_queue, skb);
2784 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2785 local_irq_restore(flags);
2786}
2787EXPORT_SYMBOL(__dev_kfree_skb_irq);
2788
2789void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2790{
2791 if (in_irq() || irqs_disabled())
2792 __dev_kfree_skb_irq(skb, reason);
2793 else
2794 dev_kfree_skb(skb);
2795}
2796EXPORT_SYMBOL(__dev_kfree_skb_any);
2797
2798
2799/**
2800 * netif_device_detach - mark device as removed
2801 * @dev: network device
2802 *
2803 * Mark device as removed from system and therefore no longer available.
2804 */
2805void netif_device_detach(struct net_device *dev)
2806{
2807 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2808 netif_running(dev)) {
2809 netif_tx_stop_all_queues(dev);
2810 }
2811}
2812EXPORT_SYMBOL(netif_device_detach);
2813
2814/**
2815 * netif_device_attach - mark device as attached
2816 * @dev: network device
2817 *
2818 * Mark device as attached from system and restart if needed.
2819 */
2820void netif_device_attach(struct net_device *dev)
2821{
2822 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2823 netif_running(dev)) {
2824 netif_tx_wake_all_queues(dev);
2825 __netdev_watchdog_up(dev);
2826 }
2827}
2828EXPORT_SYMBOL(netif_device_attach);
2829
2830/*
2831 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2832 * to be used as a distribution range.
2833 */
2834static u16 skb_tx_hash(const struct net_device *dev,
2835 const struct net_device *sb_dev,
2836 struct sk_buff *skb)
2837{
2838 u32 hash;
2839 u16 qoffset = 0;
2840 u16 qcount = dev->real_num_tx_queues;
2841
2842 if (dev->num_tc) {
2843 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2844
2845 qoffset = sb_dev->tc_to_txq[tc].offset;
2846 qcount = sb_dev->tc_to_txq[tc].count;
2847 }
2848
2849 if (skb_rx_queue_recorded(skb)) {
2850 hash = skb_get_rx_queue(skb);
2851 while (unlikely(hash >= qcount))
2852 hash -= qcount;
2853 return hash + qoffset;
2854 }
2855
2856 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2857}
2858
2859static void skb_warn_bad_offload(const struct sk_buff *skb)
2860{
2861 static const netdev_features_t null_features;
2862 struct net_device *dev = skb->dev;
2863 const char *name = "";
2864
2865 if (!net_ratelimit())
2866 return;
2867
2868 if (dev) {
2869 if (dev->dev.parent)
2870 name = dev_driver_string(dev->dev.parent);
2871 else
2872 name = netdev_name(dev);
2873 }
2874 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2875 "gso_type=%d ip_summed=%d\n",
2876 name, dev ? &dev->features : &null_features,
2877 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2878 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2879 skb_shinfo(skb)->gso_type, skb->ip_summed);
2880}
2881
2882/*
2883 * Invalidate hardware checksum when packet is to be mangled, and
2884 * complete checksum manually on outgoing path.
2885 */
2886int skb_checksum_help(struct sk_buff *skb)
2887{
2888 __wsum csum;
2889 int ret = 0, offset;
2890
2891 if (skb->ip_summed == CHECKSUM_COMPLETE)
2892 goto out_set_summed;
2893
2894 if (unlikely(skb_shinfo(skb)->gso_size)) {
2895 skb_warn_bad_offload(skb);
2896 return -EINVAL;
2897 }
2898
2899 /* Before computing a checksum, we should make sure no frag could
2900 * be modified by an external entity : checksum could be wrong.
2901 */
2902 if (skb_has_shared_frag(skb)) {
2903 ret = __skb_linearize(skb);
2904 if (ret)
2905 goto out;
2906 }
2907
2908 offset = skb_checksum_start_offset(skb);
2909 BUG_ON(offset >= skb_headlen(skb));
2910 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2911
2912 offset += skb->csum_offset;
2913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2914
2915 if (skb_cloned(skb) &&
2916 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 if (ret)
2919 goto out;
2920 }
2921
2922 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2923out_set_summed:
2924 skb->ip_summed = CHECKSUM_NONE;
2925out:
2926 return ret;
2927}
2928EXPORT_SYMBOL(skb_checksum_help);
2929
2930int skb_crc32c_csum_help(struct sk_buff *skb)
2931{
2932 __le32 crc32c_csum;
2933 int ret = 0, offset, start;
2934
2935 if (skb->ip_summed != CHECKSUM_PARTIAL)
2936 goto out;
2937
2938 if (unlikely(skb_is_gso(skb)))
2939 goto out;
2940
2941 /* Before computing a checksum, we should make sure no frag could
2942 * be modified by an external entity : checksum could be wrong.
2943 */
2944 if (unlikely(skb_has_shared_frag(skb))) {
2945 ret = __skb_linearize(skb);
2946 if (ret)
2947 goto out;
2948 }
2949 start = skb_checksum_start_offset(skb);
2950 offset = start + offsetof(struct sctphdr, checksum);
2951 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2952 ret = -EINVAL;
2953 goto out;
2954 }
2955 if (skb_cloned(skb) &&
2956 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2957 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2958 if (ret)
2959 goto out;
2960 }
2961 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2962 skb->len - start, ~(__u32)0,
2963 crc32c_csum_stub));
2964 *(__le32 *)(skb->data + offset) = crc32c_csum;
2965 skb->ip_summed = CHECKSUM_NONE;
2966 skb->csum_not_inet = 0;
2967out:
2968 return ret;
2969}
2970
2971__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2972{
2973 __be16 type = skb->protocol;
2974
2975 /* Tunnel gso handlers can set protocol to ethernet. */
2976 if (type == htons(ETH_P_TEB)) {
2977 struct ethhdr *eth;
2978
2979 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2980 return 0;
2981
2982 eth = (struct ethhdr *)skb->data;
2983 type = eth->h_proto;
2984 }
2985
2986 return __vlan_get_protocol(skb, type, depth);
2987}
2988
2989/**
2990 * skb_mac_gso_segment - mac layer segmentation handler.
2991 * @skb: buffer to segment
2992 * @features: features for the output path (see dev->features)
2993 */
2994struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2995 netdev_features_t features)
2996{
2997 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2998 struct packet_offload *ptype;
2999 int vlan_depth = skb->mac_len;
3000 __be16 type = skb_network_protocol(skb, &vlan_depth);
3001
3002 if (unlikely(!type))
3003 return ERR_PTR(-EINVAL);
3004
3005 __skb_pull(skb, vlan_depth);
3006
3007 rcu_read_lock();
3008 list_for_each_entry_rcu(ptype, &offload_base, list) {
3009 if (ptype->type == type && ptype->callbacks.gso_segment) {
3010 segs = ptype->callbacks.gso_segment(skb, features);
3011 break;
3012 }
3013 }
3014 rcu_read_unlock();
3015
3016 __skb_push(skb, skb->data - skb_mac_header(skb));
3017
3018 return segs;
3019}
3020EXPORT_SYMBOL(skb_mac_gso_segment);
3021
3022
3023/* openvswitch calls this on rx path, so we need a different check.
3024 */
3025static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3026{
3027 if (tx_path)
3028 return skb->ip_summed != CHECKSUM_PARTIAL &&
3029 skb->ip_summed != CHECKSUM_UNNECESSARY;
3030
3031 return skb->ip_summed == CHECKSUM_NONE;
3032}
3033
3034/**
3035 * __skb_gso_segment - Perform segmentation on skb.
3036 * @skb: buffer to segment
3037 * @features: features for the output path (see dev->features)
3038 * @tx_path: whether it is called in TX path
3039 *
3040 * This function segments the given skb and returns a list of segments.
3041 *
3042 * It may return NULL if the skb requires no segmentation. This is
3043 * only possible when GSO is used for verifying header integrity.
3044 *
3045 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3046 */
3047struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3048 netdev_features_t features, bool tx_path)
3049{
3050 struct sk_buff *segs;
3051
3052 if (unlikely(skb_needs_check(skb, tx_path))) {
3053 int err;
3054
3055 /* We're going to init ->check field in TCP or UDP header */
3056 err = skb_cow_head(skb, 0);
3057 if (err < 0)
3058 return ERR_PTR(err);
3059 }
3060
3061 /* Only report GSO partial support if it will enable us to
3062 * support segmentation on this frame without needing additional
3063 * work.
3064 */
3065 if (features & NETIF_F_GSO_PARTIAL) {
3066 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3067 struct net_device *dev = skb->dev;
3068
3069 partial_features |= dev->features & dev->gso_partial_features;
3070 if (!skb_gso_ok(skb, features | partial_features))
3071 features &= ~NETIF_F_GSO_PARTIAL;
3072 }
3073
3074 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3075 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3076
3077 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3078 SKB_GSO_CB(skb)->encap_level = 0;
3079
3080 skb_reset_mac_header(skb);
3081 skb_reset_mac_len(skb);
3082
3083 segs = skb_mac_gso_segment(skb, features);
3084
3085 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3086 skb_warn_bad_offload(skb);
3087
3088 return segs;
3089}
3090EXPORT_SYMBOL(__skb_gso_segment);
3091
3092/* Take action when hardware reception checksum errors are detected. */
3093#ifdef CONFIG_BUG
3094void netdev_rx_csum_fault(struct net_device *dev)
3095{
3096 if (net_ratelimit()) {
3097 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3098 dump_stack();
3099 }
3100}
3101EXPORT_SYMBOL(netdev_rx_csum_fault);
3102#endif
3103
3104/* XXX: check that highmem exists at all on the given machine. */
3105static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3106{
3107#ifdef CONFIG_HIGHMEM
3108 int i;
3109
3110 if (!(dev->features & NETIF_F_HIGHDMA)) {
3111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3113
3114 if (PageHighMem(skb_frag_page(frag)))
3115 return 1;
3116 }
3117 }
3118#endif
3119 return 0;
3120}
3121
3122/* If MPLS offload request, verify we are testing hardware MPLS features
3123 * instead of standard features for the netdev.
3124 */
3125#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3126static netdev_features_t net_mpls_features(struct sk_buff *skb,
3127 netdev_features_t features,
3128 __be16 type)
3129{
3130 if (eth_p_mpls(type))
3131 features &= skb->dev->mpls_features;
3132
3133 return features;
3134}
3135#else
3136static netdev_features_t net_mpls_features(struct sk_buff *skb,
3137 netdev_features_t features,
3138 __be16 type)
3139{
3140 return features;
3141}
3142#endif
3143
3144static netdev_features_t harmonize_features(struct sk_buff *skb,
3145 netdev_features_t features)
3146{
3147 int tmp;
3148 __be16 type;
3149
3150 type = skb_network_protocol(skb, &tmp);
3151 features = net_mpls_features(skb, features, type);
3152
3153 if (skb->ip_summed != CHECKSUM_NONE &&
3154 !can_checksum_protocol(features, type)) {
3155 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3156 }
3157 if (illegal_highdma(skb->dev, skb))
3158 features &= ~NETIF_F_SG;
3159
3160 return features;
3161}
3162
3163netdev_features_t passthru_features_check(struct sk_buff *skb,
3164 struct net_device *dev,
3165 netdev_features_t features)
3166{
3167 return features;
3168}
3169EXPORT_SYMBOL(passthru_features_check);
3170
3171static netdev_features_t dflt_features_check(struct sk_buff *skb,
3172 struct net_device *dev,
3173 netdev_features_t features)
3174{
3175 return vlan_features_check(skb, features);
3176}
3177
3178static netdev_features_t gso_features_check(const struct sk_buff *skb,
3179 struct net_device *dev,
3180 netdev_features_t features)
3181{
3182 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3183
3184 if (gso_segs > dev->gso_max_segs)
3185 return features & ~NETIF_F_GSO_MASK;
3186
3187 /* Support for GSO partial features requires software
3188 * intervention before we can actually process the packets
3189 * so we need to strip support for any partial features now
3190 * and we can pull them back in after we have partially
3191 * segmented the frame.
3192 */
3193 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3194 features &= ~dev->gso_partial_features;
3195
3196 /* Make sure to clear the IPv4 ID mangling feature if the
3197 * IPv4 header has the potential to be fragmented.
3198 */
3199 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3200 struct iphdr *iph = skb->encapsulation ?
3201 inner_ip_hdr(skb) : ip_hdr(skb);
3202
3203 if (!(iph->frag_off & htons(IP_DF)))
3204 features &= ~NETIF_F_TSO_MANGLEID;
3205 }
3206
3207 return features;
3208}
3209
3210netdev_features_t netif_skb_features(struct sk_buff *skb)
3211{
3212 struct net_device *dev = skb->dev;
3213 netdev_features_t features = dev->features;
3214
3215 if (skb_is_gso(skb))
3216 features = gso_features_check(skb, dev, features);
3217
3218 /* If encapsulation offload request, verify we are testing
3219 * hardware encapsulation features instead of standard
3220 * features for the netdev
3221 */
3222 if (skb->encapsulation)
3223 features &= dev->hw_enc_features;
3224
3225 if (skb_vlan_tagged(skb))
3226 features = netdev_intersect_features(features,
3227 dev->vlan_features |
3228 NETIF_F_HW_VLAN_CTAG_TX |
3229 NETIF_F_HW_VLAN_STAG_TX);
3230
3231 if (dev->netdev_ops->ndo_features_check)
3232 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3233 features);
3234 else
3235 features &= dflt_features_check(skb, dev, features);
3236
3237 return harmonize_features(skb, features);
3238}
3239EXPORT_SYMBOL(netif_skb_features);
3240
3241static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3242 struct netdev_queue *txq, bool more)
3243{
3244 unsigned int len;
3245 int rc;
3246
3247 if (dev_nit_active(dev))
3248 dev_queue_xmit_nit(skb, dev);
3249
3250 len = skb->len;
3251 trace_net_dev_start_xmit(skb, dev);
3252 rc = netdev_start_xmit(skb, dev, txq, more);
3253 trace_net_dev_xmit(skb, rc, dev, len);
3254
3255 return rc;
3256}
3257
3258struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3259 struct netdev_queue *txq, int *ret)
3260{
3261 struct sk_buff *skb = first;
3262 int rc = NETDEV_TX_OK;
3263
3264 while (skb) {
3265 struct sk_buff *next = skb->next;
3266
3267 skb_mark_not_on_list(skb);
3268 rc = xmit_one(skb, dev, txq, next != NULL);
3269 if (unlikely(!dev_xmit_complete(rc))) {
3270 skb->next = next;
3271 goto out;
3272 }
3273
3274 skb = next;
3275 if (netif_tx_queue_stopped(txq) && skb) {
3276 rc = NETDEV_TX_BUSY;
3277 break;
3278 }
3279 }
3280
3281out:
3282 *ret = rc;
3283 return skb;
3284}
3285
3286static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3287 netdev_features_t features)
3288{
3289 if (skb_vlan_tag_present(skb) &&
3290 !vlan_hw_offload_capable(features, skb->vlan_proto))
3291 skb = __vlan_hwaccel_push_inside(skb);
3292 return skb;
3293}
3294
3295int skb_csum_hwoffload_help(struct sk_buff *skb,
3296 const netdev_features_t features)
3297{
3298 if (unlikely(skb->csum_not_inet))
3299 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3300 skb_crc32c_csum_help(skb);
3301
3302 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3303}
3304EXPORT_SYMBOL(skb_csum_hwoffload_help);
3305
3306static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3307{
3308 netdev_features_t features;
3309
3310 features = netif_skb_features(skb);
3311 skb = validate_xmit_vlan(skb, features);
3312 if (unlikely(!skb))
3313 goto out_null;
3314
3315 skb = sk_validate_xmit_skb(skb, dev);
3316 if (unlikely(!skb))
3317 goto out_null;
3318
3319 if (netif_needs_gso(skb, features)) {
3320 struct sk_buff *segs;
3321
3322 segs = skb_gso_segment(skb, features);
3323 if (IS_ERR(segs)) {
3324 goto out_kfree_skb;
3325 } else if (segs) {
3326 consume_skb(skb);
3327 skb = segs;
3328 }
3329 } else {
3330 if (skb_needs_linearize(skb, features) &&
3331 __skb_linearize(skb))
3332 goto out_kfree_skb;
3333
3334 /* If packet is not checksummed and device does not
3335 * support checksumming for this protocol, complete
3336 * checksumming here.
3337 */
3338 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3339 if (skb->encapsulation)
3340 skb_set_inner_transport_header(skb,
3341 skb_checksum_start_offset(skb));
3342 else
3343 skb_set_transport_header(skb,
3344 skb_checksum_start_offset(skb));
3345 if (skb_csum_hwoffload_help(skb, features))
3346 goto out_kfree_skb;
3347 }
3348 }
3349
3350 skb = validate_xmit_xfrm(skb, features, again);
3351
3352 return skb;
3353
3354out_kfree_skb:
3355 kfree_skb(skb);
3356out_null:
3357 atomic_long_inc(&dev->tx_dropped);
3358 return NULL;
3359}
3360
3361struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3362{
3363 struct sk_buff *next, *head = NULL, *tail;
3364
3365 for (; skb != NULL; skb = next) {
3366 next = skb->next;
3367 skb_mark_not_on_list(skb);
3368
3369 /* in case skb wont be segmented, point to itself */
3370 skb->prev = skb;
3371
3372 skb = validate_xmit_skb(skb, dev, again);
3373 if (!skb)
3374 continue;
3375
3376 if (!head)
3377 head = skb;
3378 else
3379 tail->next = skb;
3380 /* If skb was segmented, skb->prev points to
3381 * the last segment. If not, it still contains skb.
3382 */
3383 tail = skb->prev;
3384 }
3385 return head;
3386}
3387EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3388
3389static void qdisc_pkt_len_init(struct sk_buff *skb)
3390{
3391 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3392
3393 qdisc_skb_cb(skb)->pkt_len = skb->len;
3394
3395 /* To get more precise estimation of bytes sent on wire,
3396 * we add to pkt_len the headers size of all segments
3397 */
3398 if (shinfo->gso_size) {
3399 unsigned int hdr_len;
3400 u16 gso_segs = shinfo->gso_segs;
3401
3402 /* mac layer + network layer */
3403 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3404
3405 /* + transport layer */
3406 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3407 const struct tcphdr *th;
3408 struct tcphdr _tcphdr;
3409
3410 th = skb_header_pointer(skb, skb_transport_offset(skb),
3411 sizeof(_tcphdr), &_tcphdr);
3412 if (likely(th))
3413 hdr_len += __tcp_hdrlen(th);
3414 } else {
3415 struct udphdr _udphdr;
3416
3417 if (skb_header_pointer(skb, skb_transport_offset(skb),
3418 sizeof(_udphdr), &_udphdr))
3419 hdr_len += sizeof(struct udphdr);
3420 }
3421
3422 if (shinfo->gso_type & SKB_GSO_DODGY)
3423 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3424 shinfo->gso_size);
3425
3426 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3427 }
3428}
3429
3430static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3431 struct net_device *dev,
3432 struct netdev_queue *txq)
3433{
3434 spinlock_t *root_lock = qdisc_lock(q);
3435 struct sk_buff *to_free = NULL;
3436 bool contended;
3437 int rc;
3438
3439 qdisc_calculate_pkt_len(skb, q);
3440
3441 if (q->flags & TCQ_F_NOLOCK) {
3442 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3443 __qdisc_drop(skb, &to_free);
3444 rc = NET_XMIT_DROP;
3445 } else {
3446 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3447 qdisc_run(q);
3448 }
3449
3450 if (unlikely(to_free))
3451 kfree_skb_list(to_free);
3452 return rc;
3453 }
3454
3455 /*
3456 * Heuristic to force contended enqueues to serialize on a
3457 * separate lock before trying to get qdisc main lock.
3458 * This permits qdisc->running owner to get the lock more
3459 * often and dequeue packets faster.
3460 */
3461 contended = qdisc_is_running(q);
3462 if (unlikely(contended))
3463 spin_lock(&q->busylock);
3464
3465 spin_lock(root_lock);
3466 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3467 __qdisc_drop(skb, &to_free);
3468 rc = NET_XMIT_DROP;
3469 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3470 qdisc_run_begin(q)) {
3471 /*
3472 * This is a work-conserving queue; there are no old skbs
3473 * waiting to be sent out; and the qdisc is not running -
3474 * xmit the skb directly.
3475 */
3476
3477 qdisc_bstats_update(q, skb);
3478
3479 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3480 if (unlikely(contended)) {
3481 spin_unlock(&q->busylock);
3482 contended = false;
3483 }
3484 __qdisc_run(q);
3485 }
3486
3487 qdisc_run_end(q);
3488 rc = NET_XMIT_SUCCESS;
3489 } else {
3490 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3491 if (qdisc_run_begin(q)) {
3492 if (unlikely(contended)) {
3493 spin_unlock(&q->busylock);
3494 contended = false;
3495 }
3496 __qdisc_run(q);
3497 qdisc_run_end(q);
3498 }
3499 }
3500 spin_unlock(root_lock);
3501 if (unlikely(to_free))
3502 kfree_skb_list(to_free);
3503 if (unlikely(contended))
3504 spin_unlock(&q->busylock);
3505 return rc;
3506}
3507
3508#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3509static void skb_update_prio(struct sk_buff *skb)
3510{
3511 const struct netprio_map *map;
3512 const struct sock *sk;
3513 unsigned int prioidx;
3514
3515 if (skb->priority)
3516 return;
3517 map = rcu_dereference_bh(skb->dev->priomap);
3518 if (!map)
3519 return;
3520 sk = skb_to_full_sk(skb);
3521 if (!sk)
3522 return;
3523
3524 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3525
3526 if (prioidx < map->priomap_len)
3527 skb->priority = map->priomap[prioidx];
3528}
3529#else
3530#define skb_update_prio(skb)
3531#endif
3532
3533DEFINE_PER_CPU(int, xmit_recursion);
3534EXPORT_SYMBOL(xmit_recursion);
3535
3536/**
3537 * dev_loopback_xmit - loop back @skb
3538 * @net: network namespace this loopback is happening in
3539 * @sk: sk needed to be a netfilter okfn
3540 * @skb: buffer to transmit
3541 */
3542int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3543{
3544 skb_reset_mac_header(skb);
3545 __skb_pull(skb, skb_network_offset(skb));
3546 skb->pkt_type = PACKET_LOOPBACK;
3547 skb->ip_summed = CHECKSUM_UNNECESSARY;
3548 WARN_ON(!skb_dst(skb));
3549 skb_dst_force(skb);
3550 netif_rx_ni(skb);
3551 return 0;
3552}
3553EXPORT_SYMBOL(dev_loopback_xmit);
3554
3555#ifdef CONFIG_NET_EGRESS
3556static struct sk_buff *
3557sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3558{
3559 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3560 struct tcf_result cl_res;
3561
3562 if (!miniq)
3563 return skb;
3564
3565 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3566 mini_qdisc_bstats_cpu_update(miniq, skb);
3567
3568 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3569 case TC_ACT_OK:
3570 case TC_ACT_RECLASSIFY:
3571 skb->tc_index = TC_H_MIN(cl_res.classid);
3572 break;
3573 case TC_ACT_SHOT:
3574 mini_qdisc_qstats_cpu_drop(miniq);
3575 *ret = NET_XMIT_DROP;
3576 kfree_skb(skb);
3577 return NULL;
3578 case TC_ACT_STOLEN:
3579 case TC_ACT_QUEUED:
3580 case TC_ACT_TRAP:
3581 *ret = NET_XMIT_SUCCESS;
3582 consume_skb(skb);
3583 return NULL;
3584 case TC_ACT_REDIRECT:
3585 /* No need to push/pop skb's mac_header here on egress! */
3586 skb_do_redirect(skb);
3587 *ret = NET_XMIT_SUCCESS;
3588 return NULL;
3589 default:
3590 break;
3591 }
3592
3593 return skb;
3594}
3595#endif /* CONFIG_NET_EGRESS */
3596
3597#ifdef CONFIG_XPS
3598static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3599 struct xps_dev_maps *dev_maps, unsigned int tci)
3600{
3601 struct xps_map *map;
3602 int queue_index = -1;
3603
3604 if (dev->num_tc) {
3605 tci *= dev->num_tc;
3606 tci += netdev_get_prio_tc_map(dev, skb->priority);
3607 }
3608
3609 map = rcu_dereference(dev_maps->attr_map[tci]);
3610 if (map) {
3611 if (map->len == 1)
3612 queue_index = map->queues[0];
3613 else
3614 queue_index = map->queues[reciprocal_scale(
3615 skb_get_hash(skb), map->len)];
3616 if (unlikely(queue_index >= dev->real_num_tx_queues))
3617 queue_index = -1;
3618 }
3619 return queue_index;
3620}
3621#endif
3622
3623static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3624 struct sk_buff *skb)
3625{
3626#ifdef CONFIG_XPS
3627 struct xps_dev_maps *dev_maps;
3628 struct sock *sk = skb->sk;
3629 int queue_index = -1;
3630
3631 if (!static_key_false(&xps_needed))
3632 return -1;
3633
3634 rcu_read_lock();
3635 if (!static_key_false(&xps_rxqs_needed))
3636 goto get_cpus_map;
3637
3638 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3639 if (dev_maps) {
3640 int tci = sk_rx_queue_get(sk);
3641
3642 if (tci >= 0 && tci < dev->num_rx_queues)
3643 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3644 tci);
3645 }
3646
3647get_cpus_map:
3648 if (queue_index < 0) {
3649 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3650 if (dev_maps) {
3651 unsigned int tci = skb->sender_cpu - 1;
3652
3653 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3654 tci);
3655 }
3656 }
3657 rcu_read_unlock();
3658
3659 return queue_index;
3660#else
3661 return -1;
3662#endif
3663}
3664
3665u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3666 struct net_device *sb_dev,
3667 select_queue_fallback_t fallback)
3668{
3669 return 0;
3670}
3671EXPORT_SYMBOL(dev_pick_tx_zero);
3672
3673u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3674 struct net_device *sb_dev,
3675 select_queue_fallback_t fallback)
3676{
3677 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3678}
3679EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3680
3681static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3682 struct net_device *sb_dev)
3683{
3684 struct sock *sk = skb->sk;
3685 int queue_index = sk_tx_queue_get(sk);
3686
3687 sb_dev = sb_dev ? : dev;
3688
3689 if (queue_index < 0 || skb->ooo_okay ||
3690 queue_index >= dev->real_num_tx_queues) {
3691 int new_index = get_xps_queue(dev, sb_dev, skb);
3692
3693 if (new_index < 0)
3694 new_index = skb_tx_hash(dev, sb_dev, skb);
3695
3696 if (queue_index != new_index && sk &&
3697 sk_fullsock(sk) &&
3698 rcu_access_pointer(sk->sk_dst_cache))
3699 sk_tx_queue_set(sk, new_index);
3700
3701 queue_index = new_index;
3702 }
3703
3704 return queue_index;
3705}
3706
3707struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3708 struct sk_buff *skb,
3709 struct net_device *sb_dev)
3710{
3711 int queue_index = 0;
3712
3713#ifdef CONFIG_XPS
3714 u32 sender_cpu = skb->sender_cpu - 1;
3715
3716 if (sender_cpu >= (u32)NR_CPUS)
3717 skb->sender_cpu = raw_smp_processor_id() + 1;
3718#endif
3719
3720 if (dev->real_num_tx_queues != 1) {
3721 const struct net_device_ops *ops = dev->netdev_ops;
3722
3723 if (ops->ndo_select_queue)
3724 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3725 __netdev_pick_tx);
3726 else
3727 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3728
3729 queue_index = netdev_cap_txqueue(dev, queue_index);
3730 }
3731
3732 skb_set_queue_mapping(skb, queue_index);
3733 return netdev_get_tx_queue(dev, queue_index);
3734}
3735
3736/**
3737 * __dev_queue_xmit - transmit a buffer
3738 * @skb: buffer to transmit
3739 * @sb_dev: suboordinate device used for L2 forwarding offload
3740 *
3741 * Queue a buffer for transmission to a network device. The caller must
3742 * have set the device and priority and built the buffer before calling
3743 * this function. The function can be called from an interrupt.
3744 *
3745 * A negative errno code is returned on a failure. A success does not
3746 * guarantee the frame will be transmitted as it may be dropped due
3747 * to congestion or traffic shaping.
3748 *
3749 * -----------------------------------------------------------------------------------
3750 * I notice this method can also return errors from the queue disciplines,
3751 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3752 * be positive.
3753 *
3754 * Regardless of the return value, the skb is consumed, so it is currently
3755 * difficult to retry a send to this method. (You can bump the ref count
3756 * before sending to hold a reference for retry if you are careful.)
3757 *
3758 * When calling this method, interrupts MUST be enabled. This is because
3759 * the BH enable code must have IRQs enabled so that it will not deadlock.
3760 * --BLG
3761 */
3762static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3763{
3764 struct net_device *dev = skb->dev;
3765 struct netdev_queue *txq;
3766 struct Qdisc *q;
3767 int rc = -ENOMEM;
3768 bool again = false;
3769
3770 skb_reset_mac_header(skb);
3771
3772 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3773 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3774
3775 /* Disable soft irqs for various locks below. Also
3776 * stops preemption for RCU.
3777 */
3778 rcu_read_lock_bh();
3779
3780 skb_update_prio(skb);
3781
3782 qdisc_pkt_len_init(skb);
3783#ifdef CONFIG_NET_CLS_ACT
3784 skb->tc_at_ingress = 0;
3785# ifdef CONFIG_NET_EGRESS
3786 if (static_branch_unlikely(&egress_needed_key)) {
3787 skb = sch_handle_egress(skb, &rc, dev);
3788 if (!skb)
3789 goto out;
3790 }
3791# endif
3792#endif
3793 /* If device/qdisc don't need skb->dst, release it right now while
3794 * its hot in this cpu cache.
3795 */
3796 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3797 skb_dst_drop(skb);
3798 else
3799 skb_dst_force(skb);
3800
3801 txq = netdev_pick_tx(dev, skb, sb_dev);
3802 q = rcu_dereference_bh(txq->qdisc);
3803
3804 trace_net_dev_queue(skb);
3805 if (q->enqueue) {
3806 rc = __dev_xmit_skb(skb, q, dev, txq);
3807 goto out;
3808 }
3809
3810 /* The device has no queue. Common case for software devices:
3811 * loopback, all the sorts of tunnels...
3812
3813 * Really, it is unlikely that netif_tx_lock protection is necessary
3814 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3815 * counters.)
3816 * However, it is possible, that they rely on protection
3817 * made by us here.
3818
3819 * Check this and shot the lock. It is not prone from deadlocks.
3820 *Either shot noqueue qdisc, it is even simpler 8)
3821 */
3822 if (dev->flags & IFF_UP) {
3823 int cpu = smp_processor_id(); /* ok because BHs are off */
3824
3825 if (txq->xmit_lock_owner != cpu) {
3826 if (unlikely(__this_cpu_read(xmit_recursion) >
3827 XMIT_RECURSION_LIMIT))
3828 goto recursion_alert;
3829
3830 skb = validate_xmit_skb(skb, dev, &again);
3831 if (!skb)
3832 goto out;
3833
3834 HARD_TX_LOCK(dev, txq, cpu);
3835
3836 if (!netif_xmit_stopped(txq)) {
3837 __this_cpu_inc(xmit_recursion);
3838 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839 __this_cpu_dec(xmit_recursion);
3840 if (dev_xmit_complete(rc)) {
3841 HARD_TX_UNLOCK(dev, txq);
3842 goto out;
3843 }
3844 }
3845 HARD_TX_UNLOCK(dev, txq);
3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847 dev->name);
3848 } else {
3849 /* Recursion is detected! It is possible,
3850 * unfortunately
3851 */
3852recursion_alert:
3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854 dev->name);
3855 }
3856 }
3857
3858 rc = -ENETDOWN;
3859 rcu_read_unlock_bh();
3860
3861 atomic_long_inc(&dev->tx_dropped);
3862 kfree_skb_list(skb);
3863 return rc;
3864out:
3865 rcu_read_unlock_bh();
3866 return rc;
3867}
3868
3869int dev_queue_xmit(struct sk_buff *skb)
3870{
3871 return __dev_queue_xmit(skb, NULL);
3872}
3873EXPORT_SYMBOL(dev_queue_xmit);
3874
3875int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876{
3877 return __dev_queue_xmit(skb, sb_dev);
3878}
3879EXPORT_SYMBOL(dev_queue_xmit_accel);
3880
3881int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882{
3883 struct net_device *dev = skb->dev;
3884 struct sk_buff *orig_skb = skb;
3885 struct netdev_queue *txq;
3886 int ret = NETDEV_TX_BUSY;
3887 bool again = false;
3888
3889 if (unlikely(!netif_running(dev) ||
3890 !netif_carrier_ok(dev)))
3891 goto drop;
3892
3893 skb = validate_xmit_skb_list(skb, dev, &again);
3894 if (skb != orig_skb)
3895 goto drop;
3896
3897 skb_set_queue_mapping(skb, queue_id);
3898 txq = skb_get_tx_queue(dev, skb);
3899
3900 local_bh_disable();
3901
3902 HARD_TX_LOCK(dev, txq, smp_processor_id());
3903 if (!netif_xmit_frozen_or_drv_stopped(txq))
3904 ret = netdev_start_xmit(skb, dev, txq, false);
3905 HARD_TX_UNLOCK(dev, txq);
3906
3907 local_bh_enable();
3908
3909 if (!dev_xmit_complete(ret))
3910 kfree_skb(skb);
3911
3912 return ret;
3913drop:
3914 atomic_long_inc(&dev->tx_dropped);
3915 kfree_skb_list(skb);
3916 return NET_XMIT_DROP;
3917}
3918EXPORT_SYMBOL(dev_direct_xmit);
3919
3920/*************************************************************************
3921 * Receiver routines
3922 *************************************************************************/
3923
3924int netdev_max_backlog __read_mostly = 1000;
3925EXPORT_SYMBOL(netdev_max_backlog);
3926
3927int netdev_tstamp_prequeue __read_mostly = 1;
3928int netdev_budget __read_mostly = 300;
3929unsigned int __read_mostly netdev_budget_usecs = 2000;
3930int weight_p __read_mostly = 64; /* old backlog weight */
3931int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3932int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3933int dev_rx_weight __read_mostly = 64;
3934int dev_tx_weight __read_mostly = 64;
3935
3936/* Called with irq disabled */
3937static inline void ____napi_schedule(struct softnet_data *sd,
3938 struct napi_struct *napi)
3939{
3940 list_add_tail(&napi->poll_list, &sd->poll_list);
3941 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3942}
3943
3944#ifdef CONFIG_RPS
3945
3946/* One global table that all flow-based protocols share. */
3947struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3948EXPORT_SYMBOL(rps_sock_flow_table);
3949u32 rps_cpu_mask __read_mostly;
3950EXPORT_SYMBOL(rps_cpu_mask);
3951
3952struct static_key rps_needed __read_mostly;
3953EXPORT_SYMBOL(rps_needed);
3954struct static_key rfs_needed __read_mostly;
3955EXPORT_SYMBOL(rfs_needed);
3956
3957static struct rps_dev_flow *
3958set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3959 struct rps_dev_flow *rflow, u16 next_cpu)
3960{
3961 if (next_cpu < nr_cpu_ids) {
3962#ifdef CONFIG_RFS_ACCEL
3963 struct netdev_rx_queue *rxqueue;
3964 struct rps_dev_flow_table *flow_table;
3965 struct rps_dev_flow *old_rflow;
3966 u32 flow_id;
3967 u16 rxq_index;
3968 int rc;
3969
3970 /* Should we steer this flow to a different hardware queue? */
3971 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3972 !(dev->features & NETIF_F_NTUPLE))
3973 goto out;
3974 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3975 if (rxq_index == skb_get_rx_queue(skb))
3976 goto out;
3977
3978 rxqueue = dev->_rx + rxq_index;
3979 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3980 if (!flow_table)
3981 goto out;
3982 flow_id = skb_get_hash(skb) & flow_table->mask;
3983 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3984 rxq_index, flow_id);
3985 if (rc < 0)
3986 goto out;
3987 old_rflow = rflow;
3988 rflow = &flow_table->flows[flow_id];
3989 rflow->filter = rc;
3990 if (old_rflow->filter == rflow->filter)
3991 old_rflow->filter = RPS_NO_FILTER;
3992 out:
3993#endif
3994 rflow->last_qtail =
3995 per_cpu(softnet_data, next_cpu).input_queue_head;
3996 }
3997
3998 rflow->cpu = next_cpu;
3999 return rflow;
4000}
4001
4002/*
4003 * get_rps_cpu is called from netif_receive_skb and returns the target
4004 * CPU from the RPS map of the receiving queue for a given skb.
4005 * rcu_read_lock must be held on entry.
4006 */
4007static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4008 struct rps_dev_flow **rflowp)
4009{
4010 const struct rps_sock_flow_table *sock_flow_table;
4011 struct netdev_rx_queue *rxqueue = dev->_rx;
4012 struct rps_dev_flow_table *flow_table;
4013 struct rps_map *map;
4014 int cpu = -1;
4015 u32 tcpu;
4016 u32 hash;
4017
4018 if (skb_rx_queue_recorded(skb)) {
4019 u16 index = skb_get_rx_queue(skb);
4020
4021 if (unlikely(index >= dev->real_num_rx_queues)) {
4022 WARN_ONCE(dev->real_num_rx_queues > 1,
4023 "%s received packet on queue %u, but number "
4024 "of RX queues is %u\n",
4025 dev->name, index, dev->real_num_rx_queues);
4026 goto done;
4027 }
4028 rxqueue += index;
4029 }
4030
4031 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4032
4033 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4034 map = rcu_dereference(rxqueue->rps_map);
4035 if (!flow_table && !map)
4036 goto done;
4037
4038 skb_reset_network_header(skb);
4039 hash = skb_get_hash(skb);
4040 if (!hash)
4041 goto done;
4042
4043 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4044 if (flow_table && sock_flow_table) {
4045 struct rps_dev_flow *rflow;
4046 u32 next_cpu;
4047 u32 ident;
4048
4049 /* First check into global flow table if there is a match */
4050 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4051 if ((ident ^ hash) & ~rps_cpu_mask)
4052 goto try_rps;
4053
4054 next_cpu = ident & rps_cpu_mask;
4055
4056 /* OK, now we know there is a match,
4057 * we can look at the local (per receive queue) flow table
4058 */
4059 rflow = &flow_table->flows[hash & flow_table->mask];
4060 tcpu = rflow->cpu;
4061
4062 /*
4063 * If the desired CPU (where last recvmsg was done) is
4064 * different from current CPU (one in the rx-queue flow
4065 * table entry), switch if one of the following holds:
4066 * - Current CPU is unset (>= nr_cpu_ids).
4067 * - Current CPU is offline.
4068 * - The current CPU's queue tail has advanced beyond the
4069 * last packet that was enqueued using this table entry.
4070 * This guarantees that all previous packets for the flow
4071 * have been dequeued, thus preserving in order delivery.
4072 */
4073 if (unlikely(tcpu != next_cpu) &&
4074 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4075 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4076 rflow->last_qtail)) >= 0)) {
4077 tcpu = next_cpu;
4078 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4079 }
4080
4081 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4082 *rflowp = rflow;
4083 cpu = tcpu;
4084 goto done;
4085 }
4086 }
4087
4088try_rps:
4089
4090 if (map) {
4091 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4092 if (cpu_online(tcpu)) {
4093 cpu = tcpu;
4094 goto done;
4095 }
4096 }
4097
4098done:
4099 return cpu;
4100}
4101
4102#ifdef CONFIG_RFS_ACCEL
4103
4104/**
4105 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4106 * @dev: Device on which the filter was set
4107 * @rxq_index: RX queue index
4108 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4109 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4110 *
4111 * Drivers that implement ndo_rx_flow_steer() should periodically call
4112 * this function for each installed filter and remove the filters for
4113 * which it returns %true.
4114 */
4115bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4116 u32 flow_id, u16 filter_id)
4117{
4118 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4119 struct rps_dev_flow_table *flow_table;
4120 struct rps_dev_flow *rflow;
4121 bool expire = true;
4122 unsigned int cpu;
4123
4124 rcu_read_lock();
4125 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4126 if (flow_table && flow_id <= flow_table->mask) {
4127 rflow = &flow_table->flows[flow_id];
4128 cpu = READ_ONCE(rflow->cpu);
4129 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4130 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4131 rflow->last_qtail) <
4132 (int)(10 * flow_table->mask)))
4133 expire = false;
4134 }
4135 rcu_read_unlock();
4136 return expire;
4137}
4138EXPORT_SYMBOL(rps_may_expire_flow);
4139
4140#endif /* CONFIG_RFS_ACCEL */
4141
4142/* Called from hardirq (IPI) context */
4143static void rps_trigger_softirq(void *data)
4144{
4145 struct softnet_data *sd = data;
4146
4147 ____napi_schedule(sd, &sd->backlog);
4148 sd->received_rps++;
4149}
4150
4151#endif /* CONFIG_RPS */
4152
4153/*
4154 * Check if this softnet_data structure is another cpu one
4155 * If yes, queue it to our IPI list and return 1
4156 * If no, return 0
4157 */
4158static int rps_ipi_queued(struct softnet_data *sd)
4159{
4160#ifdef CONFIG_RPS
4161 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4162
4163 if (sd != mysd) {
4164 sd->rps_ipi_next = mysd->rps_ipi_list;
4165 mysd->rps_ipi_list = sd;
4166
4167 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4168 return 1;
4169 }
4170#endif /* CONFIG_RPS */
4171 return 0;
4172}
4173
4174#ifdef CONFIG_NET_FLOW_LIMIT
4175int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4176#endif
4177
4178static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4179{
4180#ifdef CONFIG_NET_FLOW_LIMIT
4181 struct sd_flow_limit *fl;
4182 struct softnet_data *sd;
4183 unsigned int old_flow, new_flow;
4184
4185 if (qlen < (netdev_max_backlog >> 1))
4186 return false;
4187
4188 sd = this_cpu_ptr(&softnet_data);
4189
4190 rcu_read_lock();
4191 fl = rcu_dereference(sd->flow_limit);
4192 if (fl) {
4193 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4194 old_flow = fl->history[fl->history_head];
4195 fl->history[fl->history_head] = new_flow;
4196
4197 fl->history_head++;
4198 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4199
4200 if (likely(fl->buckets[old_flow]))
4201 fl->buckets[old_flow]--;
4202
4203 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4204 fl->count++;
4205 rcu_read_unlock();
4206 return true;
4207 }
4208 }
4209 rcu_read_unlock();
4210#endif
4211 return false;
4212}
4213
4214/*
4215 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4216 * queue (may be a remote CPU queue).
4217 */
4218static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4219 unsigned int *qtail)
4220{
4221 struct softnet_data *sd;
4222 unsigned long flags;
4223 unsigned int qlen;
4224
4225 sd = &per_cpu(softnet_data, cpu);
4226
4227 local_irq_save(flags);
4228
4229 rps_lock(sd);
4230 if (!netif_running(skb->dev))
4231 goto drop;
4232 qlen = skb_queue_len(&sd->input_pkt_queue);
4233 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4234 if (qlen) {
4235enqueue:
4236 __skb_queue_tail(&sd->input_pkt_queue, skb);
4237 input_queue_tail_incr_save(sd, qtail);
4238 rps_unlock(sd);
4239 local_irq_restore(flags);
4240 return NET_RX_SUCCESS;
4241 }
4242
4243 /* Schedule NAPI for backlog device
4244 * We can use non atomic operation since we own the queue lock
4245 */
4246 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4247 if (!rps_ipi_queued(sd))
4248 ____napi_schedule(sd, &sd->backlog);
4249 }
4250 goto enqueue;
4251 }
4252
4253drop:
4254 sd->dropped++;
4255 rps_unlock(sd);
4256
4257 local_irq_restore(flags);
4258
4259 atomic_long_inc(&skb->dev->rx_dropped);
4260 kfree_skb(skb);
4261 return NET_RX_DROP;
4262}
4263
4264static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4265{
4266 struct net_device *dev = skb->dev;
4267 struct netdev_rx_queue *rxqueue;
4268
4269 rxqueue = dev->_rx;
4270
4271 if (skb_rx_queue_recorded(skb)) {
4272 u16 index = skb_get_rx_queue(skb);
4273
4274 if (unlikely(index >= dev->real_num_rx_queues)) {
4275 WARN_ONCE(dev->real_num_rx_queues > 1,
4276 "%s received packet on queue %u, but number "
4277 "of RX queues is %u\n",
4278 dev->name, index, dev->real_num_rx_queues);
4279
4280 return rxqueue; /* Return first rxqueue */
4281 }
4282 rxqueue += index;
4283 }
4284 return rxqueue;
4285}
4286
4287static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4288 struct xdp_buff *xdp,
4289 struct bpf_prog *xdp_prog)
4290{
4291 struct netdev_rx_queue *rxqueue;
4292 void *orig_data, *orig_data_end;
4293 u32 metalen, act = XDP_DROP;
4294 __be16 orig_eth_type;
4295 struct ethhdr *eth;
4296 bool orig_bcast;
4297 int hlen, off;
4298 u32 mac_len;
4299
4300 /* Reinjected packets coming from act_mirred or similar should
4301 * not get XDP generic processing.
4302 */
4303 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4304 return XDP_PASS;
4305
4306 /* XDP packets must be linear and must have sufficient headroom
4307 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4308 * native XDP provides, thus we need to do it here as well.
4309 */
4310 if (skb_is_nonlinear(skb) ||
4311 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4312 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4313 int troom = skb->tail + skb->data_len - skb->end;
4314
4315 /* In case we have to go down the path and also linearize,
4316 * then lets do the pskb_expand_head() work just once here.
4317 */
4318 if (pskb_expand_head(skb,
4319 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4320 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4321 goto do_drop;
4322 if (skb_linearize(skb))
4323 goto do_drop;
4324 }
4325
4326 /* The XDP program wants to see the packet starting at the MAC
4327 * header.
4328 */
4329 mac_len = skb->data - skb_mac_header(skb);
4330 hlen = skb_headlen(skb) + mac_len;
4331 xdp->data = skb->data - mac_len;
4332 xdp->data_meta = xdp->data;
4333 xdp->data_end = xdp->data + hlen;
4334 xdp->data_hard_start = skb->data - skb_headroom(skb);
4335 orig_data_end = xdp->data_end;
4336 orig_data = xdp->data;
4337 eth = (struct ethhdr *)xdp->data;
4338 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4339 orig_eth_type = eth->h_proto;
4340
4341 rxqueue = netif_get_rxqueue(skb);
4342 xdp->rxq = &rxqueue->xdp_rxq;
4343
4344 act = bpf_prog_run_xdp(xdp_prog, xdp);
4345
4346 off = xdp->data - orig_data;
4347 if (off > 0)
4348 __skb_pull(skb, off);
4349 else if (off < 0)
4350 __skb_push(skb, -off);
4351 skb->mac_header += off;
4352
4353 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4354 * pckt.
4355 */
4356 off = orig_data_end - xdp->data_end;
4357 if (off != 0) {
4358 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4359 skb->len -= off;
4360
4361 }
4362
4363 /* check if XDP changed eth hdr such SKB needs update */
4364 eth = (struct ethhdr *)xdp->data;
4365 if ((orig_eth_type != eth->h_proto) ||
4366 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4367 __skb_push(skb, ETH_HLEN);
4368 skb->protocol = eth_type_trans(skb, skb->dev);
4369 }
4370
4371 switch (act) {
4372 case XDP_REDIRECT:
4373 case XDP_TX:
4374 __skb_push(skb, mac_len);
4375 break;
4376 case XDP_PASS:
4377 metalen = xdp->data - xdp->data_meta;
4378 if (metalen)
4379 skb_metadata_set(skb, metalen);
4380 break;
4381 default:
4382 bpf_warn_invalid_xdp_action(act);
4383 /* fall through */
4384 case XDP_ABORTED:
4385 trace_xdp_exception(skb->dev, xdp_prog, act);
4386 /* fall through */
4387 case XDP_DROP:
4388 do_drop:
4389 kfree_skb(skb);
4390 break;
4391 }
4392
4393 return act;
4394}
4395
4396/* When doing generic XDP we have to bypass the qdisc layer and the
4397 * network taps in order to match in-driver-XDP behavior.
4398 */
4399void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4400{
4401 struct net_device *dev = skb->dev;
4402 struct netdev_queue *txq;
4403 bool free_skb = true;
4404 int cpu, rc;
4405
4406 txq = netdev_pick_tx(dev, skb, NULL);
4407 cpu = smp_processor_id();
4408 HARD_TX_LOCK(dev, txq, cpu);
4409 if (!netif_xmit_stopped(txq)) {
4410 rc = netdev_start_xmit(skb, dev, txq, 0);
4411 if (dev_xmit_complete(rc))
4412 free_skb = false;
4413 }
4414 HARD_TX_UNLOCK(dev, txq);
4415 if (free_skb) {
4416 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4417 kfree_skb(skb);
4418 }
4419}
4420EXPORT_SYMBOL_GPL(generic_xdp_tx);
4421
4422static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4423
4424int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4425{
4426 if (xdp_prog) {
4427 struct xdp_buff xdp;
4428 u32 act;
4429 int err;
4430
4431 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4432 if (act != XDP_PASS) {
4433 switch (act) {
4434 case XDP_REDIRECT:
4435 err = xdp_do_generic_redirect(skb->dev, skb,
4436 &xdp, xdp_prog);
4437 if (err)
4438 goto out_redir;
4439 break;
4440 case XDP_TX:
4441 generic_xdp_tx(skb, xdp_prog);
4442 break;
4443 }
4444 return XDP_DROP;
4445 }
4446 }
4447 return XDP_PASS;
4448out_redir:
4449 kfree_skb(skb);
4450 return XDP_DROP;
4451}
4452EXPORT_SYMBOL_GPL(do_xdp_generic);
4453
4454static int netif_rx_internal(struct sk_buff *skb)
4455{
4456 int ret;
4457
4458 net_timestamp_check(netdev_tstamp_prequeue, skb);
4459
4460 trace_netif_rx(skb);
4461
4462 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4463 int ret;
4464
4465 preempt_disable();
4466 rcu_read_lock();
4467 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4468 rcu_read_unlock();
4469 preempt_enable();
4470
4471 /* Consider XDP consuming the packet a success from
4472 * the netdev point of view we do not want to count
4473 * this as an error.
4474 */
4475 if (ret != XDP_PASS)
4476 return NET_RX_SUCCESS;
4477 }
4478
4479#ifdef CONFIG_RPS
4480 if (static_key_false(&rps_needed)) {
4481 struct rps_dev_flow voidflow, *rflow = &voidflow;
4482 int cpu;
4483
4484 preempt_disable();
4485 rcu_read_lock();
4486
4487 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4488 if (cpu < 0)
4489 cpu = smp_processor_id();
4490
4491 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492
4493 rcu_read_unlock();
4494 preempt_enable();
4495 } else
4496#endif
4497 {
4498 unsigned int qtail;
4499
4500 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4501 put_cpu();
4502 }
4503 return ret;
4504}
4505
4506/**
4507 * netif_rx - post buffer to the network code
4508 * @skb: buffer to post
4509 *
4510 * This function receives a packet from a device driver and queues it for
4511 * the upper (protocol) levels to process. It always succeeds. The buffer
4512 * may be dropped during processing for congestion control or by the
4513 * protocol layers.
4514 *
4515 * return values:
4516 * NET_RX_SUCCESS (no congestion)
4517 * NET_RX_DROP (packet was dropped)
4518 *
4519 */
4520
4521int netif_rx(struct sk_buff *skb)
4522{
4523 trace_netif_rx_entry(skb);
4524
4525 return netif_rx_internal(skb);
4526}
4527EXPORT_SYMBOL(netif_rx);
4528
4529int netif_rx_ni(struct sk_buff *skb)
4530{
4531 int err;
4532
4533 trace_netif_rx_ni_entry(skb);
4534
4535 preempt_disable();
4536 err = netif_rx_internal(skb);
4537 if (local_softirq_pending())
4538 do_softirq();
4539 preempt_enable();
4540
4541 return err;
4542}
4543EXPORT_SYMBOL(netif_rx_ni);
4544
4545static __latent_entropy void net_tx_action(struct softirq_action *h)
4546{
4547 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4548
4549 if (sd->completion_queue) {
4550 struct sk_buff *clist;
4551
4552 local_irq_disable();
4553 clist = sd->completion_queue;
4554 sd->completion_queue = NULL;
4555 local_irq_enable();
4556
4557 while (clist) {
4558 struct sk_buff *skb = clist;
4559
4560 clist = clist->next;
4561
4562 WARN_ON(refcount_read(&skb->users));
4563 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4564 trace_consume_skb(skb);
4565 else
4566 trace_kfree_skb(skb, net_tx_action);
4567
4568 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4569 __kfree_skb(skb);
4570 else
4571 __kfree_skb_defer(skb);
4572 }
4573
4574 __kfree_skb_flush();
4575 }
4576
4577 if (sd->output_queue) {
4578 struct Qdisc *head;
4579
4580 local_irq_disable();
4581 head = sd->output_queue;
4582 sd->output_queue = NULL;
4583 sd->output_queue_tailp = &sd->output_queue;
4584 local_irq_enable();
4585
4586 while (head) {
4587 struct Qdisc *q = head;
4588 spinlock_t *root_lock = NULL;
4589
4590 head = head->next_sched;
4591
4592 if (!(q->flags & TCQ_F_NOLOCK)) {
4593 root_lock = qdisc_lock(q);
4594 spin_lock(root_lock);
4595 }
4596 /* We need to make sure head->next_sched is read
4597 * before clearing __QDISC_STATE_SCHED
4598 */
4599 smp_mb__before_atomic();
4600 clear_bit(__QDISC_STATE_SCHED, &q->state);
4601 qdisc_run(q);
4602 if (root_lock)
4603 spin_unlock(root_lock);
4604 }
4605 }
4606
4607 xfrm_dev_backlog(sd);
4608}
4609
4610#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4611/* This hook is defined here for ATM LANE */
4612int (*br_fdb_test_addr_hook)(struct net_device *dev,
4613 unsigned char *addr) __read_mostly;
4614EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4615#endif
4616
4617static inline struct sk_buff *
4618sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4619 struct net_device *orig_dev)
4620{
4621#ifdef CONFIG_NET_CLS_ACT
4622 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4623 struct tcf_result cl_res;
4624
4625 /* If there's at least one ingress present somewhere (so
4626 * we get here via enabled static key), remaining devices
4627 * that are not configured with an ingress qdisc will bail
4628 * out here.
4629 */
4630 if (!miniq)
4631 return skb;
4632
4633 if (*pt_prev) {
4634 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4635 *pt_prev = NULL;
4636 }
4637
4638 qdisc_skb_cb(skb)->pkt_len = skb->len;
4639 skb->tc_at_ingress = 1;
4640 mini_qdisc_bstats_cpu_update(miniq, skb);
4641
4642 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4643 case TC_ACT_OK:
4644 case TC_ACT_RECLASSIFY:
4645 skb->tc_index = TC_H_MIN(cl_res.classid);
4646 break;
4647 case TC_ACT_SHOT:
4648 mini_qdisc_qstats_cpu_drop(miniq);
4649 kfree_skb(skb);
4650 return NULL;
4651 case TC_ACT_STOLEN:
4652 case TC_ACT_QUEUED:
4653 case TC_ACT_TRAP:
4654 consume_skb(skb);
4655 return NULL;
4656 case TC_ACT_REDIRECT:
4657 /* skb_mac_header check was done by cls/act_bpf, so
4658 * we can safely push the L2 header back before
4659 * redirecting to another netdev
4660 */
4661 __skb_push(skb, skb->mac_len);
4662 skb_do_redirect(skb);
4663 return NULL;
4664 case TC_ACT_REINSERT:
4665 /* this does not scrub the packet, and updates stats on error */
4666 skb_tc_reinsert(skb, &cl_res);
4667 return NULL;
4668 default:
4669 break;
4670 }
4671#endif /* CONFIG_NET_CLS_ACT */
4672 return skb;
4673}
4674
4675/**
4676 * netdev_is_rx_handler_busy - check if receive handler is registered
4677 * @dev: device to check
4678 *
4679 * Check if a receive handler is already registered for a given device.
4680 * Return true if there one.
4681 *
4682 * The caller must hold the rtnl_mutex.
4683 */
4684bool netdev_is_rx_handler_busy(struct net_device *dev)
4685{
4686 ASSERT_RTNL();
4687 return dev && rtnl_dereference(dev->rx_handler);
4688}
4689EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4690
4691/**
4692 * netdev_rx_handler_register - register receive handler
4693 * @dev: device to register a handler for
4694 * @rx_handler: receive handler to register
4695 * @rx_handler_data: data pointer that is used by rx handler
4696 *
4697 * Register a receive handler for a device. This handler will then be
4698 * called from __netif_receive_skb. A negative errno code is returned
4699 * on a failure.
4700 *
4701 * The caller must hold the rtnl_mutex.
4702 *
4703 * For a general description of rx_handler, see enum rx_handler_result.
4704 */
4705int netdev_rx_handler_register(struct net_device *dev,
4706 rx_handler_func_t *rx_handler,
4707 void *rx_handler_data)
4708{
4709 if (netdev_is_rx_handler_busy(dev))
4710 return -EBUSY;
4711
4712 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4713 return -EINVAL;
4714
4715 /* Note: rx_handler_data must be set before rx_handler */
4716 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4717 rcu_assign_pointer(dev->rx_handler, rx_handler);
4718
4719 return 0;
4720}
4721EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4722
4723/**
4724 * netdev_rx_handler_unregister - unregister receive handler
4725 * @dev: device to unregister a handler from
4726 *
4727 * Unregister a receive handler from a device.
4728 *
4729 * The caller must hold the rtnl_mutex.
4730 */
4731void netdev_rx_handler_unregister(struct net_device *dev)
4732{
4733
4734 ASSERT_RTNL();
4735 RCU_INIT_POINTER(dev->rx_handler, NULL);
4736 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4737 * section has a guarantee to see a non NULL rx_handler_data
4738 * as well.
4739 */
4740 synchronize_net();
4741 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4742}
4743EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4744
4745/*
4746 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4747 * the special handling of PFMEMALLOC skbs.
4748 */
4749static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4750{
4751 switch (skb->protocol) {
4752 case htons(ETH_P_ARP):
4753 case htons(ETH_P_IP):
4754 case htons(ETH_P_IPV6):
4755 case htons(ETH_P_8021Q):
4756 case htons(ETH_P_8021AD):
4757 return true;
4758 default:
4759 return false;
4760 }
4761}
4762
4763static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4764 int *ret, struct net_device *orig_dev)
4765{
4766#ifdef CONFIG_NETFILTER_INGRESS
4767 if (nf_hook_ingress_active(skb)) {
4768 int ingress_retval;
4769
4770 if (*pt_prev) {
4771 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4772 *pt_prev = NULL;
4773 }
4774
4775 rcu_read_lock();
4776 ingress_retval = nf_hook_ingress(skb);
4777 rcu_read_unlock();
4778 return ingress_retval;
4779 }
4780#endif /* CONFIG_NETFILTER_INGRESS */
4781 return 0;
4782}
4783
4784static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4785 struct packet_type **ppt_prev)
4786{
4787 struct packet_type *ptype, *pt_prev;
4788 rx_handler_func_t *rx_handler;
4789 struct net_device *orig_dev;
4790 bool deliver_exact = false;
4791 int ret = NET_RX_DROP;
4792 __be16 type;
4793
4794 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4795
4796 trace_netif_receive_skb(skb);
4797
4798 orig_dev = skb->dev;
4799
4800 skb_reset_network_header(skb);
4801 if (!skb_transport_header_was_set(skb))
4802 skb_reset_transport_header(skb);
4803 skb_reset_mac_len(skb);
4804
4805 pt_prev = NULL;
4806
4807another_round:
4808 skb->skb_iif = skb->dev->ifindex;
4809
4810 __this_cpu_inc(softnet_data.processed);
4811
4812 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4813 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4814 skb = skb_vlan_untag(skb);
4815 if (unlikely(!skb))
4816 goto out;
4817 }
4818
4819 if (skb_skip_tc_classify(skb))
4820 goto skip_classify;
4821
4822 if (pfmemalloc)
4823 goto skip_taps;
4824
4825 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4826 if (pt_prev)
4827 ret = deliver_skb(skb, pt_prev, orig_dev);
4828 pt_prev = ptype;
4829 }
4830
4831 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4832 if (pt_prev)
4833 ret = deliver_skb(skb, pt_prev, orig_dev);
4834 pt_prev = ptype;
4835 }
4836
4837skip_taps:
4838#ifdef CONFIG_NET_INGRESS
4839 if (static_branch_unlikely(&ingress_needed_key)) {
4840 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4841 if (!skb)
4842 goto out;
4843
4844 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4845 goto out;
4846 }
4847#endif
4848 skb_reset_tc(skb);
4849skip_classify:
4850 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4851 goto drop;
4852
4853 if (skb_vlan_tag_present(skb)) {
4854 if (pt_prev) {
4855 ret = deliver_skb(skb, pt_prev, orig_dev);
4856 pt_prev = NULL;
4857 }
4858 if (vlan_do_receive(&skb))
4859 goto another_round;
4860 else if (unlikely(!skb))
4861 goto out;
4862 }
4863
4864 rx_handler = rcu_dereference(skb->dev->rx_handler);
4865 if (rx_handler) {
4866 if (pt_prev) {
4867 ret = deliver_skb(skb, pt_prev, orig_dev);
4868 pt_prev = NULL;
4869 }
4870 switch (rx_handler(&skb)) {
4871 case RX_HANDLER_CONSUMED:
4872 ret = NET_RX_SUCCESS;
4873 goto out;
4874 case RX_HANDLER_ANOTHER:
4875 goto another_round;
4876 case RX_HANDLER_EXACT:
4877 deliver_exact = true;
4878 case RX_HANDLER_PASS:
4879 break;
4880 default:
4881 BUG();
4882 }
4883 }
4884
4885 if (unlikely(skb_vlan_tag_present(skb))) {
4886 if (skb_vlan_tag_get_id(skb))
4887 skb->pkt_type = PACKET_OTHERHOST;
4888 /* Note: we might in the future use prio bits
4889 * and set skb->priority like in vlan_do_receive()
4890 * For the time being, just ignore Priority Code Point
4891 */
4892 skb->vlan_tci = 0;
4893 }
4894
4895 type = skb->protocol;
4896
4897 /* deliver only exact match when indicated */
4898 if (likely(!deliver_exact)) {
4899 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4900 &ptype_base[ntohs(type) &
4901 PTYPE_HASH_MASK]);
4902 }
4903
4904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905 &orig_dev->ptype_specific);
4906
4907 if (unlikely(skb->dev != orig_dev)) {
4908 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4909 &skb->dev->ptype_specific);
4910 }
4911
4912 if (pt_prev) {
4913 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4914 goto drop;
4915 *ppt_prev = pt_prev;
4916 } else {
4917drop:
4918 if (!deliver_exact)
4919 atomic_long_inc(&skb->dev->rx_dropped);
4920 else
4921 atomic_long_inc(&skb->dev->rx_nohandler);
4922 kfree_skb(skb);
4923 /* Jamal, now you will not able to escape explaining
4924 * me how you were going to use this. :-)
4925 */
4926 ret = NET_RX_DROP;
4927 }
4928
4929out:
4930 return ret;
4931}
4932
4933static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4934{
4935 struct net_device *orig_dev = skb->dev;
4936 struct packet_type *pt_prev = NULL;
4937 int ret;
4938
4939 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4940 if (pt_prev)
4941 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4942 return ret;
4943}
4944
4945/**
4946 * netif_receive_skb_core - special purpose version of netif_receive_skb
4947 * @skb: buffer to process
4948 *
4949 * More direct receive version of netif_receive_skb(). It should
4950 * only be used by callers that have a need to skip RPS and Generic XDP.
4951 * Caller must also take care of handling if (page_is_)pfmemalloc.
4952 *
4953 * This function may only be called from softirq context and interrupts
4954 * should be enabled.
4955 *
4956 * Return values (usually ignored):
4957 * NET_RX_SUCCESS: no congestion
4958 * NET_RX_DROP: packet was dropped
4959 */
4960int netif_receive_skb_core(struct sk_buff *skb)
4961{
4962 int ret;
4963
4964 rcu_read_lock();
4965 ret = __netif_receive_skb_one_core(skb, false);
4966 rcu_read_unlock();
4967
4968 return ret;
4969}
4970EXPORT_SYMBOL(netif_receive_skb_core);
4971
4972static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4973 struct packet_type *pt_prev,
4974 struct net_device *orig_dev)
4975{
4976 struct sk_buff *skb, *next;
4977
4978 if (!pt_prev)
4979 return;
4980 if (list_empty(head))
4981 return;
4982 if (pt_prev->list_func != NULL)
4983 pt_prev->list_func(head, pt_prev, orig_dev);
4984 else
4985 list_for_each_entry_safe(skb, next, head, list)
4986 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4987}
4988
4989static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4990{
4991 /* Fast-path assumptions:
4992 * - There is no RX handler.
4993 * - Only one packet_type matches.
4994 * If either of these fails, we will end up doing some per-packet
4995 * processing in-line, then handling the 'last ptype' for the whole
4996 * sublist. This can't cause out-of-order delivery to any single ptype,
4997 * because the 'last ptype' must be constant across the sublist, and all
4998 * other ptypes are handled per-packet.
4999 */
5000 /* Current (common) ptype of sublist */
5001 struct packet_type *pt_curr = NULL;
5002 /* Current (common) orig_dev of sublist */
5003 struct net_device *od_curr = NULL;
5004 struct list_head sublist;
5005 struct sk_buff *skb, *next;
5006
5007 INIT_LIST_HEAD(&sublist);
5008 list_for_each_entry_safe(skb, next, head, list) {
5009 struct net_device *orig_dev = skb->dev;
5010 struct packet_type *pt_prev = NULL;
5011
5012 list_del(&skb->list);
5013 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5014 if (!pt_prev)
5015 continue;
5016 if (pt_curr != pt_prev || od_curr != orig_dev) {
5017 /* dispatch old sublist */
5018 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5019 /* start new sublist */
5020 INIT_LIST_HEAD(&sublist);
5021 pt_curr = pt_prev;
5022 od_curr = orig_dev;
5023 }
5024 list_add_tail(&skb->list, &sublist);
5025 }
5026
5027 /* dispatch final sublist */
5028 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5029}
5030
5031static int __netif_receive_skb(struct sk_buff *skb)
5032{
5033 int ret;
5034
5035 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5036 unsigned int noreclaim_flag;
5037
5038 /*
5039 * PFMEMALLOC skbs are special, they should
5040 * - be delivered to SOCK_MEMALLOC sockets only
5041 * - stay away from userspace
5042 * - have bounded memory usage
5043 *
5044 * Use PF_MEMALLOC as this saves us from propagating the allocation
5045 * context down to all allocation sites.
5046 */
5047 noreclaim_flag = memalloc_noreclaim_save();
5048 ret = __netif_receive_skb_one_core(skb, true);
5049 memalloc_noreclaim_restore(noreclaim_flag);
5050 } else
5051 ret = __netif_receive_skb_one_core(skb, false);
5052
5053 return ret;
5054}
5055
5056static void __netif_receive_skb_list(struct list_head *head)
5057{
5058 unsigned long noreclaim_flag = 0;
5059 struct sk_buff *skb, *next;
5060 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5061
5062 list_for_each_entry_safe(skb, next, head, list) {
5063 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5064 struct list_head sublist;
5065
5066 /* Handle the previous sublist */
5067 list_cut_before(&sublist, head, &skb->list);
5068 if (!list_empty(&sublist))
5069 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5070 pfmemalloc = !pfmemalloc;
5071 /* See comments in __netif_receive_skb */
5072 if (pfmemalloc)
5073 noreclaim_flag = memalloc_noreclaim_save();
5074 else
5075 memalloc_noreclaim_restore(noreclaim_flag);
5076 }
5077 }
5078 /* Handle the remaining sublist */
5079 if (!list_empty(head))
5080 __netif_receive_skb_list_core(head, pfmemalloc);
5081 /* Restore pflags */
5082 if (pfmemalloc)
5083 memalloc_noreclaim_restore(noreclaim_flag);
5084}
5085
5086static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5087{
5088 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5089 struct bpf_prog *new = xdp->prog;
5090 int ret = 0;
5091
5092 switch (xdp->command) {
5093 case XDP_SETUP_PROG:
5094 rcu_assign_pointer(dev->xdp_prog, new);
5095 if (old)
5096 bpf_prog_put(old);
5097
5098 if (old && !new) {
5099 static_branch_dec(&generic_xdp_needed_key);
5100 } else if (new && !old) {
5101 static_branch_inc(&generic_xdp_needed_key);
5102 dev_disable_lro(dev);
5103 dev_disable_gro_hw(dev);
5104 }
5105 break;
5106
5107 case XDP_QUERY_PROG:
5108 xdp->prog_id = old ? old->aux->id : 0;
5109 break;
5110
5111 default:
5112 ret = -EINVAL;
5113 break;
5114 }
5115
5116 return ret;
5117}
5118
5119static int netif_receive_skb_internal(struct sk_buff *skb)
5120{
5121 int ret;
5122
5123 net_timestamp_check(netdev_tstamp_prequeue, skb);
5124
5125 if (skb_defer_rx_timestamp(skb))
5126 return NET_RX_SUCCESS;
5127
5128 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129 int ret;
5130
5131 preempt_disable();
5132 rcu_read_lock();
5133 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5134 rcu_read_unlock();
5135 preempt_enable();
5136
5137 if (ret != XDP_PASS)
5138 return NET_RX_DROP;
5139 }
5140
5141 rcu_read_lock();
5142#ifdef CONFIG_RPS
5143 if (static_key_false(&rps_needed)) {
5144 struct rps_dev_flow voidflow, *rflow = &voidflow;
5145 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5146
5147 if (cpu >= 0) {
5148 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5149 rcu_read_unlock();
5150 return ret;
5151 }
5152 }
5153#endif
5154 ret = __netif_receive_skb(skb);
5155 rcu_read_unlock();
5156 return ret;
5157}
5158
5159static void netif_receive_skb_list_internal(struct list_head *head)
5160{
5161 struct bpf_prog *xdp_prog = NULL;
5162 struct sk_buff *skb, *next;
5163 struct list_head sublist;
5164
5165 INIT_LIST_HEAD(&sublist);
5166 list_for_each_entry_safe(skb, next, head, list) {
5167 net_timestamp_check(netdev_tstamp_prequeue, skb);
5168 list_del(&skb->list);
5169 if (!skb_defer_rx_timestamp(skb))
5170 list_add_tail(&skb->list, &sublist);
5171 }
5172 list_splice_init(&sublist, head);
5173
5174 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5175 preempt_disable();
5176 rcu_read_lock();
5177 list_for_each_entry_safe(skb, next, head, list) {
5178 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5179 list_del(&skb->list);
5180 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5181 list_add_tail(&skb->list, &sublist);
5182 }
5183 rcu_read_unlock();
5184 preempt_enable();
5185 /* Put passed packets back on main list */
5186 list_splice_init(&sublist, head);
5187 }
5188
5189 rcu_read_lock();
5190#ifdef CONFIG_RPS
5191 if (static_key_false(&rps_needed)) {
5192 list_for_each_entry_safe(skb, next, head, list) {
5193 struct rps_dev_flow voidflow, *rflow = &voidflow;
5194 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5195
5196 if (cpu >= 0) {
5197 /* Will be handled, remove from list */
5198 list_del(&skb->list);
5199 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5200 }
5201 }
5202 }
5203#endif
5204 __netif_receive_skb_list(head);
5205 rcu_read_unlock();
5206}
5207
5208/**
5209 * netif_receive_skb - process receive buffer from network
5210 * @skb: buffer to process
5211 *
5212 * netif_receive_skb() is the main receive data processing function.
5213 * It always succeeds. The buffer may be dropped during processing
5214 * for congestion control or by the protocol layers.
5215 *
5216 * This function may only be called from softirq context and interrupts
5217 * should be enabled.
5218 *
5219 * Return values (usually ignored):
5220 * NET_RX_SUCCESS: no congestion
5221 * NET_RX_DROP: packet was dropped
5222 */
5223int netif_receive_skb(struct sk_buff *skb)
5224{
5225 trace_netif_receive_skb_entry(skb);
5226
5227 return netif_receive_skb_internal(skb);
5228}
5229EXPORT_SYMBOL(netif_receive_skb);
5230
5231/**
5232 * netif_receive_skb_list - process many receive buffers from network
5233 * @head: list of skbs to process.
5234 *
5235 * Since return value of netif_receive_skb() is normally ignored, and
5236 * wouldn't be meaningful for a list, this function returns void.
5237 *
5238 * This function may only be called from softirq context and interrupts
5239 * should be enabled.
5240 */
5241void netif_receive_skb_list(struct list_head *head)
5242{
5243 struct sk_buff *skb;
5244
5245 if (list_empty(head))
5246 return;
5247 list_for_each_entry(skb, head, list)
5248 trace_netif_receive_skb_list_entry(skb);
5249 netif_receive_skb_list_internal(head);
5250}
5251EXPORT_SYMBOL(netif_receive_skb_list);
5252
5253DEFINE_PER_CPU(struct work_struct, flush_works);
5254
5255/* Network device is going away, flush any packets still pending */
5256static void flush_backlog(struct work_struct *work)
5257{
5258 struct sk_buff *skb, *tmp;
5259 struct softnet_data *sd;
5260
5261 local_bh_disable();
5262 sd = this_cpu_ptr(&softnet_data);
5263
5264 local_irq_disable();
5265 rps_lock(sd);
5266 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5267 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5268 __skb_unlink(skb, &sd->input_pkt_queue);
5269 kfree_skb(skb);
5270 input_queue_head_incr(sd);
5271 }
5272 }
5273 rps_unlock(sd);
5274 local_irq_enable();
5275
5276 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5277 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5278 __skb_unlink(skb, &sd->process_queue);
5279 kfree_skb(skb);
5280 input_queue_head_incr(sd);
5281 }
5282 }
5283 local_bh_enable();
5284}
5285
5286static void flush_all_backlogs(void)
5287{
5288 unsigned int cpu;
5289
5290 get_online_cpus();
5291
5292 for_each_online_cpu(cpu)
5293 queue_work_on(cpu, system_highpri_wq,
5294 per_cpu_ptr(&flush_works, cpu));
5295
5296 for_each_online_cpu(cpu)
5297 flush_work(per_cpu_ptr(&flush_works, cpu));
5298
5299 put_online_cpus();
5300}
5301
5302static int napi_gro_complete(struct sk_buff *skb)
5303{
5304 struct packet_offload *ptype;
5305 __be16 type = skb->protocol;
5306 struct list_head *head = &offload_base;
5307 int err = -ENOENT;
5308
5309 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5310
5311 if (NAPI_GRO_CB(skb)->count == 1) {
5312 skb_shinfo(skb)->gso_size = 0;
5313 goto out;
5314 }
5315
5316 rcu_read_lock();
5317 list_for_each_entry_rcu(ptype, head, list) {
5318 if (ptype->type != type || !ptype->callbacks.gro_complete)
5319 continue;
5320
5321 err = ptype->callbacks.gro_complete(skb, 0);
5322 break;
5323 }
5324 rcu_read_unlock();
5325
5326 if (err) {
5327 WARN_ON(&ptype->list == head);
5328 kfree_skb(skb);
5329 return NET_RX_SUCCESS;
5330 }
5331
5332out:
5333 return netif_receive_skb_internal(skb);
5334}
5335
5336static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5337 bool flush_old)
5338{
5339 struct list_head *head = &napi->gro_hash[index].list;
5340 struct sk_buff *skb, *p;
5341
5342 list_for_each_entry_safe_reverse(skb, p, head, list) {
5343 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5344 return;
5345 skb_list_del_init(skb);
5346 napi_gro_complete(skb);
5347 napi->gro_hash[index].count--;
5348 }
5349
5350 if (!napi->gro_hash[index].count)
5351 __clear_bit(index, &napi->gro_bitmask);
5352}
5353
5354/* napi->gro_hash[].list contains packets ordered by age.
5355 * youngest packets at the head of it.
5356 * Complete skbs in reverse order to reduce latencies.
5357 */
5358void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5359{
5360 u32 i;
5361
5362 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5363 if (test_bit(i, &napi->gro_bitmask))
5364 __napi_gro_flush_chain(napi, i, flush_old);
5365 }
5366}
5367EXPORT_SYMBOL(napi_gro_flush);
5368
5369static struct list_head *gro_list_prepare(struct napi_struct *napi,
5370 struct sk_buff *skb)
5371{
5372 unsigned int maclen = skb->dev->hard_header_len;
5373 u32 hash = skb_get_hash_raw(skb);
5374 struct list_head *head;
5375 struct sk_buff *p;
5376
5377 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5378 list_for_each_entry(p, head, list) {
5379 unsigned long diffs;
5380
5381 NAPI_GRO_CB(p)->flush = 0;
5382
5383 if (hash != skb_get_hash_raw(p)) {
5384 NAPI_GRO_CB(p)->same_flow = 0;
5385 continue;
5386 }
5387
5388 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5389 diffs |= p->vlan_tci ^ skb->vlan_tci;
5390 diffs |= skb_metadata_dst_cmp(p, skb);
5391 diffs |= skb_metadata_differs(p, skb);
5392 if (maclen == ETH_HLEN)
5393 diffs |= compare_ether_header(skb_mac_header(p),
5394 skb_mac_header(skb));
5395 else if (!diffs)
5396 diffs = memcmp(skb_mac_header(p),
5397 skb_mac_header(skb),
5398 maclen);
5399 NAPI_GRO_CB(p)->same_flow = !diffs;
5400 }
5401
5402 return head;
5403}
5404
5405static void skb_gro_reset_offset(struct sk_buff *skb)
5406{
5407 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5408 const skb_frag_t *frag0 = &pinfo->frags[0];
5409
5410 NAPI_GRO_CB(skb)->data_offset = 0;
5411 NAPI_GRO_CB(skb)->frag0 = NULL;
5412 NAPI_GRO_CB(skb)->frag0_len = 0;
5413
5414 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5415 pinfo->nr_frags &&
5416 !PageHighMem(skb_frag_page(frag0))) {
5417 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5418 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5419 skb_frag_size(frag0),
5420 skb->end - skb->tail);
5421 }
5422}
5423
5424static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5425{
5426 struct skb_shared_info *pinfo = skb_shinfo(skb);
5427
5428 BUG_ON(skb->end - skb->tail < grow);
5429
5430 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5431
5432 skb->data_len -= grow;
5433 skb->tail += grow;
5434
5435 pinfo->frags[0].page_offset += grow;
5436 skb_frag_size_sub(&pinfo->frags[0], grow);
5437
5438 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5439 skb_frag_unref(skb, 0);
5440 memmove(pinfo->frags, pinfo->frags + 1,
5441 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5442 }
5443}
5444
5445static void gro_flush_oldest(struct list_head *head)
5446{
5447 struct sk_buff *oldest;
5448
5449 oldest = list_last_entry(head, struct sk_buff, list);
5450
5451 /* We are called with head length >= MAX_GRO_SKBS, so this is
5452 * impossible.
5453 */
5454 if (WARN_ON_ONCE(!oldest))
5455 return;
5456
5457 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5458 * SKB to the chain.
5459 */
5460 skb_list_del_init(oldest);
5461 napi_gro_complete(oldest);
5462}
5463
5464static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5465{
5466 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5467 struct list_head *head = &offload_base;
5468 struct packet_offload *ptype;
5469 __be16 type = skb->protocol;
5470 struct list_head *gro_head;
5471 struct sk_buff *pp = NULL;
5472 enum gro_result ret;
5473 int same_flow;
5474 int grow;
5475
5476 if (netif_elide_gro(skb->dev))
5477 goto normal;
5478
5479 gro_head = gro_list_prepare(napi, skb);
5480
5481 rcu_read_lock();
5482 list_for_each_entry_rcu(ptype, head, list) {
5483 if (ptype->type != type || !ptype->callbacks.gro_receive)
5484 continue;
5485
5486 skb_set_network_header(skb, skb_gro_offset(skb));
5487 skb_reset_mac_len(skb);
5488 NAPI_GRO_CB(skb)->same_flow = 0;
5489 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5490 NAPI_GRO_CB(skb)->free = 0;
5491 NAPI_GRO_CB(skb)->encap_mark = 0;
5492 NAPI_GRO_CB(skb)->recursion_counter = 0;
5493 NAPI_GRO_CB(skb)->is_fou = 0;
5494 NAPI_GRO_CB(skb)->is_atomic = 1;
5495 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5496
5497 /* Setup for GRO checksum validation */
5498 switch (skb->ip_summed) {
5499 case CHECKSUM_COMPLETE:
5500 NAPI_GRO_CB(skb)->csum = skb->csum;
5501 NAPI_GRO_CB(skb)->csum_valid = 1;
5502 NAPI_GRO_CB(skb)->csum_cnt = 0;
5503 break;
5504 case CHECKSUM_UNNECESSARY:
5505 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5506 NAPI_GRO_CB(skb)->csum_valid = 0;
5507 break;
5508 default:
5509 NAPI_GRO_CB(skb)->csum_cnt = 0;
5510 NAPI_GRO_CB(skb)->csum_valid = 0;
5511 }
5512
5513 pp = ptype->callbacks.gro_receive(gro_head, skb);
5514 break;
5515 }
5516 rcu_read_unlock();
5517
5518 if (&ptype->list == head)
5519 goto normal;
5520
5521 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5522 ret = GRO_CONSUMED;
5523 goto ok;
5524 }
5525
5526 same_flow = NAPI_GRO_CB(skb)->same_flow;
5527 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5528
5529 if (pp) {
5530 skb_list_del_init(pp);
5531 napi_gro_complete(pp);
5532 napi->gro_hash[hash].count--;
5533 }
5534
5535 if (same_flow)
5536 goto ok;
5537
5538 if (NAPI_GRO_CB(skb)->flush)
5539 goto normal;
5540
5541 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5542 gro_flush_oldest(gro_head);
5543 } else {
5544 napi->gro_hash[hash].count++;
5545 }
5546 NAPI_GRO_CB(skb)->count = 1;
5547 NAPI_GRO_CB(skb)->age = jiffies;
5548 NAPI_GRO_CB(skb)->last = skb;
5549 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5550 list_add(&skb->list, gro_head);
5551 ret = GRO_HELD;
5552
5553pull:
5554 grow = skb_gro_offset(skb) - skb_headlen(skb);
5555 if (grow > 0)
5556 gro_pull_from_frag0(skb, grow);
5557ok:
5558 if (napi->gro_hash[hash].count) {
5559 if (!test_bit(hash, &napi->gro_bitmask))
5560 __set_bit(hash, &napi->gro_bitmask);
5561 } else if (test_bit(hash, &napi->gro_bitmask)) {
5562 __clear_bit(hash, &napi->gro_bitmask);
5563 }
5564
5565 return ret;
5566
5567normal:
5568 ret = GRO_NORMAL;
5569 goto pull;
5570}
5571
5572struct packet_offload *gro_find_receive_by_type(__be16 type)
5573{
5574 struct list_head *offload_head = &offload_base;
5575 struct packet_offload *ptype;
5576
5577 list_for_each_entry_rcu(ptype, offload_head, list) {
5578 if (ptype->type != type || !ptype->callbacks.gro_receive)
5579 continue;
5580 return ptype;
5581 }
5582 return NULL;
5583}
5584EXPORT_SYMBOL(gro_find_receive_by_type);
5585
5586struct packet_offload *gro_find_complete_by_type(__be16 type)
5587{
5588 struct list_head *offload_head = &offload_base;
5589 struct packet_offload *ptype;
5590
5591 list_for_each_entry_rcu(ptype, offload_head, list) {
5592 if (ptype->type != type || !ptype->callbacks.gro_complete)
5593 continue;
5594 return ptype;
5595 }
5596 return NULL;
5597}
5598EXPORT_SYMBOL(gro_find_complete_by_type);
5599
5600static void napi_skb_free_stolen_head(struct sk_buff *skb)
5601{
5602 skb_dst_drop(skb);
5603 secpath_reset(skb);
5604 kmem_cache_free(skbuff_head_cache, skb);
5605}
5606
5607static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5608{
5609 switch (ret) {
5610 case GRO_NORMAL:
5611 if (netif_receive_skb_internal(skb))
5612 ret = GRO_DROP;
5613 break;
5614
5615 case GRO_DROP:
5616 kfree_skb(skb);
5617 break;
5618
5619 case GRO_MERGED_FREE:
5620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5621 napi_skb_free_stolen_head(skb);
5622 else
5623 __kfree_skb(skb);
5624 break;
5625
5626 case GRO_HELD:
5627 case GRO_MERGED:
5628 case GRO_CONSUMED:
5629 break;
5630 }
5631
5632 return ret;
5633}
5634
5635gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5636{
5637 skb_mark_napi_id(skb, napi);
5638 trace_napi_gro_receive_entry(skb);
5639
5640 skb_gro_reset_offset(skb);
5641
5642 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5643}
5644EXPORT_SYMBOL(napi_gro_receive);
5645
5646static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5647{
5648 if (unlikely(skb->pfmemalloc)) {
5649 consume_skb(skb);
5650 return;
5651 }
5652 __skb_pull(skb, skb_headlen(skb));
5653 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5654 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5655 skb->vlan_tci = 0;
5656 skb->dev = napi->dev;
5657 skb->skb_iif = 0;
5658 skb->encapsulation = 0;
5659 skb_shinfo(skb)->gso_type = 0;
5660 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5661 secpath_reset(skb);
5662
5663 napi->skb = skb;
5664}
5665
5666struct sk_buff *napi_get_frags(struct napi_struct *napi)
5667{
5668 struct sk_buff *skb = napi->skb;
5669
5670 if (!skb) {
5671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5672 if (skb) {
5673 napi->skb = skb;
5674 skb_mark_napi_id(skb, napi);
5675 }
5676 }
5677 return skb;
5678}
5679EXPORT_SYMBOL(napi_get_frags);
5680
5681static gro_result_t napi_frags_finish(struct napi_struct *napi,
5682 struct sk_buff *skb,
5683 gro_result_t ret)
5684{
5685 switch (ret) {
5686 case GRO_NORMAL:
5687 case GRO_HELD:
5688 __skb_push(skb, ETH_HLEN);
5689 skb->protocol = eth_type_trans(skb, skb->dev);
5690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5691 ret = GRO_DROP;
5692 break;
5693
5694 case GRO_DROP:
5695 napi_reuse_skb(napi, skb);
5696 break;
5697
5698 case GRO_MERGED_FREE:
5699 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5700 napi_skb_free_stolen_head(skb);
5701 else
5702 napi_reuse_skb(napi, skb);
5703 break;
5704
5705 case GRO_MERGED:
5706 case GRO_CONSUMED:
5707 break;
5708 }
5709
5710 return ret;
5711}
5712
5713/* Upper GRO stack assumes network header starts at gro_offset=0
5714 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5715 * We copy ethernet header into skb->data to have a common layout.
5716 */
5717static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5718{
5719 struct sk_buff *skb = napi->skb;
5720 const struct ethhdr *eth;
5721 unsigned int hlen = sizeof(*eth);
5722
5723 napi->skb = NULL;
5724
5725 skb_reset_mac_header(skb);
5726 skb_gro_reset_offset(skb);
5727
5728 eth = skb_gro_header_fast(skb, 0);
5729 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5730 eth = skb_gro_header_slow(skb, hlen, 0);
5731 if (unlikely(!eth)) {
5732 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5733 __func__, napi->dev->name);
5734 napi_reuse_skb(napi, skb);
5735 return NULL;
5736 }
5737 } else {
5738 gro_pull_from_frag0(skb, hlen);
5739 NAPI_GRO_CB(skb)->frag0 += hlen;
5740 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5741 }
5742 __skb_pull(skb, hlen);
5743
5744 /*
5745 * This works because the only protocols we care about don't require
5746 * special handling.
5747 * We'll fix it up properly in napi_frags_finish()
5748 */
5749 skb->protocol = eth->h_proto;
5750
5751 return skb;
5752}
5753
5754gro_result_t napi_gro_frags(struct napi_struct *napi)
5755{
5756 struct sk_buff *skb = napi_frags_skb(napi);
5757
5758 if (!skb)
5759 return GRO_DROP;
5760
5761 trace_napi_gro_frags_entry(skb);
5762
5763 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5764}
5765EXPORT_SYMBOL(napi_gro_frags);
5766
5767/* Compute the checksum from gro_offset and return the folded value
5768 * after adding in any pseudo checksum.
5769 */
5770__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5771{
5772 __wsum wsum;
5773 __sum16 sum;
5774
5775 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5776
5777 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5778 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5779 if (likely(!sum)) {
5780 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5781 !skb->csum_complete_sw)
5782 netdev_rx_csum_fault(skb->dev);
5783 }
5784
5785 NAPI_GRO_CB(skb)->csum = wsum;
5786 NAPI_GRO_CB(skb)->csum_valid = 1;
5787
5788 return sum;
5789}
5790EXPORT_SYMBOL(__skb_gro_checksum_complete);
5791
5792static void net_rps_send_ipi(struct softnet_data *remsd)
5793{
5794#ifdef CONFIG_RPS
5795 while (remsd) {
5796 struct softnet_data *next = remsd->rps_ipi_next;
5797
5798 if (cpu_online(remsd->cpu))
5799 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5800 remsd = next;
5801 }
5802#endif
5803}
5804
5805/*
5806 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5807 * Note: called with local irq disabled, but exits with local irq enabled.
5808 */
5809static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5810{
5811#ifdef CONFIG_RPS
5812 struct softnet_data *remsd = sd->rps_ipi_list;
5813
5814 if (remsd) {
5815 sd->rps_ipi_list = NULL;
5816
5817 local_irq_enable();
5818
5819 /* Send pending IPI's to kick RPS processing on remote cpus. */
5820 net_rps_send_ipi(remsd);
5821 } else
5822#endif
5823 local_irq_enable();
5824}
5825
5826static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5827{
5828#ifdef CONFIG_RPS
5829 return sd->rps_ipi_list != NULL;
5830#else
5831 return false;
5832#endif
5833}
5834
5835static int process_backlog(struct napi_struct *napi, int quota)
5836{
5837 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5838 bool again = true;
5839 int work = 0;
5840
5841 /* Check if we have pending ipi, its better to send them now,
5842 * not waiting net_rx_action() end.
5843 */
5844 if (sd_has_rps_ipi_waiting(sd)) {
5845 local_irq_disable();
5846 net_rps_action_and_irq_enable(sd);
5847 }
5848
5849 napi->weight = dev_rx_weight;
5850 while (again) {
5851 struct sk_buff *skb;
5852
5853 while ((skb = __skb_dequeue(&sd->process_queue))) {
5854 rcu_read_lock();
5855 __netif_receive_skb(skb);
5856 rcu_read_unlock();
5857 input_queue_head_incr(sd);
5858 if (++work >= quota)
5859 return work;
5860
5861 }
5862
5863 local_irq_disable();
5864 rps_lock(sd);
5865 if (skb_queue_empty(&sd->input_pkt_queue)) {
5866 /*
5867 * Inline a custom version of __napi_complete().
5868 * only current cpu owns and manipulates this napi,
5869 * and NAPI_STATE_SCHED is the only possible flag set
5870 * on backlog.
5871 * We can use a plain write instead of clear_bit(),
5872 * and we dont need an smp_mb() memory barrier.
5873 */
5874 napi->state = 0;
5875 again = false;
5876 } else {
5877 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5878 &sd->process_queue);
5879 }
5880 rps_unlock(sd);
5881 local_irq_enable();
5882 }
5883
5884 return work;
5885}
5886
5887/**
5888 * __napi_schedule - schedule for receive
5889 * @n: entry to schedule
5890 *
5891 * The entry's receive function will be scheduled to run.
5892 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5893 */
5894void __napi_schedule(struct napi_struct *n)
5895{
5896 unsigned long flags;
5897
5898 local_irq_save(flags);
5899 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5900 local_irq_restore(flags);
5901}
5902EXPORT_SYMBOL(__napi_schedule);
5903
5904/**
5905 * napi_schedule_prep - check if napi can be scheduled
5906 * @n: napi context
5907 *
5908 * Test if NAPI routine is already running, and if not mark
5909 * it as running. This is used as a condition variable
5910 * insure only one NAPI poll instance runs. We also make
5911 * sure there is no pending NAPI disable.
5912 */
5913bool napi_schedule_prep(struct napi_struct *n)
5914{
5915 unsigned long val, new;
5916
5917 do {
5918 val = READ_ONCE(n->state);
5919 if (unlikely(val & NAPIF_STATE_DISABLE))
5920 return false;
5921 new = val | NAPIF_STATE_SCHED;
5922
5923 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5924 * This was suggested by Alexander Duyck, as compiler
5925 * emits better code than :
5926 * if (val & NAPIF_STATE_SCHED)
5927 * new |= NAPIF_STATE_MISSED;
5928 */
5929 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5930 NAPIF_STATE_MISSED;
5931 } while (cmpxchg(&n->state, val, new) != val);
5932
5933 return !(val & NAPIF_STATE_SCHED);
5934}
5935EXPORT_SYMBOL(napi_schedule_prep);
5936
5937/**
5938 * __napi_schedule_irqoff - schedule for receive
5939 * @n: entry to schedule
5940 *
5941 * Variant of __napi_schedule() assuming hard irqs are masked
5942 */
5943void __napi_schedule_irqoff(struct napi_struct *n)
5944{
5945 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946}
5947EXPORT_SYMBOL(__napi_schedule_irqoff);
5948
5949bool napi_complete_done(struct napi_struct *n, int work_done)
5950{
5951 unsigned long flags, val, new;
5952
5953 /*
5954 * 1) Don't let napi dequeue from the cpu poll list
5955 * just in case its running on a different cpu.
5956 * 2) If we are busy polling, do nothing here, we have
5957 * the guarantee we will be called later.
5958 */
5959 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5960 NAPIF_STATE_IN_BUSY_POLL)))
5961 return false;
5962
5963 if (n->gro_bitmask) {
5964 unsigned long timeout = 0;
5965
5966 if (work_done)
5967 timeout = n->dev->gro_flush_timeout;
5968
5969 if (timeout)
5970 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5971 HRTIMER_MODE_REL_PINNED);
5972 else
5973 napi_gro_flush(n, false);
5974 }
5975 if (unlikely(!list_empty(&n->poll_list))) {
5976 /* If n->poll_list is not empty, we need to mask irqs */
5977 local_irq_save(flags);
5978 list_del_init(&n->poll_list);
5979 local_irq_restore(flags);
5980 }
5981
5982 do {
5983 val = READ_ONCE(n->state);
5984
5985 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5986
5987 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5988
5989 /* If STATE_MISSED was set, leave STATE_SCHED set,
5990 * because we will call napi->poll() one more time.
5991 * This C code was suggested by Alexander Duyck to help gcc.
5992 */
5993 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5994 NAPIF_STATE_SCHED;
5995 } while (cmpxchg(&n->state, val, new) != val);
5996
5997 if (unlikely(val & NAPIF_STATE_MISSED)) {
5998 __napi_schedule(n);
5999 return false;
6000 }
6001
6002 return true;
6003}
6004EXPORT_SYMBOL(napi_complete_done);
6005
6006/* must be called under rcu_read_lock(), as we dont take a reference */
6007static struct napi_struct *napi_by_id(unsigned int napi_id)
6008{
6009 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6010 struct napi_struct *napi;
6011
6012 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6013 if (napi->napi_id == napi_id)
6014 return napi;
6015
6016 return NULL;
6017}
6018
6019#if defined(CONFIG_NET_RX_BUSY_POLL)
6020
6021#define BUSY_POLL_BUDGET 8
6022
6023static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6024{
6025 int rc;
6026
6027 /* Busy polling means there is a high chance device driver hard irq
6028 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6029 * set in napi_schedule_prep().
6030 * Since we are about to call napi->poll() once more, we can safely
6031 * clear NAPI_STATE_MISSED.
6032 *
6033 * Note: x86 could use a single "lock and ..." instruction
6034 * to perform these two clear_bit()
6035 */
6036 clear_bit(NAPI_STATE_MISSED, &napi->state);
6037 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6038
6039 local_bh_disable();
6040
6041 /* All we really want here is to re-enable device interrupts.
6042 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6043 */
6044 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6045 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6046 netpoll_poll_unlock(have_poll_lock);
6047 if (rc == BUSY_POLL_BUDGET)
6048 __napi_schedule(napi);
6049 local_bh_enable();
6050}
6051
6052void napi_busy_loop(unsigned int napi_id,
6053 bool (*loop_end)(void *, unsigned long),
6054 void *loop_end_arg)
6055{
6056 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6057 int (*napi_poll)(struct napi_struct *napi, int budget);
6058 void *have_poll_lock = NULL;
6059 struct napi_struct *napi;
6060
6061restart:
6062 napi_poll = NULL;
6063
6064 rcu_read_lock();
6065
6066 napi = napi_by_id(napi_id);
6067 if (!napi)
6068 goto out;
6069
6070 preempt_disable();
6071 for (;;) {
6072 int work = 0;
6073
6074 local_bh_disable();
6075 if (!napi_poll) {
6076 unsigned long val = READ_ONCE(napi->state);
6077
6078 /* If multiple threads are competing for this napi,
6079 * we avoid dirtying napi->state as much as we can.
6080 */
6081 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6082 NAPIF_STATE_IN_BUSY_POLL))
6083 goto count;
6084 if (cmpxchg(&napi->state, val,
6085 val | NAPIF_STATE_IN_BUSY_POLL |
6086 NAPIF_STATE_SCHED) != val)
6087 goto count;
6088 have_poll_lock = netpoll_poll_lock(napi);
6089 napi_poll = napi->poll;
6090 }
6091 work = napi_poll(napi, BUSY_POLL_BUDGET);
6092 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6093count:
6094 if (work > 0)
6095 __NET_ADD_STATS(dev_net(napi->dev),
6096 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6097 local_bh_enable();
6098
6099 if (!loop_end || loop_end(loop_end_arg, start_time))
6100 break;
6101
6102 if (unlikely(need_resched())) {
6103 if (napi_poll)
6104 busy_poll_stop(napi, have_poll_lock);
6105 preempt_enable();
6106 rcu_read_unlock();
6107 cond_resched();
6108 if (loop_end(loop_end_arg, start_time))
6109 return;
6110 goto restart;
6111 }
6112 cpu_relax();
6113 }
6114 if (napi_poll)
6115 busy_poll_stop(napi, have_poll_lock);
6116 preempt_enable();
6117out:
6118 rcu_read_unlock();
6119}
6120EXPORT_SYMBOL(napi_busy_loop);
6121
6122#endif /* CONFIG_NET_RX_BUSY_POLL */
6123
6124static void napi_hash_add(struct napi_struct *napi)
6125{
6126 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6127 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6128 return;
6129
6130 spin_lock(&napi_hash_lock);
6131
6132 /* 0..NR_CPUS range is reserved for sender_cpu use */
6133 do {
6134 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6135 napi_gen_id = MIN_NAPI_ID;
6136 } while (napi_by_id(napi_gen_id));
6137 napi->napi_id = napi_gen_id;
6138
6139 hlist_add_head_rcu(&napi->napi_hash_node,
6140 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6141
6142 spin_unlock(&napi_hash_lock);
6143}
6144
6145/* Warning : caller is responsible to make sure rcu grace period
6146 * is respected before freeing memory containing @napi
6147 */
6148bool napi_hash_del(struct napi_struct *napi)
6149{
6150 bool rcu_sync_needed = false;
6151
6152 spin_lock(&napi_hash_lock);
6153
6154 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6155 rcu_sync_needed = true;
6156 hlist_del_rcu(&napi->napi_hash_node);
6157 }
6158 spin_unlock(&napi_hash_lock);
6159 return rcu_sync_needed;
6160}
6161EXPORT_SYMBOL_GPL(napi_hash_del);
6162
6163static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6164{
6165 struct napi_struct *napi;
6166
6167 napi = container_of(timer, struct napi_struct, timer);
6168
6169 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6170 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6171 */
6172 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6173 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6174 __napi_schedule_irqoff(napi);
6175
6176 return HRTIMER_NORESTART;
6177}
6178
6179static void init_gro_hash(struct napi_struct *napi)
6180{
6181 int i;
6182
6183 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6184 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6185 napi->gro_hash[i].count = 0;
6186 }
6187 napi->gro_bitmask = 0;
6188}
6189
6190void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6191 int (*poll)(struct napi_struct *, int), int weight)
6192{
6193 INIT_LIST_HEAD(&napi->poll_list);
6194 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6195 napi->timer.function = napi_watchdog;
6196 init_gro_hash(napi);
6197 napi->skb = NULL;
6198 napi->poll = poll;
6199 if (weight > NAPI_POLL_WEIGHT)
6200 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6201 weight, dev->name);
6202 napi->weight = weight;
6203 list_add(&napi->dev_list, &dev->napi_list);
6204 napi->dev = dev;
6205#ifdef CONFIG_NETPOLL
6206 napi->poll_owner = -1;
6207#endif
6208 set_bit(NAPI_STATE_SCHED, &napi->state);
6209 napi_hash_add(napi);
6210}
6211EXPORT_SYMBOL(netif_napi_add);
6212
6213void napi_disable(struct napi_struct *n)
6214{
6215 might_sleep();
6216 set_bit(NAPI_STATE_DISABLE, &n->state);
6217
6218 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6219 msleep(1);
6220 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6221 msleep(1);
6222
6223 hrtimer_cancel(&n->timer);
6224
6225 clear_bit(NAPI_STATE_DISABLE, &n->state);
6226}
6227EXPORT_SYMBOL(napi_disable);
6228
6229static void flush_gro_hash(struct napi_struct *napi)
6230{
6231 int i;
6232
6233 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6234 struct sk_buff *skb, *n;
6235
6236 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6237 kfree_skb(skb);
6238 napi->gro_hash[i].count = 0;
6239 }
6240}
6241
6242/* Must be called in process context */
6243void netif_napi_del(struct napi_struct *napi)
6244{
6245 might_sleep();
6246 if (napi_hash_del(napi))
6247 synchronize_net();
6248 list_del_init(&napi->dev_list);
6249 napi_free_frags(napi);
6250
6251 flush_gro_hash(napi);
6252 napi->gro_bitmask = 0;
6253}
6254EXPORT_SYMBOL(netif_napi_del);
6255
6256static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6257{
6258 void *have;
6259 int work, weight;
6260
6261 list_del_init(&n->poll_list);
6262
6263 have = netpoll_poll_lock(n);
6264
6265 weight = n->weight;
6266
6267 /* This NAPI_STATE_SCHED test is for avoiding a race
6268 * with netpoll's poll_napi(). Only the entity which
6269 * obtains the lock and sees NAPI_STATE_SCHED set will
6270 * actually make the ->poll() call. Therefore we avoid
6271 * accidentally calling ->poll() when NAPI is not scheduled.
6272 */
6273 work = 0;
6274 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6275 work = n->poll(n, weight);
6276 trace_napi_poll(n, work, weight);
6277 }
6278
6279 WARN_ON_ONCE(work > weight);
6280
6281 if (likely(work < weight))
6282 goto out_unlock;
6283
6284 /* Drivers must not modify the NAPI state if they
6285 * consume the entire weight. In such cases this code
6286 * still "owns" the NAPI instance and therefore can
6287 * move the instance around on the list at-will.
6288 */
6289 if (unlikely(napi_disable_pending(n))) {
6290 napi_complete(n);
6291 goto out_unlock;
6292 }
6293
6294 if (n->gro_bitmask) {
6295 /* flush too old packets
6296 * If HZ < 1000, flush all packets.
6297 */
6298 napi_gro_flush(n, HZ >= 1000);
6299 }
6300
6301 /* Some drivers may have called napi_schedule
6302 * prior to exhausting their budget.
6303 */
6304 if (unlikely(!list_empty(&n->poll_list))) {
6305 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6306 n->dev ? n->dev->name : "backlog");
6307 goto out_unlock;
6308 }
6309
6310 list_add_tail(&n->poll_list, repoll);
6311
6312out_unlock:
6313 netpoll_poll_unlock(have);
6314
6315 return work;
6316}
6317
6318static __latent_entropy void net_rx_action(struct softirq_action *h)
6319{
6320 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6321 unsigned long time_limit = jiffies +
6322 usecs_to_jiffies(netdev_budget_usecs);
6323 int budget = netdev_budget;
6324 LIST_HEAD(list);
6325 LIST_HEAD(repoll);
6326
6327 local_irq_disable();
6328 list_splice_init(&sd->poll_list, &list);
6329 local_irq_enable();
6330
6331 for (;;) {
6332 struct napi_struct *n;
6333
6334 if (list_empty(&list)) {
6335 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6336 goto out;
6337 break;
6338 }
6339
6340 n = list_first_entry(&list, struct napi_struct, poll_list);
6341 budget -= napi_poll(n, &repoll);
6342
6343 /* If softirq window is exhausted then punt.
6344 * Allow this to run for 2 jiffies since which will allow
6345 * an average latency of 1.5/HZ.
6346 */
6347 if (unlikely(budget <= 0 ||
6348 time_after_eq(jiffies, time_limit))) {
6349 sd->time_squeeze++;
6350 break;
6351 }
6352 }
6353
6354 local_irq_disable();
6355
6356 list_splice_tail_init(&sd->poll_list, &list);
6357 list_splice_tail(&repoll, &list);
6358 list_splice(&list, &sd->poll_list);
6359 if (!list_empty(&sd->poll_list))
6360 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6361
6362 net_rps_action_and_irq_enable(sd);
6363out:
6364 __kfree_skb_flush();
6365}
6366
6367struct netdev_adjacent {
6368 struct net_device *dev;
6369
6370 /* upper master flag, there can only be one master device per list */
6371 bool master;
6372
6373 /* counter for the number of times this device was added to us */
6374 u16 ref_nr;
6375
6376 /* private field for the users */
6377 void *private;
6378
6379 struct list_head list;
6380 struct rcu_head rcu;
6381};
6382
6383static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6384 struct list_head *adj_list)
6385{
6386 struct netdev_adjacent *adj;
6387
6388 list_for_each_entry(adj, adj_list, list) {
6389 if (adj->dev == adj_dev)
6390 return adj;
6391 }
6392 return NULL;
6393}
6394
6395static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6396{
6397 struct net_device *dev = data;
6398
6399 return upper_dev == dev;
6400}
6401
6402/**
6403 * netdev_has_upper_dev - Check if device is linked to an upper device
6404 * @dev: device
6405 * @upper_dev: upper device to check
6406 *
6407 * Find out if a device is linked to specified upper device and return true
6408 * in case it is. Note that this checks only immediate upper device,
6409 * not through a complete stack of devices. The caller must hold the RTNL lock.
6410 */
6411bool netdev_has_upper_dev(struct net_device *dev,
6412 struct net_device *upper_dev)
6413{
6414 ASSERT_RTNL();
6415
6416 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6417 upper_dev);
6418}
6419EXPORT_SYMBOL(netdev_has_upper_dev);
6420
6421/**
6422 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6423 * @dev: device
6424 * @upper_dev: upper device to check
6425 *
6426 * Find out if a device is linked to specified upper device and return true
6427 * in case it is. Note that this checks the entire upper device chain.
6428 * The caller must hold rcu lock.
6429 */
6430
6431bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6432 struct net_device *upper_dev)
6433{
6434 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6435 upper_dev);
6436}
6437EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6438
6439/**
6440 * netdev_has_any_upper_dev - Check if device is linked to some device
6441 * @dev: device
6442 *
6443 * Find out if a device is linked to an upper device and return true in case
6444 * it is. The caller must hold the RTNL lock.
6445 */
6446bool netdev_has_any_upper_dev(struct net_device *dev)
6447{
6448 ASSERT_RTNL();
6449
6450 return !list_empty(&dev->adj_list.upper);
6451}
6452EXPORT_SYMBOL(netdev_has_any_upper_dev);
6453
6454/**
6455 * netdev_master_upper_dev_get - Get master upper device
6456 * @dev: device
6457 *
6458 * Find a master upper device and return pointer to it or NULL in case
6459 * it's not there. The caller must hold the RTNL lock.
6460 */
6461struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6462{
6463 struct netdev_adjacent *upper;
6464
6465 ASSERT_RTNL();
6466
6467 if (list_empty(&dev->adj_list.upper))
6468 return NULL;
6469
6470 upper = list_first_entry(&dev->adj_list.upper,
6471 struct netdev_adjacent, list);
6472 if (likely(upper->master))
6473 return upper->dev;
6474 return NULL;
6475}
6476EXPORT_SYMBOL(netdev_master_upper_dev_get);
6477
6478/**
6479 * netdev_has_any_lower_dev - Check if device is linked to some device
6480 * @dev: device
6481 *
6482 * Find out if a device is linked to a lower device and return true in case
6483 * it is. The caller must hold the RTNL lock.
6484 */
6485static bool netdev_has_any_lower_dev(struct net_device *dev)
6486{
6487 ASSERT_RTNL();
6488
6489 return !list_empty(&dev->adj_list.lower);
6490}
6491
6492void *netdev_adjacent_get_private(struct list_head *adj_list)
6493{
6494 struct netdev_adjacent *adj;
6495
6496 adj = list_entry(adj_list, struct netdev_adjacent, list);
6497
6498 return adj->private;
6499}
6500EXPORT_SYMBOL(netdev_adjacent_get_private);
6501
6502/**
6503 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6504 * @dev: device
6505 * @iter: list_head ** of the current position
6506 *
6507 * Gets the next device from the dev's upper list, starting from iter
6508 * position. The caller must hold RCU read lock.
6509 */
6510struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6511 struct list_head **iter)
6512{
6513 struct netdev_adjacent *upper;
6514
6515 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6516
6517 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6518
6519 if (&upper->list == &dev->adj_list.upper)
6520 return NULL;
6521
6522 *iter = &upper->list;
6523
6524 return upper->dev;
6525}
6526EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6527
6528static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6529 struct list_head **iter)
6530{
6531 struct netdev_adjacent *upper;
6532
6533 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6534
6535 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6536
6537 if (&upper->list == &dev->adj_list.upper)
6538 return NULL;
6539
6540 *iter = &upper->list;
6541
6542 return upper->dev;
6543}
6544
6545int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6546 int (*fn)(struct net_device *dev,
6547 void *data),
6548 void *data)
6549{
6550 struct net_device *udev;
6551 struct list_head *iter;
6552 int ret;
6553
6554 for (iter = &dev->adj_list.upper,
6555 udev = netdev_next_upper_dev_rcu(dev, &iter);
6556 udev;
6557 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6558 /* first is the upper device itself */
6559 ret = fn(udev, data);
6560 if (ret)
6561 return ret;
6562
6563 /* then look at all of its upper devices */
6564 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6565 if (ret)
6566 return ret;
6567 }
6568
6569 return 0;
6570}
6571EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6572
6573/**
6574 * netdev_lower_get_next_private - Get the next ->private from the
6575 * lower neighbour list
6576 * @dev: device
6577 * @iter: list_head ** of the current position
6578 *
6579 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6580 * list, starting from iter position. The caller must hold either hold the
6581 * RTNL lock or its own locking that guarantees that the neighbour lower
6582 * list will remain unchanged.
6583 */
6584void *netdev_lower_get_next_private(struct net_device *dev,
6585 struct list_head **iter)
6586{
6587 struct netdev_adjacent *lower;
6588
6589 lower = list_entry(*iter, struct netdev_adjacent, list);
6590
6591 if (&lower->list == &dev->adj_list.lower)
6592 return NULL;
6593
6594 *iter = lower->list.next;
6595
6596 return lower->private;
6597}
6598EXPORT_SYMBOL(netdev_lower_get_next_private);
6599
6600/**
6601 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6602 * lower neighbour list, RCU
6603 * variant
6604 * @dev: device
6605 * @iter: list_head ** of the current position
6606 *
6607 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6608 * list, starting from iter position. The caller must hold RCU read lock.
6609 */
6610void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6611 struct list_head **iter)
6612{
6613 struct netdev_adjacent *lower;
6614
6615 WARN_ON_ONCE(!rcu_read_lock_held());
6616
6617 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6618
6619 if (&lower->list == &dev->adj_list.lower)
6620 return NULL;
6621
6622 *iter = &lower->list;
6623
6624 return lower->private;
6625}
6626EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6627
6628/**
6629 * netdev_lower_get_next - Get the next device from the lower neighbour
6630 * list
6631 * @dev: device
6632 * @iter: list_head ** of the current position
6633 *
6634 * Gets the next netdev_adjacent from the dev's lower neighbour
6635 * list, starting from iter position. The caller must hold RTNL lock or
6636 * its own locking that guarantees that the neighbour lower
6637 * list will remain unchanged.
6638 */
6639void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6640{
6641 struct netdev_adjacent *lower;
6642
6643 lower = list_entry(*iter, struct netdev_adjacent, list);
6644
6645 if (&lower->list == &dev->adj_list.lower)
6646 return NULL;
6647
6648 *iter = lower->list.next;
6649
6650 return lower->dev;
6651}
6652EXPORT_SYMBOL(netdev_lower_get_next);
6653
6654static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6655 struct list_head **iter)
6656{
6657 struct netdev_adjacent *lower;
6658
6659 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6660
6661 if (&lower->list == &dev->adj_list.lower)
6662 return NULL;
6663
6664 *iter = &lower->list;
6665
6666 return lower->dev;
6667}
6668
6669int netdev_walk_all_lower_dev(struct net_device *dev,
6670 int (*fn)(struct net_device *dev,
6671 void *data),
6672 void *data)
6673{
6674 struct net_device *ldev;
6675 struct list_head *iter;
6676 int ret;
6677
6678 for (iter = &dev->adj_list.lower,
6679 ldev = netdev_next_lower_dev(dev, &iter);
6680 ldev;
6681 ldev = netdev_next_lower_dev(dev, &iter)) {
6682 /* first is the lower device itself */
6683 ret = fn(ldev, data);
6684 if (ret)
6685 return ret;
6686
6687 /* then look at all of its lower devices */
6688 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6689 if (ret)
6690 return ret;
6691 }
6692
6693 return 0;
6694}
6695EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6696
6697static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6698 struct list_head **iter)
6699{
6700 struct netdev_adjacent *lower;
6701
6702 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6703 if (&lower->list == &dev->adj_list.lower)
6704 return NULL;
6705
6706 *iter = &lower->list;
6707
6708 return lower->dev;
6709}
6710
6711int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6712 int (*fn)(struct net_device *dev,
6713 void *data),
6714 void *data)
6715{
6716 struct net_device *ldev;
6717 struct list_head *iter;
6718 int ret;
6719
6720 for (iter = &dev->adj_list.lower,
6721 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6722 ldev;
6723 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6724 /* first is the lower device itself */
6725 ret = fn(ldev, data);
6726 if (ret)
6727 return ret;
6728
6729 /* then look at all of its lower devices */
6730 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6731 if (ret)
6732 return ret;
6733 }
6734
6735 return 0;
6736}
6737EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6738
6739/**
6740 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6741 * lower neighbour list, RCU
6742 * variant
6743 * @dev: device
6744 *
6745 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6746 * list. The caller must hold RCU read lock.
6747 */
6748void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6749{
6750 struct netdev_adjacent *lower;
6751
6752 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6753 struct netdev_adjacent, list);
6754 if (lower)
6755 return lower->private;
6756 return NULL;
6757}
6758EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6759
6760/**
6761 * netdev_master_upper_dev_get_rcu - Get master upper device
6762 * @dev: device
6763 *
6764 * Find a master upper device and return pointer to it or NULL in case
6765 * it's not there. The caller must hold the RCU read lock.
6766 */
6767struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6768{
6769 struct netdev_adjacent *upper;
6770
6771 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6772 struct netdev_adjacent, list);
6773 if (upper && likely(upper->master))
6774 return upper->dev;
6775 return NULL;
6776}
6777EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6778
6779static int netdev_adjacent_sysfs_add(struct net_device *dev,
6780 struct net_device *adj_dev,
6781 struct list_head *dev_list)
6782{
6783 char linkname[IFNAMSIZ+7];
6784
6785 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6786 "upper_%s" : "lower_%s", adj_dev->name);
6787 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6788 linkname);
6789}
6790static void netdev_adjacent_sysfs_del(struct net_device *dev,
6791 char *name,
6792 struct list_head *dev_list)
6793{
6794 char linkname[IFNAMSIZ+7];
6795
6796 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6797 "upper_%s" : "lower_%s", name);
6798 sysfs_remove_link(&(dev->dev.kobj), linkname);
6799}
6800
6801static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6802 struct net_device *adj_dev,
6803 struct list_head *dev_list)
6804{
6805 return (dev_list == &dev->adj_list.upper ||
6806 dev_list == &dev->adj_list.lower) &&
6807 net_eq(dev_net(dev), dev_net(adj_dev));
6808}
6809
6810static int __netdev_adjacent_dev_insert(struct net_device *dev,
6811 struct net_device *adj_dev,
6812 struct list_head *dev_list,
6813 void *private, bool master)
6814{
6815 struct netdev_adjacent *adj;
6816 int ret;
6817
6818 adj = __netdev_find_adj(adj_dev, dev_list);
6819
6820 if (adj) {
6821 adj->ref_nr += 1;
6822 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6823 dev->name, adj_dev->name, adj->ref_nr);
6824
6825 return 0;
6826 }
6827
6828 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6829 if (!adj)
6830 return -ENOMEM;
6831
6832 adj->dev = adj_dev;
6833 adj->master = master;
6834 adj->ref_nr = 1;
6835 adj->private = private;
6836 dev_hold(adj_dev);
6837
6838 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6839 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6840
6841 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6842 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6843 if (ret)
6844 goto free_adj;
6845 }
6846
6847 /* Ensure that master link is always the first item in list. */
6848 if (master) {
6849 ret = sysfs_create_link(&(dev->dev.kobj),
6850 &(adj_dev->dev.kobj), "master");
6851 if (ret)
6852 goto remove_symlinks;
6853
6854 list_add_rcu(&adj->list, dev_list);
6855 } else {
6856 list_add_tail_rcu(&adj->list, dev_list);
6857 }
6858
6859 return 0;
6860
6861remove_symlinks:
6862 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6863 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6864free_adj:
6865 kfree(adj);
6866 dev_put(adj_dev);
6867
6868 return ret;
6869}
6870
6871static void __netdev_adjacent_dev_remove(struct net_device *dev,
6872 struct net_device *adj_dev,
6873 u16 ref_nr,
6874 struct list_head *dev_list)
6875{
6876 struct netdev_adjacent *adj;
6877
6878 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6879 dev->name, adj_dev->name, ref_nr);
6880
6881 adj = __netdev_find_adj(adj_dev, dev_list);
6882
6883 if (!adj) {
6884 pr_err("Adjacency does not exist for device %s from %s\n",
6885 dev->name, adj_dev->name);
6886 WARN_ON(1);
6887 return;
6888 }
6889
6890 if (adj->ref_nr > ref_nr) {
6891 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6892 dev->name, adj_dev->name, ref_nr,
6893 adj->ref_nr - ref_nr);
6894 adj->ref_nr -= ref_nr;
6895 return;
6896 }
6897
6898 if (adj->master)
6899 sysfs_remove_link(&(dev->dev.kobj), "master");
6900
6901 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6902 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6903
6904 list_del_rcu(&adj->list);
6905 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6906 adj_dev->name, dev->name, adj_dev->name);
6907 dev_put(adj_dev);
6908 kfree_rcu(adj, rcu);
6909}
6910
6911static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6912 struct net_device *upper_dev,
6913 struct list_head *up_list,
6914 struct list_head *down_list,
6915 void *private, bool master)
6916{
6917 int ret;
6918
6919 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6920 private, master);
6921 if (ret)
6922 return ret;
6923
6924 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6925 private, false);
6926 if (ret) {
6927 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6928 return ret;
6929 }
6930
6931 return 0;
6932}
6933
6934static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6935 struct net_device *upper_dev,
6936 u16 ref_nr,
6937 struct list_head *up_list,
6938 struct list_head *down_list)
6939{
6940 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6941 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6942}
6943
6944static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6945 struct net_device *upper_dev,
6946 void *private, bool master)
6947{
6948 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6949 &dev->adj_list.upper,
6950 &upper_dev->adj_list.lower,
6951 private, master);
6952}
6953
6954static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6955 struct net_device *upper_dev)
6956{
6957 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6958 &dev->adj_list.upper,
6959 &upper_dev->adj_list.lower);
6960}
6961
6962static int __netdev_upper_dev_link(struct net_device *dev,
6963 struct net_device *upper_dev, bool master,
6964 void *upper_priv, void *upper_info,
6965 struct netlink_ext_ack *extack)
6966{
6967 struct netdev_notifier_changeupper_info changeupper_info = {
6968 .info = {
6969 .dev = dev,
6970 .extack = extack,
6971 },
6972 .upper_dev = upper_dev,
6973 .master = master,
6974 .linking = true,
6975 .upper_info = upper_info,
6976 };
6977 struct net_device *master_dev;
6978 int ret = 0;
6979
6980 ASSERT_RTNL();
6981
6982 if (dev == upper_dev)
6983 return -EBUSY;
6984
6985 /* To prevent loops, check if dev is not upper device to upper_dev. */
6986 if (netdev_has_upper_dev(upper_dev, dev))
6987 return -EBUSY;
6988
6989 if (!master) {
6990 if (netdev_has_upper_dev(dev, upper_dev))
6991 return -EEXIST;
6992 } else {
6993 master_dev = netdev_master_upper_dev_get(dev);
6994 if (master_dev)
6995 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6996 }
6997
6998 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6999 &changeupper_info.info);
7000 ret = notifier_to_errno(ret);
7001 if (ret)
7002 return ret;
7003
7004 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7005 master);
7006 if (ret)
7007 return ret;
7008
7009 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7010 &changeupper_info.info);
7011 ret = notifier_to_errno(ret);
7012 if (ret)
7013 goto rollback;
7014
7015 return 0;
7016
7017rollback:
7018 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7019
7020 return ret;
7021}
7022
7023/**
7024 * netdev_upper_dev_link - Add a link to the upper device
7025 * @dev: device
7026 * @upper_dev: new upper device
7027 * @extack: netlink extended ack
7028 *
7029 * Adds a link to device which is upper to this one. The caller must hold
7030 * the RTNL lock. On a failure a negative errno code is returned.
7031 * On success the reference counts are adjusted and the function
7032 * returns zero.
7033 */
7034int netdev_upper_dev_link(struct net_device *dev,
7035 struct net_device *upper_dev,
7036 struct netlink_ext_ack *extack)
7037{
7038 return __netdev_upper_dev_link(dev, upper_dev, false,
7039 NULL, NULL, extack);
7040}
7041EXPORT_SYMBOL(netdev_upper_dev_link);
7042
7043/**
7044 * netdev_master_upper_dev_link - Add a master link to the upper device
7045 * @dev: device
7046 * @upper_dev: new upper device
7047 * @upper_priv: upper device private
7048 * @upper_info: upper info to be passed down via notifier
7049 * @extack: netlink extended ack
7050 *
7051 * Adds a link to device which is upper to this one. In this case, only
7052 * one master upper device can be linked, although other non-master devices
7053 * might be linked as well. The caller must hold the RTNL lock.
7054 * On a failure a negative errno code is returned. On success the reference
7055 * counts are adjusted and the function returns zero.
7056 */
7057int netdev_master_upper_dev_link(struct net_device *dev,
7058 struct net_device *upper_dev,
7059 void *upper_priv, void *upper_info,
7060 struct netlink_ext_ack *extack)
7061{
7062 return __netdev_upper_dev_link(dev, upper_dev, true,
7063 upper_priv, upper_info, extack);
7064}
7065EXPORT_SYMBOL(netdev_master_upper_dev_link);
7066
7067/**
7068 * netdev_upper_dev_unlink - Removes a link to upper device
7069 * @dev: device
7070 * @upper_dev: new upper device
7071 *
7072 * Removes a link to device which is upper to this one. The caller must hold
7073 * the RTNL lock.
7074 */
7075void netdev_upper_dev_unlink(struct net_device *dev,
7076 struct net_device *upper_dev)
7077{
7078 struct netdev_notifier_changeupper_info changeupper_info = {
7079 .info = {
7080 .dev = dev,
7081 },
7082 .upper_dev = upper_dev,
7083 .linking = false,
7084 };
7085
7086 ASSERT_RTNL();
7087
7088 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7089
7090 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091 &changeupper_info.info);
7092
7093 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7094
7095 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7096 &changeupper_info.info);
7097}
7098EXPORT_SYMBOL(netdev_upper_dev_unlink);
7099
7100/**
7101 * netdev_bonding_info_change - Dispatch event about slave change
7102 * @dev: device
7103 * @bonding_info: info to dispatch
7104 *
7105 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7106 * The caller must hold the RTNL lock.
7107 */
7108void netdev_bonding_info_change(struct net_device *dev,
7109 struct netdev_bonding_info *bonding_info)
7110{
7111 struct netdev_notifier_bonding_info info = {
7112 .info.dev = dev,
7113 };
7114
7115 memcpy(&info.bonding_info, bonding_info,
7116 sizeof(struct netdev_bonding_info));
7117 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7118 &info.info);
7119}
7120EXPORT_SYMBOL(netdev_bonding_info_change);
7121
7122static void netdev_adjacent_add_links(struct net_device *dev)
7123{
7124 struct netdev_adjacent *iter;
7125
7126 struct net *net = dev_net(dev);
7127
7128 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7129 if (!net_eq(net, dev_net(iter->dev)))
7130 continue;
7131 netdev_adjacent_sysfs_add(iter->dev, dev,
7132 &iter->dev->adj_list.lower);
7133 netdev_adjacent_sysfs_add(dev, iter->dev,
7134 &dev->adj_list.upper);
7135 }
7136
7137 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7138 if (!net_eq(net, dev_net(iter->dev)))
7139 continue;
7140 netdev_adjacent_sysfs_add(iter->dev, dev,
7141 &iter->dev->adj_list.upper);
7142 netdev_adjacent_sysfs_add(dev, iter->dev,
7143 &dev->adj_list.lower);
7144 }
7145}
7146
7147static void netdev_adjacent_del_links(struct net_device *dev)
7148{
7149 struct netdev_adjacent *iter;
7150
7151 struct net *net = dev_net(dev);
7152
7153 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7154 if (!net_eq(net, dev_net(iter->dev)))
7155 continue;
7156 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7157 &iter->dev->adj_list.lower);
7158 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7159 &dev->adj_list.upper);
7160 }
7161
7162 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7163 if (!net_eq(net, dev_net(iter->dev)))
7164 continue;
7165 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7166 &iter->dev->adj_list.upper);
7167 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7168 &dev->adj_list.lower);
7169 }
7170}
7171
7172void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7173{
7174 struct netdev_adjacent *iter;
7175
7176 struct net *net = dev_net(dev);
7177
7178 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7179 if (!net_eq(net, dev_net(iter->dev)))
7180 continue;
7181 netdev_adjacent_sysfs_del(iter->dev, oldname,
7182 &iter->dev->adj_list.lower);
7183 netdev_adjacent_sysfs_add(iter->dev, dev,
7184 &iter->dev->adj_list.lower);
7185 }
7186
7187 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7188 if (!net_eq(net, dev_net(iter->dev)))
7189 continue;
7190 netdev_adjacent_sysfs_del(iter->dev, oldname,
7191 &iter->dev->adj_list.upper);
7192 netdev_adjacent_sysfs_add(iter->dev, dev,
7193 &iter->dev->adj_list.upper);
7194 }
7195}
7196
7197void *netdev_lower_dev_get_private(struct net_device *dev,
7198 struct net_device *lower_dev)
7199{
7200 struct netdev_adjacent *lower;
7201
7202 if (!lower_dev)
7203 return NULL;
7204 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7205 if (!lower)
7206 return NULL;
7207
7208 return lower->private;
7209}
7210EXPORT_SYMBOL(netdev_lower_dev_get_private);
7211
7212
7213int dev_get_nest_level(struct net_device *dev)
7214{
7215 struct net_device *lower = NULL;
7216 struct list_head *iter;
7217 int max_nest = -1;
7218 int nest;
7219
7220 ASSERT_RTNL();
7221
7222 netdev_for_each_lower_dev(dev, lower, iter) {
7223 nest = dev_get_nest_level(lower);
7224 if (max_nest < nest)
7225 max_nest = nest;
7226 }
7227
7228 return max_nest + 1;
7229}
7230EXPORT_SYMBOL(dev_get_nest_level);
7231
7232/**
7233 * netdev_lower_change - Dispatch event about lower device state change
7234 * @lower_dev: device
7235 * @lower_state_info: state to dispatch
7236 *
7237 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7238 * The caller must hold the RTNL lock.
7239 */
7240void netdev_lower_state_changed(struct net_device *lower_dev,
7241 void *lower_state_info)
7242{
7243 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7244 .info.dev = lower_dev,
7245 };
7246
7247 ASSERT_RTNL();
7248 changelowerstate_info.lower_state_info = lower_state_info;
7249 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7250 &changelowerstate_info.info);
7251}
7252EXPORT_SYMBOL(netdev_lower_state_changed);
7253
7254static void dev_change_rx_flags(struct net_device *dev, int flags)
7255{
7256 const struct net_device_ops *ops = dev->netdev_ops;
7257
7258 if (ops->ndo_change_rx_flags)
7259 ops->ndo_change_rx_flags(dev, flags);
7260}
7261
7262static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7263{
7264 unsigned int old_flags = dev->flags;
7265 kuid_t uid;
7266 kgid_t gid;
7267
7268 ASSERT_RTNL();
7269
7270 dev->flags |= IFF_PROMISC;
7271 dev->promiscuity += inc;
7272 if (dev->promiscuity == 0) {
7273 /*
7274 * Avoid overflow.
7275 * If inc causes overflow, untouch promisc and return error.
7276 */
7277 if (inc < 0)
7278 dev->flags &= ~IFF_PROMISC;
7279 else {
7280 dev->promiscuity -= inc;
7281 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7282 dev->name);
7283 return -EOVERFLOW;
7284 }
7285 }
7286 if (dev->flags != old_flags) {
7287 pr_info("device %s %s promiscuous mode\n",
7288 dev->name,
7289 dev->flags & IFF_PROMISC ? "entered" : "left");
7290 if (audit_enabled) {
7291 current_uid_gid(&uid, &gid);
7292 audit_log(audit_context(), GFP_ATOMIC,
7293 AUDIT_ANOM_PROMISCUOUS,
7294 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7295 dev->name, (dev->flags & IFF_PROMISC),
7296 (old_flags & IFF_PROMISC),
7297 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7298 from_kuid(&init_user_ns, uid),
7299 from_kgid(&init_user_ns, gid),
7300 audit_get_sessionid(current));
7301 }
7302
7303 dev_change_rx_flags(dev, IFF_PROMISC);
7304 }
7305 if (notify)
7306 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7307 return 0;
7308}
7309
7310/**
7311 * dev_set_promiscuity - update promiscuity count on a device
7312 * @dev: device
7313 * @inc: modifier
7314 *
7315 * Add or remove promiscuity from a device. While the count in the device
7316 * remains above zero the interface remains promiscuous. Once it hits zero
7317 * the device reverts back to normal filtering operation. A negative inc
7318 * value is used to drop promiscuity on the device.
7319 * Return 0 if successful or a negative errno code on error.
7320 */
7321int dev_set_promiscuity(struct net_device *dev, int inc)
7322{
7323 unsigned int old_flags = dev->flags;
7324 int err;
7325
7326 err = __dev_set_promiscuity(dev, inc, true);
7327 if (err < 0)
7328 return err;
7329 if (dev->flags != old_flags)
7330 dev_set_rx_mode(dev);
7331 return err;
7332}
7333EXPORT_SYMBOL(dev_set_promiscuity);
7334
7335static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7336{
7337 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7338
7339 ASSERT_RTNL();
7340
7341 dev->flags |= IFF_ALLMULTI;
7342 dev->allmulti += inc;
7343 if (dev->allmulti == 0) {
7344 /*
7345 * Avoid overflow.
7346 * If inc causes overflow, untouch allmulti and return error.
7347 */
7348 if (inc < 0)
7349 dev->flags &= ~IFF_ALLMULTI;
7350 else {
7351 dev->allmulti -= inc;
7352 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7353 dev->name);
7354 return -EOVERFLOW;
7355 }
7356 }
7357 if (dev->flags ^ old_flags) {
7358 dev_change_rx_flags(dev, IFF_ALLMULTI);
7359 dev_set_rx_mode(dev);
7360 if (notify)
7361 __dev_notify_flags(dev, old_flags,
7362 dev->gflags ^ old_gflags);
7363 }
7364 return 0;
7365}
7366
7367/**
7368 * dev_set_allmulti - update allmulti count on a device
7369 * @dev: device
7370 * @inc: modifier
7371 *
7372 * Add or remove reception of all multicast frames to a device. While the
7373 * count in the device remains above zero the interface remains listening
7374 * to all interfaces. Once it hits zero the device reverts back to normal
7375 * filtering operation. A negative @inc value is used to drop the counter
7376 * when releasing a resource needing all multicasts.
7377 * Return 0 if successful or a negative errno code on error.
7378 */
7379
7380int dev_set_allmulti(struct net_device *dev, int inc)
7381{
7382 return __dev_set_allmulti(dev, inc, true);
7383}
7384EXPORT_SYMBOL(dev_set_allmulti);
7385
7386/*
7387 * Upload unicast and multicast address lists to device and
7388 * configure RX filtering. When the device doesn't support unicast
7389 * filtering it is put in promiscuous mode while unicast addresses
7390 * are present.
7391 */
7392void __dev_set_rx_mode(struct net_device *dev)
7393{
7394 const struct net_device_ops *ops = dev->netdev_ops;
7395
7396 /* dev_open will call this function so the list will stay sane. */
7397 if (!(dev->flags&IFF_UP))
7398 return;
7399
7400 if (!netif_device_present(dev))
7401 return;
7402
7403 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7404 /* Unicast addresses changes may only happen under the rtnl,
7405 * therefore calling __dev_set_promiscuity here is safe.
7406 */
7407 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7408 __dev_set_promiscuity(dev, 1, false);
7409 dev->uc_promisc = true;
7410 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7411 __dev_set_promiscuity(dev, -1, false);
7412 dev->uc_promisc = false;
7413 }
7414 }
7415
7416 if (ops->ndo_set_rx_mode)
7417 ops->ndo_set_rx_mode(dev);
7418}
7419
7420void dev_set_rx_mode(struct net_device *dev)
7421{
7422 netif_addr_lock_bh(dev);
7423 __dev_set_rx_mode(dev);
7424 netif_addr_unlock_bh(dev);
7425}
7426
7427/**
7428 * dev_get_flags - get flags reported to userspace
7429 * @dev: device
7430 *
7431 * Get the combination of flag bits exported through APIs to userspace.
7432 */
7433unsigned int dev_get_flags(const struct net_device *dev)
7434{
7435 unsigned int flags;
7436
7437 flags = (dev->flags & ~(IFF_PROMISC |
7438 IFF_ALLMULTI |
7439 IFF_RUNNING |
7440 IFF_LOWER_UP |
7441 IFF_DORMANT)) |
7442 (dev->gflags & (IFF_PROMISC |
7443 IFF_ALLMULTI));
7444
7445 if (netif_running(dev)) {
7446 if (netif_oper_up(dev))
7447 flags |= IFF_RUNNING;
7448 if (netif_carrier_ok(dev))
7449 flags |= IFF_LOWER_UP;
7450 if (netif_dormant(dev))
7451 flags |= IFF_DORMANT;
7452 }
7453
7454 return flags;
7455}
7456EXPORT_SYMBOL(dev_get_flags);
7457
7458int __dev_change_flags(struct net_device *dev, unsigned int flags)
7459{
7460 unsigned int old_flags = dev->flags;
7461 int ret;
7462
7463 ASSERT_RTNL();
7464
7465 /*
7466 * Set the flags on our device.
7467 */
7468
7469 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7470 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7471 IFF_AUTOMEDIA)) |
7472 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7473 IFF_ALLMULTI));
7474
7475 /*
7476 * Load in the correct multicast list now the flags have changed.
7477 */
7478
7479 if ((old_flags ^ flags) & IFF_MULTICAST)
7480 dev_change_rx_flags(dev, IFF_MULTICAST);
7481
7482 dev_set_rx_mode(dev);
7483
7484 /*
7485 * Have we downed the interface. We handle IFF_UP ourselves
7486 * according to user attempts to set it, rather than blindly
7487 * setting it.
7488 */
7489
7490 ret = 0;
7491 if ((old_flags ^ flags) & IFF_UP) {
7492 if (old_flags & IFF_UP)
7493 __dev_close(dev);
7494 else
7495 ret = __dev_open(dev);
7496 }
7497
7498 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7499 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7500 unsigned int old_flags = dev->flags;
7501
7502 dev->gflags ^= IFF_PROMISC;
7503
7504 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7505 if (dev->flags != old_flags)
7506 dev_set_rx_mode(dev);
7507 }
7508
7509 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7510 * is important. Some (broken) drivers set IFF_PROMISC, when
7511 * IFF_ALLMULTI is requested not asking us and not reporting.
7512 */
7513 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7514 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7515
7516 dev->gflags ^= IFF_ALLMULTI;
7517 __dev_set_allmulti(dev, inc, false);
7518 }
7519
7520 return ret;
7521}
7522
7523void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7524 unsigned int gchanges)
7525{
7526 unsigned int changes = dev->flags ^ old_flags;
7527
7528 if (gchanges)
7529 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7530
7531 if (changes & IFF_UP) {
7532 if (dev->flags & IFF_UP)
7533 call_netdevice_notifiers(NETDEV_UP, dev);
7534 else
7535 call_netdevice_notifiers(NETDEV_DOWN, dev);
7536 }
7537
7538 if (dev->flags & IFF_UP &&
7539 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7540 struct netdev_notifier_change_info change_info = {
7541 .info = {
7542 .dev = dev,
7543 },
7544 .flags_changed = changes,
7545 };
7546
7547 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7548 }
7549}
7550
7551/**
7552 * dev_change_flags - change device settings
7553 * @dev: device
7554 * @flags: device state flags
7555 *
7556 * Change settings on device based state flags. The flags are
7557 * in the userspace exported format.
7558 */
7559int dev_change_flags(struct net_device *dev, unsigned int flags)
7560{
7561 int ret;
7562 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7563
7564 ret = __dev_change_flags(dev, flags);
7565 if (ret < 0)
7566 return ret;
7567
7568 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7569 __dev_notify_flags(dev, old_flags, changes);
7570 return ret;
7571}
7572EXPORT_SYMBOL(dev_change_flags);
7573
7574int __dev_set_mtu(struct net_device *dev, int new_mtu)
7575{
7576 const struct net_device_ops *ops = dev->netdev_ops;
7577
7578 if (ops->ndo_change_mtu)
7579 return ops->ndo_change_mtu(dev, new_mtu);
7580
7581 dev->mtu = new_mtu;
7582 return 0;
7583}
7584EXPORT_SYMBOL(__dev_set_mtu);
7585
7586/**
7587 * dev_set_mtu_ext - Change maximum transfer unit
7588 * @dev: device
7589 * @new_mtu: new transfer unit
7590 * @extack: netlink extended ack
7591 *
7592 * Change the maximum transfer size of the network device.
7593 */
7594int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7595 struct netlink_ext_ack *extack)
7596{
7597 int err, orig_mtu;
7598
7599 if (new_mtu == dev->mtu)
7600 return 0;
7601
7602 /* MTU must be positive, and in range */
7603 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7604 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7605 return -EINVAL;
7606 }
7607
7608 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7609 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7610 return -EINVAL;
7611 }
7612
7613 if (!netif_device_present(dev))
7614 return -ENODEV;
7615
7616 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7617 err = notifier_to_errno(err);
7618 if (err)
7619 return err;
7620
7621 orig_mtu = dev->mtu;
7622 err = __dev_set_mtu(dev, new_mtu);
7623
7624 if (!err) {
7625 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7626 orig_mtu);
7627 err = notifier_to_errno(err);
7628 if (err) {
7629 /* setting mtu back and notifying everyone again,
7630 * so that they have a chance to revert changes.
7631 */
7632 __dev_set_mtu(dev, orig_mtu);
7633 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7634 new_mtu);
7635 }
7636 }
7637 return err;
7638}
7639
7640int dev_set_mtu(struct net_device *dev, int new_mtu)
7641{
7642 struct netlink_ext_ack extack;
7643 int err;
7644
7645 memset(&extack, 0, sizeof(extack));
7646 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7647 if (err && extack._msg)
7648 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7649 return err;
7650}
7651EXPORT_SYMBOL(dev_set_mtu);
7652
7653/**
7654 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7655 * @dev: device
7656 * @new_len: new tx queue length
7657 */
7658int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7659{
7660 unsigned int orig_len = dev->tx_queue_len;
7661 int res;
7662
7663 if (new_len != (unsigned int)new_len)
7664 return -ERANGE;
7665
7666 if (new_len != orig_len) {
7667 dev->tx_queue_len = new_len;
7668 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7669 res = notifier_to_errno(res);
7670 if (res)
7671 goto err_rollback;
7672 res = dev_qdisc_change_tx_queue_len(dev);
7673 if (res)
7674 goto err_rollback;
7675 }
7676
7677 return 0;
7678
7679err_rollback:
7680 netdev_err(dev, "refused to change device tx_queue_len\n");
7681 dev->tx_queue_len = orig_len;
7682 return res;
7683}
7684
7685/**
7686 * dev_set_group - Change group this device belongs to
7687 * @dev: device
7688 * @new_group: group this device should belong to
7689 */
7690void dev_set_group(struct net_device *dev, int new_group)
7691{
7692 dev->group = new_group;
7693}
7694EXPORT_SYMBOL(dev_set_group);
7695
7696/**
7697 * dev_set_mac_address - Change Media Access Control Address
7698 * @dev: device
7699 * @sa: new address
7700 *
7701 * Change the hardware (MAC) address of the device
7702 */
7703int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7704{
7705 const struct net_device_ops *ops = dev->netdev_ops;
7706 int err;
7707
7708 if (!ops->ndo_set_mac_address)
7709 return -EOPNOTSUPP;
7710 if (sa->sa_family != dev->type)
7711 return -EINVAL;
7712 if (!netif_device_present(dev))
7713 return -ENODEV;
7714 err = ops->ndo_set_mac_address(dev, sa);
7715 if (err)
7716 return err;
7717 dev->addr_assign_type = NET_ADDR_SET;
7718 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7719 add_device_randomness(dev->dev_addr, dev->addr_len);
7720 return 0;
7721}
7722EXPORT_SYMBOL(dev_set_mac_address);
7723
7724/**
7725 * dev_change_carrier - Change device carrier
7726 * @dev: device
7727 * @new_carrier: new value
7728 *
7729 * Change device carrier
7730 */
7731int dev_change_carrier(struct net_device *dev, bool new_carrier)
7732{
7733 const struct net_device_ops *ops = dev->netdev_ops;
7734
7735 if (!ops->ndo_change_carrier)
7736 return -EOPNOTSUPP;
7737 if (!netif_device_present(dev))
7738 return -ENODEV;
7739 return ops->ndo_change_carrier(dev, new_carrier);
7740}
7741EXPORT_SYMBOL(dev_change_carrier);
7742
7743/**
7744 * dev_get_phys_port_id - Get device physical port ID
7745 * @dev: device
7746 * @ppid: port ID
7747 *
7748 * Get device physical port ID
7749 */
7750int dev_get_phys_port_id(struct net_device *dev,
7751 struct netdev_phys_item_id *ppid)
7752{
7753 const struct net_device_ops *ops = dev->netdev_ops;
7754
7755 if (!ops->ndo_get_phys_port_id)
7756 return -EOPNOTSUPP;
7757 return ops->ndo_get_phys_port_id(dev, ppid);
7758}
7759EXPORT_SYMBOL(dev_get_phys_port_id);
7760
7761/**
7762 * dev_get_phys_port_name - Get device physical port name
7763 * @dev: device
7764 * @name: port name
7765 * @len: limit of bytes to copy to name
7766 *
7767 * Get device physical port name
7768 */
7769int dev_get_phys_port_name(struct net_device *dev,
7770 char *name, size_t len)
7771{
7772 const struct net_device_ops *ops = dev->netdev_ops;
7773
7774 if (!ops->ndo_get_phys_port_name)
7775 return -EOPNOTSUPP;
7776 return ops->ndo_get_phys_port_name(dev, name, len);
7777}
7778EXPORT_SYMBOL(dev_get_phys_port_name);
7779
7780/**
7781 * dev_change_proto_down - update protocol port state information
7782 * @dev: device
7783 * @proto_down: new value
7784 *
7785 * This info can be used by switch drivers to set the phys state of the
7786 * port.
7787 */
7788int dev_change_proto_down(struct net_device *dev, bool proto_down)
7789{
7790 const struct net_device_ops *ops = dev->netdev_ops;
7791
7792 if (!ops->ndo_change_proto_down)
7793 return -EOPNOTSUPP;
7794 if (!netif_device_present(dev))
7795 return -ENODEV;
7796 return ops->ndo_change_proto_down(dev, proto_down);
7797}
7798EXPORT_SYMBOL(dev_change_proto_down);
7799
7800u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7801 enum bpf_netdev_command cmd)
7802{
7803 struct netdev_bpf xdp;
7804
7805 if (!bpf_op)
7806 return 0;
7807
7808 memset(&xdp, 0, sizeof(xdp));
7809 xdp.command = cmd;
7810
7811 /* Query must always succeed. */
7812 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7813
7814 return xdp.prog_id;
7815}
7816
7817static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7818 struct netlink_ext_ack *extack, u32 flags,
7819 struct bpf_prog *prog)
7820{
7821 struct netdev_bpf xdp;
7822
7823 memset(&xdp, 0, sizeof(xdp));
7824 if (flags & XDP_FLAGS_HW_MODE)
7825 xdp.command = XDP_SETUP_PROG_HW;
7826 else
7827 xdp.command = XDP_SETUP_PROG;
7828 xdp.extack = extack;
7829 xdp.flags = flags;
7830 xdp.prog = prog;
7831
7832 return bpf_op(dev, &xdp);
7833}
7834
7835static void dev_xdp_uninstall(struct net_device *dev)
7836{
7837 struct netdev_bpf xdp;
7838 bpf_op_t ndo_bpf;
7839
7840 /* Remove generic XDP */
7841 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7842
7843 /* Remove from the driver */
7844 ndo_bpf = dev->netdev_ops->ndo_bpf;
7845 if (!ndo_bpf)
7846 return;
7847
7848 memset(&xdp, 0, sizeof(xdp));
7849 xdp.command = XDP_QUERY_PROG;
7850 WARN_ON(ndo_bpf(dev, &xdp));
7851 if (xdp.prog_id)
7852 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7853 NULL));
7854
7855 /* Remove HW offload */
7856 memset(&xdp, 0, sizeof(xdp));
7857 xdp.command = XDP_QUERY_PROG_HW;
7858 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7859 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7860 NULL));
7861}
7862
7863/**
7864 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7865 * @dev: device
7866 * @extack: netlink extended ack
7867 * @fd: new program fd or negative value to clear
7868 * @flags: xdp-related flags
7869 *
7870 * Set or clear a bpf program for a device
7871 */
7872int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7873 int fd, u32 flags)
7874{
7875 const struct net_device_ops *ops = dev->netdev_ops;
7876 enum bpf_netdev_command query;
7877 struct bpf_prog *prog = NULL;
7878 bpf_op_t bpf_op, bpf_chk;
7879 int err;
7880
7881 ASSERT_RTNL();
7882
7883 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7884
7885 bpf_op = bpf_chk = ops->ndo_bpf;
7886 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7887 return -EOPNOTSUPP;
7888 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7889 bpf_op = generic_xdp_install;
7890 if (bpf_op == bpf_chk)
7891 bpf_chk = generic_xdp_install;
7892
7893 if (fd >= 0) {
7894 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7895 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7896 return -EEXIST;
7897 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7898 __dev_xdp_query(dev, bpf_op, query))
7899 return -EBUSY;
7900
7901 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7902 bpf_op == ops->ndo_bpf);
7903 if (IS_ERR(prog))
7904 return PTR_ERR(prog);
7905
7906 if (!(flags & XDP_FLAGS_HW_MODE) &&
7907 bpf_prog_is_dev_bound(prog->aux)) {
7908 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7909 bpf_prog_put(prog);
7910 return -EINVAL;
7911 }
7912 }
7913
7914 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7915 if (err < 0 && prog)
7916 bpf_prog_put(prog);
7917
7918 return err;
7919}
7920
7921/**
7922 * dev_new_index - allocate an ifindex
7923 * @net: the applicable net namespace
7924 *
7925 * Returns a suitable unique value for a new device interface
7926 * number. The caller must hold the rtnl semaphore or the
7927 * dev_base_lock to be sure it remains unique.
7928 */
7929static int dev_new_index(struct net *net)
7930{
7931 int ifindex = net->ifindex;
7932
7933 for (;;) {
7934 if (++ifindex <= 0)
7935 ifindex = 1;
7936 if (!__dev_get_by_index(net, ifindex))
7937 return net->ifindex = ifindex;
7938 }
7939}
7940
7941/* Delayed registration/unregisteration */
7942static LIST_HEAD(net_todo_list);
7943DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7944
7945static void net_set_todo(struct net_device *dev)
7946{
7947 list_add_tail(&dev->todo_list, &net_todo_list);
7948 dev_net(dev)->dev_unreg_count++;
7949}
7950
7951static void rollback_registered_many(struct list_head *head)
7952{
7953 struct net_device *dev, *tmp;
7954 LIST_HEAD(close_head);
7955
7956 BUG_ON(dev_boot_phase);
7957 ASSERT_RTNL();
7958
7959 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7960 /* Some devices call without registering
7961 * for initialization unwind. Remove those
7962 * devices and proceed with the remaining.
7963 */
7964 if (dev->reg_state == NETREG_UNINITIALIZED) {
7965 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7966 dev->name, dev);
7967
7968 WARN_ON(1);
7969 list_del(&dev->unreg_list);
7970 continue;
7971 }
7972 dev->dismantle = true;
7973 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7974 }
7975
7976 /* If device is running, close it first. */
7977 list_for_each_entry(dev, head, unreg_list)
7978 list_add_tail(&dev->close_list, &close_head);
7979 dev_close_many(&close_head, true);
7980
7981 list_for_each_entry(dev, head, unreg_list) {
7982 /* And unlink it from device chain. */
7983 unlist_netdevice(dev);
7984
7985 dev->reg_state = NETREG_UNREGISTERING;
7986 }
7987 flush_all_backlogs();
7988
7989 synchronize_net();
7990
7991 list_for_each_entry(dev, head, unreg_list) {
7992 struct sk_buff *skb = NULL;
7993
7994 /* Shutdown queueing discipline. */
7995 dev_shutdown(dev);
7996
7997 dev_xdp_uninstall(dev);
7998
7999 /* Notify protocols, that we are about to destroy
8000 * this device. They should clean all the things.
8001 */
8002 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8003
8004 if (!dev->rtnl_link_ops ||
8005 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8006 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8007 GFP_KERNEL, NULL, 0);
8008
8009 /*
8010 * Flush the unicast and multicast chains
8011 */
8012 dev_uc_flush(dev);
8013 dev_mc_flush(dev);
8014
8015 if (dev->netdev_ops->ndo_uninit)
8016 dev->netdev_ops->ndo_uninit(dev);
8017
8018 if (skb)
8019 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8020
8021 /* Notifier chain MUST detach us all upper devices. */
8022 WARN_ON(netdev_has_any_upper_dev(dev));
8023 WARN_ON(netdev_has_any_lower_dev(dev));
8024
8025 /* Remove entries from kobject tree */
8026 netdev_unregister_kobject(dev);
8027#ifdef CONFIG_XPS
8028 /* Remove XPS queueing entries */
8029 netif_reset_xps_queues_gt(dev, 0);
8030#endif
8031 }
8032
8033 synchronize_net();
8034
8035 list_for_each_entry(dev, head, unreg_list)
8036 dev_put(dev);
8037}
8038
8039static void rollback_registered(struct net_device *dev)
8040{
8041 LIST_HEAD(single);
8042
8043 list_add(&dev->unreg_list, &single);
8044 rollback_registered_many(&single);
8045 list_del(&single);
8046}
8047
8048static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8049 struct net_device *upper, netdev_features_t features)
8050{
8051 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8052 netdev_features_t feature;
8053 int feature_bit;
8054
8055 for_each_netdev_feature(&upper_disables, feature_bit) {
8056 feature = __NETIF_F_BIT(feature_bit);
8057 if (!(upper->wanted_features & feature)
8058 && (features & feature)) {
8059 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8060 &feature, upper->name);
8061 features &= ~feature;
8062 }
8063 }
8064
8065 return features;
8066}
8067
8068static void netdev_sync_lower_features(struct net_device *upper,
8069 struct net_device *lower, netdev_features_t features)
8070{
8071 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8072 netdev_features_t feature;
8073 int feature_bit;
8074
8075 for_each_netdev_feature(&upper_disables, feature_bit) {
8076 feature = __NETIF_F_BIT(feature_bit);
8077 if (!(features & feature) && (lower->features & feature)) {
8078 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8079 &feature, lower->name);
8080 lower->wanted_features &= ~feature;
8081 netdev_update_features(lower);
8082
8083 if (unlikely(lower->features & feature))
8084 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8085 &feature, lower->name);
8086 }
8087 }
8088}
8089
8090static netdev_features_t netdev_fix_features(struct net_device *dev,
8091 netdev_features_t features)
8092{
8093 /* Fix illegal checksum combinations */
8094 if ((features & NETIF_F_HW_CSUM) &&
8095 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8096 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8097 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8098 }
8099
8100 /* TSO requires that SG is present as well. */
8101 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8102 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8103 features &= ~NETIF_F_ALL_TSO;
8104 }
8105
8106 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8107 !(features & NETIF_F_IP_CSUM)) {
8108 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8109 features &= ~NETIF_F_TSO;
8110 features &= ~NETIF_F_TSO_ECN;
8111 }
8112
8113 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8114 !(features & NETIF_F_IPV6_CSUM)) {
8115 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8116 features &= ~NETIF_F_TSO6;
8117 }
8118
8119 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8120 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8121 features &= ~NETIF_F_TSO_MANGLEID;
8122
8123 /* TSO ECN requires that TSO is present as well. */
8124 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8125 features &= ~NETIF_F_TSO_ECN;
8126
8127 /* Software GSO depends on SG. */
8128 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8129 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8130 features &= ~NETIF_F_GSO;
8131 }
8132
8133 /* GSO partial features require GSO partial be set */
8134 if ((features & dev->gso_partial_features) &&
8135 !(features & NETIF_F_GSO_PARTIAL)) {
8136 netdev_dbg(dev,
8137 "Dropping partially supported GSO features since no GSO partial.\n");
8138 features &= ~dev->gso_partial_features;
8139 }
8140
8141 if (!(features & NETIF_F_RXCSUM)) {
8142 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8143 * successfully merged by hardware must also have the
8144 * checksum verified by hardware. If the user does not
8145 * want to enable RXCSUM, logically, we should disable GRO_HW.
8146 */
8147 if (features & NETIF_F_GRO_HW) {
8148 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8149 features &= ~NETIF_F_GRO_HW;
8150 }
8151 }
8152
8153 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8154 if (features & NETIF_F_RXFCS) {
8155 if (features & NETIF_F_LRO) {
8156 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8157 features &= ~NETIF_F_LRO;
8158 }
8159
8160 if (features & NETIF_F_GRO_HW) {
8161 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8162 features &= ~NETIF_F_GRO_HW;
8163 }
8164 }
8165
8166 return features;
8167}
8168
8169int __netdev_update_features(struct net_device *dev)
8170{
8171 struct net_device *upper, *lower;
8172 netdev_features_t features;
8173 struct list_head *iter;
8174 int err = -1;
8175
8176 ASSERT_RTNL();
8177
8178 features = netdev_get_wanted_features(dev);
8179
8180 if (dev->netdev_ops->ndo_fix_features)
8181 features = dev->netdev_ops->ndo_fix_features(dev, features);
8182
8183 /* driver might be less strict about feature dependencies */
8184 features = netdev_fix_features(dev, features);
8185
8186 /* some features can't be enabled if they're off an an upper device */
8187 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8188 features = netdev_sync_upper_features(dev, upper, features);
8189
8190 if (dev->features == features)
8191 goto sync_lower;
8192
8193 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8194 &dev->features, &features);
8195
8196 if (dev->netdev_ops->ndo_set_features)
8197 err = dev->netdev_ops->ndo_set_features(dev, features);
8198 else
8199 err = 0;
8200
8201 if (unlikely(err < 0)) {
8202 netdev_err(dev,
8203 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8204 err, &features, &dev->features);
8205 /* return non-0 since some features might have changed and
8206 * it's better to fire a spurious notification than miss it
8207 */
8208 return -1;
8209 }
8210
8211sync_lower:
8212 /* some features must be disabled on lower devices when disabled
8213 * on an upper device (think: bonding master or bridge)
8214 */
8215 netdev_for_each_lower_dev(dev, lower, iter)
8216 netdev_sync_lower_features(dev, lower, features);
8217
8218 if (!err) {
8219 netdev_features_t diff = features ^ dev->features;
8220
8221 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8222 /* udp_tunnel_{get,drop}_rx_info both need
8223 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8224 * device, or they won't do anything.
8225 * Thus we need to update dev->features
8226 * *before* calling udp_tunnel_get_rx_info,
8227 * but *after* calling udp_tunnel_drop_rx_info.
8228 */
8229 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8230 dev->features = features;
8231 udp_tunnel_get_rx_info(dev);
8232 } else {
8233 udp_tunnel_drop_rx_info(dev);
8234 }
8235 }
8236
8237 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8238 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8239 dev->features = features;
8240 err |= vlan_get_rx_ctag_filter_info(dev);
8241 } else {
8242 vlan_drop_rx_ctag_filter_info(dev);
8243 }
8244 }
8245
8246 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8247 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8248 dev->features = features;
8249 err |= vlan_get_rx_stag_filter_info(dev);
8250 } else {
8251 vlan_drop_rx_stag_filter_info(dev);
8252 }
8253 }
8254
8255 dev->features = features;
8256 }
8257
8258 return err < 0 ? 0 : 1;
8259}
8260
8261/**
8262 * netdev_update_features - recalculate device features
8263 * @dev: the device to check
8264 *
8265 * Recalculate dev->features set and send notifications if it
8266 * has changed. Should be called after driver or hardware dependent
8267 * conditions might have changed that influence the features.
8268 */
8269void netdev_update_features(struct net_device *dev)
8270{
8271 if (__netdev_update_features(dev))
8272 netdev_features_change(dev);
8273}
8274EXPORT_SYMBOL(netdev_update_features);
8275
8276/**
8277 * netdev_change_features - recalculate device features
8278 * @dev: the device to check
8279 *
8280 * Recalculate dev->features set and send notifications even
8281 * if they have not changed. Should be called instead of
8282 * netdev_update_features() if also dev->vlan_features might
8283 * have changed to allow the changes to be propagated to stacked
8284 * VLAN devices.
8285 */
8286void netdev_change_features(struct net_device *dev)
8287{
8288 __netdev_update_features(dev);
8289 netdev_features_change(dev);
8290}
8291EXPORT_SYMBOL(netdev_change_features);
8292
8293/**
8294 * netif_stacked_transfer_operstate - transfer operstate
8295 * @rootdev: the root or lower level device to transfer state from
8296 * @dev: the device to transfer operstate to
8297 *
8298 * Transfer operational state from root to device. This is normally
8299 * called when a stacking relationship exists between the root
8300 * device and the device(a leaf device).
8301 */
8302void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8303 struct net_device *dev)
8304{
8305 if (rootdev->operstate == IF_OPER_DORMANT)
8306 netif_dormant_on(dev);
8307 else
8308 netif_dormant_off(dev);
8309
8310 if (netif_carrier_ok(rootdev))
8311 netif_carrier_on(dev);
8312 else
8313 netif_carrier_off(dev);
8314}
8315EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8316
8317static int netif_alloc_rx_queues(struct net_device *dev)
8318{
8319 unsigned int i, count = dev->num_rx_queues;
8320 struct netdev_rx_queue *rx;
8321 size_t sz = count * sizeof(*rx);
8322 int err = 0;
8323
8324 BUG_ON(count < 1);
8325
8326 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8327 if (!rx)
8328 return -ENOMEM;
8329
8330 dev->_rx = rx;
8331
8332 for (i = 0; i < count; i++) {
8333 rx[i].dev = dev;
8334
8335 /* XDP RX-queue setup */
8336 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8337 if (err < 0)
8338 goto err_rxq_info;
8339 }
8340 return 0;
8341
8342err_rxq_info:
8343 /* Rollback successful reg's and free other resources */
8344 while (i--)
8345 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8346 kvfree(dev->_rx);
8347 dev->_rx = NULL;
8348 return err;
8349}
8350
8351static void netif_free_rx_queues(struct net_device *dev)
8352{
8353 unsigned int i, count = dev->num_rx_queues;
8354
8355 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8356 if (!dev->_rx)
8357 return;
8358
8359 for (i = 0; i < count; i++)
8360 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8361
8362 kvfree(dev->_rx);
8363}
8364
8365static void netdev_init_one_queue(struct net_device *dev,
8366 struct netdev_queue *queue, void *_unused)
8367{
8368 /* Initialize queue lock */
8369 spin_lock_init(&queue->_xmit_lock);
8370 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8371 queue->xmit_lock_owner = -1;
8372 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8373 queue->dev = dev;
8374#ifdef CONFIG_BQL
8375 dql_init(&queue->dql, HZ);
8376#endif
8377}
8378
8379static void netif_free_tx_queues(struct net_device *dev)
8380{
8381 kvfree(dev->_tx);
8382}
8383
8384static int netif_alloc_netdev_queues(struct net_device *dev)
8385{
8386 unsigned int count = dev->num_tx_queues;
8387 struct netdev_queue *tx;
8388 size_t sz = count * sizeof(*tx);
8389
8390 if (count < 1 || count > 0xffff)
8391 return -EINVAL;
8392
8393 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8394 if (!tx)
8395 return -ENOMEM;
8396
8397 dev->_tx = tx;
8398
8399 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8400 spin_lock_init(&dev->tx_global_lock);
8401
8402 return 0;
8403}
8404
8405void netif_tx_stop_all_queues(struct net_device *dev)
8406{
8407 unsigned int i;
8408
8409 for (i = 0; i < dev->num_tx_queues; i++) {
8410 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8411
8412 netif_tx_stop_queue(txq);
8413 }
8414}
8415EXPORT_SYMBOL(netif_tx_stop_all_queues);
8416
8417/**
8418 * register_netdevice - register a network device
8419 * @dev: device to register
8420 *
8421 * Take a completed network device structure and add it to the kernel
8422 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8423 * chain. 0 is returned on success. A negative errno code is returned
8424 * on a failure to set up the device, or if the name is a duplicate.
8425 *
8426 * Callers must hold the rtnl semaphore. You may want
8427 * register_netdev() instead of this.
8428 *
8429 * BUGS:
8430 * The locking appears insufficient to guarantee two parallel registers
8431 * will not get the same name.
8432 */
8433
8434int register_netdevice(struct net_device *dev)
8435{
8436 int ret;
8437 struct net *net = dev_net(dev);
8438
8439 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8440 NETDEV_FEATURE_COUNT);
8441 BUG_ON(dev_boot_phase);
8442 ASSERT_RTNL();
8443
8444 might_sleep();
8445
8446 /* When net_device's are persistent, this will be fatal. */
8447 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8448 BUG_ON(!net);
8449
8450 spin_lock_init(&dev->addr_list_lock);
8451 netdev_set_addr_lockdep_class(dev);
8452
8453 ret = dev_get_valid_name(net, dev, dev->name);
8454 if (ret < 0)
8455 goto out;
8456
8457 /* Init, if this function is available */
8458 if (dev->netdev_ops->ndo_init) {
8459 ret = dev->netdev_ops->ndo_init(dev);
8460 if (ret) {
8461 if (ret > 0)
8462 ret = -EIO;
8463 goto out;
8464 }
8465 }
8466
8467 if (((dev->hw_features | dev->features) &
8468 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8469 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8470 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8471 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8472 ret = -EINVAL;
8473 goto err_uninit;
8474 }
8475
8476 ret = -EBUSY;
8477 if (!dev->ifindex)
8478 dev->ifindex = dev_new_index(net);
8479 else if (__dev_get_by_index(net, dev->ifindex))
8480 goto err_uninit;
8481
8482 /* Transfer changeable features to wanted_features and enable
8483 * software offloads (GSO and GRO).
8484 */
8485 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8486 dev->features |= NETIF_F_SOFT_FEATURES;
8487
8488 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8489 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8490 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8491 }
8492
8493 dev->wanted_features = dev->features & dev->hw_features;
8494
8495 if (!(dev->flags & IFF_LOOPBACK))
8496 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8497
8498 /* If IPv4 TCP segmentation offload is supported we should also
8499 * allow the device to enable segmenting the frame with the option
8500 * of ignoring a static IP ID value. This doesn't enable the
8501 * feature itself but allows the user to enable it later.
8502 */
8503 if (dev->hw_features & NETIF_F_TSO)
8504 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8505 if (dev->vlan_features & NETIF_F_TSO)
8506 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8507 if (dev->mpls_features & NETIF_F_TSO)
8508 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8509 if (dev->hw_enc_features & NETIF_F_TSO)
8510 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8511
8512 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8513 */
8514 dev->vlan_features |= NETIF_F_HIGHDMA;
8515
8516 /* Make NETIF_F_SG inheritable to tunnel devices.
8517 */
8518 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8519
8520 /* Make NETIF_F_SG inheritable to MPLS.
8521 */
8522 dev->mpls_features |= NETIF_F_SG;
8523
8524 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8525 ret = notifier_to_errno(ret);
8526 if (ret)
8527 goto err_uninit;
8528
8529 ret = netdev_register_kobject(dev);
8530 if (ret)
8531 goto err_uninit;
8532 dev->reg_state = NETREG_REGISTERED;
8533
8534 __netdev_update_features(dev);
8535
8536 /*
8537 * Default initial state at registry is that the
8538 * device is present.
8539 */
8540
8541 set_bit(__LINK_STATE_PRESENT, &dev->state);
8542
8543 linkwatch_init_dev(dev);
8544
8545 dev_init_scheduler(dev);
8546 dev_hold(dev);
8547 list_netdevice(dev);
8548 add_device_randomness(dev->dev_addr, dev->addr_len);
8549
8550 /* If the device has permanent device address, driver should
8551 * set dev_addr and also addr_assign_type should be set to
8552 * NET_ADDR_PERM (default value).
8553 */
8554 if (dev->addr_assign_type == NET_ADDR_PERM)
8555 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8556
8557 /* Notify protocols, that a new device appeared. */
8558 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8559 ret = notifier_to_errno(ret);
8560 if (ret) {
8561 rollback_registered(dev);
8562 dev->reg_state = NETREG_UNREGISTERED;
8563 }
8564 /*
8565 * Prevent userspace races by waiting until the network
8566 * device is fully setup before sending notifications.
8567 */
8568 if (!dev->rtnl_link_ops ||
8569 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8570 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8571
8572out:
8573 return ret;
8574
8575err_uninit:
8576 if (dev->netdev_ops->ndo_uninit)
8577 dev->netdev_ops->ndo_uninit(dev);
8578 if (dev->priv_destructor)
8579 dev->priv_destructor(dev);
8580 goto out;
8581}
8582EXPORT_SYMBOL(register_netdevice);
8583
8584/**
8585 * init_dummy_netdev - init a dummy network device for NAPI
8586 * @dev: device to init
8587 *
8588 * This takes a network device structure and initialize the minimum
8589 * amount of fields so it can be used to schedule NAPI polls without
8590 * registering a full blown interface. This is to be used by drivers
8591 * that need to tie several hardware interfaces to a single NAPI
8592 * poll scheduler due to HW limitations.
8593 */
8594int init_dummy_netdev(struct net_device *dev)
8595{
8596 /* Clear everything. Note we don't initialize spinlocks
8597 * are they aren't supposed to be taken by any of the
8598 * NAPI code and this dummy netdev is supposed to be
8599 * only ever used for NAPI polls
8600 */
8601 memset(dev, 0, sizeof(struct net_device));
8602
8603 /* make sure we BUG if trying to hit standard
8604 * register/unregister code path
8605 */
8606 dev->reg_state = NETREG_DUMMY;
8607
8608 /* NAPI wants this */
8609 INIT_LIST_HEAD(&dev->napi_list);
8610
8611 /* a dummy interface is started by default */
8612 set_bit(__LINK_STATE_PRESENT, &dev->state);
8613 set_bit(__LINK_STATE_START, &dev->state);
8614
8615 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8616 * because users of this 'device' dont need to change
8617 * its refcount.
8618 */
8619
8620 return 0;
8621}
8622EXPORT_SYMBOL_GPL(init_dummy_netdev);
8623
8624
8625/**
8626 * register_netdev - register a network device
8627 * @dev: device to register
8628 *
8629 * Take a completed network device structure and add it to the kernel
8630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8631 * chain. 0 is returned on success. A negative errno code is returned
8632 * on a failure to set up the device, or if the name is a duplicate.
8633 *
8634 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8635 * and expands the device name if you passed a format string to
8636 * alloc_netdev.
8637 */
8638int register_netdev(struct net_device *dev)
8639{
8640 int err;
8641
8642 if (rtnl_lock_killable())
8643 return -EINTR;
8644 err = register_netdevice(dev);
8645 rtnl_unlock();
8646 return err;
8647}
8648EXPORT_SYMBOL(register_netdev);
8649
8650int netdev_refcnt_read(const struct net_device *dev)
8651{
8652 int i, refcnt = 0;
8653
8654 for_each_possible_cpu(i)
8655 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8656 return refcnt;
8657}
8658EXPORT_SYMBOL(netdev_refcnt_read);
8659
8660/**
8661 * netdev_wait_allrefs - wait until all references are gone.
8662 * @dev: target net_device
8663 *
8664 * This is called when unregistering network devices.
8665 *
8666 * Any protocol or device that holds a reference should register
8667 * for netdevice notification, and cleanup and put back the
8668 * reference if they receive an UNREGISTER event.
8669 * We can get stuck here if buggy protocols don't correctly
8670 * call dev_put.
8671 */
8672static void netdev_wait_allrefs(struct net_device *dev)
8673{
8674 unsigned long rebroadcast_time, warning_time;
8675 int refcnt;
8676
8677 linkwatch_forget_dev(dev);
8678
8679 rebroadcast_time = warning_time = jiffies;
8680 refcnt = netdev_refcnt_read(dev);
8681
8682 while (refcnt != 0) {
8683 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8684 rtnl_lock();
8685
8686 /* Rebroadcast unregister notification */
8687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8688
8689 __rtnl_unlock();
8690 rcu_barrier();
8691 rtnl_lock();
8692
8693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8694 &dev->state)) {
8695 /* We must not have linkwatch events
8696 * pending on unregister. If this
8697 * happens, we simply run the queue
8698 * unscheduled, resulting in a noop
8699 * for this device.
8700 */
8701 linkwatch_run_queue();
8702 }
8703
8704 __rtnl_unlock();
8705
8706 rebroadcast_time = jiffies;
8707 }
8708
8709 msleep(250);
8710
8711 refcnt = netdev_refcnt_read(dev);
8712
8713 if (time_after(jiffies, warning_time + 10 * HZ)) {
8714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8715 dev->name, refcnt);
8716 warning_time = jiffies;
8717 }
8718 }
8719}
8720
8721/* The sequence is:
8722 *
8723 * rtnl_lock();
8724 * ...
8725 * register_netdevice(x1);
8726 * register_netdevice(x2);
8727 * ...
8728 * unregister_netdevice(y1);
8729 * unregister_netdevice(y2);
8730 * ...
8731 * rtnl_unlock();
8732 * free_netdev(y1);
8733 * free_netdev(y2);
8734 *
8735 * We are invoked by rtnl_unlock().
8736 * This allows us to deal with problems:
8737 * 1) We can delete sysfs objects which invoke hotplug
8738 * without deadlocking with linkwatch via keventd.
8739 * 2) Since we run with the RTNL semaphore not held, we can sleep
8740 * safely in order to wait for the netdev refcnt to drop to zero.
8741 *
8742 * We must not return until all unregister events added during
8743 * the interval the lock was held have been completed.
8744 */
8745void netdev_run_todo(void)
8746{
8747 struct list_head list;
8748
8749 /* Snapshot list, allow later requests */
8750 list_replace_init(&net_todo_list, &list);
8751
8752 __rtnl_unlock();
8753
8754
8755 /* Wait for rcu callbacks to finish before next phase */
8756 if (!list_empty(&list))
8757 rcu_barrier();
8758
8759 while (!list_empty(&list)) {
8760 struct net_device *dev
8761 = list_first_entry(&list, struct net_device, todo_list);
8762 list_del(&dev->todo_list);
8763
8764 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8765 pr_err("network todo '%s' but state %d\n",
8766 dev->name, dev->reg_state);
8767 dump_stack();
8768 continue;
8769 }
8770
8771 dev->reg_state = NETREG_UNREGISTERED;
8772
8773 netdev_wait_allrefs(dev);
8774
8775 /* paranoia */
8776 BUG_ON(netdev_refcnt_read(dev));
8777 BUG_ON(!list_empty(&dev->ptype_all));
8778 BUG_ON(!list_empty(&dev->ptype_specific));
8779 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8780 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8781#if IS_ENABLED(CONFIG_DECNET)
8782 WARN_ON(dev->dn_ptr);
8783#endif
8784 if (dev->priv_destructor)
8785 dev->priv_destructor(dev);
8786 if (dev->needs_free_netdev)
8787 free_netdev(dev);
8788
8789 /* Report a network device has been unregistered */
8790 rtnl_lock();
8791 dev_net(dev)->dev_unreg_count--;
8792 __rtnl_unlock();
8793 wake_up(&netdev_unregistering_wq);
8794
8795 /* Free network device */
8796 kobject_put(&dev->dev.kobj);
8797 }
8798}
8799
8800/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8801 * all the same fields in the same order as net_device_stats, with only
8802 * the type differing, but rtnl_link_stats64 may have additional fields
8803 * at the end for newer counters.
8804 */
8805void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8806 const struct net_device_stats *netdev_stats)
8807{
8808#if BITS_PER_LONG == 64
8809 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8810 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8811 /* zero out counters that only exist in rtnl_link_stats64 */
8812 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8813 sizeof(*stats64) - sizeof(*netdev_stats));
8814#else
8815 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8816 const unsigned long *src = (const unsigned long *)netdev_stats;
8817 u64 *dst = (u64 *)stats64;
8818
8819 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8820 for (i = 0; i < n; i++)
8821 dst[i] = src[i];
8822 /* zero out counters that only exist in rtnl_link_stats64 */
8823 memset((char *)stats64 + n * sizeof(u64), 0,
8824 sizeof(*stats64) - n * sizeof(u64));
8825#endif
8826}
8827EXPORT_SYMBOL(netdev_stats_to_stats64);
8828
8829/**
8830 * dev_get_stats - get network device statistics
8831 * @dev: device to get statistics from
8832 * @storage: place to store stats
8833 *
8834 * Get network statistics from device. Return @storage.
8835 * The device driver may provide its own method by setting
8836 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8837 * otherwise the internal statistics structure is used.
8838 */
8839struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8840 struct rtnl_link_stats64 *storage)
8841{
8842 const struct net_device_ops *ops = dev->netdev_ops;
8843
8844 if (ops->ndo_get_stats64) {
8845 memset(storage, 0, sizeof(*storage));
8846 ops->ndo_get_stats64(dev, storage);
8847 } else if (ops->ndo_get_stats) {
8848 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8849 } else {
8850 netdev_stats_to_stats64(storage, &dev->stats);
8851 }
8852 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8853 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8854 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8855 return storage;
8856}
8857EXPORT_SYMBOL(dev_get_stats);
8858
8859struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8860{
8861 struct netdev_queue *queue = dev_ingress_queue(dev);
8862
8863#ifdef CONFIG_NET_CLS_ACT
8864 if (queue)
8865 return queue;
8866 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8867 if (!queue)
8868 return NULL;
8869 netdev_init_one_queue(dev, queue, NULL);
8870 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8871 queue->qdisc_sleeping = &noop_qdisc;
8872 rcu_assign_pointer(dev->ingress_queue, queue);
8873#endif
8874 return queue;
8875}
8876
8877static const struct ethtool_ops default_ethtool_ops;
8878
8879void netdev_set_default_ethtool_ops(struct net_device *dev,
8880 const struct ethtool_ops *ops)
8881{
8882 if (dev->ethtool_ops == &default_ethtool_ops)
8883 dev->ethtool_ops = ops;
8884}
8885EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8886
8887void netdev_freemem(struct net_device *dev)
8888{
8889 char *addr = (char *)dev - dev->padded;
8890
8891 kvfree(addr);
8892}
8893
8894/**
8895 * alloc_netdev_mqs - allocate network device
8896 * @sizeof_priv: size of private data to allocate space for
8897 * @name: device name format string
8898 * @name_assign_type: origin of device name
8899 * @setup: callback to initialize device
8900 * @txqs: the number of TX subqueues to allocate
8901 * @rxqs: the number of RX subqueues to allocate
8902 *
8903 * Allocates a struct net_device with private data area for driver use
8904 * and performs basic initialization. Also allocates subqueue structs
8905 * for each queue on the device.
8906 */
8907struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8908 unsigned char name_assign_type,
8909 void (*setup)(struct net_device *),
8910 unsigned int txqs, unsigned int rxqs)
8911{
8912 struct net_device *dev;
8913 unsigned int alloc_size;
8914 struct net_device *p;
8915
8916 BUG_ON(strlen(name) >= sizeof(dev->name));
8917
8918 if (txqs < 1) {
8919 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8920 return NULL;
8921 }
8922
8923 if (rxqs < 1) {
8924 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8925 return NULL;
8926 }
8927
8928 alloc_size = sizeof(struct net_device);
8929 if (sizeof_priv) {
8930 /* ensure 32-byte alignment of private area */
8931 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8932 alloc_size += sizeof_priv;
8933 }
8934 /* ensure 32-byte alignment of whole construct */
8935 alloc_size += NETDEV_ALIGN - 1;
8936
8937 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8938 if (!p)
8939 return NULL;
8940
8941 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8942 dev->padded = (char *)dev - (char *)p;
8943
8944 dev->pcpu_refcnt = alloc_percpu(int);
8945 if (!dev->pcpu_refcnt)
8946 goto free_dev;
8947
8948 if (dev_addr_init(dev))
8949 goto free_pcpu;
8950
8951 dev_mc_init(dev);
8952 dev_uc_init(dev);
8953
8954 dev_net_set(dev, &init_net);
8955
8956 dev->gso_max_size = GSO_MAX_SIZE;
8957 dev->gso_max_segs = GSO_MAX_SEGS;
8958
8959 INIT_LIST_HEAD(&dev->napi_list);
8960 INIT_LIST_HEAD(&dev->unreg_list);
8961 INIT_LIST_HEAD(&dev->close_list);
8962 INIT_LIST_HEAD(&dev->link_watch_list);
8963 INIT_LIST_HEAD(&dev->adj_list.upper);
8964 INIT_LIST_HEAD(&dev->adj_list.lower);
8965 INIT_LIST_HEAD(&dev->ptype_all);
8966 INIT_LIST_HEAD(&dev->ptype_specific);
8967#ifdef CONFIG_NET_SCHED
8968 hash_init(dev->qdisc_hash);
8969#endif
8970 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8971 setup(dev);
8972
8973 if (!dev->tx_queue_len) {
8974 dev->priv_flags |= IFF_NO_QUEUE;
8975 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8976 }
8977
8978 dev->num_tx_queues = txqs;
8979 dev->real_num_tx_queues = txqs;
8980 if (netif_alloc_netdev_queues(dev))
8981 goto free_all;
8982
8983 dev->num_rx_queues = rxqs;
8984 dev->real_num_rx_queues = rxqs;
8985 if (netif_alloc_rx_queues(dev))
8986 goto free_all;
8987
8988 strcpy(dev->name, name);
8989 dev->name_assign_type = name_assign_type;
8990 dev->group = INIT_NETDEV_GROUP;
8991 if (!dev->ethtool_ops)
8992 dev->ethtool_ops = &default_ethtool_ops;
8993
8994 nf_hook_ingress_init(dev);
8995
8996 return dev;
8997
8998free_all:
8999 free_netdev(dev);
9000 return NULL;
9001
9002free_pcpu:
9003 free_percpu(dev->pcpu_refcnt);
9004free_dev:
9005 netdev_freemem(dev);
9006 return NULL;
9007}
9008EXPORT_SYMBOL(alloc_netdev_mqs);
9009
9010/**
9011 * free_netdev - free network device
9012 * @dev: device
9013 *
9014 * This function does the last stage of destroying an allocated device
9015 * interface. The reference to the device object is released. If this
9016 * is the last reference then it will be freed.Must be called in process
9017 * context.
9018 */
9019void free_netdev(struct net_device *dev)
9020{
9021 struct napi_struct *p, *n;
9022
9023 might_sleep();
9024 netif_free_tx_queues(dev);
9025 netif_free_rx_queues(dev);
9026
9027 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9028
9029 /* Flush device addresses */
9030 dev_addr_flush(dev);
9031
9032 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9033 netif_napi_del(p);
9034
9035 free_percpu(dev->pcpu_refcnt);
9036 dev->pcpu_refcnt = NULL;
9037
9038 /* Compatibility with error handling in drivers */
9039 if (dev->reg_state == NETREG_UNINITIALIZED) {
9040 netdev_freemem(dev);
9041 return;
9042 }
9043
9044 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9045 dev->reg_state = NETREG_RELEASED;
9046
9047 /* will free via device release */
9048 put_device(&dev->dev);
9049}
9050EXPORT_SYMBOL(free_netdev);
9051
9052/**
9053 * synchronize_net - Synchronize with packet receive processing
9054 *
9055 * Wait for packets currently being received to be done.
9056 * Does not block later packets from starting.
9057 */
9058void synchronize_net(void)
9059{
9060 might_sleep();
9061 if (rtnl_is_locked())
9062 synchronize_rcu_expedited();
9063 else
9064 synchronize_rcu();
9065}
9066EXPORT_SYMBOL(synchronize_net);
9067
9068/**
9069 * unregister_netdevice_queue - remove device from the kernel
9070 * @dev: device
9071 * @head: list
9072 *
9073 * This function shuts down a device interface and removes it
9074 * from the kernel tables.
9075 * If head not NULL, device is queued to be unregistered later.
9076 *
9077 * Callers must hold the rtnl semaphore. You may want
9078 * unregister_netdev() instead of this.
9079 */
9080
9081void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9082{
9083 ASSERT_RTNL();
9084
9085 if (head) {
9086 list_move_tail(&dev->unreg_list, head);
9087 } else {
9088 rollback_registered(dev);
9089 /* Finish processing unregister after unlock */
9090 net_set_todo(dev);
9091 }
9092}
9093EXPORT_SYMBOL(unregister_netdevice_queue);
9094
9095/**
9096 * unregister_netdevice_many - unregister many devices
9097 * @head: list of devices
9098 *
9099 * Note: As most callers use a stack allocated list_head,
9100 * we force a list_del() to make sure stack wont be corrupted later.
9101 */
9102void unregister_netdevice_many(struct list_head *head)
9103{
9104 struct net_device *dev;
9105
9106 if (!list_empty(head)) {
9107 rollback_registered_many(head);
9108 list_for_each_entry(dev, head, unreg_list)
9109 net_set_todo(dev);
9110 list_del(head);
9111 }
9112}
9113EXPORT_SYMBOL(unregister_netdevice_many);
9114
9115/**
9116 * unregister_netdev - remove device from the kernel
9117 * @dev: device
9118 *
9119 * This function shuts down a device interface and removes it
9120 * from the kernel tables.
9121 *
9122 * This is just a wrapper for unregister_netdevice that takes
9123 * the rtnl semaphore. In general you want to use this and not
9124 * unregister_netdevice.
9125 */
9126void unregister_netdev(struct net_device *dev)
9127{
9128 rtnl_lock();
9129 unregister_netdevice(dev);
9130 rtnl_unlock();
9131}
9132EXPORT_SYMBOL(unregister_netdev);
9133
9134/**
9135 * dev_change_net_namespace - move device to different nethost namespace
9136 * @dev: device
9137 * @net: network namespace
9138 * @pat: If not NULL name pattern to try if the current device name
9139 * is already taken in the destination network namespace.
9140 *
9141 * This function shuts down a device interface and moves it
9142 * to a new network namespace. On success 0 is returned, on
9143 * a failure a netagive errno code is returned.
9144 *
9145 * Callers must hold the rtnl semaphore.
9146 */
9147
9148int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9149{
9150 int err, new_nsid, new_ifindex;
9151
9152 ASSERT_RTNL();
9153
9154 /* Don't allow namespace local devices to be moved. */
9155 err = -EINVAL;
9156 if (dev->features & NETIF_F_NETNS_LOCAL)
9157 goto out;
9158
9159 /* Ensure the device has been registrered */
9160 if (dev->reg_state != NETREG_REGISTERED)
9161 goto out;
9162
9163 /* Get out if there is nothing todo */
9164 err = 0;
9165 if (net_eq(dev_net(dev), net))
9166 goto out;
9167
9168 /* Pick the destination device name, and ensure
9169 * we can use it in the destination network namespace.
9170 */
9171 err = -EEXIST;
9172 if (__dev_get_by_name(net, dev->name)) {
9173 /* We get here if we can't use the current device name */
9174 if (!pat)
9175 goto out;
9176 err = dev_get_valid_name(net, dev, pat);
9177 if (err < 0)
9178 goto out;
9179 }
9180
9181 /*
9182 * And now a mini version of register_netdevice unregister_netdevice.
9183 */
9184
9185 /* If device is running close it first. */
9186 dev_close(dev);
9187
9188 /* And unlink it from device chain */
9189 unlist_netdevice(dev);
9190
9191 synchronize_net();
9192
9193 /* Shutdown queueing discipline. */
9194 dev_shutdown(dev);
9195
9196 /* Notify protocols, that we are about to destroy
9197 * this device. They should clean all the things.
9198 *
9199 * Note that dev->reg_state stays at NETREG_REGISTERED.
9200 * This is wanted because this way 8021q and macvlan know
9201 * the device is just moving and can keep their slaves up.
9202 */
9203 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9204 rcu_barrier();
9205
9206 new_nsid = peernet2id_alloc(dev_net(dev), net);
9207 /* If there is an ifindex conflict assign a new one */
9208 if (__dev_get_by_index(net, dev->ifindex))
9209 new_ifindex = dev_new_index(net);
9210 else
9211 new_ifindex = dev->ifindex;
9212
9213 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9214 new_ifindex);
9215
9216 /*
9217 * Flush the unicast and multicast chains
9218 */
9219 dev_uc_flush(dev);
9220 dev_mc_flush(dev);
9221
9222 /* Send a netdev-removed uevent to the old namespace */
9223 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9224 netdev_adjacent_del_links(dev);
9225
9226 /* Actually switch the network namespace */
9227 dev_net_set(dev, net);
9228 dev->ifindex = new_ifindex;
9229
9230 /* Send a netdev-add uevent to the new namespace */
9231 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9232 netdev_adjacent_add_links(dev);
9233
9234 /* Fixup kobjects */
9235 err = device_rename(&dev->dev, dev->name);
9236 WARN_ON(err);
9237
9238 /* Add the device back in the hashes */
9239 list_netdevice(dev);
9240
9241 /* Notify protocols, that a new device appeared. */
9242 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9243
9244 /*
9245 * Prevent userspace races by waiting until the network
9246 * device is fully setup before sending notifications.
9247 */
9248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9249
9250 synchronize_net();
9251 err = 0;
9252out:
9253 return err;
9254}
9255EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9256
9257static int dev_cpu_dead(unsigned int oldcpu)
9258{
9259 struct sk_buff **list_skb;
9260 struct sk_buff *skb;
9261 unsigned int cpu;
9262 struct softnet_data *sd, *oldsd, *remsd = NULL;
9263
9264 local_irq_disable();
9265 cpu = smp_processor_id();
9266 sd = &per_cpu(softnet_data, cpu);
9267 oldsd = &per_cpu(softnet_data, oldcpu);
9268
9269 /* Find end of our completion_queue. */
9270 list_skb = &sd->completion_queue;
9271 while (*list_skb)
9272 list_skb = &(*list_skb)->next;
9273 /* Append completion queue from offline CPU. */
9274 *list_skb = oldsd->completion_queue;
9275 oldsd->completion_queue = NULL;
9276
9277 /* Append output queue from offline CPU. */
9278 if (oldsd->output_queue) {
9279 *sd->output_queue_tailp = oldsd->output_queue;
9280 sd->output_queue_tailp = oldsd->output_queue_tailp;
9281 oldsd->output_queue = NULL;
9282 oldsd->output_queue_tailp = &oldsd->output_queue;
9283 }
9284 /* Append NAPI poll list from offline CPU, with one exception :
9285 * process_backlog() must be called by cpu owning percpu backlog.
9286 * We properly handle process_queue & input_pkt_queue later.
9287 */
9288 while (!list_empty(&oldsd->poll_list)) {
9289 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9290 struct napi_struct,
9291 poll_list);
9292
9293 list_del_init(&napi->poll_list);
9294 if (napi->poll == process_backlog)
9295 napi->state = 0;
9296 else
9297 ____napi_schedule(sd, napi);
9298 }
9299
9300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9301 local_irq_enable();
9302
9303#ifdef CONFIG_RPS
9304 remsd = oldsd->rps_ipi_list;
9305 oldsd->rps_ipi_list = NULL;
9306#endif
9307 /* send out pending IPI's on offline CPU */
9308 net_rps_send_ipi(remsd);
9309
9310 /* Process offline CPU's input_pkt_queue */
9311 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9312 netif_rx_ni(skb);
9313 input_queue_head_incr(oldsd);
9314 }
9315 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9316 netif_rx_ni(skb);
9317 input_queue_head_incr(oldsd);
9318 }
9319
9320 return 0;
9321}
9322
9323/**
9324 * netdev_increment_features - increment feature set by one
9325 * @all: current feature set
9326 * @one: new feature set
9327 * @mask: mask feature set
9328 *
9329 * Computes a new feature set after adding a device with feature set
9330 * @one to the master device with current feature set @all. Will not
9331 * enable anything that is off in @mask. Returns the new feature set.
9332 */
9333netdev_features_t netdev_increment_features(netdev_features_t all,
9334 netdev_features_t one, netdev_features_t mask)
9335{
9336 if (mask & NETIF_F_HW_CSUM)
9337 mask |= NETIF_F_CSUM_MASK;
9338 mask |= NETIF_F_VLAN_CHALLENGED;
9339
9340 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9341 all &= one | ~NETIF_F_ALL_FOR_ALL;
9342
9343 /* If one device supports hw checksumming, set for all. */
9344 if (all & NETIF_F_HW_CSUM)
9345 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9346
9347 return all;
9348}
9349EXPORT_SYMBOL(netdev_increment_features);
9350
9351static struct hlist_head * __net_init netdev_create_hash(void)
9352{
9353 int i;
9354 struct hlist_head *hash;
9355
9356 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9357 if (hash != NULL)
9358 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9359 INIT_HLIST_HEAD(&hash[i]);
9360
9361 return hash;
9362}
9363
9364/* Initialize per network namespace state */
9365static int __net_init netdev_init(struct net *net)
9366{
9367 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9368 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9369
9370 if (net != &init_net)
9371 INIT_LIST_HEAD(&net->dev_base_head);
9372
9373 net->dev_name_head = netdev_create_hash();
9374 if (net->dev_name_head == NULL)
9375 goto err_name;
9376
9377 net->dev_index_head = netdev_create_hash();
9378 if (net->dev_index_head == NULL)
9379 goto err_idx;
9380
9381 return 0;
9382
9383err_idx:
9384 kfree(net->dev_name_head);
9385err_name:
9386 return -ENOMEM;
9387}
9388
9389/**
9390 * netdev_drivername - network driver for the device
9391 * @dev: network device
9392 *
9393 * Determine network driver for device.
9394 */
9395const char *netdev_drivername(const struct net_device *dev)
9396{
9397 const struct device_driver *driver;
9398 const struct device *parent;
9399 const char *empty = "";
9400
9401 parent = dev->dev.parent;
9402 if (!parent)
9403 return empty;
9404
9405 driver = parent->driver;
9406 if (driver && driver->name)
9407 return driver->name;
9408 return empty;
9409}
9410
9411static void __netdev_printk(const char *level, const struct net_device *dev,
9412 struct va_format *vaf)
9413{
9414 if (dev && dev->dev.parent) {
9415 dev_printk_emit(level[1] - '0',
9416 dev->dev.parent,
9417 "%s %s %s%s: %pV",
9418 dev_driver_string(dev->dev.parent),
9419 dev_name(dev->dev.parent),
9420 netdev_name(dev), netdev_reg_state(dev),
9421 vaf);
9422 } else if (dev) {
9423 printk("%s%s%s: %pV",
9424 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9425 } else {
9426 printk("%s(NULL net_device): %pV", level, vaf);
9427 }
9428}
9429
9430void netdev_printk(const char *level, const struct net_device *dev,
9431 const char *format, ...)
9432{
9433 struct va_format vaf;
9434 va_list args;
9435
9436 va_start(args, format);
9437
9438 vaf.fmt = format;
9439 vaf.va = &args;
9440
9441 __netdev_printk(level, dev, &vaf);
9442
9443 va_end(args);
9444}
9445EXPORT_SYMBOL(netdev_printk);
9446
9447#define define_netdev_printk_level(func, level) \
9448void func(const struct net_device *dev, const char *fmt, ...) \
9449{ \
9450 struct va_format vaf; \
9451 va_list args; \
9452 \
9453 va_start(args, fmt); \
9454 \
9455 vaf.fmt = fmt; \
9456 vaf.va = &args; \
9457 \
9458 __netdev_printk(level, dev, &vaf); \
9459 \
9460 va_end(args); \
9461} \
9462EXPORT_SYMBOL(func);
9463
9464define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9465define_netdev_printk_level(netdev_alert, KERN_ALERT);
9466define_netdev_printk_level(netdev_crit, KERN_CRIT);
9467define_netdev_printk_level(netdev_err, KERN_ERR);
9468define_netdev_printk_level(netdev_warn, KERN_WARNING);
9469define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9470define_netdev_printk_level(netdev_info, KERN_INFO);
9471
9472static void __net_exit netdev_exit(struct net *net)
9473{
9474 kfree(net->dev_name_head);
9475 kfree(net->dev_index_head);
9476 if (net != &init_net)
9477 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9478}
9479
9480static struct pernet_operations __net_initdata netdev_net_ops = {
9481 .init = netdev_init,
9482 .exit = netdev_exit,
9483};
9484
9485static void __net_exit default_device_exit(struct net *net)
9486{
9487 struct net_device *dev, *aux;
9488 /*
9489 * Push all migratable network devices back to the
9490 * initial network namespace
9491 */
9492 rtnl_lock();
9493 for_each_netdev_safe(net, dev, aux) {
9494 int err;
9495 char fb_name[IFNAMSIZ];
9496
9497 /* Ignore unmoveable devices (i.e. loopback) */
9498 if (dev->features & NETIF_F_NETNS_LOCAL)
9499 continue;
9500
9501 /* Leave virtual devices for the generic cleanup */
9502 if (dev->rtnl_link_ops)
9503 continue;
9504
9505 /* Push remaining network devices to init_net */
9506 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9507 err = dev_change_net_namespace(dev, &init_net, fb_name);
9508 if (err) {
9509 pr_emerg("%s: failed to move %s to init_net: %d\n",
9510 __func__, dev->name, err);
9511 BUG();
9512 }
9513 }
9514 rtnl_unlock();
9515}
9516
9517static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9518{
9519 /* Return with the rtnl_lock held when there are no network
9520 * devices unregistering in any network namespace in net_list.
9521 */
9522 struct net *net;
9523 bool unregistering;
9524 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9525
9526 add_wait_queue(&netdev_unregistering_wq, &wait);
9527 for (;;) {
9528 unregistering = false;
9529 rtnl_lock();
9530 list_for_each_entry(net, net_list, exit_list) {
9531 if (net->dev_unreg_count > 0) {
9532 unregistering = true;
9533 break;
9534 }
9535 }
9536 if (!unregistering)
9537 break;
9538 __rtnl_unlock();
9539
9540 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9541 }
9542 remove_wait_queue(&netdev_unregistering_wq, &wait);
9543}
9544
9545static void __net_exit default_device_exit_batch(struct list_head *net_list)
9546{
9547 /* At exit all network devices most be removed from a network
9548 * namespace. Do this in the reverse order of registration.
9549 * Do this across as many network namespaces as possible to
9550 * improve batching efficiency.
9551 */
9552 struct net_device *dev;
9553 struct net *net;
9554 LIST_HEAD(dev_kill_list);
9555
9556 /* To prevent network device cleanup code from dereferencing
9557 * loopback devices or network devices that have been freed
9558 * wait here for all pending unregistrations to complete,
9559 * before unregistring the loopback device and allowing the
9560 * network namespace be freed.
9561 *
9562 * The netdev todo list containing all network devices
9563 * unregistrations that happen in default_device_exit_batch
9564 * will run in the rtnl_unlock() at the end of
9565 * default_device_exit_batch.
9566 */
9567 rtnl_lock_unregistering(net_list);
9568 list_for_each_entry(net, net_list, exit_list) {
9569 for_each_netdev_reverse(net, dev) {
9570 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9571 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9572 else
9573 unregister_netdevice_queue(dev, &dev_kill_list);
9574 }
9575 }
9576 unregister_netdevice_many(&dev_kill_list);
9577 rtnl_unlock();
9578}
9579
9580static struct pernet_operations __net_initdata default_device_ops = {
9581 .exit = default_device_exit,
9582 .exit_batch = default_device_exit_batch,
9583};
9584
9585/*
9586 * Initialize the DEV module. At boot time this walks the device list and
9587 * unhooks any devices that fail to initialise (normally hardware not
9588 * present) and leaves us with a valid list of present and active devices.
9589 *
9590 */
9591
9592/*
9593 * This is called single threaded during boot, so no need
9594 * to take the rtnl semaphore.
9595 */
9596static int __init net_dev_init(void)
9597{
9598 int i, rc = -ENOMEM;
9599
9600 BUG_ON(!dev_boot_phase);
9601
9602 if (dev_proc_init())
9603 goto out;
9604
9605 if (netdev_kobject_init())
9606 goto out;
9607
9608 INIT_LIST_HEAD(&ptype_all);
9609 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9610 INIT_LIST_HEAD(&ptype_base[i]);
9611
9612 INIT_LIST_HEAD(&offload_base);
9613
9614 if (register_pernet_subsys(&netdev_net_ops))
9615 goto out;
9616
9617 /*
9618 * Initialise the packet receive queues.
9619 */
9620
9621 for_each_possible_cpu(i) {
9622 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9623 struct softnet_data *sd = &per_cpu(softnet_data, i);
9624
9625 INIT_WORK(flush, flush_backlog);
9626
9627 skb_queue_head_init(&sd->input_pkt_queue);
9628 skb_queue_head_init(&sd->process_queue);
9629#ifdef CONFIG_XFRM_OFFLOAD
9630 skb_queue_head_init(&sd->xfrm_backlog);
9631#endif
9632 INIT_LIST_HEAD(&sd->poll_list);
9633 sd->output_queue_tailp = &sd->output_queue;
9634#ifdef CONFIG_RPS
9635 sd->csd.func = rps_trigger_softirq;
9636 sd->csd.info = sd;
9637 sd->cpu = i;
9638#endif
9639
9640 init_gro_hash(&sd->backlog);
9641 sd->backlog.poll = process_backlog;
9642 sd->backlog.weight = weight_p;
9643 }
9644
9645 dev_boot_phase = 0;
9646
9647 /* The loopback device is special if any other network devices
9648 * is present in a network namespace the loopback device must
9649 * be present. Since we now dynamically allocate and free the
9650 * loopback device ensure this invariant is maintained by
9651 * keeping the loopback device as the first device on the
9652 * list of network devices. Ensuring the loopback devices
9653 * is the first device that appears and the last network device
9654 * that disappears.
9655 */
9656 if (register_pernet_device(&loopback_net_ops))
9657 goto out;
9658
9659 if (register_pernet_device(&default_device_ops))
9660 goto out;
9661
9662 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9663 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9664
9665 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9666 NULL, dev_cpu_dead);
9667 WARN_ON(rc < 0);
9668 rc = 0;
9669out:
9670 return rc;
9671}
9672
9673subsys_initcall(net_dev_init);