Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/memblock.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kasan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/ratelimit.h>
33#include <linux/oom.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/vmstat.h>
42#include <linux/mempolicy.h>
43#include <linux/memremap.h>
44#include <linux/stop_machine.h>
45#include <linux/sort.h>
46#include <linux/pfn.h>
47#include <linux/backing-dev.h>
48#include <linux/fault-inject.h>
49#include <linux/page-isolation.h>
50#include <linux/page_ext.h>
51#include <linux/debugobjects.h>
52#include <linux/kmemleak.h>
53#include <linux/compaction.h>
54#include <trace/events/kmem.h>
55#include <trace/events/oom.h>
56#include <linux/prefetch.h>
57#include <linux/mm_inline.h>
58#include <linux/migrate.h>
59#include <linux/hugetlb.h>
60#include <linux/sched/rt.h>
61#include <linux/sched/mm.h>
62#include <linux/page_owner.h>
63#include <linux/kthread.h>
64#include <linux/memcontrol.h>
65#include <linux/ftrace.h>
66#include <linux/lockdep.h>
67#include <linux/nmi.h>
68#include <linux/psi.h>
69
70#include <asm/sections.h>
71#include <asm/tlbflush.h>
72#include <asm/div64.h>
73#include "internal.h"
74
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
77#define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95int _node_numa_mem_[MAX_NUMNODES];
96#endif
97
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103volatile unsigned long latent_entropy __latent_entropy;
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
107/*
108 * Array of node states.
109 */
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117#endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
127unsigned long totalram_pages __read_mostly;
128unsigned long totalreserve_pages __read_mostly;
129unsigned long totalcma_pages __read_mostly;
130
131int percpu_pagelist_fraction;
132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
161 */
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
166{
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172}
173
174void pm_restrict_gfp_mask(void)
175{
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180}
181
182bool pm_suspended_storage(void)
183{
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187}
188#endif /* CONFIG_PM_SLEEP */
189
190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191unsigned int pageblock_order __read_mostly;
192#endif
193
194static void __free_pages_ok(struct page *page, unsigned int order);
195
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208#ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210#endif
211#ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213#endif
214 [ZONE_NORMAL] = 32,
215#ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217#endif
218 [ZONE_MOVABLE] = 0,
219};
220
221EXPORT_SYMBOL(totalram_pages);
222
223static char * const zone_names[MAX_NR_ZONES] = {
224#ifdef CONFIG_ZONE_DMA
225 "DMA",
226#endif
227#ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229#endif
230 "Normal",
231#ifdef CONFIG_HIGHMEM
232 "HighMem",
233#endif
234 "Movable",
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
238};
239
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
262};
263
264int min_free_kbytes = 1024;
265int user_min_free_kbytes = -1;
266int watermark_scale_factor = 10;
267
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
271
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
276static unsigned long required_kernelcore_percent __initdata;
277static unsigned long required_movablecore __initdata;
278static unsigned long required_movablecore_percent __initdata;
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
289int nr_online_nodes __read_mostly = 1;
290EXPORT_SYMBOL(nr_node_ids);
291EXPORT_SYMBOL(nr_online_nodes);
292#endif
293
294int page_group_by_mobility_disabled __read_mostly;
295
296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297/* Returns true if the struct page for the pfn is uninitialised */
298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299{
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns true when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static bool __meminit
313defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314{
315 static unsigned long prev_end_pfn, nr_initialised;
316
317 /*
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
320 */
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
324 }
325
326 /* Always populate low zones for address-constrained allocations */
327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328 return false;
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
334 }
335 return false;
336}
337#else
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344{
345 return false;
346}
347#endif
348
349/* Return a pointer to the bitmap storing bits affecting a block of pages */
350static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
352{
353#ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355#else
356 return page_zone(page)->pageblock_flags;
357#endif /* CONFIG_SPARSEMEM */
358}
359
360static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365#else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368#endif /* CONFIG_SPARSEMEM */
369}
370
371/**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
377 *
378 * Return: pageblock_bits flags
379 */
380static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
384{
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
388
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
393
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397}
398
399unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404}
405
406static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407{
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409}
410
411/**
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
418 */
419void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423{
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
427
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
434
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
440
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
447 }
448}
449
450void set_pageblock_migratetype(struct page *page, int migratetype)
451{
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
454 migratetype = MIGRATE_UNMOVABLE;
455
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
458}
459
460#ifdef CONFIG_DEBUG_VM
461static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
462{
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
466 unsigned long sp, start_pfn;
467
468 do {
469 seq = zone_span_seqbegin(zone);
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
472 if (!zone_spans_pfn(zone, pfn))
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
475
476 if (ret)
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
480
481 return ret;
482}
483
484static int page_is_consistent(struct zone *zone, struct page *page)
485{
486 if (!pfn_valid_within(page_to_pfn(page)))
487 return 0;
488 if (zone != page_zone(page))
489 return 0;
490
491 return 1;
492}
493/*
494 * Temporary debugging check for pages not lying within a given zone.
495 */
496static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497{
498 if (page_outside_zone_boundaries(zone, page))
499 return 1;
500 if (!page_is_consistent(zone, page))
501 return 1;
502
503 return 0;
504}
505#else
506static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
507{
508 return 0;
509}
510#endif
511
512static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
514{
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
518
519 /*
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
522 */
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
527 }
528 if (nr_unshown) {
529 pr_alert(
530 "BUG: Bad page state: %lu messages suppressed\n",
531 nr_unshown);
532 nr_unshown = 0;
533 }
534 nr_shown = 0;
535 }
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
538
539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
540 current->comm, page_to_pfn(page));
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
546 dump_page_owner(page);
547
548 print_modules();
549 dump_stack();
550out:
551 /* Leave bad fields for debug, except PageBuddy could make trouble */
552 page_mapcount_reset(page); /* remove PageBuddy */
553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
554}
555
556/*
557 * Higher-order pages are called "compound pages". They are structured thusly:
558 *
559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
560 *
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
563 *
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
566 *
567 * The first tail page's ->compound_order holds the order of allocation.
568 * This usage means that zero-order pages may not be compound.
569 */
570
571void free_compound_page(struct page *page)
572{
573 __free_pages_ok(page, compound_order(page));
574}
575
576void prep_compound_page(struct page *page, unsigned int order)
577{
578 int i;
579 int nr_pages = 1 << order;
580
581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
586 set_page_count(p, 0);
587 p->mapping = TAIL_MAPPING;
588 set_compound_head(p, page);
589 }
590 atomic_set(compound_mapcount_ptr(page), -1);
591}
592
593#ifdef CONFIG_DEBUG_PAGEALLOC
594unsigned int _debug_guardpage_minorder;
595bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597EXPORT_SYMBOL(_debug_pagealloc_enabled);
598bool _debug_guardpage_enabled __read_mostly;
599
600static int __init early_debug_pagealloc(char *buf)
601{
602 if (!buf)
603 return -EINVAL;
604 return kstrtobool(buf, &_debug_pagealloc_enabled);
605}
606early_param("debug_pagealloc", early_debug_pagealloc);
607
608static bool need_debug_guardpage(void)
609{
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
613
614 if (!debug_guardpage_minorder())
615 return false;
616
617 return true;
618}
619
620static void init_debug_guardpage(void)
621{
622 if (!debug_pagealloc_enabled())
623 return;
624
625 if (!debug_guardpage_minorder())
626 return;
627
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 return 0;
647}
648early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649
650static inline bool set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
652{
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
656 return false;
657
658 if (order >= debug_guardpage_minorder())
659 return false;
660
661 page_ext = lookup_page_ext(page);
662 if (unlikely(!page_ext))
663 return false;
664
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
671
672 return true;
673}
674
675static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
677{
678 struct page_ext *page_ext;
679
680 if (!debug_guardpage_enabled())
681 return;
682
683 page_ext = lookup_page_ext(page);
684 if (unlikely(!page_ext))
685 return;
686
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
692}
693#else
694struct page_ext_operations debug_guardpage_ops;
695static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
697static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699#endif
700
701static inline void set_page_order(struct page *page, unsigned int order)
702{
703 set_page_private(page, order);
704 __SetPageBuddy(page);
705}
706
707static inline void rmv_page_order(struct page *page)
708{
709 __ClearPageBuddy(page);
710 set_page_private(page, 0);
711}
712
713/*
714 * This function checks whether a page is free && is the buddy
715 * we can coalesce a page and its buddy if
716 * (a) the buddy is not in a hole (check before calling!) &&
717 * (b) the buddy is in the buddy system &&
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
720 *
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
723 *
724 * For recording page's order, we use page_private(page).
725 */
726static inline int page_is_buddy(struct page *page, struct page *buddy,
727 unsigned int order)
728{
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
735 return 1;
736 }
737
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
749 return 1;
750 }
751 return 0;
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
769 * So when we are allocating or freeing one, we can derive the state of the
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
772 * If a block is freed, and its buddy is also free, then this
773 * triggers coalescing into a block of larger size.
774 *
775 * -- nyc
776 */
777
778static inline void __free_one_page(struct page *page,
779 unsigned long pfn,
780 struct zone *zone, unsigned int order,
781 int migratetype)
782{
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
785 struct page *buddy;
786 unsigned int max_order;
787
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
789
790 VM_BUG_ON(!zone_is_initialized(zone));
791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
792
793 VM_BUG_ON(migratetype == -1);
794 if (likely(!is_migrate_isolate(migratetype)))
795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
796
797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
799
800continue_merging:
801 while (order < max_order - 1) {
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
804
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
807 if (!page_is_buddy(page, buddy, order))
808 goto done_merging;
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy)) {
814 clear_page_guard(zone, buddy, order, migratetype);
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
819 }
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
823 order++;
824 }
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
830 *
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
833 */
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
836
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839 buddy_mt = get_pageblock_migratetype(buddy);
840
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
845 }
846 max_order++;
847 goto continue_merging;
848 }
849
850done_merging:
851 set_page_order(page, order);
852
853 /*
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
860 */
861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862 struct page *higher_page, *higher_buddy;
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
877 zone->free_area[order].nr_free++;
878}
879
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
902static void free_pages_check_bad(struct page *page)
903{
904 const char *bad_reason;
905 unsigned long bad_flags;
906
907 bad_reason = NULL;
908 bad_flags = 0;
909
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
924 bad_page(page, bad_reason, bad_flags);
925}
926
927static inline int free_pages_check(struct page *page)
928{
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
935}
936
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping may be compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * deferred_list.next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
989{
990 int bad = 0;
991
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
994 trace_mm_page_free(page, order);
995
996 /*
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
999 */
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1003
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005
1006 if (compound)
1007 ClearPageDoubleMap(page);
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
1018 if (PageMappingFlags(page))
1019 page->mapping = NULL;
1020 if (memcg_kmem_enabled() && PageKmemcg(page))
1021 memcg_kmem_uncharge(page, order);
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
1026
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
1030
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
1033 PAGE_SIZE << order);
1034 debug_check_no_obj_freed(page_address(page),
1035 PAGE_SIZE << order);
1036 }
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
1040 kasan_free_pages(page, order);
1041
1042 return true;
1043}
1044
1045#ifdef CONFIG_DEBUG_VM
1046static inline bool free_pcp_prepare(struct page *page)
1047{
1048 return free_pages_prepare(page, 0, true);
1049}
1050
1051static inline bool bulkfree_pcp_prepare(struct page *page)
1052{
1053 return false;
1054}
1055#else
1056static bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, false);
1059}
1060
1061static bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return free_pages_check(page);
1064}
1065#endif /* CONFIG_DEBUG_VM */
1066
1067static inline void prefetch_buddy(struct page *page)
1068{
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1072
1073 prefetch(buddy);
1074}
1075
1076/*
1077 * Frees a number of pages from the PCP lists
1078 * Assumes all pages on list are in same zone, and of same order.
1079 * count is the number of pages to free.
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
1087static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1089{
1090 int migratetype = 0;
1091 int batch_free = 0;
1092 int prefetch_nr = 0;
1093 bool isolated_pageblocks;
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
1096
1097 while (count) {
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete to avoid corrupting pcp list */
1121 list_del(&page->lru);
1122 pcp->count--;
1123
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
1127 list_add_tail(&page->lru, &head);
1128
1129 /*
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1137 */
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1145
1146 /*
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1149 */
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 }
1161 spin_unlock(&zone->lock);
1162}
1163
1164static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
1166 unsigned int order,
1167 int migratetype)
1168{
1169 spin_lock(&zone->lock);
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
1173 }
1174 __free_one_page(page, pfn, zone, order, migratetype);
1175 spin_unlock(&zone->lock);
1176}
1177
1178static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 unsigned long zone, int nid)
1180{
1181 mm_zero_struct_page(page);
1182 set_page_links(page, zone, nid, pfn);
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
1186
1187 INIT_LIST_HEAD(&page->lru);
1188#ifdef WANT_PAGE_VIRTUAL
1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 if (!is_highmem_idx(zone))
1191 set_page_address(page, __va(pfn << PAGE_SHIFT));
1192#endif
1193}
1194
1195#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196static void __meminit init_reserved_page(unsigned long pfn)
1197{
1198 pg_data_t *pgdat;
1199 int nid, zid;
1200
1201 if (!early_page_uninitialised(pfn))
1202 return;
1203
1204 nid = early_pfn_to_nid(pfn);
1205 pgdat = NODE_DATA(nid);
1206
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 struct zone *zone = &pgdat->node_zones[zid];
1209
1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 break;
1212 }
1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214}
1215#else
1216static inline void init_reserved_page(unsigned long pfn)
1217{
1218}
1219#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220
1221/*
1222 * Initialised pages do not have PageReserved set. This function is
1223 * called for each range allocated by the bootmem allocator and
1224 * marks the pages PageReserved. The remaining valid pages are later
1225 * sent to the buddy page allocator.
1226 */
1227void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228{
1229 unsigned long start_pfn = PFN_DOWN(start);
1230 unsigned long end_pfn = PFN_UP(end);
1231
1232 for (; start_pfn < end_pfn; start_pfn++) {
1233 if (pfn_valid(start_pfn)) {
1234 struct page *page = pfn_to_page(start_pfn);
1235
1236 init_reserved_page(start_pfn);
1237
1238 /* Avoid false-positive PageTail() */
1239 INIT_LIST_HEAD(&page->lru);
1240
1241 /*
1242 * no need for atomic set_bit because the struct
1243 * page is not visible yet so nobody should
1244 * access it yet.
1245 */
1246 __SetPageReserved(page);
1247 }
1248 }
1249}
1250
1251static void __free_pages_ok(struct page *page, unsigned int order)
1252{
1253 unsigned long flags;
1254 int migratetype;
1255 unsigned long pfn = page_to_pfn(page);
1256
1257 if (!free_pages_prepare(page, order, true))
1258 return;
1259
1260 migratetype = get_pfnblock_migratetype(page, pfn);
1261 local_irq_save(flags);
1262 __count_vm_events(PGFREE, 1 << order);
1263 free_one_page(page_zone(page), page, pfn, order, migratetype);
1264 local_irq_restore(flags);
1265}
1266
1267static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268{
1269 unsigned int nr_pages = 1 << order;
1270 struct page *p = page;
1271 unsigned int loop;
1272
1273 prefetchw(p);
1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 prefetchw(p + 1);
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
1278 }
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
1281
1282 page_zone(page)->managed_pages += nr_pages;
1283 set_page_refcounted(page);
1284 __free_pages(page, order);
1285}
1286
1287#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289
1290static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291
1292int __meminit early_pfn_to_nid(unsigned long pfn)
1293{
1294 static DEFINE_SPINLOCK(early_pfn_lock);
1295 int nid;
1296
1297 spin_lock(&early_pfn_lock);
1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299 if (nid < 0)
1300 nid = first_online_node;
1301 spin_unlock(&early_pfn_lock);
1302
1303 return nid;
1304}
1305#endif
1306
1307#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308static inline bool __meminit __maybe_unused
1309meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 int nid;
1313
1314 nid = __early_pfn_to_nid(pfn, state);
1315 if (nid >= 0 && nid != node)
1316 return false;
1317 return true;
1318}
1319
1320/* Only safe to use early in boot when initialisation is single-threaded */
1321static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322{
1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324}
1325
1326#else
1327
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return true;
1331}
1332static inline bool __meminit __maybe_unused
1333meminit_pfn_in_nid(unsigned long pfn, int node,
1334 struct mminit_pfnnid_cache *state)
1335{
1336 return true;
1337}
1338#endif
1339
1340
1341void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 unsigned int order)
1343{
1344 if (early_page_uninitialised(pfn))
1345 return;
1346 return __free_pages_boot_core(page, order);
1347}
1348
1349/*
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1354 * pageblocks.
1355 *
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357 *
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1365 */
1366struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1368{
1369 struct page *start_page;
1370 struct page *end_page;
1371
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1374
1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 return NULL;
1377
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
1381
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1384
1385 end_page = pfn_to_page(end_pfn);
1386
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1390
1391 return start_page;
1392}
1393
1394void set_zone_contiguous(struct zone *zone)
1395{
1396 unsigned long block_start_pfn = zone->zone_start_pfn;
1397 unsigned long block_end_pfn;
1398
1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 for (; block_start_pfn < zone_end_pfn(zone);
1401 block_start_pfn = block_end_pfn,
1402 block_end_pfn += pageblock_nr_pages) {
1403
1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405
1406 if (!__pageblock_pfn_to_page(block_start_pfn,
1407 block_end_pfn, zone))
1408 return;
1409 }
1410
1411 /* We confirm that there is no hole */
1412 zone->contiguous = true;
1413}
1414
1415void clear_zone_contiguous(struct zone *zone)
1416{
1417 zone->contiguous = false;
1418}
1419
1420#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421static void __init deferred_free_range(unsigned long pfn,
1422 unsigned long nr_pages)
1423{
1424 struct page *page;
1425 unsigned long i;
1426
1427 if (!nr_pages)
1428 return;
1429
1430 page = pfn_to_page(pfn);
1431
1432 /* Free a large naturally-aligned chunk if possible */
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436 __free_pages_boot_core(page, pageblock_order);
1437 return;
1438 }
1439
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, 0);
1444 }
1445}
1446
1447/* Completion tracking for deferred_init_memmap() threads */
1448static atomic_t pgdat_init_n_undone __initdata;
1449static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451static inline void __init pgdat_init_report_one_done(void)
1452{
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455}
1456
1457/*
1458 * Returns true if page needs to be initialized or freed to buddy allocator.
1459 *
1460 * First we check if pfn is valid on architectures where it is possible to have
1461 * holes within pageblock_nr_pages. On systems where it is not possible, this
1462 * function is optimized out.
1463 *
1464 * Then, we check if a current large page is valid by only checking the validity
1465 * of the head pfn.
1466 *
1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468 * within a node: a pfn is between start and end of a node, but does not belong
1469 * to this memory node.
1470 */
1471static inline bool __init
1472deferred_pfn_valid(int nid, unsigned long pfn,
1473 struct mminit_pfnnid_cache *nid_init_state)
1474{
1475 if (!pfn_valid_within(pfn))
1476 return false;
1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 return false;
1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 return false;
1481 return true;
1482}
1483
1484/*
1485 * Free pages to buddy allocator. Try to free aligned pages in
1486 * pageblock_nr_pages sizes.
1487 */
1488static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 unsigned long end_pfn)
1490{
1491 struct mminit_pfnnid_cache nid_init_state = { };
1492 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 unsigned long nr_free = 0;
1494
1495 for (; pfn < end_pfn; pfn++) {
1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 deferred_free_range(pfn - nr_free, nr_free);
1498 nr_free = 0;
1499 } else if (!(pfn & nr_pgmask)) {
1500 deferred_free_range(pfn - nr_free, nr_free);
1501 nr_free = 1;
1502 touch_nmi_watchdog();
1503 } else {
1504 nr_free++;
1505 }
1506 }
1507 /* Free the last block of pages to allocator */
1508 deferred_free_range(pfn - nr_free, nr_free);
1509}
1510
1511/*
1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1513 * by performing it only once every pageblock_nr_pages.
1514 * Return number of pages initialized.
1515 */
1516static unsigned long __init deferred_init_pages(int nid, int zid,
1517 unsigned long pfn,
1518 unsigned long end_pfn)
1519{
1520 struct mminit_pfnnid_cache nid_init_state = { };
1521 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1522 unsigned long nr_pages = 0;
1523 struct page *page = NULL;
1524
1525 for (; pfn < end_pfn; pfn++) {
1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 page = NULL;
1528 continue;
1529 } else if (!page || !(pfn & nr_pgmask)) {
1530 page = pfn_to_page(pfn);
1531 touch_nmi_watchdog();
1532 } else {
1533 page++;
1534 }
1535 __init_single_page(page, pfn, zid, nid);
1536 nr_pages++;
1537 }
1538 return (nr_pages);
1539}
1540
1541/* Initialise remaining memory on a node */
1542static int __init deferred_init_memmap(void *data)
1543{
1544 pg_data_t *pgdat = data;
1545 int nid = pgdat->node_id;
1546 unsigned long start = jiffies;
1547 unsigned long nr_pages = 0;
1548 unsigned long spfn, epfn, first_init_pfn, flags;
1549 phys_addr_t spa, epa;
1550 int zid;
1551 struct zone *zone;
1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553 u64 i;
1554
1555 /* Bind memory initialisation thread to a local node if possible */
1556 if (!cpumask_empty(cpumask))
1557 set_cpus_allowed_ptr(current, cpumask);
1558
1559 pgdat_resize_lock(pgdat, &flags);
1560 first_init_pfn = pgdat->first_deferred_pfn;
1561 if (first_init_pfn == ULONG_MAX) {
1562 pgdat_resize_unlock(pgdat, &flags);
1563 pgdat_init_report_one_done();
1564 return 0;
1565 }
1566
1567 /* Sanity check boundaries */
1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 pgdat->first_deferred_pfn = ULONG_MAX;
1571
1572 /* Only the highest zone is deferred so find it */
1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 zone = pgdat->node_zones + zid;
1575 if (first_init_pfn < zone_end_pfn(zone))
1576 break;
1577 }
1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579
1580 /*
1581 * Initialize and free pages. We do it in two loops: first we initialize
1582 * struct page, than free to buddy allocator, because while we are
1583 * freeing pages we can access pages that are ahead (computing buddy
1584 * page in __free_one_page()).
1585 */
1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 }
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 deferred_free_pages(nid, zid, spfn, epfn);
1595 }
1596 pgdat_resize_unlock(pgdat, &flags);
1597
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600
1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 jiffies_to_msecs(jiffies - start));
1603
1604 pgdat_init_report_one_done();
1605 return 0;
1606}
1607
1608/*
1609 * During boot we initialize deferred pages on-demand, as needed, but once
1610 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611 * and we can permanently disable that path.
1612 */
1613static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614
1615/*
1616 * If this zone has deferred pages, try to grow it by initializing enough
1617 * deferred pages to satisfy the allocation specified by order, rounded up to
1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1619 * of SECTION_SIZE bytes by initializing struct pages in increments of
1620 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621 *
1622 * Return true when zone was grown, otherwise return false. We return true even
1623 * when we grow less than requested, to let the caller decide if there are
1624 * enough pages to satisfy the allocation.
1625 *
1626 * Note: We use noinline because this function is needed only during boot, and
1627 * it is called from a __ref function _deferred_grow_zone. This way we are
1628 * making sure that it is not inlined into permanent text section.
1629 */
1630static noinline bool __init
1631deferred_grow_zone(struct zone *zone, unsigned int order)
1632{
1633 int zid = zone_idx(zone);
1634 int nid = zone_to_nid(zone);
1635 pg_data_t *pgdat = NODE_DATA(nid);
1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 unsigned long nr_pages = 0;
1638 unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 phys_addr_t spa, epa;
1641 u64 i;
1642
1643 /* Only the last zone may have deferred pages */
1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 return false;
1646
1647 pgdat_resize_lock(pgdat, &flags);
1648
1649 /*
1650 * If deferred pages have been initialized while we were waiting for
1651 * the lock, return true, as the zone was grown. The caller will retry
1652 * this zone. We won't return to this function since the caller also
1653 * has this static branch.
1654 */
1655 if (!static_branch_unlikely(&deferred_pages)) {
1656 pgdat_resize_unlock(pgdat, &flags);
1657 return true;
1658 }
1659
1660 /*
1661 * If someone grew this zone while we were waiting for spinlock, return
1662 * true, as there might be enough pages already.
1663 */
1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 pgdat_resize_unlock(pgdat, &flags);
1666 return true;
1667 }
1668
1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670
1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 pgdat_resize_unlock(pgdat, &flags);
1673 return false;
1674 }
1675
1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679
1680 while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 first_deferred_pfn = min(t, epfn);
1683 nr_pages += deferred_init_pages(nid, zid, spfn,
1684 first_deferred_pfn);
1685 spfn = first_deferred_pfn;
1686 }
1687
1688 if (nr_pages >= nr_pages_needed)
1689 break;
1690 }
1691
1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 deferred_free_pages(nid, zid, spfn, epfn);
1696
1697 if (first_deferred_pfn == epfn)
1698 break;
1699 }
1700 pgdat->first_deferred_pfn = first_deferred_pfn;
1701 pgdat_resize_unlock(pgdat, &flags);
1702
1703 return nr_pages > 0;
1704}
1705
1706/*
1707 * deferred_grow_zone() is __init, but it is called from
1708 * get_page_from_freelist() during early boot until deferred_pages permanently
1709 * disables this call. This is why we have refdata wrapper to avoid warning,
1710 * and to ensure that the function body gets unloaded.
1711 */
1712static bool __ref
1713_deferred_grow_zone(struct zone *zone, unsigned int order)
1714{
1715 return deferred_grow_zone(zone, order);
1716}
1717
1718#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719
1720void __init page_alloc_init_late(void)
1721{
1722 struct zone *zone;
1723
1724#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 int nid;
1726
1727 /* There will be num_node_state(N_MEMORY) threads */
1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 for_each_node_state(nid, N_MEMORY) {
1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 }
1732
1733 /* Block until all are initialised */
1734 wait_for_completion(&pgdat_init_all_done_comp);
1735
1736 /*
1737 * We initialized the rest of the deferred pages. Permanently disable
1738 * on-demand struct page initialization.
1739 */
1740 static_branch_disable(&deferred_pages);
1741
1742 /* Reinit limits that are based on free pages after the kernel is up */
1743 files_maxfiles_init();
1744#endif
1745#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 /* Discard memblock private memory */
1747 memblock_discard();
1748#endif
1749
1750 for_each_populated_zone(zone)
1751 set_zone_contiguous(zone);
1752}
1753
1754#ifdef CONFIG_CMA
1755/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756void __init init_cma_reserved_pageblock(struct page *page)
1757{
1758 unsigned i = pageblock_nr_pages;
1759 struct page *p = page;
1760
1761 do {
1762 __ClearPageReserved(p);
1763 set_page_count(p, 0);
1764 } while (++p, --i);
1765
1766 set_pageblock_migratetype(page, MIGRATE_CMA);
1767
1768 if (pageblock_order >= MAX_ORDER) {
1769 i = pageblock_nr_pages;
1770 p = page;
1771 do {
1772 set_page_refcounted(p);
1773 __free_pages(p, MAX_ORDER - 1);
1774 p += MAX_ORDER_NR_PAGES;
1775 } while (i -= MAX_ORDER_NR_PAGES);
1776 } else {
1777 set_page_refcounted(page);
1778 __free_pages(page, pageblock_order);
1779 }
1780
1781 adjust_managed_page_count(page, pageblock_nr_pages);
1782}
1783#endif
1784
1785/*
1786 * The order of subdivision here is critical for the IO subsystem.
1787 * Please do not alter this order without good reasons and regression
1788 * testing. Specifically, as large blocks of memory are subdivided,
1789 * the order in which smaller blocks are delivered depends on the order
1790 * they're subdivided in this function. This is the primary factor
1791 * influencing the order in which pages are delivered to the IO
1792 * subsystem according to empirical testing, and this is also justified
1793 * by considering the behavior of a buddy system containing a single
1794 * large block of memory acted on by a series of small allocations.
1795 * This behavior is a critical factor in sglist merging's success.
1796 *
1797 * -- nyc
1798 */
1799static inline void expand(struct zone *zone, struct page *page,
1800 int low, int high, struct free_area *area,
1801 int migratetype)
1802{
1803 unsigned long size = 1 << high;
1804
1805 while (high > low) {
1806 area--;
1807 high--;
1808 size >>= 1;
1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810
1811 /*
1812 * Mark as guard pages (or page), that will allow to
1813 * merge back to allocator when buddy will be freed.
1814 * Corresponding page table entries will not be touched,
1815 * pages will stay not present in virtual address space
1816 */
1817 if (set_page_guard(zone, &page[size], high, migratetype))
1818 continue;
1819
1820 list_add(&page[size].lru, &area->free_list[migratetype]);
1821 area->nr_free++;
1822 set_page_order(&page[size], high);
1823 }
1824}
1825
1826static void check_new_page_bad(struct page *page)
1827{
1828 const char *bad_reason = NULL;
1829 unsigned long bad_flags = 0;
1830
1831 if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 bad_reason = "nonzero mapcount";
1833 if (unlikely(page->mapping != NULL))
1834 bad_reason = "non-NULL mapping";
1835 if (unlikely(page_ref_count(page) != 0))
1836 bad_reason = "nonzero _count";
1837 if (unlikely(page->flags & __PG_HWPOISON)) {
1838 bad_reason = "HWPoisoned (hardware-corrupted)";
1839 bad_flags = __PG_HWPOISON;
1840 /* Don't complain about hwpoisoned pages */
1841 page_mapcount_reset(page); /* remove PageBuddy */
1842 return;
1843 }
1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 }
1848#ifdef CONFIG_MEMCG
1849 if (unlikely(page->mem_cgroup))
1850 bad_reason = "page still charged to cgroup";
1851#endif
1852 bad_page(page, bad_reason, bad_flags);
1853}
1854
1855/*
1856 * This page is about to be returned from the page allocator
1857 */
1858static inline int check_new_page(struct page *page)
1859{
1860 if (likely(page_expected_state(page,
1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 return 0;
1863
1864 check_new_page_bad(page);
1865 return 1;
1866}
1867
1868static inline bool free_pages_prezeroed(void)
1869{
1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871 page_poisoning_enabled();
1872}
1873
1874#ifdef CONFIG_DEBUG_VM
1875static bool check_pcp_refill(struct page *page)
1876{
1877 return false;
1878}
1879
1880static bool check_new_pcp(struct page *page)
1881{
1882 return check_new_page(page);
1883}
1884#else
1885static bool check_pcp_refill(struct page *page)
1886{
1887 return check_new_page(page);
1888}
1889static bool check_new_pcp(struct page *page)
1890{
1891 return false;
1892}
1893#endif /* CONFIG_DEBUG_VM */
1894
1895static bool check_new_pages(struct page *page, unsigned int order)
1896{
1897 int i;
1898 for (i = 0; i < (1 << order); i++) {
1899 struct page *p = page + i;
1900
1901 if (unlikely(check_new_page(p)))
1902 return true;
1903 }
1904
1905 return false;
1906}
1907
1908inline void post_alloc_hook(struct page *page, unsigned int order,
1909 gfp_t gfp_flags)
1910{
1911 set_page_private(page, 0);
1912 set_page_refcounted(page);
1913
1914 arch_alloc_page(page, order);
1915 kernel_map_pages(page, 1 << order, 1);
1916 kernel_poison_pages(page, 1 << order, 1);
1917 kasan_alloc_pages(page, order);
1918 set_page_owner(page, order, gfp_flags);
1919}
1920
1921static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922 unsigned int alloc_flags)
1923{
1924 int i;
1925
1926 post_alloc_hook(page, order, gfp_flags);
1927
1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 for (i = 0; i < (1 << order); i++)
1930 clear_highpage(page + i);
1931
1932 if (order && (gfp_flags & __GFP_COMP))
1933 prep_compound_page(page, order);
1934
1935 /*
1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 * allocate the page. The expectation is that the caller is taking
1938 * steps that will free more memory. The caller should avoid the page
1939 * being used for !PFMEMALLOC purposes.
1940 */
1941 if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 set_page_pfmemalloc(page);
1943 else
1944 clear_page_pfmemalloc(page);
1945}
1946
1947/*
1948 * Go through the free lists for the given migratetype and remove
1949 * the smallest available page from the freelists
1950 */
1951static __always_inline
1952struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 int migratetype)
1954{
1955 unsigned int current_order;
1956 struct free_area *area;
1957 struct page *page;
1958
1959 /* Find a page of the appropriate size in the preferred list */
1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 area = &(zone->free_area[current_order]);
1962 page = list_first_entry_or_null(&area->free_list[migratetype],
1963 struct page, lru);
1964 if (!page)
1965 continue;
1966 list_del(&page->lru);
1967 rmv_page_order(page);
1968 area->nr_free--;
1969 expand(zone, page, order, current_order, area, migratetype);
1970 set_pcppage_migratetype(page, migratetype);
1971 return page;
1972 }
1973
1974 return NULL;
1975}
1976
1977
1978/*
1979 * This array describes the order lists are fallen back to when
1980 * the free lists for the desirable migrate type are depleted
1981 */
1982static int fallbacks[MIGRATE_TYPES][4] = {
1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1986#ifdef CONFIG_CMA
1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1988#endif
1989#ifdef CONFIG_MEMORY_ISOLATION
1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1991#endif
1992};
1993
1994#ifdef CONFIG_CMA
1995static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 unsigned int order)
1997{
1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999}
2000#else
2001static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 unsigned int order) { return NULL; }
2003#endif
2004
2005/*
2006 * Move the free pages in a range to the free lists of the requested type.
2007 * Note that start_page and end_pages are not aligned on a pageblock
2008 * boundary. If alignment is required, use move_freepages_block()
2009 */
2010static int move_freepages(struct zone *zone,
2011 struct page *start_page, struct page *end_page,
2012 int migratetype, int *num_movable)
2013{
2014 struct page *page;
2015 unsigned int order;
2016 int pages_moved = 0;
2017
2018#ifndef CONFIG_HOLES_IN_ZONE
2019 /*
2020 * page_zone is not safe to call in this context when
2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 * anyway as we check zone boundaries in move_freepages_block().
2023 * Remove at a later date when no bug reports exist related to
2024 * grouping pages by mobility
2025 */
2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 pfn_valid(page_to_pfn(end_page)) &&
2028 page_zone(start_page) != page_zone(end_page));
2029#endif
2030 for (page = start_page; page <= end_page;) {
2031 if (!pfn_valid_within(page_to_pfn(page))) {
2032 page++;
2033 continue;
2034 }
2035
2036 /* Make sure we are not inadvertently changing nodes */
2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038
2039 if (!PageBuddy(page)) {
2040 /*
2041 * We assume that pages that could be isolated for
2042 * migration are movable. But we don't actually try
2043 * isolating, as that would be expensive.
2044 */
2045 if (num_movable &&
2046 (PageLRU(page) || __PageMovable(page)))
2047 (*num_movable)++;
2048
2049 page++;
2050 continue;
2051 }
2052
2053 order = page_order(page);
2054 list_move(&page->lru,
2055 &zone->free_area[order].free_list[migratetype]);
2056 page += 1 << order;
2057 pages_moved += 1 << order;
2058 }
2059
2060 return pages_moved;
2061}
2062
2063int move_freepages_block(struct zone *zone, struct page *page,
2064 int migratetype, int *num_movable)
2065{
2066 unsigned long start_pfn, end_pfn;
2067 struct page *start_page, *end_page;
2068
2069 if (num_movable)
2070 *num_movable = 0;
2071
2072 start_pfn = page_to_pfn(page);
2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074 start_page = pfn_to_page(start_pfn);
2075 end_page = start_page + pageblock_nr_pages - 1;
2076 end_pfn = start_pfn + pageblock_nr_pages - 1;
2077
2078 /* Do not cross zone boundaries */
2079 if (!zone_spans_pfn(zone, start_pfn))
2080 start_page = page;
2081 if (!zone_spans_pfn(zone, end_pfn))
2082 return 0;
2083
2084 return move_freepages(zone, start_page, end_page, migratetype,
2085 num_movable);
2086}
2087
2088static void change_pageblock_range(struct page *pageblock_page,
2089 int start_order, int migratetype)
2090{
2091 int nr_pageblocks = 1 << (start_order - pageblock_order);
2092
2093 while (nr_pageblocks--) {
2094 set_pageblock_migratetype(pageblock_page, migratetype);
2095 pageblock_page += pageblock_nr_pages;
2096 }
2097}
2098
2099/*
2100 * When we are falling back to another migratetype during allocation, try to
2101 * steal extra free pages from the same pageblocks to satisfy further
2102 * allocations, instead of polluting multiple pageblocks.
2103 *
2104 * If we are stealing a relatively large buddy page, it is likely there will
2105 * be more free pages in the pageblock, so try to steal them all. For
2106 * reclaimable and unmovable allocations, we steal regardless of page size,
2107 * as fragmentation caused by those allocations polluting movable pageblocks
2108 * is worse than movable allocations stealing from unmovable and reclaimable
2109 * pageblocks.
2110 */
2111static bool can_steal_fallback(unsigned int order, int start_mt)
2112{
2113 /*
2114 * Leaving this order check is intended, although there is
2115 * relaxed order check in next check. The reason is that
2116 * we can actually steal whole pageblock if this condition met,
2117 * but, below check doesn't guarantee it and that is just heuristic
2118 * so could be changed anytime.
2119 */
2120 if (order >= pageblock_order)
2121 return true;
2122
2123 if (order >= pageblock_order / 2 ||
2124 start_mt == MIGRATE_RECLAIMABLE ||
2125 start_mt == MIGRATE_UNMOVABLE ||
2126 page_group_by_mobility_disabled)
2127 return true;
2128
2129 return false;
2130}
2131
2132/*
2133 * This function implements actual steal behaviour. If order is large enough,
2134 * we can steal whole pageblock. If not, we first move freepages in this
2135 * pageblock to our migratetype and determine how many already-allocated pages
2136 * are there in the pageblock with a compatible migratetype. If at least half
2137 * of pages are free or compatible, we can change migratetype of the pageblock
2138 * itself, so pages freed in the future will be put on the correct free list.
2139 */
2140static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141 int start_type, bool whole_block)
2142{
2143 unsigned int current_order = page_order(page);
2144 struct free_area *area;
2145 int free_pages, movable_pages, alike_pages;
2146 int old_block_type;
2147
2148 old_block_type = get_pageblock_migratetype(page);
2149
2150 /*
2151 * This can happen due to races and we want to prevent broken
2152 * highatomic accounting.
2153 */
2154 if (is_migrate_highatomic(old_block_type))
2155 goto single_page;
2156
2157 /* Take ownership for orders >= pageblock_order */
2158 if (current_order >= pageblock_order) {
2159 change_pageblock_range(page, current_order, start_type);
2160 goto single_page;
2161 }
2162
2163 /* We are not allowed to try stealing from the whole block */
2164 if (!whole_block)
2165 goto single_page;
2166
2167 free_pages = move_freepages_block(zone, page, start_type,
2168 &movable_pages);
2169 /*
2170 * Determine how many pages are compatible with our allocation.
2171 * For movable allocation, it's the number of movable pages which
2172 * we just obtained. For other types it's a bit more tricky.
2173 */
2174 if (start_type == MIGRATE_MOVABLE) {
2175 alike_pages = movable_pages;
2176 } else {
2177 /*
2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 * to MOVABLE pageblock, consider all non-movable pages as
2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 * vice versa, be conservative since we can't distinguish the
2182 * exact migratetype of non-movable pages.
2183 */
2184 if (old_block_type == MIGRATE_MOVABLE)
2185 alike_pages = pageblock_nr_pages
2186 - (free_pages + movable_pages);
2187 else
2188 alike_pages = 0;
2189 }
2190
2191 /* moving whole block can fail due to zone boundary conditions */
2192 if (!free_pages)
2193 goto single_page;
2194
2195 /*
2196 * If a sufficient number of pages in the block are either free or of
2197 * comparable migratability as our allocation, claim the whole block.
2198 */
2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 page_group_by_mobility_disabled)
2201 set_pageblock_migratetype(page, start_type);
2202
2203 return;
2204
2205single_page:
2206 area = &zone->free_area[current_order];
2207 list_move(&page->lru, &area->free_list[start_type]);
2208}
2209
2210/*
2211 * Check whether there is a suitable fallback freepage with requested order.
2212 * If only_stealable is true, this function returns fallback_mt only if
2213 * we can steal other freepages all together. This would help to reduce
2214 * fragmentation due to mixed migratetype pages in one pageblock.
2215 */
2216int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 int migratetype, bool only_stealable, bool *can_steal)
2218{
2219 int i;
2220 int fallback_mt;
2221
2222 if (area->nr_free == 0)
2223 return -1;
2224
2225 *can_steal = false;
2226 for (i = 0;; i++) {
2227 fallback_mt = fallbacks[migratetype][i];
2228 if (fallback_mt == MIGRATE_TYPES)
2229 break;
2230
2231 if (list_empty(&area->free_list[fallback_mt]))
2232 continue;
2233
2234 if (can_steal_fallback(order, migratetype))
2235 *can_steal = true;
2236
2237 if (!only_stealable)
2238 return fallback_mt;
2239
2240 if (*can_steal)
2241 return fallback_mt;
2242 }
2243
2244 return -1;
2245}
2246
2247/*
2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249 * there are no empty page blocks that contain a page with a suitable order
2250 */
2251static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 unsigned int alloc_order)
2253{
2254 int mt;
2255 unsigned long max_managed, flags;
2256
2257 /*
2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 * Check is race-prone but harmless.
2260 */
2261 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2262 if (zone->nr_reserved_highatomic >= max_managed)
2263 return;
2264
2265 spin_lock_irqsave(&zone->lock, flags);
2266
2267 /* Recheck the nr_reserved_highatomic limit under the lock */
2268 if (zone->nr_reserved_highatomic >= max_managed)
2269 goto out_unlock;
2270
2271 /* Yoink! */
2272 mt = get_pageblock_migratetype(page);
2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 && !is_migrate_cma(mt)) {
2275 zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 }
2279
2280out_unlock:
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282}
2283
2284/*
2285 * Used when an allocation is about to fail under memory pressure. This
2286 * potentially hurts the reliability of high-order allocations when under
2287 * intense memory pressure but failed atomic allocations should be easier
2288 * to recover from than an OOM.
2289 *
2290 * If @force is true, try to unreserve a pageblock even though highatomic
2291 * pageblock is exhausted.
2292 */
2293static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 bool force)
2295{
2296 struct zonelist *zonelist = ac->zonelist;
2297 unsigned long flags;
2298 struct zoneref *z;
2299 struct zone *zone;
2300 struct page *page;
2301 int order;
2302 bool ret;
2303
2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 ac->nodemask) {
2306 /*
2307 * Preserve at least one pageblock unless memory pressure
2308 * is really high.
2309 */
2310 if (!force && zone->nr_reserved_highatomic <=
2311 pageblock_nr_pages)
2312 continue;
2313
2314 spin_lock_irqsave(&zone->lock, flags);
2315 for (order = 0; order < MAX_ORDER; order++) {
2316 struct free_area *area = &(zone->free_area[order]);
2317
2318 page = list_first_entry_or_null(
2319 &area->free_list[MIGRATE_HIGHATOMIC],
2320 struct page, lru);
2321 if (!page)
2322 continue;
2323
2324 /*
2325 * In page freeing path, migratetype change is racy so
2326 * we can counter several free pages in a pageblock
2327 * in this loop althoug we changed the pageblock type
2328 * from highatomic to ac->migratetype. So we should
2329 * adjust the count once.
2330 */
2331 if (is_migrate_highatomic_page(page)) {
2332 /*
2333 * It should never happen but changes to
2334 * locking could inadvertently allow a per-cpu
2335 * drain to add pages to MIGRATE_HIGHATOMIC
2336 * while unreserving so be safe and watch for
2337 * underflows.
2338 */
2339 zone->nr_reserved_highatomic -= min(
2340 pageblock_nr_pages,
2341 zone->nr_reserved_highatomic);
2342 }
2343
2344 /*
2345 * Convert to ac->migratetype and avoid the normal
2346 * pageblock stealing heuristics. Minimally, the caller
2347 * is doing the work and needs the pages. More
2348 * importantly, if the block was always converted to
2349 * MIGRATE_UNMOVABLE or another type then the number
2350 * of pageblocks that cannot be completely freed
2351 * may increase.
2352 */
2353 set_pageblock_migratetype(page, ac->migratetype);
2354 ret = move_freepages_block(zone, page, ac->migratetype,
2355 NULL);
2356 if (ret) {
2357 spin_unlock_irqrestore(&zone->lock, flags);
2358 return ret;
2359 }
2360 }
2361 spin_unlock_irqrestore(&zone->lock, flags);
2362 }
2363
2364 return false;
2365}
2366
2367/*
2368 * Try finding a free buddy page on the fallback list and put it on the free
2369 * list of requested migratetype, possibly along with other pages from the same
2370 * block, depending on fragmentation avoidance heuristics. Returns true if
2371 * fallback was found so that __rmqueue_smallest() can grab it.
2372 *
2373 * The use of signed ints for order and current_order is a deliberate
2374 * deviation from the rest of this file, to make the for loop
2375 * condition simpler.
2376 */
2377static __always_inline bool
2378__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2379{
2380 struct free_area *area;
2381 int current_order;
2382 struct page *page;
2383 int fallback_mt;
2384 bool can_steal;
2385
2386 /*
2387 * Find the largest available free page in the other list. This roughly
2388 * approximates finding the pageblock with the most free pages, which
2389 * would be too costly to do exactly.
2390 */
2391 for (current_order = MAX_ORDER - 1; current_order >= order;
2392 --current_order) {
2393 area = &(zone->free_area[current_order]);
2394 fallback_mt = find_suitable_fallback(area, current_order,
2395 start_migratetype, false, &can_steal);
2396 if (fallback_mt == -1)
2397 continue;
2398
2399 /*
2400 * We cannot steal all free pages from the pageblock and the
2401 * requested migratetype is movable. In that case it's better to
2402 * steal and split the smallest available page instead of the
2403 * largest available page, because even if the next movable
2404 * allocation falls back into a different pageblock than this
2405 * one, it won't cause permanent fragmentation.
2406 */
2407 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2408 && current_order > order)
2409 goto find_smallest;
2410
2411 goto do_steal;
2412 }
2413
2414 return false;
2415
2416find_smallest:
2417 for (current_order = order; current_order < MAX_ORDER;
2418 current_order++) {
2419 area = &(zone->free_area[current_order]);
2420 fallback_mt = find_suitable_fallback(area, current_order,
2421 start_migratetype, false, &can_steal);
2422 if (fallback_mt != -1)
2423 break;
2424 }
2425
2426 /*
2427 * This should not happen - we already found a suitable fallback
2428 * when looking for the largest page.
2429 */
2430 VM_BUG_ON(current_order == MAX_ORDER);
2431
2432do_steal:
2433 page = list_first_entry(&area->free_list[fallback_mt],
2434 struct page, lru);
2435
2436 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2437
2438 trace_mm_page_alloc_extfrag(page, order, current_order,
2439 start_migratetype, fallback_mt);
2440
2441 return true;
2442
2443}
2444
2445/*
2446 * Do the hard work of removing an element from the buddy allocator.
2447 * Call me with the zone->lock already held.
2448 */
2449static __always_inline struct page *
2450__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2451{
2452 struct page *page;
2453
2454retry:
2455 page = __rmqueue_smallest(zone, order, migratetype);
2456 if (unlikely(!page)) {
2457 if (migratetype == MIGRATE_MOVABLE)
2458 page = __rmqueue_cma_fallback(zone, order);
2459
2460 if (!page && __rmqueue_fallback(zone, order, migratetype))
2461 goto retry;
2462 }
2463
2464 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2465 return page;
2466}
2467
2468/*
2469 * Obtain a specified number of elements from the buddy allocator, all under
2470 * a single hold of the lock, for efficiency. Add them to the supplied list.
2471 * Returns the number of new pages which were placed at *list.
2472 */
2473static int rmqueue_bulk(struct zone *zone, unsigned int order,
2474 unsigned long count, struct list_head *list,
2475 int migratetype)
2476{
2477 int i, alloced = 0;
2478
2479 spin_lock(&zone->lock);
2480 for (i = 0; i < count; ++i) {
2481 struct page *page = __rmqueue(zone, order, migratetype);
2482 if (unlikely(page == NULL))
2483 break;
2484
2485 if (unlikely(check_pcp_refill(page)))
2486 continue;
2487
2488 /*
2489 * Split buddy pages returned by expand() are received here in
2490 * physical page order. The page is added to the tail of
2491 * caller's list. From the callers perspective, the linked list
2492 * is ordered by page number under some conditions. This is
2493 * useful for IO devices that can forward direction from the
2494 * head, thus also in the physical page order. This is useful
2495 * for IO devices that can merge IO requests if the physical
2496 * pages are ordered properly.
2497 */
2498 list_add_tail(&page->lru, list);
2499 alloced++;
2500 if (is_migrate_cma(get_pcppage_migratetype(page)))
2501 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2502 -(1 << order));
2503 }
2504
2505 /*
2506 * i pages were removed from the buddy list even if some leak due
2507 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2508 * on i. Do not confuse with 'alloced' which is the number of
2509 * pages added to the pcp list.
2510 */
2511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2512 spin_unlock(&zone->lock);
2513 return alloced;
2514}
2515
2516#ifdef CONFIG_NUMA
2517/*
2518 * Called from the vmstat counter updater to drain pagesets of this
2519 * currently executing processor on remote nodes after they have
2520 * expired.
2521 *
2522 * Note that this function must be called with the thread pinned to
2523 * a single processor.
2524 */
2525void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2526{
2527 unsigned long flags;
2528 int to_drain, batch;
2529
2530 local_irq_save(flags);
2531 batch = READ_ONCE(pcp->batch);
2532 to_drain = min(pcp->count, batch);
2533 if (to_drain > 0)
2534 free_pcppages_bulk(zone, to_drain, pcp);
2535 local_irq_restore(flags);
2536}
2537#endif
2538
2539/*
2540 * Drain pcplists of the indicated processor and zone.
2541 *
2542 * The processor must either be the current processor and the
2543 * thread pinned to the current processor or a processor that
2544 * is not online.
2545 */
2546static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2547{
2548 unsigned long flags;
2549 struct per_cpu_pageset *pset;
2550 struct per_cpu_pages *pcp;
2551
2552 local_irq_save(flags);
2553 pset = per_cpu_ptr(zone->pageset, cpu);
2554
2555 pcp = &pset->pcp;
2556 if (pcp->count)
2557 free_pcppages_bulk(zone, pcp->count, pcp);
2558 local_irq_restore(flags);
2559}
2560
2561/*
2562 * Drain pcplists of all zones on the indicated processor.
2563 *
2564 * The processor must either be the current processor and the
2565 * thread pinned to the current processor or a processor that
2566 * is not online.
2567 */
2568static void drain_pages(unsigned int cpu)
2569{
2570 struct zone *zone;
2571
2572 for_each_populated_zone(zone) {
2573 drain_pages_zone(cpu, zone);
2574 }
2575}
2576
2577/*
2578 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2579 *
2580 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2581 * the single zone's pages.
2582 */
2583void drain_local_pages(struct zone *zone)
2584{
2585 int cpu = smp_processor_id();
2586
2587 if (zone)
2588 drain_pages_zone(cpu, zone);
2589 else
2590 drain_pages(cpu);
2591}
2592
2593static void drain_local_pages_wq(struct work_struct *work)
2594{
2595 /*
2596 * drain_all_pages doesn't use proper cpu hotplug protection so
2597 * we can race with cpu offline when the WQ can move this from
2598 * a cpu pinned worker to an unbound one. We can operate on a different
2599 * cpu which is allright but we also have to make sure to not move to
2600 * a different one.
2601 */
2602 preempt_disable();
2603 drain_local_pages(NULL);
2604 preempt_enable();
2605}
2606
2607/*
2608 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2609 *
2610 * When zone parameter is non-NULL, spill just the single zone's pages.
2611 *
2612 * Note that this can be extremely slow as the draining happens in a workqueue.
2613 */
2614void drain_all_pages(struct zone *zone)
2615{
2616 int cpu;
2617
2618 /*
2619 * Allocate in the BSS so we wont require allocation in
2620 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2621 */
2622 static cpumask_t cpus_with_pcps;
2623
2624 /*
2625 * Make sure nobody triggers this path before mm_percpu_wq is fully
2626 * initialized.
2627 */
2628 if (WARN_ON_ONCE(!mm_percpu_wq))
2629 return;
2630
2631 /*
2632 * Do not drain if one is already in progress unless it's specific to
2633 * a zone. Such callers are primarily CMA and memory hotplug and need
2634 * the drain to be complete when the call returns.
2635 */
2636 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2637 if (!zone)
2638 return;
2639 mutex_lock(&pcpu_drain_mutex);
2640 }
2641
2642 /*
2643 * We don't care about racing with CPU hotplug event
2644 * as offline notification will cause the notified
2645 * cpu to drain that CPU pcps and on_each_cpu_mask
2646 * disables preemption as part of its processing
2647 */
2648 for_each_online_cpu(cpu) {
2649 struct per_cpu_pageset *pcp;
2650 struct zone *z;
2651 bool has_pcps = false;
2652
2653 if (zone) {
2654 pcp = per_cpu_ptr(zone->pageset, cpu);
2655 if (pcp->pcp.count)
2656 has_pcps = true;
2657 } else {
2658 for_each_populated_zone(z) {
2659 pcp = per_cpu_ptr(z->pageset, cpu);
2660 if (pcp->pcp.count) {
2661 has_pcps = true;
2662 break;
2663 }
2664 }
2665 }
2666
2667 if (has_pcps)
2668 cpumask_set_cpu(cpu, &cpus_with_pcps);
2669 else
2670 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2671 }
2672
2673 for_each_cpu(cpu, &cpus_with_pcps) {
2674 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2675 INIT_WORK(work, drain_local_pages_wq);
2676 queue_work_on(cpu, mm_percpu_wq, work);
2677 }
2678 for_each_cpu(cpu, &cpus_with_pcps)
2679 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2680
2681 mutex_unlock(&pcpu_drain_mutex);
2682}
2683
2684#ifdef CONFIG_HIBERNATION
2685
2686/*
2687 * Touch the watchdog for every WD_PAGE_COUNT pages.
2688 */
2689#define WD_PAGE_COUNT (128*1024)
2690
2691void mark_free_pages(struct zone *zone)
2692{
2693 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2694 unsigned long flags;
2695 unsigned int order, t;
2696 struct page *page;
2697
2698 if (zone_is_empty(zone))
2699 return;
2700
2701 spin_lock_irqsave(&zone->lock, flags);
2702
2703 max_zone_pfn = zone_end_pfn(zone);
2704 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2705 if (pfn_valid(pfn)) {
2706 page = pfn_to_page(pfn);
2707
2708 if (!--page_count) {
2709 touch_nmi_watchdog();
2710 page_count = WD_PAGE_COUNT;
2711 }
2712
2713 if (page_zone(page) != zone)
2714 continue;
2715
2716 if (!swsusp_page_is_forbidden(page))
2717 swsusp_unset_page_free(page);
2718 }
2719
2720 for_each_migratetype_order(order, t) {
2721 list_for_each_entry(page,
2722 &zone->free_area[order].free_list[t], lru) {
2723 unsigned long i;
2724
2725 pfn = page_to_pfn(page);
2726 for (i = 0; i < (1UL << order); i++) {
2727 if (!--page_count) {
2728 touch_nmi_watchdog();
2729 page_count = WD_PAGE_COUNT;
2730 }
2731 swsusp_set_page_free(pfn_to_page(pfn + i));
2732 }
2733 }
2734 }
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
2737#endif /* CONFIG_PM */
2738
2739static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2740{
2741 int migratetype;
2742
2743 if (!free_pcp_prepare(page))
2744 return false;
2745
2746 migratetype = get_pfnblock_migratetype(page, pfn);
2747 set_pcppage_migratetype(page, migratetype);
2748 return true;
2749}
2750
2751static void free_unref_page_commit(struct page *page, unsigned long pfn)
2752{
2753 struct zone *zone = page_zone(page);
2754 struct per_cpu_pages *pcp;
2755 int migratetype;
2756
2757 migratetype = get_pcppage_migratetype(page);
2758 __count_vm_event(PGFREE);
2759
2760 /*
2761 * We only track unmovable, reclaimable and movable on pcp lists.
2762 * Free ISOLATE pages back to the allocator because they are being
2763 * offlined but treat HIGHATOMIC as movable pages so we can get those
2764 * areas back if necessary. Otherwise, we may have to free
2765 * excessively into the page allocator
2766 */
2767 if (migratetype >= MIGRATE_PCPTYPES) {
2768 if (unlikely(is_migrate_isolate(migratetype))) {
2769 free_one_page(zone, page, pfn, 0, migratetype);
2770 return;
2771 }
2772 migratetype = MIGRATE_MOVABLE;
2773 }
2774
2775 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776 list_add(&page->lru, &pcp->lists[migratetype]);
2777 pcp->count++;
2778 if (pcp->count >= pcp->high) {
2779 unsigned long batch = READ_ONCE(pcp->batch);
2780 free_pcppages_bulk(zone, batch, pcp);
2781 }
2782}
2783
2784/*
2785 * Free a 0-order page
2786 */
2787void free_unref_page(struct page *page)
2788{
2789 unsigned long flags;
2790 unsigned long pfn = page_to_pfn(page);
2791
2792 if (!free_unref_page_prepare(page, pfn))
2793 return;
2794
2795 local_irq_save(flags);
2796 free_unref_page_commit(page, pfn);
2797 local_irq_restore(flags);
2798}
2799
2800/*
2801 * Free a list of 0-order pages
2802 */
2803void free_unref_page_list(struct list_head *list)
2804{
2805 struct page *page, *next;
2806 unsigned long flags, pfn;
2807 int batch_count = 0;
2808
2809 /* Prepare pages for freeing */
2810 list_for_each_entry_safe(page, next, list, lru) {
2811 pfn = page_to_pfn(page);
2812 if (!free_unref_page_prepare(page, pfn))
2813 list_del(&page->lru);
2814 set_page_private(page, pfn);
2815 }
2816
2817 local_irq_save(flags);
2818 list_for_each_entry_safe(page, next, list, lru) {
2819 unsigned long pfn = page_private(page);
2820
2821 set_page_private(page, 0);
2822 trace_mm_page_free_batched(page);
2823 free_unref_page_commit(page, pfn);
2824
2825 /*
2826 * Guard against excessive IRQ disabled times when we get
2827 * a large list of pages to free.
2828 */
2829 if (++batch_count == SWAP_CLUSTER_MAX) {
2830 local_irq_restore(flags);
2831 batch_count = 0;
2832 local_irq_save(flags);
2833 }
2834 }
2835 local_irq_restore(flags);
2836}
2837
2838/*
2839 * split_page takes a non-compound higher-order page, and splits it into
2840 * n (1<<order) sub-pages: page[0..n]
2841 * Each sub-page must be freed individually.
2842 *
2843 * Note: this is probably too low level an operation for use in drivers.
2844 * Please consult with lkml before using this in your driver.
2845 */
2846void split_page(struct page *page, unsigned int order)
2847{
2848 int i;
2849
2850 VM_BUG_ON_PAGE(PageCompound(page), page);
2851 VM_BUG_ON_PAGE(!page_count(page), page);
2852
2853 for (i = 1; i < (1 << order); i++)
2854 set_page_refcounted(page + i);
2855 split_page_owner(page, order);
2856}
2857EXPORT_SYMBOL_GPL(split_page);
2858
2859int __isolate_free_page(struct page *page, unsigned int order)
2860{
2861 unsigned long watermark;
2862 struct zone *zone;
2863 int mt;
2864
2865 BUG_ON(!PageBuddy(page));
2866
2867 zone = page_zone(page);
2868 mt = get_pageblock_migratetype(page);
2869
2870 if (!is_migrate_isolate(mt)) {
2871 /*
2872 * Obey watermarks as if the page was being allocated. We can
2873 * emulate a high-order watermark check with a raised order-0
2874 * watermark, because we already know our high-order page
2875 * exists.
2876 */
2877 watermark = min_wmark_pages(zone) + (1UL << order);
2878 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2879 return 0;
2880
2881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2882 }
2883
2884 /* Remove page from free list */
2885 list_del(&page->lru);
2886 zone->free_area[order].nr_free--;
2887 rmv_page_order(page);
2888
2889 /*
2890 * Set the pageblock if the isolated page is at least half of a
2891 * pageblock
2892 */
2893 if (order >= pageblock_order - 1) {
2894 struct page *endpage = page + (1 << order) - 1;
2895 for (; page < endpage; page += pageblock_nr_pages) {
2896 int mt = get_pageblock_migratetype(page);
2897 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2898 && !is_migrate_highatomic(mt))
2899 set_pageblock_migratetype(page,
2900 MIGRATE_MOVABLE);
2901 }
2902 }
2903
2904
2905 return 1UL << order;
2906}
2907
2908/*
2909 * Update NUMA hit/miss statistics
2910 *
2911 * Must be called with interrupts disabled.
2912 */
2913static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2914{
2915#ifdef CONFIG_NUMA
2916 enum numa_stat_item local_stat = NUMA_LOCAL;
2917
2918 /* skip numa counters update if numa stats is disabled */
2919 if (!static_branch_likely(&vm_numa_stat_key))
2920 return;
2921
2922 if (zone_to_nid(z) != numa_node_id())
2923 local_stat = NUMA_OTHER;
2924
2925 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2926 __inc_numa_state(z, NUMA_HIT);
2927 else {
2928 __inc_numa_state(z, NUMA_MISS);
2929 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2930 }
2931 __inc_numa_state(z, local_stat);
2932#endif
2933}
2934
2935/* Remove page from the per-cpu list, caller must protect the list */
2936static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2937 struct per_cpu_pages *pcp,
2938 struct list_head *list)
2939{
2940 struct page *page;
2941
2942 do {
2943 if (list_empty(list)) {
2944 pcp->count += rmqueue_bulk(zone, 0,
2945 pcp->batch, list,
2946 migratetype);
2947 if (unlikely(list_empty(list)))
2948 return NULL;
2949 }
2950
2951 page = list_first_entry(list, struct page, lru);
2952 list_del(&page->lru);
2953 pcp->count--;
2954 } while (check_new_pcp(page));
2955
2956 return page;
2957}
2958
2959/* Lock and remove page from the per-cpu list */
2960static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2961 struct zone *zone, unsigned int order,
2962 gfp_t gfp_flags, int migratetype)
2963{
2964 struct per_cpu_pages *pcp;
2965 struct list_head *list;
2966 struct page *page;
2967 unsigned long flags;
2968
2969 local_irq_save(flags);
2970 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2971 list = &pcp->lists[migratetype];
2972 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2973 if (page) {
2974 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2975 zone_statistics(preferred_zone, zone);
2976 }
2977 local_irq_restore(flags);
2978 return page;
2979}
2980
2981/*
2982 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2983 */
2984static inline
2985struct page *rmqueue(struct zone *preferred_zone,
2986 struct zone *zone, unsigned int order,
2987 gfp_t gfp_flags, unsigned int alloc_flags,
2988 int migratetype)
2989{
2990 unsigned long flags;
2991 struct page *page;
2992
2993 if (likely(order == 0)) {
2994 page = rmqueue_pcplist(preferred_zone, zone, order,
2995 gfp_flags, migratetype);
2996 goto out;
2997 }
2998
2999 /*
3000 * We most definitely don't want callers attempting to
3001 * allocate greater than order-1 page units with __GFP_NOFAIL.
3002 */
3003 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3004 spin_lock_irqsave(&zone->lock, flags);
3005
3006 do {
3007 page = NULL;
3008 if (alloc_flags & ALLOC_HARDER) {
3009 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3010 if (page)
3011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3012 }
3013 if (!page)
3014 page = __rmqueue(zone, order, migratetype);
3015 } while (page && check_new_pages(page, order));
3016 spin_unlock(&zone->lock);
3017 if (!page)
3018 goto failed;
3019 __mod_zone_freepage_state(zone, -(1 << order),
3020 get_pcppage_migratetype(page));
3021
3022 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3023 zone_statistics(preferred_zone, zone);
3024 local_irq_restore(flags);
3025
3026out:
3027 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3028 return page;
3029
3030failed:
3031 local_irq_restore(flags);
3032 return NULL;
3033}
3034
3035#ifdef CONFIG_FAIL_PAGE_ALLOC
3036
3037static struct {
3038 struct fault_attr attr;
3039
3040 bool ignore_gfp_highmem;
3041 bool ignore_gfp_reclaim;
3042 u32 min_order;
3043} fail_page_alloc = {
3044 .attr = FAULT_ATTR_INITIALIZER,
3045 .ignore_gfp_reclaim = true,
3046 .ignore_gfp_highmem = true,
3047 .min_order = 1,
3048};
3049
3050static int __init setup_fail_page_alloc(char *str)
3051{
3052 return setup_fault_attr(&fail_page_alloc.attr, str);
3053}
3054__setup("fail_page_alloc=", setup_fail_page_alloc);
3055
3056static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3057{
3058 if (order < fail_page_alloc.min_order)
3059 return false;
3060 if (gfp_mask & __GFP_NOFAIL)
3061 return false;
3062 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3063 return false;
3064 if (fail_page_alloc.ignore_gfp_reclaim &&
3065 (gfp_mask & __GFP_DIRECT_RECLAIM))
3066 return false;
3067
3068 return should_fail(&fail_page_alloc.attr, 1 << order);
3069}
3070
3071#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3072
3073static int __init fail_page_alloc_debugfs(void)
3074{
3075 umode_t mode = S_IFREG | 0600;
3076 struct dentry *dir;
3077
3078 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3079 &fail_page_alloc.attr);
3080 if (IS_ERR(dir))
3081 return PTR_ERR(dir);
3082
3083 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3084 &fail_page_alloc.ignore_gfp_reclaim))
3085 goto fail;
3086 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3087 &fail_page_alloc.ignore_gfp_highmem))
3088 goto fail;
3089 if (!debugfs_create_u32("min-order", mode, dir,
3090 &fail_page_alloc.min_order))
3091 goto fail;
3092
3093 return 0;
3094fail:
3095 debugfs_remove_recursive(dir);
3096
3097 return -ENOMEM;
3098}
3099
3100late_initcall(fail_page_alloc_debugfs);
3101
3102#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3103
3104#else /* CONFIG_FAIL_PAGE_ALLOC */
3105
3106static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3107{
3108 return false;
3109}
3110
3111#endif /* CONFIG_FAIL_PAGE_ALLOC */
3112
3113/*
3114 * Return true if free base pages are above 'mark'. For high-order checks it
3115 * will return true of the order-0 watermark is reached and there is at least
3116 * one free page of a suitable size. Checking now avoids taking the zone lock
3117 * to check in the allocation paths if no pages are free.
3118 */
3119bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3120 int classzone_idx, unsigned int alloc_flags,
3121 long free_pages)
3122{
3123 long min = mark;
3124 int o;
3125 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3126
3127 /* free_pages may go negative - that's OK */
3128 free_pages -= (1 << order) - 1;
3129
3130 if (alloc_flags & ALLOC_HIGH)
3131 min -= min / 2;
3132
3133 /*
3134 * If the caller does not have rights to ALLOC_HARDER then subtract
3135 * the high-atomic reserves. This will over-estimate the size of the
3136 * atomic reserve but it avoids a search.
3137 */
3138 if (likely(!alloc_harder)) {
3139 free_pages -= z->nr_reserved_highatomic;
3140 } else {
3141 /*
3142 * OOM victims can try even harder than normal ALLOC_HARDER
3143 * users on the grounds that it's definitely going to be in
3144 * the exit path shortly and free memory. Any allocation it
3145 * makes during the free path will be small and short-lived.
3146 */
3147 if (alloc_flags & ALLOC_OOM)
3148 min -= min / 2;
3149 else
3150 min -= min / 4;
3151 }
3152
3153
3154#ifdef CONFIG_CMA
3155 /* If allocation can't use CMA areas don't use free CMA pages */
3156 if (!(alloc_flags & ALLOC_CMA))
3157 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3158#endif
3159
3160 /*
3161 * Check watermarks for an order-0 allocation request. If these
3162 * are not met, then a high-order request also cannot go ahead
3163 * even if a suitable page happened to be free.
3164 */
3165 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3166 return false;
3167
3168 /* If this is an order-0 request then the watermark is fine */
3169 if (!order)
3170 return true;
3171
3172 /* For a high-order request, check at least one suitable page is free */
3173 for (o = order; o < MAX_ORDER; o++) {
3174 struct free_area *area = &z->free_area[o];
3175 int mt;
3176
3177 if (!area->nr_free)
3178 continue;
3179
3180 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3181 if (!list_empty(&area->free_list[mt]))
3182 return true;
3183 }
3184
3185#ifdef CONFIG_CMA
3186 if ((alloc_flags & ALLOC_CMA) &&
3187 !list_empty(&area->free_list[MIGRATE_CMA])) {
3188 return true;
3189 }
3190#endif
3191 if (alloc_harder &&
3192 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3193 return true;
3194 }
3195 return false;
3196}
3197
3198bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3199 int classzone_idx, unsigned int alloc_flags)
3200{
3201 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3202 zone_page_state(z, NR_FREE_PAGES));
3203}
3204
3205static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3206 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3207{
3208 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3209 long cma_pages = 0;
3210
3211#ifdef CONFIG_CMA
3212 /* If allocation can't use CMA areas don't use free CMA pages */
3213 if (!(alloc_flags & ALLOC_CMA))
3214 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3215#endif
3216
3217 /*
3218 * Fast check for order-0 only. If this fails then the reserves
3219 * need to be calculated. There is a corner case where the check
3220 * passes but only the high-order atomic reserve are free. If
3221 * the caller is !atomic then it'll uselessly search the free
3222 * list. That corner case is then slower but it is harmless.
3223 */
3224 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3225 return true;
3226
3227 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3228 free_pages);
3229}
3230
3231bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232 unsigned long mark, int classzone_idx)
3233{
3234 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3235
3236 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3237 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3238
3239 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3240 free_pages);
3241}
3242
3243#ifdef CONFIG_NUMA
3244static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3245{
3246 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3247 RECLAIM_DISTANCE;
3248}
3249#else /* CONFIG_NUMA */
3250static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251{
3252 return true;
3253}
3254#endif /* CONFIG_NUMA */
3255
3256/*
3257 * get_page_from_freelist goes through the zonelist trying to allocate
3258 * a page.
3259 */
3260static struct page *
3261get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 const struct alloc_context *ac)
3263{
3264 struct zoneref *z = ac->preferred_zoneref;
3265 struct zone *zone;
3266 struct pglist_data *last_pgdat_dirty_limit = NULL;
3267
3268 /*
3269 * Scan zonelist, looking for a zone with enough free.
3270 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3271 */
3272 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3273 ac->nodemask) {
3274 struct page *page;
3275 unsigned long mark;
3276
3277 if (cpusets_enabled() &&
3278 (alloc_flags & ALLOC_CPUSET) &&
3279 !__cpuset_zone_allowed(zone, gfp_mask))
3280 continue;
3281 /*
3282 * When allocating a page cache page for writing, we
3283 * want to get it from a node that is within its dirty
3284 * limit, such that no single node holds more than its
3285 * proportional share of globally allowed dirty pages.
3286 * The dirty limits take into account the node's
3287 * lowmem reserves and high watermark so that kswapd
3288 * should be able to balance it without having to
3289 * write pages from its LRU list.
3290 *
3291 * XXX: For now, allow allocations to potentially
3292 * exceed the per-node dirty limit in the slowpath
3293 * (spread_dirty_pages unset) before going into reclaim,
3294 * which is important when on a NUMA setup the allowed
3295 * nodes are together not big enough to reach the
3296 * global limit. The proper fix for these situations
3297 * will require awareness of nodes in the
3298 * dirty-throttling and the flusher threads.
3299 */
3300 if (ac->spread_dirty_pages) {
3301 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3302 continue;
3303
3304 if (!node_dirty_ok(zone->zone_pgdat)) {
3305 last_pgdat_dirty_limit = zone->zone_pgdat;
3306 continue;
3307 }
3308 }
3309
3310 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3311 if (!zone_watermark_fast(zone, order, mark,
3312 ac_classzone_idx(ac), alloc_flags)) {
3313 int ret;
3314
3315#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3316 /*
3317 * Watermark failed for this zone, but see if we can
3318 * grow this zone if it contains deferred pages.
3319 */
3320 if (static_branch_unlikely(&deferred_pages)) {
3321 if (_deferred_grow_zone(zone, order))
3322 goto try_this_zone;
3323 }
3324#endif
3325 /* Checked here to keep the fast path fast */
3326 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3327 if (alloc_flags & ALLOC_NO_WATERMARKS)
3328 goto try_this_zone;
3329
3330 if (node_reclaim_mode == 0 ||
3331 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3332 continue;
3333
3334 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3335 switch (ret) {
3336 case NODE_RECLAIM_NOSCAN:
3337 /* did not scan */
3338 continue;
3339 case NODE_RECLAIM_FULL:
3340 /* scanned but unreclaimable */
3341 continue;
3342 default:
3343 /* did we reclaim enough */
3344 if (zone_watermark_ok(zone, order, mark,
3345 ac_classzone_idx(ac), alloc_flags))
3346 goto try_this_zone;
3347
3348 continue;
3349 }
3350 }
3351
3352try_this_zone:
3353 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3354 gfp_mask, alloc_flags, ac->migratetype);
3355 if (page) {
3356 prep_new_page(page, order, gfp_mask, alloc_flags);
3357
3358 /*
3359 * If this is a high-order atomic allocation then check
3360 * if the pageblock should be reserved for the future
3361 */
3362 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3363 reserve_highatomic_pageblock(page, zone, order);
3364
3365 return page;
3366 } else {
3367#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3368 /* Try again if zone has deferred pages */
3369 if (static_branch_unlikely(&deferred_pages)) {
3370 if (_deferred_grow_zone(zone, order))
3371 goto try_this_zone;
3372 }
3373#endif
3374 }
3375 }
3376
3377 return NULL;
3378}
3379
3380static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3381{
3382 unsigned int filter = SHOW_MEM_FILTER_NODES;
3383 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3384
3385 if (!__ratelimit(&show_mem_rs))
3386 return;
3387
3388 /*
3389 * This documents exceptions given to allocations in certain
3390 * contexts that are allowed to allocate outside current's set
3391 * of allowed nodes.
3392 */
3393 if (!(gfp_mask & __GFP_NOMEMALLOC))
3394 if (tsk_is_oom_victim(current) ||
3395 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3396 filter &= ~SHOW_MEM_FILTER_NODES;
3397 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3398 filter &= ~SHOW_MEM_FILTER_NODES;
3399
3400 show_mem(filter, nodemask);
3401}
3402
3403void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3404{
3405 struct va_format vaf;
3406 va_list args;
3407 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3408 DEFAULT_RATELIMIT_BURST);
3409
3410 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3411 return;
3412
3413 va_start(args, fmt);
3414 vaf.fmt = fmt;
3415 vaf.va = &args;
3416 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3417 current->comm, &vaf, gfp_mask, &gfp_mask,
3418 nodemask_pr_args(nodemask));
3419 va_end(args);
3420
3421 cpuset_print_current_mems_allowed();
3422
3423 dump_stack();
3424 warn_alloc_show_mem(gfp_mask, nodemask);
3425}
3426
3427static inline struct page *
3428__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3429 unsigned int alloc_flags,
3430 const struct alloc_context *ac)
3431{
3432 struct page *page;
3433
3434 page = get_page_from_freelist(gfp_mask, order,
3435 alloc_flags|ALLOC_CPUSET, ac);
3436 /*
3437 * fallback to ignore cpuset restriction if our nodes
3438 * are depleted
3439 */
3440 if (!page)
3441 page = get_page_from_freelist(gfp_mask, order,
3442 alloc_flags, ac);
3443
3444 return page;
3445}
3446
3447static inline struct page *
3448__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3449 const struct alloc_context *ac, unsigned long *did_some_progress)
3450{
3451 struct oom_control oc = {
3452 .zonelist = ac->zonelist,
3453 .nodemask = ac->nodemask,
3454 .memcg = NULL,
3455 .gfp_mask = gfp_mask,
3456 .order = order,
3457 };
3458 struct page *page;
3459
3460 *did_some_progress = 0;
3461
3462 /*
3463 * Acquire the oom lock. If that fails, somebody else is
3464 * making progress for us.
3465 */
3466 if (!mutex_trylock(&oom_lock)) {
3467 *did_some_progress = 1;
3468 schedule_timeout_uninterruptible(1);
3469 return NULL;
3470 }
3471
3472 /*
3473 * Go through the zonelist yet one more time, keep very high watermark
3474 * here, this is only to catch a parallel oom killing, we must fail if
3475 * we're still under heavy pressure. But make sure that this reclaim
3476 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3477 * allocation which will never fail due to oom_lock already held.
3478 */
3479 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3480 ~__GFP_DIRECT_RECLAIM, order,
3481 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3482 if (page)
3483 goto out;
3484
3485 /* Coredumps can quickly deplete all memory reserves */
3486 if (current->flags & PF_DUMPCORE)
3487 goto out;
3488 /* The OOM killer will not help higher order allocs */
3489 if (order > PAGE_ALLOC_COSTLY_ORDER)
3490 goto out;
3491 /*
3492 * We have already exhausted all our reclaim opportunities without any
3493 * success so it is time to admit defeat. We will skip the OOM killer
3494 * because it is very likely that the caller has a more reasonable
3495 * fallback than shooting a random task.
3496 */
3497 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3498 goto out;
3499 /* The OOM killer does not needlessly kill tasks for lowmem */
3500 if (ac->high_zoneidx < ZONE_NORMAL)
3501 goto out;
3502 if (pm_suspended_storage())
3503 goto out;
3504 /*
3505 * XXX: GFP_NOFS allocations should rather fail than rely on
3506 * other request to make a forward progress.
3507 * We are in an unfortunate situation where out_of_memory cannot
3508 * do much for this context but let's try it to at least get
3509 * access to memory reserved if the current task is killed (see
3510 * out_of_memory). Once filesystems are ready to handle allocation
3511 * failures more gracefully we should just bail out here.
3512 */
3513
3514 /* The OOM killer may not free memory on a specific node */
3515 if (gfp_mask & __GFP_THISNODE)
3516 goto out;
3517
3518 /* Exhausted what can be done so it's blame time */
3519 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3520 *did_some_progress = 1;
3521
3522 /*
3523 * Help non-failing allocations by giving them access to memory
3524 * reserves
3525 */
3526 if (gfp_mask & __GFP_NOFAIL)
3527 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3528 ALLOC_NO_WATERMARKS, ac);
3529 }
3530out:
3531 mutex_unlock(&oom_lock);
3532 return page;
3533}
3534
3535/*
3536 * Maximum number of compaction retries wit a progress before OOM
3537 * killer is consider as the only way to move forward.
3538 */
3539#define MAX_COMPACT_RETRIES 16
3540
3541#ifdef CONFIG_COMPACTION
3542/* Try memory compaction for high-order allocations before reclaim */
3543static struct page *
3544__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 unsigned int alloc_flags, const struct alloc_context *ac,
3546 enum compact_priority prio, enum compact_result *compact_result)
3547{
3548 struct page *page;
3549 unsigned long pflags;
3550 unsigned int noreclaim_flag;
3551
3552 if (!order)
3553 return NULL;
3554
3555 psi_memstall_enter(&pflags);
3556 noreclaim_flag = memalloc_noreclaim_save();
3557
3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559 prio);
3560
3561 memalloc_noreclaim_restore(noreclaim_flag);
3562 psi_memstall_leave(&pflags);
3563
3564 if (*compact_result <= COMPACT_INACTIVE)
3565 return NULL;
3566
3567 /*
3568 * At least in one zone compaction wasn't deferred or skipped, so let's
3569 * count a compaction stall
3570 */
3571 count_vm_event(COMPACTSTALL);
3572
3573 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574
3575 if (page) {
3576 struct zone *zone = page_zone(page);
3577
3578 zone->compact_blockskip_flush = false;
3579 compaction_defer_reset(zone, order, true);
3580 count_vm_event(COMPACTSUCCESS);
3581 return page;
3582 }
3583
3584 /*
3585 * It's bad if compaction run occurs and fails. The most likely reason
3586 * is that pages exist, but not enough to satisfy watermarks.
3587 */
3588 count_vm_event(COMPACTFAIL);
3589
3590 cond_resched();
3591
3592 return NULL;
3593}
3594
3595static inline bool
3596should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3597 enum compact_result compact_result,
3598 enum compact_priority *compact_priority,
3599 int *compaction_retries)
3600{
3601 int max_retries = MAX_COMPACT_RETRIES;
3602 int min_priority;
3603 bool ret = false;
3604 int retries = *compaction_retries;
3605 enum compact_priority priority = *compact_priority;
3606
3607 if (!order)
3608 return false;
3609
3610 if (compaction_made_progress(compact_result))
3611 (*compaction_retries)++;
3612
3613 /*
3614 * compaction considers all the zone as desperately out of memory
3615 * so it doesn't really make much sense to retry except when the
3616 * failure could be caused by insufficient priority
3617 */
3618 if (compaction_failed(compact_result))
3619 goto check_priority;
3620
3621 /*
3622 * make sure the compaction wasn't deferred or didn't bail out early
3623 * due to locks contention before we declare that we should give up.
3624 * But do not retry if the given zonelist is not suitable for
3625 * compaction.
3626 */
3627 if (compaction_withdrawn(compact_result)) {
3628 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3629 goto out;
3630 }
3631
3632 /*
3633 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3634 * costly ones because they are de facto nofail and invoke OOM
3635 * killer to move on while costly can fail and users are ready
3636 * to cope with that. 1/4 retries is rather arbitrary but we
3637 * would need much more detailed feedback from compaction to
3638 * make a better decision.
3639 */
3640 if (order > PAGE_ALLOC_COSTLY_ORDER)
3641 max_retries /= 4;
3642 if (*compaction_retries <= max_retries) {
3643 ret = true;
3644 goto out;
3645 }
3646
3647 /*
3648 * Make sure there are attempts at the highest priority if we exhausted
3649 * all retries or failed at the lower priorities.
3650 */
3651check_priority:
3652 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3653 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3654
3655 if (*compact_priority > min_priority) {
3656 (*compact_priority)--;
3657 *compaction_retries = 0;
3658 ret = true;
3659 }
3660out:
3661 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3662 return ret;
3663}
3664#else
3665static inline struct page *
3666__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3667 unsigned int alloc_flags, const struct alloc_context *ac,
3668 enum compact_priority prio, enum compact_result *compact_result)
3669{
3670 *compact_result = COMPACT_SKIPPED;
3671 return NULL;
3672}
3673
3674static inline bool
3675should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3676 enum compact_result compact_result,
3677 enum compact_priority *compact_priority,
3678 int *compaction_retries)
3679{
3680 struct zone *zone;
3681 struct zoneref *z;
3682
3683 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3684 return false;
3685
3686 /*
3687 * There are setups with compaction disabled which would prefer to loop
3688 * inside the allocator rather than hit the oom killer prematurely.
3689 * Let's give them a good hope and keep retrying while the order-0
3690 * watermarks are OK.
3691 */
3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3693 ac->nodemask) {
3694 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3695 ac_classzone_idx(ac), alloc_flags))
3696 return true;
3697 }
3698 return false;
3699}
3700#endif /* CONFIG_COMPACTION */
3701
3702#ifdef CONFIG_LOCKDEP
3703static struct lockdep_map __fs_reclaim_map =
3704 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3705
3706static bool __need_fs_reclaim(gfp_t gfp_mask)
3707{
3708 gfp_mask = current_gfp_context(gfp_mask);
3709
3710 /* no reclaim without waiting on it */
3711 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3712 return false;
3713
3714 /* this guy won't enter reclaim */
3715 if (current->flags & PF_MEMALLOC)
3716 return false;
3717
3718 /* We're only interested __GFP_FS allocations for now */
3719 if (!(gfp_mask & __GFP_FS))
3720 return false;
3721
3722 if (gfp_mask & __GFP_NOLOCKDEP)
3723 return false;
3724
3725 return true;
3726}
3727
3728void __fs_reclaim_acquire(void)
3729{
3730 lock_map_acquire(&__fs_reclaim_map);
3731}
3732
3733void __fs_reclaim_release(void)
3734{
3735 lock_map_release(&__fs_reclaim_map);
3736}
3737
3738void fs_reclaim_acquire(gfp_t gfp_mask)
3739{
3740 if (__need_fs_reclaim(gfp_mask))
3741 __fs_reclaim_acquire();
3742}
3743EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3744
3745void fs_reclaim_release(gfp_t gfp_mask)
3746{
3747 if (__need_fs_reclaim(gfp_mask))
3748 __fs_reclaim_release();
3749}
3750EXPORT_SYMBOL_GPL(fs_reclaim_release);
3751#endif
3752
3753/* Perform direct synchronous page reclaim */
3754static int
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 const struct alloc_context *ac)
3757{
3758 struct reclaim_state reclaim_state;
3759 int progress;
3760 unsigned int noreclaim_flag;
3761 unsigned long pflags;
3762
3763 cond_resched();
3764
3765 /* We now go into synchronous reclaim */
3766 cpuset_memory_pressure_bump();
3767 psi_memstall_enter(&pflags);
3768 fs_reclaim_acquire(gfp_mask);
3769 noreclaim_flag = memalloc_noreclaim_save();
3770 reclaim_state.reclaimed_slab = 0;
3771 current->reclaim_state = &reclaim_state;
3772
3773 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3774 ac->nodemask);
3775
3776 current->reclaim_state = NULL;
3777 memalloc_noreclaim_restore(noreclaim_flag);
3778 fs_reclaim_release(gfp_mask);
3779 psi_memstall_leave(&pflags);
3780
3781 cond_resched();
3782
3783 return progress;
3784}
3785
3786/* The really slow allocator path where we enter direct reclaim */
3787static inline struct page *
3788__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3789 unsigned int alloc_flags, const struct alloc_context *ac,
3790 unsigned long *did_some_progress)
3791{
3792 struct page *page = NULL;
3793 bool drained = false;
3794
3795 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3796 if (unlikely(!(*did_some_progress)))
3797 return NULL;
3798
3799retry:
3800 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3801
3802 /*
3803 * If an allocation failed after direct reclaim, it could be because
3804 * pages are pinned on the per-cpu lists or in high alloc reserves.
3805 * Shrink them them and try again
3806 */
3807 if (!page && !drained) {
3808 unreserve_highatomic_pageblock(ac, false);
3809 drain_all_pages(NULL);
3810 drained = true;
3811 goto retry;
3812 }
3813
3814 return page;
3815}
3816
3817static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3818 const struct alloc_context *ac)
3819{
3820 struct zoneref *z;
3821 struct zone *zone;
3822 pg_data_t *last_pgdat = NULL;
3823 enum zone_type high_zoneidx = ac->high_zoneidx;
3824
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3826 ac->nodemask) {
3827 if (last_pgdat != zone->zone_pgdat)
3828 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3829 last_pgdat = zone->zone_pgdat;
3830 }
3831}
3832
3833static inline unsigned int
3834gfp_to_alloc_flags(gfp_t gfp_mask)
3835{
3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837
3838 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3839 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3840
3841 /*
3842 * The caller may dip into page reserves a bit more if the caller
3843 * cannot run direct reclaim, or if the caller has realtime scheduling
3844 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3845 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3846 */
3847 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3848
3849 if (gfp_mask & __GFP_ATOMIC) {
3850 /*
3851 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3852 * if it can't schedule.
3853 */
3854 if (!(gfp_mask & __GFP_NOMEMALLOC))
3855 alloc_flags |= ALLOC_HARDER;
3856 /*
3857 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3858 * comment for __cpuset_node_allowed().
3859 */
3860 alloc_flags &= ~ALLOC_CPUSET;
3861 } else if (unlikely(rt_task(current)) && !in_interrupt())
3862 alloc_flags |= ALLOC_HARDER;
3863
3864#ifdef CONFIG_CMA
3865 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3866 alloc_flags |= ALLOC_CMA;
3867#endif
3868 return alloc_flags;
3869}
3870
3871static bool oom_reserves_allowed(struct task_struct *tsk)
3872{
3873 if (!tsk_is_oom_victim(tsk))
3874 return false;
3875
3876 /*
3877 * !MMU doesn't have oom reaper so give access to memory reserves
3878 * only to the thread with TIF_MEMDIE set
3879 */
3880 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3881 return false;
3882
3883 return true;
3884}
3885
3886/*
3887 * Distinguish requests which really need access to full memory
3888 * reserves from oom victims which can live with a portion of it
3889 */
3890static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3891{
3892 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3893 return 0;
3894 if (gfp_mask & __GFP_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3897 return ALLOC_NO_WATERMARKS;
3898 if (!in_interrupt()) {
3899 if (current->flags & PF_MEMALLOC)
3900 return ALLOC_NO_WATERMARKS;
3901 else if (oom_reserves_allowed(current))
3902 return ALLOC_OOM;
3903 }
3904
3905 return 0;
3906}
3907
3908bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3909{
3910 return !!__gfp_pfmemalloc_flags(gfp_mask);
3911}
3912
3913/*
3914 * Checks whether it makes sense to retry the reclaim to make a forward progress
3915 * for the given allocation request.
3916 *
3917 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3918 * without success, or when we couldn't even meet the watermark if we
3919 * reclaimed all remaining pages on the LRU lists.
3920 *
3921 * Returns true if a retry is viable or false to enter the oom path.
3922 */
3923static inline bool
3924should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3925 struct alloc_context *ac, int alloc_flags,
3926 bool did_some_progress, int *no_progress_loops)
3927{
3928 struct zone *zone;
3929 struct zoneref *z;
3930 bool ret = false;
3931
3932 /*
3933 * Costly allocations might have made a progress but this doesn't mean
3934 * their order will become available due to high fragmentation so
3935 * always increment the no progress counter for them
3936 */
3937 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3938 *no_progress_loops = 0;
3939 else
3940 (*no_progress_loops)++;
3941
3942 /*
3943 * Make sure we converge to OOM if we cannot make any progress
3944 * several times in the row.
3945 */
3946 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3947 /* Before OOM, exhaust highatomic_reserve */
3948 return unreserve_highatomic_pageblock(ac, true);
3949 }
3950
3951 /*
3952 * Keep reclaiming pages while there is a chance this will lead
3953 * somewhere. If none of the target zones can satisfy our allocation
3954 * request even if all reclaimable pages are considered then we are
3955 * screwed and have to go OOM.
3956 */
3957 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3958 ac->nodemask) {
3959 unsigned long available;
3960 unsigned long reclaimable;
3961 unsigned long min_wmark = min_wmark_pages(zone);
3962 bool wmark;
3963
3964 available = reclaimable = zone_reclaimable_pages(zone);
3965 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3966
3967 /*
3968 * Would the allocation succeed if we reclaimed all
3969 * reclaimable pages?
3970 */
3971 wmark = __zone_watermark_ok(zone, order, min_wmark,
3972 ac_classzone_idx(ac), alloc_flags, available);
3973 trace_reclaim_retry_zone(z, order, reclaimable,
3974 available, min_wmark, *no_progress_loops, wmark);
3975 if (wmark) {
3976 /*
3977 * If we didn't make any progress and have a lot of
3978 * dirty + writeback pages then we should wait for
3979 * an IO to complete to slow down the reclaim and
3980 * prevent from pre mature OOM
3981 */
3982 if (!did_some_progress) {
3983 unsigned long write_pending;
3984
3985 write_pending = zone_page_state_snapshot(zone,
3986 NR_ZONE_WRITE_PENDING);
3987
3988 if (2 * write_pending > reclaimable) {
3989 congestion_wait(BLK_RW_ASYNC, HZ/10);
3990 return true;
3991 }
3992 }
3993
3994 ret = true;
3995 goto out;
3996 }
3997 }
3998
3999out:
4000 /*
4001 * Memory allocation/reclaim might be called from a WQ context and the
4002 * current implementation of the WQ concurrency control doesn't
4003 * recognize that a particular WQ is congested if the worker thread is
4004 * looping without ever sleeping. Therefore we have to do a short sleep
4005 * here rather than calling cond_resched().
4006 */
4007 if (current->flags & PF_WQ_WORKER)
4008 schedule_timeout_uninterruptible(1);
4009 else
4010 cond_resched();
4011 return ret;
4012}
4013
4014static inline bool
4015check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4016{
4017 /*
4018 * It's possible that cpuset's mems_allowed and the nodemask from
4019 * mempolicy don't intersect. This should be normally dealt with by
4020 * policy_nodemask(), but it's possible to race with cpuset update in
4021 * such a way the check therein was true, and then it became false
4022 * before we got our cpuset_mems_cookie here.
4023 * This assumes that for all allocations, ac->nodemask can come only
4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 * when it does not intersect with the cpuset restrictions) or the
4026 * caller can deal with a violated nodemask.
4027 */
4028 if (cpusets_enabled() && ac->nodemask &&
4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 ac->nodemask = NULL;
4031 return true;
4032 }
4033
4034 /*
4035 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 * possible to race with parallel threads in such a way that our
4037 * allocation can fail while the mask is being updated. If we are about
4038 * to fail, check if the cpuset changed during allocation and if so,
4039 * retry.
4040 */
4041 if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 return true;
4043
4044 return false;
4045}
4046
4047static inline struct page *
4048__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049 struct alloc_context *ac)
4050{
4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053 struct page *page = NULL;
4054 unsigned int alloc_flags;
4055 unsigned long did_some_progress;
4056 enum compact_priority compact_priority;
4057 enum compact_result compact_result;
4058 int compaction_retries;
4059 int no_progress_loops;
4060 unsigned int cpuset_mems_cookie;
4061 int reserve_flags;
4062
4063 /*
4064 * In the slowpath, we sanity check order to avoid ever trying to
4065 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4066 * be using allocators in order of preference for an area that is
4067 * too large.
4068 */
4069 if (order >= MAX_ORDER) {
4070 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4071 return NULL;
4072 }
4073
4074 /*
4075 * We also sanity check to catch abuse of atomic reserves being used by
4076 * callers that are not in atomic context.
4077 */
4078 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4079 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4080 gfp_mask &= ~__GFP_ATOMIC;
4081
4082retry_cpuset:
4083 compaction_retries = 0;
4084 no_progress_loops = 0;
4085 compact_priority = DEF_COMPACT_PRIORITY;
4086 cpuset_mems_cookie = read_mems_allowed_begin();
4087
4088 /*
4089 * The fast path uses conservative alloc_flags to succeed only until
4090 * kswapd needs to be woken up, and to avoid the cost of setting up
4091 * alloc_flags precisely. So we do that now.
4092 */
4093 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4094
4095 /*
4096 * We need to recalculate the starting point for the zonelist iterator
4097 * because we might have used different nodemask in the fast path, or
4098 * there was a cpuset modification and we are retrying - otherwise we
4099 * could end up iterating over non-eligible zones endlessly.
4100 */
4101 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4102 ac->high_zoneidx, ac->nodemask);
4103 if (!ac->preferred_zoneref->zone)
4104 goto nopage;
4105
4106 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4107 wake_all_kswapds(order, gfp_mask, ac);
4108
4109 /*
4110 * The adjusted alloc_flags might result in immediate success, so try
4111 * that first
4112 */
4113 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4114 if (page)
4115 goto got_pg;
4116
4117 /*
4118 * For costly allocations, try direct compaction first, as it's likely
4119 * that we have enough base pages and don't need to reclaim. For non-
4120 * movable high-order allocations, do that as well, as compaction will
4121 * try prevent permanent fragmentation by migrating from blocks of the
4122 * same migratetype.
4123 * Don't try this for allocations that are allowed to ignore
4124 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4125 */
4126 if (can_direct_reclaim &&
4127 (costly_order ||
4128 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4129 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4130 page = __alloc_pages_direct_compact(gfp_mask, order,
4131 alloc_flags, ac,
4132 INIT_COMPACT_PRIORITY,
4133 &compact_result);
4134 if (page)
4135 goto got_pg;
4136
4137 /*
4138 * Checks for costly allocations with __GFP_NORETRY, which
4139 * includes THP page fault allocations
4140 */
4141 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4142 /*
4143 * If compaction is deferred for high-order allocations,
4144 * it is because sync compaction recently failed. If
4145 * this is the case and the caller requested a THP
4146 * allocation, we do not want to heavily disrupt the
4147 * system, so we fail the allocation instead of entering
4148 * direct reclaim.
4149 */
4150 if (compact_result == COMPACT_DEFERRED)
4151 goto nopage;
4152
4153 /*
4154 * Looks like reclaim/compaction is worth trying, but
4155 * sync compaction could be very expensive, so keep
4156 * using async compaction.
4157 */
4158 compact_priority = INIT_COMPACT_PRIORITY;
4159 }
4160 }
4161
4162retry:
4163 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4164 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4165 wake_all_kswapds(order, gfp_mask, ac);
4166
4167 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4168 if (reserve_flags)
4169 alloc_flags = reserve_flags;
4170
4171 /*
4172 * Reset the nodemask and zonelist iterators if memory policies can be
4173 * ignored. These allocations are high priority and system rather than
4174 * user oriented.
4175 */
4176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177 ac->nodemask = NULL;
4178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179 ac->high_zoneidx, ac->nodemask);
4180 }
4181
4182 /* Attempt with potentially adjusted zonelist and alloc_flags */
4183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184 if (page)
4185 goto got_pg;
4186
4187 /* Caller is not willing to reclaim, we can't balance anything */
4188 if (!can_direct_reclaim)
4189 goto nopage;
4190
4191 /* Avoid recursion of direct reclaim */
4192 if (current->flags & PF_MEMALLOC)
4193 goto nopage;
4194
4195 /* Try direct reclaim and then allocating */
4196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197 &did_some_progress);
4198 if (page)
4199 goto got_pg;
4200
4201 /* Try direct compaction and then allocating */
4202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203 compact_priority, &compact_result);
4204 if (page)
4205 goto got_pg;
4206
4207 /* Do not loop if specifically requested */
4208 if (gfp_mask & __GFP_NORETRY)
4209 goto nopage;
4210
4211 /*
4212 * Do not retry costly high order allocations unless they are
4213 * __GFP_RETRY_MAYFAIL
4214 */
4215 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4216 goto nopage;
4217
4218 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4219 did_some_progress > 0, &no_progress_loops))
4220 goto retry;
4221
4222 /*
4223 * It doesn't make any sense to retry for the compaction if the order-0
4224 * reclaim is not able to make any progress because the current
4225 * implementation of the compaction depends on the sufficient amount
4226 * of free memory (see __compaction_suitable)
4227 */
4228 if (did_some_progress > 0 &&
4229 should_compact_retry(ac, order, alloc_flags,
4230 compact_result, &compact_priority,
4231 &compaction_retries))
4232 goto retry;
4233
4234
4235 /* Deal with possible cpuset update races before we start OOM killing */
4236 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4237 goto retry_cpuset;
4238
4239 /* Reclaim has failed us, start killing things */
4240 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4241 if (page)
4242 goto got_pg;
4243
4244 /* Avoid allocations with no watermarks from looping endlessly */
4245 if (tsk_is_oom_victim(current) &&
4246 (alloc_flags == ALLOC_OOM ||
4247 (gfp_mask & __GFP_NOMEMALLOC)))
4248 goto nopage;
4249
4250 /* Retry as long as the OOM killer is making progress */
4251 if (did_some_progress) {
4252 no_progress_loops = 0;
4253 goto retry;
4254 }
4255
4256nopage:
4257 /* Deal with possible cpuset update races before we fail */
4258 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4259 goto retry_cpuset;
4260
4261 /*
4262 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4263 * we always retry
4264 */
4265 if (gfp_mask & __GFP_NOFAIL) {
4266 /*
4267 * All existing users of the __GFP_NOFAIL are blockable, so warn
4268 * of any new users that actually require GFP_NOWAIT
4269 */
4270 if (WARN_ON_ONCE(!can_direct_reclaim))
4271 goto fail;
4272
4273 /*
4274 * PF_MEMALLOC request from this context is rather bizarre
4275 * because we cannot reclaim anything and only can loop waiting
4276 * for somebody to do a work for us
4277 */
4278 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4279
4280 /*
4281 * non failing costly orders are a hard requirement which we
4282 * are not prepared for much so let's warn about these users
4283 * so that we can identify them and convert them to something
4284 * else.
4285 */
4286 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4287
4288 /*
4289 * Help non-failing allocations by giving them access to memory
4290 * reserves but do not use ALLOC_NO_WATERMARKS because this
4291 * could deplete whole memory reserves which would just make
4292 * the situation worse
4293 */
4294 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4295 if (page)
4296 goto got_pg;
4297
4298 cond_resched();
4299 goto retry;
4300 }
4301fail:
4302 warn_alloc(gfp_mask, ac->nodemask,
4303 "page allocation failure: order:%u", order);
4304got_pg:
4305 return page;
4306}
4307
4308static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4309 int preferred_nid, nodemask_t *nodemask,
4310 struct alloc_context *ac, gfp_t *alloc_mask,
4311 unsigned int *alloc_flags)
4312{
4313 ac->high_zoneidx = gfp_zone(gfp_mask);
4314 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4315 ac->nodemask = nodemask;
4316 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4317
4318 if (cpusets_enabled()) {
4319 *alloc_mask |= __GFP_HARDWALL;
4320 if (!ac->nodemask)
4321 ac->nodemask = &cpuset_current_mems_allowed;
4322 else
4323 *alloc_flags |= ALLOC_CPUSET;
4324 }
4325
4326 fs_reclaim_acquire(gfp_mask);
4327 fs_reclaim_release(gfp_mask);
4328
4329 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4330
4331 if (should_fail_alloc_page(gfp_mask, order))
4332 return false;
4333
4334 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4335 *alloc_flags |= ALLOC_CMA;
4336
4337 return true;
4338}
4339
4340/* Determine whether to spread dirty pages and what the first usable zone */
4341static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4342{
4343 /* Dirty zone balancing only done in the fast path */
4344 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4345
4346 /*
4347 * The preferred zone is used for statistics but crucially it is
4348 * also used as the starting point for the zonelist iterator. It
4349 * may get reset for allocations that ignore memory policies.
4350 */
4351 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4352 ac->high_zoneidx, ac->nodemask);
4353}
4354
4355/*
4356 * This is the 'heart' of the zoned buddy allocator.
4357 */
4358struct page *
4359__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4360 nodemask_t *nodemask)
4361{
4362 struct page *page;
4363 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4364 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4365 struct alloc_context ac = { };
4366
4367 gfp_mask &= gfp_allowed_mask;
4368 alloc_mask = gfp_mask;
4369 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4370 return NULL;
4371
4372 finalise_ac(gfp_mask, &ac);
4373
4374 /* First allocation attempt */
4375 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4376 if (likely(page))
4377 goto out;
4378
4379 /*
4380 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4381 * resp. GFP_NOIO which has to be inherited for all allocation requests
4382 * from a particular context which has been marked by
4383 * memalloc_no{fs,io}_{save,restore}.
4384 */
4385 alloc_mask = current_gfp_context(gfp_mask);
4386 ac.spread_dirty_pages = false;
4387
4388 /*
4389 * Restore the original nodemask if it was potentially replaced with
4390 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4391 */
4392 if (unlikely(ac.nodemask != nodemask))
4393 ac.nodemask = nodemask;
4394
4395 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4396
4397out:
4398 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4399 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4400 __free_pages(page, order);
4401 page = NULL;
4402 }
4403
4404 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4405
4406 return page;
4407}
4408EXPORT_SYMBOL(__alloc_pages_nodemask);
4409
4410/*
4411 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4412 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4413 * you need to access high mem.
4414 */
4415unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4416{
4417 struct page *page;
4418
4419 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4420 if (!page)
4421 return 0;
4422 return (unsigned long) page_address(page);
4423}
4424EXPORT_SYMBOL(__get_free_pages);
4425
4426unsigned long get_zeroed_page(gfp_t gfp_mask)
4427{
4428 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4429}
4430EXPORT_SYMBOL(get_zeroed_page);
4431
4432void __free_pages(struct page *page, unsigned int order)
4433{
4434 if (put_page_testzero(page)) {
4435 if (order == 0)
4436 free_unref_page(page);
4437 else
4438 __free_pages_ok(page, order);
4439 }
4440}
4441
4442EXPORT_SYMBOL(__free_pages);
4443
4444void free_pages(unsigned long addr, unsigned int order)
4445{
4446 if (addr != 0) {
4447 VM_BUG_ON(!virt_addr_valid((void *)addr));
4448 __free_pages(virt_to_page((void *)addr), order);
4449 }
4450}
4451
4452EXPORT_SYMBOL(free_pages);
4453
4454/*
4455 * Page Fragment:
4456 * An arbitrary-length arbitrary-offset area of memory which resides
4457 * within a 0 or higher order page. Multiple fragments within that page
4458 * are individually refcounted, in the page's reference counter.
4459 *
4460 * The page_frag functions below provide a simple allocation framework for
4461 * page fragments. This is used by the network stack and network device
4462 * drivers to provide a backing region of memory for use as either an
4463 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4464 */
4465static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4466 gfp_t gfp_mask)
4467{
4468 struct page *page = NULL;
4469 gfp_t gfp = gfp_mask;
4470
4471#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4472 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4473 __GFP_NOMEMALLOC;
4474 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4475 PAGE_FRAG_CACHE_MAX_ORDER);
4476 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4477#endif
4478 if (unlikely(!page))
4479 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4480
4481 nc->va = page ? page_address(page) : NULL;
4482
4483 return page;
4484}
4485
4486void __page_frag_cache_drain(struct page *page, unsigned int count)
4487{
4488 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4489
4490 if (page_ref_sub_and_test(page, count)) {
4491 unsigned int order = compound_order(page);
4492
4493 if (order == 0)
4494 free_unref_page(page);
4495 else
4496 __free_pages_ok(page, order);
4497 }
4498}
4499EXPORT_SYMBOL(__page_frag_cache_drain);
4500
4501void *page_frag_alloc(struct page_frag_cache *nc,
4502 unsigned int fragsz, gfp_t gfp_mask)
4503{
4504 unsigned int size = PAGE_SIZE;
4505 struct page *page;
4506 int offset;
4507
4508 if (unlikely(!nc->va)) {
4509refill:
4510 page = __page_frag_cache_refill(nc, gfp_mask);
4511 if (!page)
4512 return NULL;
4513
4514#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4515 /* if size can vary use size else just use PAGE_SIZE */
4516 size = nc->size;
4517#endif
4518 /* Even if we own the page, we do not use atomic_set().
4519 * This would break get_page_unless_zero() users.
4520 */
4521 page_ref_add(page, size - 1);
4522
4523 /* reset page count bias and offset to start of new frag */
4524 nc->pfmemalloc = page_is_pfmemalloc(page);
4525 nc->pagecnt_bias = size;
4526 nc->offset = size;
4527 }
4528
4529 offset = nc->offset - fragsz;
4530 if (unlikely(offset < 0)) {
4531 page = virt_to_page(nc->va);
4532
4533 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4534 goto refill;
4535
4536#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4537 /* if size can vary use size else just use PAGE_SIZE */
4538 size = nc->size;
4539#endif
4540 /* OK, page count is 0, we can safely set it */
4541 set_page_count(page, size);
4542
4543 /* reset page count bias and offset to start of new frag */
4544 nc->pagecnt_bias = size;
4545 offset = size - fragsz;
4546 }
4547
4548 nc->pagecnt_bias--;
4549 nc->offset = offset;
4550
4551 return nc->va + offset;
4552}
4553EXPORT_SYMBOL(page_frag_alloc);
4554
4555/*
4556 * Frees a page fragment allocated out of either a compound or order 0 page.
4557 */
4558void page_frag_free(void *addr)
4559{
4560 struct page *page = virt_to_head_page(addr);
4561
4562 if (unlikely(put_page_testzero(page)))
4563 __free_pages_ok(page, compound_order(page));
4564}
4565EXPORT_SYMBOL(page_frag_free);
4566
4567static void *make_alloc_exact(unsigned long addr, unsigned int order,
4568 size_t size)
4569{
4570 if (addr) {
4571 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4572 unsigned long used = addr + PAGE_ALIGN(size);
4573
4574 split_page(virt_to_page((void *)addr), order);
4575 while (used < alloc_end) {
4576 free_page(used);
4577 used += PAGE_SIZE;
4578 }
4579 }
4580 return (void *)addr;
4581}
4582
4583/**
4584 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4585 * @size: the number of bytes to allocate
4586 * @gfp_mask: GFP flags for the allocation
4587 *
4588 * This function is similar to alloc_pages(), except that it allocates the
4589 * minimum number of pages to satisfy the request. alloc_pages() can only
4590 * allocate memory in power-of-two pages.
4591 *
4592 * This function is also limited by MAX_ORDER.
4593 *
4594 * Memory allocated by this function must be released by free_pages_exact().
4595 */
4596void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4597{
4598 unsigned int order = get_order(size);
4599 unsigned long addr;
4600
4601 addr = __get_free_pages(gfp_mask, order);
4602 return make_alloc_exact(addr, order, size);
4603}
4604EXPORT_SYMBOL(alloc_pages_exact);
4605
4606/**
4607 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4608 * pages on a node.
4609 * @nid: the preferred node ID where memory should be allocated
4610 * @size: the number of bytes to allocate
4611 * @gfp_mask: GFP flags for the allocation
4612 *
4613 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4614 * back.
4615 */
4616void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4617{
4618 unsigned int order = get_order(size);
4619 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4620 if (!p)
4621 return NULL;
4622 return make_alloc_exact((unsigned long)page_address(p), order, size);
4623}
4624
4625/**
4626 * free_pages_exact - release memory allocated via alloc_pages_exact()
4627 * @virt: the value returned by alloc_pages_exact.
4628 * @size: size of allocation, same value as passed to alloc_pages_exact().
4629 *
4630 * Release the memory allocated by a previous call to alloc_pages_exact.
4631 */
4632void free_pages_exact(void *virt, size_t size)
4633{
4634 unsigned long addr = (unsigned long)virt;
4635 unsigned long end = addr + PAGE_ALIGN(size);
4636
4637 while (addr < end) {
4638 free_page(addr);
4639 addr += PAGE_SIZE;
4640 }
4641}
4642EXPORT_SYMBOL(free_pages_exact);
4643
4644/**
4645 * nr_free_zone_pages - count number of pages beyond high watermark
4646 * @offset: The zone index of the highest zone
4647 *
4648 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4649 * high watermark within all zones at or below a given zone index. For each
4650 * zone, the number of pages is calculated as:
4651 *
4652 * nr_free_zone_pages = managed_pages - high_pages
4653 */
4654static unsigned long nr_free_zone_pages(int offset)
4655{
4656 struct zoneref *z;
4657 struct zone *zone;
4658
4659 /* Just pick one node, since fallback list is circular */
4660 unsigned long sum = 0;
4661
4662 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4663
4664 for_each_zone_zonelist(zone, z, zonelist, offset) {
4665 unsigned long size = zone->managed_pages;
4666 unsigned long high = high_wmark_pages(zone);
4667 if (size > high)
4668 sum += size - high;
4669 }
4670
4671 return sum;
4672}
4673
4674/**
4675 * nr_free_buffer_pages - count number of pages beyond high watermark
4676 *
4677 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4678 * watermark within ZONE_DMA and ZONE_NORMAL.
4679 */
4680unsigned long nr_free_buffer_pages(void)
4681{
4682 return nr_free_zone_pages(gfp_zone(GFP_USER));
4683}
4684EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4685
4686/**
4687 * nr_free_pagecache_pages - count number of pages beyond high watermark
4688 *
4689 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4690 * high watermark within all zones.
4691 */
4692unsigned long nr_free_pagecache_pages(void)
4693{
4694 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4695}
4696
4697static inline void show_node(struct zone *zone)
4698{
4699 if (IS_ENABLED(CONFIG_NUMA))
4700 printk("Node %d ", zone_to_nid(zone));
4701}
4702
4703long si_mem_available(void)
4704{
4705 long available;
4706 unsigned long pagecache;
4707 unsigned long wmark_low = 0;
4708 unsigned long pages[NR_LRU_LISTS];
4709 unsigned long reclaimable;
4710 struct zone *zone;
4711 int lru;
4712
4713 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4714 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4715
4716 for_each_zone(zone)
4717 wmark_low += zone->watermark[WMARK_LOW];
4718
4719 /*
4720 * Estimate the amount of memory available for userspace allocations,
4721 * without causing swapping.
4722 */
4723 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4724
4725 /*
4726 * Not all the page cache can be freed, otherwise the system will
4727 * start swapping. Assume at least half of the page cache, or the
4728 * low watermark worth of cache, needs to stay.
4729 */
4730 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4731 pagecache -= min(pagecache / 2, wmark_low);
4732 available += pagecache;
4733
4734 /*
4735 * Part of the reclaimable slab and other kernel memory consists of
4736 * items that are in use, and cannot be freed. Cap this estimate at the
4737 * low watermark.
4738 */
4739 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4740 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4741 available += reclaimable - min(reclaimable / 2, wmark_low);
4742
4743 if (available < 0)
4744 available = 0;
4745 return available;
4746}
4747EXPORT_SYMBOL_GPL(si_mem_available);
4748
4749void si_meminfo(struct sysinfo *val)
4750{
4751 val->totalram = totalram_pages;
4752 val->sharedram = global_node_page_state(NR_SHMEM);
4753 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4754 val->bufferram = nr_blockdev_pages();
4755 val->totalhigh = totalhigh_pages;
4756 val->freehigh = nr_free_highpages();
4757 val->mem_unit = PAGE_SIZE;
4758}
4759
4760EXPORT_SYMBOL(si_meminfo);
4761
4762#ifdef CONFIG_NUMA
4763void si_meminfo_node(struct sysinfo *val, int nid)
4764{
4765 int zone_type; /* needs to be signed */
4766 unsigned long managed_pages = 0;
4767 unsigned long managed_highpages = 0;
4768 unsigned long free_highpages = 0;
4769 pg_data_t *pgdat = NODE_DATA(nid);
4770
4771 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4772 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4773 val->totalram = managed_pages;
4774 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776#ifdef CONFIG_HIGHMEM
4777 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4778 struct zone *zone = &pgdat->node_zones[zone_type];
4779
4780 if (is_highmem(zone)) {
4781 managed_highpages += zone->managed_pages;
4782 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4783 }
4784 }
4785 val->totalhigh = managed_highpages;
4786 val->freehigh = free_highpages;
4787#else
4788 val->totalhigh = managed_highpages;
4789 val->freehigh = free_highpages;
4790#endif
4791 val->mem_unit = PAGE_SIZE;
4792}
4793#endif
4794
4795/*
4796 * Determine whether the node should be displayed or not, depending on whether
4797 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798 */
4799static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800{
4801 if (!(flags & SHOW_MEM_FILTER_NODES))
4802 return false;
4803
4804 /*
4805 * no node mask - aka implicit memory numa policy. Do not bother with
4806 * the synchronization - read_mems_allowed_begin - because we do not
4807 * have to be precise here.
4808 */
4809 if (!nodemask)
4810 nodemask = &cpuset_current_mems_allowed;
4811
4812 return !node_isset(nid, *nodemask);
4813}
4814
4815#define K(x) ((x) << (PAGE_SHIFT-10))
4816
4817static void show_migration_types(unsigned char type)
4818{
4819 static const char types[MIGRATE_TYPES] = {
4820 [MIGRATE_UNMOVABLE] = 'U',
4821 [MIGRATE_MOVABLE] = 'M',
4822 [MIGRATE_RECLAIMABLE] = 'E',
4823 [MIGRATE_HIGHATOMIC] = 'H',
4824#ifdef CONFIG_CMA
4825 [MIGRATE_CMA] = 'C',
4826#endif
4827#ifdef CONFIG_MEMORY_ISOLATION
4828 [MIGRATE_ISOLATE] = 'I',
4829#endif
4830 };
4831 char tmp[MIGRATE_TYPES + 1];
4832 char *p = tmp;
4833 int i;
4834
4835 for (i = 0; i < MIGRATE_TYPES; i++) {
4836 if (type & (1 << i))
4837 *p++ = types[i];
4838 }
4839
4840 *p = '\0';
4841 printk(KERN_CONT "(%s) ", tmp);
4842}
4843
4844/*
4845 * Show free area list (used inside shift_scroll-lock stuff)
4846 * We also calculate the percentage fragmentation. We do this by counting the
4847 * memory on each free list with the exception of the first item on the list.
4848 *
4849 * Bits in @filter:
4850 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4851 * cpuset.
4852 */
4853void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4854{
4855 unsigned long free_pcp = 0;
4856 int cpu;
4857 struct zone *zone;
4858 pg_data_t *pgdat;
4859
4860 for_each_populated_zone(zone) {
4861 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862 continue;
4863
4864 for_each_online_cpu(cpu)
4865 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4866 }
4867
4868 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4869 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4871 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873 " free:%lu free_pcp:%lu free_cma:%lu\n",
4874 global_node_page_state(NR_ACTIVE_ANON),
4875 global_node_page_state(NR_INACTIVE_ANON),
4876 global_node_page_state(NR_ISOLATED_ANON),
4877 global_node_page_state(NR_ACTIVE_FILE),
4878 global_node_page_state(NR_INACTIVE_FILE),
4879 global_node_page_state(NR_ISOLATED_FILE),
4880 global_node_page_state(NR_UNEVICTABLE),
4881 global_node_page_state(NR_FILE_DIRTY),
4882 global_node_page_state(NR_WRITEBACK),
4883 global_node_page_state(NR_UNSTABLE_NFS),
4884 global_node_page_state(NR_SLAB_RECLAIMABLE),
4885 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886 global_node_page_state(NR_FILE_MAPPED),
4887 global_node_page_state(NR_SHMEM),
4888 global_zone_page_state(NR_PAGETABLE),
4889 global_zone_page_state(NR_BOUNCE),
4890 global_zone_page_state(NR_FREE_PAGES),
4891 free_pcp,
4892 global_zone_page_state(NR_FREE_CMA_PAGES));
4893
4894 for_each_online_pgdat(pgdat) {
4895 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896 continue;
4897
4898 printk("Node %d"
4899 " active_anon:%lukB"
4900 " inactive_anon:%lukB"
4901 " active_file:%lukB"
4902 " inactive_file:%lukB"
4903 " unevictable:%lukB"
4904 " isolated(anon):%lukB"
4905 " isolated(file):%lukB"
4906 " mapped:%lukB"
4907 " dirty:%lukB"
4908 " writeback:%lukB"
4909 " shmem:%lukB"
4910#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4911 " shmem_thp: %lukB"
4912 " shmem_pmdmapped: %lukB"
4913 " anon_thp: %lukB"
4914#endif
4915 " writeback_tmp:%lukB"
4916 " unstable:%lukB"
4917 " all_unreclaimable? %s"
4918 "\n",
4919 pgdat->node_id,
4920 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4921 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4922 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4923 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4924 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4925 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4926 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4929 K(node_page_state(pgdat, NR_WRITEBACK)),
4930 K(node_page_state(pgdat, NR_SHMEM)),
4931#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4933 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4934 * HPAGE_PMD_NR),
4935 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4936#endif
4937 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4938 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4940 "yes" : "no");
4941 }
4942
4943 for_each_populated_zone(zone) {
4944 int i;
4945
4946 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947 continue;
4948
4949 free_pcp = 0;
4950 for_each_online_cpu(cpu)
4951 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4952
4953 show_node(zone);
4954 printk(KERN_CONT
4955 "%s"
4956 " free:%lukB"
4957 " min:%lukB"
4958 " low:%lukB"
4959 " high:%lukB"
4960 " active_anon:%lukB"
4961 " inactive_anon:%lukB"
4962 " active_file:%lukB"
4963 " inactive_file:%lukB"
4964 " unevictable:%lukB"
4965 " writepending:%lukB"
4966 " present:%lukB"
4967 " managed:%lukB"
4968 " mlocked:%lukB"
4969 " kernel_stack:%lukB"
4970 " pagetables:%lukB"
4971 " bounce:%lukB"
4972 " free_pcp:%lukB"
4973 " local_pcp:%ukB"
4974 " free_cma:%lukB"
4975 "\n",
4976 zone->name,
4977 K(zone_page_state(zone, NR_FREE_PAGES)),
4978 K(min_wmark_pages(zone)),
4979 K(low_wmark_pages(zone)),
4980 K(high_wmark_pages(zone)),
4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4983 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4984 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4985 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4987 K(zone->present_pages),
4988 K(zone->managed_pages),
4989 K(zone_page_state(zone, NR_MLOCK)),
4990 zone_page_state(zone, NR_KERNEL_STACK_KB),
4991 K(zone_page_state(zone, NR_PAGETABLE)),
4992 K(zone_page_state(zone, NR_BOUNCE)),
4993 K(free_pcp),
4994 K(this_cpu_read(zone->pageset->pcp.count)),
4995 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4996 printk("lowmem_reserve[]:");
4997 for (i = 0; i < MAX_NR_ZONES; i++)
4998 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4999 printk(KERN_CONT "\n");
5000 }
5001
5002 for_each_populated_zone(zone) {
5003 unsigned int order;
5004 unsigned long nr[MAX_ORDER], flags, total = 0;
5005 unsigned char types[MAX_ORDER];
5006
5007 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008 continue;
5009 show_node(zone);
5010 printk(KERN_CONT "%s: ", zone->name);
5011
5012 spin_lock_irqsave(&zone->lock, flags);
5013 for (order = 0; order < MAX_ORDER; order++) {
5014 struct free_area *area = &zone->free_area[order];
5015 int type;
5016
5017 nr[order] = area->nr_free;
5018 total += nr[order] << order;
5019
5020 types[order] = 0;
5021 for (type = 0; type < MIGRATE_TYPES; type++) {
5022 if (!list_empty(&area->free_list[type]))
5023 types[order] |= 1 << type;
5024 }
5025 }
5026 spin_unlock_irqrestore(&zone->lock, flags);
5027 for (order = 0; order < MAX_ORDER; order++) {
5028 printk(KERN_CONT "%lu*%lukB ",
5029 nr[order], K(1UL) << order);
5030 if (nr[order])
5031 show_migration_types(types[order]);
5032 }
5033 printk(KERN_CONT "= %lukB\n", K(total));
5034 }
5035
5036 hugetlb_show_meminfo();
5037
5038 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039
5040 show_swap_cache_info();
5041}
5042
5043static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044{
5045 zoneref->zone = zone;
5046 zoneref->zone_idx = zone_idx(zone);
5047}
5048
5049/*
5050 * Builds allocation fallback zone lists.
5051 *
5052 * Add all populated zones of a node to the zonelist.
5053 */
5054static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055{
5056 struct zone *zone;
5057 enum zone_type zone_type = MAX_NR_ZONES;
5058 int nr_zones = 0;
5059
5060 do {
5061 zone_type--;
5062 zone = pgdat->node_zones + zone_type;
5063 if (managed_zone(zone)) {
5064 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065 check_highest_zone(zone_type);
5066 }
5067 } while (zone_type);
5068
5069 return nr_zones;
5070}
5071
5072#ifdef CONFIG_NUMA
5073
5074static int __parse_numa_zonelist_order(char *s)
5075{
5076 /*
5077 * We used to support different zonlists modes but they turned
5078 * out to be just not useful. Let's keep the warning in place
5079 * if somebody still use the cmd line parameter so that we do
5080 * not fail it silently
5081 */
5082 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5084 return -EINVAL;
5085 }
5086 return 0;
5087}
5088
5089static __init int setup_numa_zonelist_order(char *s)
5090{
5091 if (!s)
5092 return 0;
5093
5094 return __parse_numa_zonelist_order(s);
5095}
5096early_param("numa_zonelist_order", setup_numa_zonelist_order);
5097
5098char numa_zonelist_order[] = "Node";
5099
5100/*
5101 * sysctl handler for numa_zonelist_order
5102 */
5103int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104 void __user *buffer, size_t *length,
5105 loff_t *ppos)
5106{
5107 char *str;
5108 int ret;
5109
5110 if (!write)
5111 return proc_dostring(table, write, buffer, length, ppos);
5112 str = memdup_user_nul(buffer, 16);
5113 if (IS_ERR(str))
5114 return PTR_ERR(str);
5115
5116 ret = __parse_numa_zonelist_order(str);
5117 kfree(str);
5118 return ret;
5119}
5120
5121
5122#define MAX_NODE_LOAD (nr_online_nodes)
5123static int node_load[MAX_NUMNODES];
5124
5125/**
5126 * find_next_best_node - find the next node that should appear in a given node's fallback list
5127 * @node: node whose fallback list we're appending
5128 * @used_node_mask: nodemask_t of already used nodes
5129 *
5130 * We use a number of factors to determine which is the next node that should
5131 * appear on a given node's fallback list. The node should not have appeared
5132 * already in @node's fallback list, and it should be the next closest node
5133 * according to the distance array (which contains arbitrary distance values
5134 * from each node to each node in the system), and should also prefer nodes
5135 * with no CPUs, since presumably they'll have very little allocation pressure
5136 * on them otherwise.
5137 * It returns -1 if no node is found.
5138 */
5139static int find_next_best_node(int node, nodemask_t *used_node_mask)
5140{
5141 int n, val;
5142 int min_val = INT_MAX;
5143 int best_node = NUMA_NO_NODE;
5144 const struct cpumask *tmp = cpumask_of_node(0);
5145
5146 /* Use the local node if we haven't already */
5147 if (!node_isset(node, *used_node_mask)) {
5148 node_set(node, *used_node_mask);
5149 return node;
5150 }
5151
5152 for_each_node_state(n, N_MEMORY) {
5153
5154 /* Don't want a node to appear more than once */
5155 if (node_isset(n, *used_node_mask))
5156 continue;
5157
5158 /* Use the distance array to find the distance */
5159 val = node_distance(node, n);
5160
5161 /* Penalize nodes under us ("prefer the next node") */
5162 val += (n < node);
5163
5164 /* Give preference to headless and unused nodes */
5165 tmp = cpumask_of_node(n);
5166 if (!cpumask_empty(tmp))
5167 val += PENALTY_FOR_NODE_WITH_CPUS;
5168
5169 /* Slight preference for less loaded node */
5170 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5171 val += node_load[n];
5172
5173 if (val < min_val) {
5174 min_val = val;
5175 best_node = n;
5176 }
5177 }
5178
5179 if (best_node >= 0)
5180 node_set(best_node, *used_node_mask);
5181
5182 return best_node;
5183}
5184
5185
5186/*
5187 * Build zonelists ordered by node and zones within node.
5188 * This results in maximum locality--normal zone overflows into local
5189 * DMA zone, if any--but risks exhausting DMA zone.
5190 */
5191static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5192 unsigned nr_nodes)
5193{
5194 struct zoneref *zonerefs;
5195 int i;
5196
5197 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5198
5199 for (i = 0; i < nr_nodes; i++) {
5200 int nr_zones;
5201
5202 pg_data_t *node = NODE_DATA(node_order[i]);
5203
5204 nr_zones = build_zonerefs_node(node, zonerefs);
5205 zonerefs += nr_zones;
5206 }
5207 zonerefs->zone = NULL;
5208 zonerefs->zone_idx = 0;
5209}
5210
5211/*
5212 * Build gfp_thisnode zonelists
5213 */
5214static void build_thisnode_zonelists(pg_data_t *pgdat)
5215{
5216 struct zoneref *zonerefs;
5217 int nr_zones;
5218
5219 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5220 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5221 zonerefs += nr_zones;
5222 zonerefs->zone = NULL;
5223 zonerefs->zone_idx = 0;
5224}
5225
5226/*
5227 * Build zonelists ordered by zone and nodes within zones.
5228 * This results in conserving DMA zone[s] until all Normal memory is
5229 * exhausted, but results in overflowing to remote node while memory
5230 * may still exist in local DMA zone.
5231 */
5232
5233static void build_zonelists(pg_data_t *pgdat)
5234{
5235 static int node_order[MAX_NUMNODES];
5236 int node, load, nr_nodes = 0;
5237 nodemask_t used_mask;
5238 int local_node, prev_node;
5239
5240 /* NUMA-aware ordering of nodes */
5241 local_node = pgdat->node_id;
5242 load = nr_online_nodes;
5243 prev_node = local_node;
5244 nodes_clear(used_mask);
5245
5246 memset(node_order, 0, sizeof(node_order));
5247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5248 /*
5249 * We don't want to pressure a particular node.
5250 * So adding penalty to the first node in same
5251 * distance group to make it round-robin.
5252 */
5253 if (node_distance(local_node, node) !=
5254 node_distance(local_node, prev_node))
5255 node_load[node] = load;
5256
5257 node_order[nr_nodes++] = node;
5258 prev_node = node;
5259 load--;
5260 }
5261
5262 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263 build_thisnode_zonelists(pgdat);
5264}
5265
5266#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267/*
5268 * Return node id of node used for "local" allocations.
5269 * I.e., first node id of first zone in arg node's generic zonelist.
5270 * Used for initializing percpu 'numa_mem', which is used primarily
5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272 */
5273int local_memory_node(int node)
5274{
5275 struct zoneref *z;
5276
5277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278 gfp_zone(GFP_KERNEL),
5279 NULL);
5280 return zone_to_nid(z->zone);
5281}
5282#endif
5283
5284static void setup_min_unmapped_ratio(void);
5285static void setup_min_slab_ratio(void);
5286#else /* CONFIG_NUMA */
5287
5288static void build_zonelists(pg_data_t *pgdat)
5289{
5290 int node, local_node;
5291 struct zoneref *zonerefs;
5292 int nr_zones;
5293
5294 local_node = pgdat->node_id;
5295
5296 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5297 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5298 zonerefs += nr_zones;
5299
5300 /*
5301 * Now we build the zonelist so that it contains the zones
5302 * of all the other nodes.
5303 * We don't want to pressure a particular node, so when
5304 * building the zones for node N, we make sure that the
5305 * zones coming right after the local ones are those from
5306 * node N+1 (modulo N)
5307 */
5308 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5309 if (!node_online(node))
5310 continue;
5311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5312 zonerefs += nr_zones;
5313 }
5314 for (node = 0; node < local_node; node++) {
5315 if (!node_online(node))
5316 continue;
5317 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5318 zonerefs += nr_zones;
5319 }
5320
5321 zonerefs->zone = NULL;
5322 zonerefs->zone_idx = 0;
5323}
5324
5325#endif /* CONFIG_NUMA */
5326
5327/*
5328 * Boot pageset table. One per cpu which is going to be used for all
5329 * zones and all nodes. The parameters will be set in such a way
5330 * that an item put on a list will immediately be handed over to
5331 * the buddy list. This is safe since pageset manipulation is done
5332 * with interrupts disabled.
5333 *
5334 * The boot_pagesets must be kept even after bootup is complete for
5335 * unused processors and/or zones. They do play a role for bootstrapping
5336 * hotplugged processors.
5337 *
5338 * zoneinfo_show() and maybe other functions do
5339 * not check if the processor is online before following the pageset pointer.
5340 * Other parts of the kernel may not check if the zone is available.
5341 */
5342static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5343static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345
5346static void __build_all_zonelists(void *data)
5347{
5348 int nid;
5349 int __maybe_unused cpu;
5350 pg_data_t *self = data;
5351 static DEFINE_SPINLOCK(lock);
5352
5353 spin_lock(&lock);
5354
5355#ifdef CONFIG_NUMA
5356 memset(node_load, 0, sizeof(node_load));
5357#endif
5358
5359 /*
5360 * This node is hotadded and no memory is yet present. So just
5361 * building zonelists is fine - no need to touch other nodes.
5362 */
5363 if (self && !node_online(self->node_id)) {
5364 build_zonelists(self);
5365 } else {
5366 for_each_online_node(nid) {
5367 pg_data_t *pgdat = NODE_DATA(nid);
5368
5369 build_zonelists(pgdat);
5370 }
5371
5372#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373 /*
5374 * We now know the "local memory node" for each node--
5375 * i.e., the node of the first zone in the generic zonelist.
5376 * Set up numa_mem percpu variable for on-line cpus. During
5377 * boot, only the boot cpu should be on-line; we'll init the
5378 * secondary cpus' numa_mem as they come on-line. During
5379 * node/memory hotplug, we'll fixup all on-line cpus.
5380 */
5381 for_each_online_cpu(cpu)
5382 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383#endif
5384 }
5385
5386 spin_unlock(&lock);
5387}
5388
5389static noinline void __init
5390build_all_zonelists_init(void)
5391{
5392 int cpu;
5393
5394 __build_all_zonelists(NULL);
5395
5396 /*
5397 * Initialize the boot_pagesets that are going to be used
5398 * for bootstrapping processors. The real pagesets for
5399 * each zone will be allocated later when the per cpu
5400 * allocator is available.
5401 *
5402 * boot_pagesets are used also for bootstrapping offline
5403 * cpus if the system is already booted because the pagesets
5404 * are needed to initialize allocators on a specific cpu too.
5405 * F.e. the percpu allocator needs the page allocator which
5406 * needs the percpu allocator in order to allocate its pagesets
5407 * (a chicken-egg dilemma).
5408 */
5409 for_each_possible_cpu(cpu)
5410 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5411
5412 mminit_verify_zonelist();
5413 cpuset_init_current_mems_allowed();
5414}
5415
5416/*
5417 * unless system_state == SYSTEM_BOOTING.
5418 *
5419 * __ref due to call of __init annotated helper build_all_zonelists_init
5420 * [protected by SYSTEM_BOOTING].
5421 */
5422void __ref build_all_zonelists(pg_data_t *pgdat)
5423{
5424 if (system_state == SYSTEM_BOOTING) {
5425 build_all_zonelists_init();
5426 } else {
5427 __build_all_zonelists(pgdat);
5428 /* cpuset refresh routine should be here */
5429 }
5430 vm_total_pages = nr_free_pagecache_pages();
5431 /*
5432 * Disable grouping by mobility if the number of pages in the
5433 * system is too low to allow the mechanism to work. It would be
5434 * more accurate, but expensive to check per-zone. This check is
5435 * made on memory-hotadd so a system can start with mobility
5436 * disabled and enable it later
5437 */
5438 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439 page_group_by_mobility_disabled = 1;
5440 else
5441 page_group_by_mobility_disabled = 0;
5442
5443 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5444 nr_online_nodes,
5445 page_group_by_mobility_disabled ? "off" : "on",
5446 vm_total_pages);
5447#ifdef CONFIG_NUMA
5448 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449#endif
5450}
5451
5452/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5453static bool __meminit
5454overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5455{
5456#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5457 static struct memblock_region *r;
5458
5459 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5460 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5461 for_each_memblock(memory, r) {
5462 if (*pfn < memblock_region_memory_end_pfn(r))
5463 break;
5464 }
5465 }
5466 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5467 memblock_is_mirror(r)) {
5468 *pfn = memblock_region_memory_end_pfn(r);
5469 return true;
5470 }
5471 }
5472#endif
5473 return false;
5474}
5475
5476/*
5477 * Initially all pages are reserved - free ones are freed
5478 * up by memblock_free_all() once the early boot process is
5479 * done. Non-atomic initialization, single-pass.
5480 */
5481void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5482 unsigned long start_pfn, enum memmap_context context,
5483 struct vmem_altmap *altmap)
5484{
5485 unsigned long pfn, end_pfn = start_pfn + size;
5486 struct page *page;
5487
5488 if (highest_memmap_pfn < end_pfn - 1)
5489 highest_memmap_pfn = end_pfn - 1;
5490
5491#ifdef CONFIG_ZONE_DEVICE
5492 /*
5493 * Honor reservation requested by the driver for this ZONE_DEVICE
5494 * memory. We limit the total number of pages to initialize to just
5495 * those that might contain the memory mapping. We will defer the
5496 * ZONE_DEVICE page initialization until after we have released
5497 * the hotplug lock.
5498 */
5499 if (zone == ZONE_DEVICE) {
5500 if (!altmap)
5501 return;
5502
5503 if (start_pfn == altmap->base_pfn)
5504 start_pfn += altmap->reserve;
5505 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5506 }
5507#endif
5508
5509 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5510 /*
5511 * There can be holes in boot-time mem_map[]s handed to this
5512 * function. They do not exist on hotplugged memory.
5513 */
5514 if (context == MEMMAP_EARLY) {
5515 if (!early_pfn_valid(pfn))
5516 continue;
5517 if (!early_pfn_in_nid(pfn, nid))
5518 continue;
5519 if (overlap_memmap_init(zone, &pfn))
5520 continue;
5521 if (defer_init(nid, pfn, end_pfn))
5522 break;
5523 }
5524
5525 page = pfn_to_page(pfn);
5526 __init_single_page(page, pfn, zone, nid);
5527 if (context == MEMMAP_HOTPLUG)
5528 __SetPageReserved(page);
5529
5530 /*
5531 * Mark the block movable so that blocks are reserved for
5532 * movable at startup. This will force kernel allocations
5533 * to reserve their blocks rather than leaking throughout
5534 * the address space during boot when many long-lived
5535 * kernel allocations are made.
5536 *
5537 * bitmap is created for zone's valid pfn range. but memmap
5538 * can be created for invalid pages (for alignment)
5539 * check here not to call set_pageblock_migratetype() against
5540 * pfn out of zone.
5541 */
5542 if (!(pfn & (pageblock_nr_pages - 1))) {
5543 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5544 cond_resched();
5545 }
5546 }
5547}
5548
5549#ifdef CONFIG_ZONE_DEVICE
5550void __ref memmap_init_zone_device(struct zone *zone,
5551 unsigned long start_pfn,
5552 unsigned long size,
5553 struct dev_pagemap *pgmap)
5554{
5555 unsigned long pfn, end_pfn = start_pfn + size;
5556 struct pglist_data *pgdat = zone->zone_pgdat;
5557 unsigned long zone_idx = zone_idx(zone);
5558 unsigned long start = jiffies;
5559 int nid = pgdat->node_id;
5560
5561 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5562 return;
5563
5564 /*
5565 * The call to memmap_init_zone should have already taken care
5566 * of the pages reserved for the memmap, so we can just jump to
5567 * the end of that region and start processing the device pages.
5568 */
5569 if (pgmap->altmap_valid) {
5570 struct vmem_altmap *altmap = &pgmap->altmap;
5571
5572 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5573 size = end_pfn - start_pfn;
5574 }
5575
5576 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5577 struct page *page = pfn_to_page(pfn);
5578
5579 __init_single_page(page, pfn, zone_idx, nid);
5580
5581 /*
5582 * Mark page reserved as it will need to wait for onlining
5583 * phase for it to be fully associated with a zone.
5584 *
5585 * We can use the non-atomic __set_bit operation for setting
5586 * the flag as we are still initializing the pages.
5587 */
5588 __SetPageReserved(page);
5589
5590 /*
5591 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5592 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5593 * page is ever freed or placed on a driver-private list.
5594 */
5595 page->pgmap = pgmap;
5596 page->hmm_data = 0;
5597
5598 /*
5599 * Mark the block movable so that blocks are reserved for
5600 * movable at startup. This will force kernel allocations
5601 * to reserve their blocks rather than leaking throughout
5602 * the address space during boot when many long-lived
5603 * kernel allocations are made.
5604 *
5605 * bitmap is created for zone's valid pfn range. but memmap
5606 * can be created for invalid pages (for alignment)
5607 * check here not to call set_pageblock_migratetype() against
5608 * pfn out of zone.
5609 *
5610 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5611 * because this is done early in sparse_add_one_section
5612 */
5613 if (!(pfn & (pageblock_nr_pages - 1))) {
5614 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5615 cond_resched();
5616 }
5617 }
5618
5619 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5620 size, jiffies_to_msecs(jiffies - start));
5621}
5622
5623#endif
5624static void __meminit zone_init_free_lists(struct zone *zone)
5625{
5626 unsigned int order, t;
5627 for_each_migratetype_order(order, t) {
5628 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5629 zone->free_area[order].nr_free = 0;
5630 }
5631}
5632
5633void __meminit __weak memmap_init(unsigned long size, int nid,
5634 unsigned long zone, unsigned long start_pfn)
5635{
5636 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5637}
5638
5639static int zone_batchsize(struct zone *zone)
5640{
5641#ifdef CONFIG_MMU
5642 int batch;
5643
5644 /*
5645 * The per-cpu-pages pools are set to around 1000th of the
5646 * size of the zone.
5647 */
5648 batch = zone->managed_pages / 1024;
5649 /* But no more than a meg. */
5650 if (batch * PAGE_SIZE > 1024 * 1024)
5651 batch = (1024 * 1024) / PAGE_SIZE;
5652 batch /= 4; /* We effectively *= 4 below */
5653 if (batch < 1)
5654 batch = 1;
5655
5656 /*
5657 * Clamp the batch to a 2^n - 1 value. Having a power
5658 * of 2 value was found to be more likely to have
5659 * suboptimal cache aliasing properties in some cases.
5660 *
5661 * For example if 2 tasks are alternately allocating
5662 * batches of pages, one task can end up with a lot
5663 * of pages of one half of the possible page colors
5664 * and the other with pages of the other colors.
5665 */
5666 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5667
5668 return batch;
5669
5670#else
5671 /* The deferral and batching of frees should be suppressed under NOMMU
5672 * conditions.
5673 *
5674 * The problem is that NOMMU needs to be able to allocate large chunks
5675 * of contiguous memory as there's no hardware page translation to
5676 * assemble apparent contiguous memory from discontiguous pages.
5677 *
5678 * Queueing large contiguous runs of pages for batching, however,
5679 * causes the pages to actually be freed in smaller chunks. As there
5680 * can be a significant delay between the individual batches being
5681 * recycled, this leads to the once large chunks of space being
5682 * fragmented and becoming unavailable for high-order allocations.
5683 */
5684 return 0;
5685#endif
5686}
5687
5688/*
5689 * pcp->high and pcp->batch values are related and dependent on one another:
5690 * ->batch must never be higher then ->high.
5691 * The following function updates them in a safe manner without read side
5692 * locking.
5693 *
5694 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5695 * those fields changing asynchronously (acording the the above rule).
5696 *
5697 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5698 * outside of boot time (or some other assurance that no concurrent updaters
5699 * exist).
5700 */
5701static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5702 unsigned long batch)
5703{
5704 /* start with a fail safe value for batch */
5705 pcp->batch = 1;
5706 smp_wmb();
5707
5708 /* Update high, then batch, in order */
5709 pcp->high = high;
5710 smp_wmb();
5711
5712 pcp->batch = batch;
5713}
5714
5715/* a companion to pageset_set_high() */
5716static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5717{
5718 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5719}
5720
5721static void pageset_init(struct per_cpu_pageset *p)
5722{
5723 struct per_cpu_pages *pcp;
5724 int migratetype;
5725
5726 memset(p, 0, sizeof(*p));
5727
5728 pcp = &p->pcp;
5729 pcp->count = 0;
5730 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5731 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5732}
5733
5734static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5735{
5736 pageset_init(p);
5737 pageset_set_batch(p, batch);
5738}
5739
5740/*
5741 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5742 * to the value high for the pageset p.
5743 */
5744static void pageset_set_high(struct per_cpu_pageset *p,
5745 unsigned long high)
5746{
5747 unsigned long batch = max(1UL, high / 4);
5748 if ((high / 4) > (PAGE_SHIFT * 8))
5749 batch = PAGE_SHIFT * 8;
5750
5751 pageset_update(&p->pcp, high, batch);
5752}
5753
5754static void pageset_set_high_and_batch(struct zone *zone,
5755 struct per_cpu_pageset *pcp)
5756{
5757 if (percpu_pagelist_fraction)
5758 pageset_set_high(pcp,
5759 (zone->managed_pages /
5760 percpu_pagelist_fraction));
5761 else
5762 pageset_set_batch(pcp, zone_batchsize(zone));
5763}
5764
5765static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5766{
5767 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5768
5769 pageset_init(pcp);
5770 pageset_set_high_and_batch(zone, pcp);
5771}
5772
5773void __meminit setup_zone_pageset(struct zone *zone)
5774{
5775 int cpu;
5776 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5777 for_each_possible_cpu(cpu)
5778 zone_pageset_init(zone, cpu);
5779}
5780
5781/*
5782 * Allocate per cpu pagesets and initialize them.
5783 * Before this call only boot pagesets were available.
5784 */
5785void __init setup_per_cpu_pageset(void)
5786{
5787 struct pglist_data *pgdat;
5788 struct zone *zone;
5789
5790 for_each_populated_zone(zone)
5791 setup_zone_pageset(zone);
5792
5793 for_each_online_pgdat(pgdat)
5794 pgdat->per_cpu_nodestats =
5795 alloc_percpu(struct per_cpu_nodestat);
5796}
5797
5798static __meminit void zone_pcp_init(struct zone *zone)
5799{
5800 /*
5801 * per cpu subsystem is not up at this point. The following code
5802 * relies on the ability of the linker to provide the
5803 * offset of a (static) per cpu variable into the per cpu area.
5804 */
5805 zone->pageset = &boot_pageset;
5806
5807 if (populated_zone(zone))
5808 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5809 zone->name, zone->present_pages,
5810 zone_batchsize(zone));
5811}
5812
5813void __meminit init_currently_empty_zone(struct zone *zone,
5814 unsigned long zone_start_pfn,
5815 unsigned long size)
5816{
5817 struct pglist_data *pgdat = zone->zone_pgdat;
5818
5819 pgdat->nr_zones = zone_idx(zone) + 1;
5820
5821 zone->zone_start_pfn = zone_start_pfn;
5822
5823 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5824 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5825 pgdat->node_id,
5826 (unsigned long)zone_idx(zone),
5827 zone_start_pfn, (zone_start_pfn + size));
5828
5829 zone_init_free_lists(zone);
5830 zone->initialized = 1;
5831}
5832
5833#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5834#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5835
5836/*
5837 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5838 */
5839int __meminit __early_pfn_to_nid(unsigned long pfn,
5840 struct mminit_pfnnid_cache *state)
5841{
5842 unsigned long start_pfn, end_pfn;
5843 int nid;
5844
5845 if (state->last_start <= pfn && pfn < state->last_end)
5846 return state->last_nid;
5847
5848 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5849 if (nid != -1) {
5850 state->last_start = start_pfn;
5851 state->last_end = end_pfn;
5852 state->last_nid = nid;
5853 }
5854
5855 return nid;
5856}
5857#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5858
5859/**
5860 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5861 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5862 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5863 *
5864 * If an architecture guarantees that all ranges registered contain no holes
5865 * and may be freed, this this function may be used instead of calling
5866 * memblock_free_early_nid() manually.
5867 */
5868void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5869{
5870 unsigned long start_pfn, end_pfn;
5871 int i, this_nid;
5872
5873 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5874 start_pfn = min(start_pfn, max_low_pfn);
5875 end_pfn = min(end_pfn, max_low_pfn);
5876
5877 if (start_pfn < end_pfn)
5878 memblock_free_early_nid(PFN_PHYS(start_pfn),
5879 (end_pfn - start_pfn) << PAGE_SHIFT,
5880 this_nid);
5881 }
5882}
5883
5884/**
5885 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5886 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5887 *
5888 * If an architecture guarantees that all ranges registered contain no holes and may
5889 * be freed, this function may be used instead of calling memory_present() manually.
5890 */
5891void __init sparse_memory_present_with_active_regions(int nid)
5892{
5893 unsigned long start_pfn, end_pfn;
5894 int i, this_nid;
5895
5896 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5897 memory_present(this_nid, start_pfn, end_pfn);
5898}
5899
5900/**
5901 * get_pfn_range_for_nid - Return the start and end page frames for a node
5902 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5903 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5904 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5905 *
5906 * It returns the start and end page frame of a node based on information
5907 * provided by memblock_set_node(). If called for a node
5908 * with no available memory, a warning is printed and the start and end
5909 * PFNs will be 0.
5910 */
5911void __meminit get_pfn_range_for_nid(unsigned int nid,
5912 unsigned long *start_pfn, unsigned long *end_pfn)
5913{
5914 unsigned long this_start_pfn, this_end_pfn;
5915 int i;
5916
5917 *start_pfn = -1UL;
5918 *end_pfn = 0;
5919
5920 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5921 *start_pfn = min(*start_pfn, this_start_pfn);
5922 *end_pfn = max(*end_pfn, this_end_pfn);
5923 }
5924
5925 if (*start_pfn == -1UL)
5926 *start_pfn = 0;
5927}
5928
5929/*
5930 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5931 * assumption is made that zones within a node are ordered in monotonic
5932 * increasing memory addresses so that the "highest" populated zone is used
5933 */
5934static void __init find_usable_zone_for_movable(void)
5935{
5936 int zone_index;
5937 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5938 if (zone_index == ZONE_MOVABLE)
5939 continue;
5940
5941 if (arch_zone_highest_possible_pfn[zone_index] >
5942 arch_zone_lowest_possible_pfn[zone_index])
5943 break;
5944 }
5945
5946 VM_BUG_ON(zone_index == -1);
5947 movable_zone = zone_index;
5948}
5949
5950/*
5951 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5952 * because it is sized independent of architecture. Unlike the other zones,
5953 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5954 * in each node depending on the size of each node and how evenly kernelcore
5955 * is distributed. This helper function adjusts the zone ranges
5956 * provided by the architecture for a given node by using the end of the
5957 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5958 * zones within a node are in order of monotonic increases memory addresses
5959 */
5960static void __meminit adjust_zone_range_for_zone_movable(int nid,
5961 unsigned long zone_type,
5962 unsigned long node_start_pfn,
5963 unsigned long node_end_pfn,
5964 unsigned long *zone_start_pfn,
5965 unsigned long *zone_end_pfn)
5966{
5967 /* Only adjust if ZONE_MOVABLE is on this node */
5968 if (zone_movable_pfn[nid]) {
5969 /* Size ZONE_MOVABLE */
5970 if (zone_type == ZONE_MOVABLE) {
5971 *zone_start_pfn = zone_movable_pfn[nid];
5972 *zone_end_pfn = min(node_end_pfn,
5973 arch_zone_highest_possible_pfn[movable_zone]);
5974
5975 /* Adjust for ZONE_MOVABLE starting within this range */
5976 } else if (!mirrored_kernelcore &&
5977 *zone_start_pfn < zone_movable_pfn[nid] &&
5978 *zone_end_pfn > zone_movable_pfn[nid]) {
5979 *zone_end_pfn = zone_movable_pfn[nid];
5980
5981 /* Check if this whole range is within ZONE_MOVABLE */
5982 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5983 *zone_start_pfn = *zone_end_pfn;
5984 }
5985}
5986
5987/*
5988 * Return the number of pages a zone spans in a node, including holes
5989 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5990 */
5991static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5992 unsigned long zone_type,
5993 unsigned long node_start_pfn,
5994 unsigned long node_end_pfn,
5995 unsigned long *zone_start_pfn,
5996 unsigned long *zone_end_pfn,
5997 unsigned long *ignored)
5998{
5999 /* When hotadd a new node from cpu_up(), the node should be empty */
6000 if (!node_start_pfn && !node_end_pfn)
6001 return 0;
6002
6003 /* Get the start and end of the zone */
6004 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6005 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6006 adjust_zone_range_for_zone_movable(nid, zone_type,
6007 node_start_pfn, node_end_pfn,
6008 zone_start_pfn, zone_end_pfn);
6009
6010 /* Check that this node has pages within the zone's required range */
6011 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6012 return 0;
6013
6014 /* Move the zone boundaries inside the node if necessary */
6015 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6016 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6017
6018 /* Return the spanned pages */
6019 return *zone_end_pfn - *zone_start_pfn;
6020}
6021
6022/*
6023 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6024 * then all holes in the requested range will be accounted for.
6025 */
6026unsigned long __meminit __absent_pages_in_range(int nid,
6027 unsigned long range_start_pfn,
6028 unsigned long range_end_pfn)
6029{
6030 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6031 unsigned long start_pfn, end_pfn;
6032 int i;
6033
6034 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6035 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6036 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6037 nr_absent -= end_pfn - start_pfn;
6038 }
6039 return nr_absent;
6040}
6041
6042/**
6043 * absent_pages_in_range - Return number of page frames in holes within a range
6044 * @start_pfn: The start PFN to start searching for holes
6045 * @end_pfn: The end PFN to stop searching for holes
6046 *
6047 * It returns the number of pages frames in memory holes within a range.
6048 */
6049unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6050 unsigned long end_pfn)
6051{
6052 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6053}
6054
6055/* Return the number of page frames in holes in a zone on a node */
6056static unsigned long __meminit zone_absent_pages_in_node(int nid,
6057 unsigned long zone_type,
6058 unsigned long node_start_pfn,
6059 unsigned long node_end_pfn,
6060 unsigned long *ignored)
6061{
6062 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6063 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6064 unsigned long zone_start_pfn, zone_end_pfn;
6065 unsigned long nr_absent;
6066
6067 /* When hotadd a new node from cpu_up(), the node should be empty */
6068 if (!node_start_pfn && !node_end_pfn)
6069 return 0;
6070
6071 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6072 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6073
6074 adjust_zone_range_for_zone_movable(nid, zone_type,
6075 node_start_pfn, node_end_pfn,
6076 &zone_start_pfn, &zone_end_pfn);
6077 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6078
6079 /*
6080 * ZONE_MOVABLE handling.
6081 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6082 * and vice versa.
6083 */
6084 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6085 unsigned long start_pfn, end_pfn;
6086 struct memblock_region *r;
6087
6088 for_each_memblock(memory, r) {
6089 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6090 zone_start_pfn, zone_end_pfn);
6091 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6092 zone_start_pfn, zone_end_pfn);
6093
6094 if (zone_type == ZONE_MOVABLE &&
6095 memblock_is_mirror(r))
6096 nr_absent += end_pfn - start_pfn;
6097
6098 if (zone_type == ZONE_NORMAL &&
6099 !memblock_is_mirror(r))
6100 nr_absent += end_pfn - start_pfn;
6101 }
6102 }
6103
6104 return nr_absent;
6105}
6106
6107#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6108static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6109 unsigned long zone_type,
6110 unsigned long node_start_pfn,
6111 unsigned long node_end_pfn,
6112 unsigned long *zone_start_pfn,
6113 unsigned long *zone_end_pfn,
6114 unsigned long *zones_size)
6115{
6116 unsigned int zone;
6117
6118 *zone_start_pfn = node_start_pfn;
6119 for (zone = 0; zone < zone_type; zone++)
6120 *zone_start_pfn += zones_size[zone];
6121
6122 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6123
6124 return zones_size[zone_type];
6125}
6126
6127static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6128 unsigned long zone_type,
6129 unsigned long node_start_pfn,
6130 unsigned long node_end_pfn,
6131 unsigned long *zholes_size)
6132{
6133 if (!zholes_size)
6134 return 0;
6135
6136 return zholes_size[zone_type];
6137}
6138
6139#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6140
6141static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6142 unsigned long node_start_pfn,
6143 unsigned long node_end_pfn,
6144 unsigned long *zones_size,
6145 unsigned long *zholes_size)
6146{
6147 unsigned long realtotalpages = 0, totalpages = 0;
6148 enum zone_type i;
6149
6150 for (i = 0; i < MAX_NR_ZONES; i++) {
6151 struct zone *zone = pgdat->node_zones + i;
6152 unsigned long zone_start_pfn, zone_end_pfn;
6153 unsigned long size, real_size;
6154
6155 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6156 node_start_pfn,
6157 node_end_pfn,
6158 &zone_start_pfn,
6159 &zone_end_pfn,
6160 zones_size);
6161 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6162 node_start_pfn, node_end_pfn,
6163 zholes_size);
6164 if (size)
6165 zone->zone_start_pfn = zone_start_pfn;
6166 else
6167 zone->zone_start_pfn = 0;
6168 zone->spanned_pages = size;
6169 zone->present_pages = real_size;
6170
6171 totalpages += size;
6172 realtotalpages += real_size;
6173 }
6174
6175 pgdat->node_spanned_pages = totalpages;
6176 pgdat->node_present_pages = realtotalpages;
6177 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6178 realtotalpages);
6179}
6180
6181#ifndef CONFIG_SPARSEMEM
6182/*
6183 * Calculate the size of the zone->blockflags rounded to an unsigned long
6184 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6185 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6186 * round what is now in bits to nearest long in bits, then return it in
6187 * bytes.
6188 */
6189static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6190{
6191 unsigned long usemapsize;
6192
6193 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6194 usemapsize = roundup(zonesize, pageblock_nr_pages);
6195 usemapsize = usemapsize >> pageblock_order;
6196 usemapsize *= NR_PAGEBLOCK_BITS;
6197 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6198
6199 return usemapsize / 8;
6200}
6201
6202static void __ref setup_usemap(struct pglist_data *pgdat,
6203 struct zone *zone,
6204 unsigned long zone_start_pfn,
6205 unsigned long zonesize)
6206{
6207 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6208 zone->pageblock_flags = NULL;
6209 if (usemapsize)
6210 zone->pageblock_flags =
6211 memblock_alloc_node_nopanic(usemapsize,
6212 pgdat->node_id);
6213}
6214#else
6215static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6216 unsigned long zone_start_pfn, unsigned long zonesize) {}
6217#endif /* CONFIG_SPARSEMEM */
6218
6219#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6220
6221/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6222void __init set_pageblock_order(void)
6223{
6224 unsigned int order;
6225
6226 /* Check that pageblock_nr_pages has not already been setup */
6227 if (pageblock_order)
6228 return;
6229
6230 if (HPAGE_SHIFT > PAGE_SHIFT)
6231 order = HUGETLB_PAGE_ORDER;
6232 else
6233 order = MAX_ORDER - 1;
6234
6235 /*
6236 * Assume the largest contiguous order of interest is a huge page.
6237 * This value may be variable depending on boot parameters on IA64 and
6238 * powerpc.
6239 */
6240 pageblock_order = order;
6241}
6242#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6243
6244/*
6245 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6246 * is unused as pageblock_order is set at compile-time. See
6247 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6248 * the kernel config
6249 */
6250void __init set_pageblock_order(void)
6251{
6252}
6253
6254#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6255
6256static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6257 unsigned long present_pages)
6258{
6259 unsigned long pages = spanned_pages;
6260
6261 /*
6262 * Provide a more accurate estimation if there are holes within
6263 * the zone and SPARSEMEM is in use. If there are holes within the
6264 * zone, each populated memory region may cost us one or two extra
6265 * memmap pages due to alignment because memmap pages for each
6266 * populated regions may not be naturally aligned on page boundary.
6267 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6268 */
6269 if (spanned_pages > present_pages + (present_pages >> 4) &&
6270 IS_ENABLED(CONFIG_SPARSEMEM))
6271 pages = present_pages;
6272
6273 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6274}
6275
6276#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6277static void pgdat_init_split_queue(struct pglist_data *pgdat)
6278{
6279 spin_lock_init(&pgdat->split_queue_lock);
6280 INIT_LIST_HEAD(&pgdat->split_queue);
6281 pgdat->split_queue_len = 0;
6282}
6283#else
6284static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6285#endif
6286
6287#ifdef CONFIG_COMPACTION
6288static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6289{
6290 init_waitqueue_head(&pgdat->kcompactd_wait);
6291}
6292#else
6293static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6294#endif
6295
6296static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6297{
6298 pgdat_resize_init(pgdat);
6299
6300 pgdat_init_split_queue(pgdat);
6301 pgdat_init_kcompactd(pgdat);
6302
6303 init_waitqueue_head(&pgdat->kswapd_wait);
6304 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6305
6306 pgdat_page_ext_init(pgdat);
6307 spin_lock_init(&pgdat->lru_lock);
6308 lruvec_init(node_lruvec(pgdat));
6309}
6310
6311static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6312 unsigned long remaining_pages)
6313{
6314 zone->managed_pages = remaining_pages;
6315 zone_set_nid(zone, nid);
6316 zone->name = zone_names[idx];
6317 zone->zone_pgdat = NODE_DATA(nid);
6318 spin_lock_init(&zone->lock);
6319 zone_seqlock_init(zone);
6320 zone_pcp_init(zone);
6321}
6322
6323/*
6324 * Set up the zone data structures
6325 * - init pgdat internals
6326 * - init all zones belonging to this node
6327 *
6328 * NOTE: this function is only called during memory hotplug
6329 */
6330#ifdef CONFIG_MEMORY_HOTPLUG
6331void __ref free_area_init_core_hotplug(int nid)
6332{
6333 enum zone_type z;
6334 pg_data_t *pgdat = NODE_DATA(nid);
6335
6336 pgdat_init_internals(pgdat);
6337 for (z = 0; z < MAX_NR_ZONES; z++)
6338 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6339}
6340#endif
6341
6342/*
6343 * Set up the zone data structures:
6344 * - mark all pages reserved
6345 * - mark all memory queues empty
6346 * - clear the memory bitmaps
6347 *
6348 * NOTE: pgdat should get zeroed by caller.
6349 * NOTE: this function is only called during early init.
6350 */
6351static void __init free_area_init_core(struct pglist_data *pgdat)
6352{
6353 enum zone_type j;
6354 int nid = pgdat->node_id;
6355
6356 pgdat_init_internals(pgdat);
6357 pgdat->per_cpu_nodestats = &boot_nodestats;
6358
6359 for (j = 0; j < MAX_NR_ZONES; j++) {
6360 struct zone *zone = pgdat->node_zones + j;
6361 unsigned long size, freesize, memmap_pages;
6362 unsigned long zone_start_pfn = zone->zone_start_pfn;
6363
6364 size = zone->spanned_pages;
6365 freesize = zone->present_pages;
6366
6367 /*
6368 * Adjust freesize so that it accounts for how much memory
6369 * is used by this zone for memmap. This affects the watermark
6370 * and per-cpu initialisations
6371 */
6372 memmap_pages = calc_memmap_size(size, freesize);
6373 if (!is_highmem_idx(j)) {
6374 if (freesize >= memmap_pages) {
6375 freesize -= memmap_pages;
6376 if (memmap_pages)
6377 printk(KERN_DEBUG
6378 " %s zone: %lu pages used for memmap\n",
6379 zone_names[j], memmap_pages);
6380 } else
6381 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6382 zone_names[j], memmap_pages, freesize);
6383 }
6384
6385 /* Account for reserved pages */
6386 if (j == 0 && freesize > dma_reserve) {
6387 freesize -= dma_reserve;
6388 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6389 zone_names[0], dma_reserve);
6390 }
6391
6392 if (!is_highmem_idx(j))
6393 nr_kernel_pages += freesize;
6394 /* Charge for highmem memmap if there are enough kernel pages */
6395 else if (nr_kernel_pages > memmap_pages * 2)
6396 nr_kernel_pages -= memmap_pages;
6397 nr_all_pages += freesize;
6398
6399 /*
6400 * Set an approximate value for lowmem here, it will be adjusted
6401 * when the bootmem allocator frees pages into the buddy system.
6402 * And all highmem pages will be managed by the buddy system.
6403 */
6404 zone_init_internals(zone, j, nid, freesize);
6405
6406 if (!size)
6407 continue;
6408
6409 set_pageblock_order();
6410 setup_usemap(pgdat, zone, zone_start_pfn, size);
6411 init_currently_empty_zone(zone, zone_start_pfn, size);
6412 memmap_init(size, nid, j, zone_start_pfn);
6413 }
6414}
6415
6416#ifdef CONFIG_FLAT_NODE_MEM_MAP
6417static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6418{
6419 unsigned long __maybe_unused start = 0;
6420 unsigned long __maybe_unused offset = 0;
6421
6422 /* Skip empty nodes */
6423 if (!pgdat->node_spanned_pages)
6424 return;
6425
6426 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6427 offset = pgdat->node_start_pfn - start;
6428 /* ia64 gets its own node_mem_map, before this, without bootmem */
6429 if (!pgdat->node_mem_map) {
6430 unsigned long size, end;
6431 struct page *map;
6432
6433 /*
6434 * The zone's endpoints aren't required to be MAX_ORDER
6435 * aligned but the node_mem_map endpoints must be in order
6436 * for the buddy allocator to function correctly.
6437 */
6438 end = pgdat_end_pfn(pgdat);
6439 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6440 size = (end - start) * sizeof(struct page);
6441 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6442 pgdat->node_mem_map = map + offset;
6443 }
6444 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6445 __func__, pgdat->node_id, (unsigned long)pgdat,
6446 (unsigned long)pgdat->node_mem_map);
6447#ifndef CONFIG_NEED_MULTIPLE_NODES
6448 /*
6449 * With no DISCONTIG, the global mem_map is just set as node 0's
6450 */
6451 if (pgdat == NODE_DATA(0)) {
6452 mem_map = NODE_DATA(0)->node_mem_map;
6453#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6454 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6455 mem_map -= offset;
6456#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457 }
6458#endif
6459}
6460#else
6461static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6462#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6463
6464#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6465static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6466{
6467 /*
6468 * We start only with one section of pages, more pages are added as
6469 * needed until the rest of deferred pages are initialized.
6470 */
6471 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6472 pgdat->node_spanned_pages);
6473 pgdat->first_deferred_pfn = ULONG_MAX;
6474}
6475#else
6476static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6477#endif
6478
6479void __init free_area_init_node(int nid, unsigned long *zones_size,
6480 unsigned long node_start_pfn,
6481 unsigned long *zholes_size)
6482{
6483 pg_data_t *pgdat = NODE_DATA(nid);
6484 unsigned long start_pfn = 0;
6485 unsigned long end_pfn = 0;
6486
6487 /* pg_data_t should be reset to zero when it's allocated */
6488 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6489
6490 pgdat->node_id = nid;
6491 pgdat->node_start_pfn = node_start_pfn;
6492 pgdat->per_cpu_nodestats = NULL;
6493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6494 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6495 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6496 (u64)start_pfn << PAGE_SHIFT,
6497 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6498#else
6499 start_pfn = node_start_pfn;
6500#endif
6501 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6502 zones_size, zholes_size);
6503
6504 alloc_node_mem_map(pgdat);
6505 pgdat_set_deferred_range(pgdat);
6506
6507 free_area_init_core(pgdat);
6508}
6509
6510#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6511/*
6512 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6513 * pages zeroed
6514 */
6515static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6516{
6517 unsigned long pfn;
6518 u64 pgcnt = 0;
6519
6520 for (pfn = spfn; pfn < epfn; pfn++) {
6521 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6522 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6523 + pageblock_nr_pages - 1;
6524 continue;
6525 }
6526 mm_zero_struct_page(pfn_to_page(pfn));
6527 pgcnt++;
6528 }
6529
6530 return pgcnt;
6531}
6532
6533/*
6534 * Only struct pages that are backed by physical memory are zeroed and
6535 * initialized by going through __init_single_page(). But, there are some
6536 * struct pages which are reserved in memblock allocator and their fields
6537 * may be accessed (for example page_to_pfn() on some configuration accesses
6538 * flags). We must explicitly zero those struct pages.
6539 *
6540 * This function also addresses a similar issue where struct pages are left
6541 * uninitialized because the physical address range is not covered by
6542 * memblock.memory or memblock.reserved. That could happen when memblock
6543 * layout is manually configured via memmap=.
6544 */
6545void __init zero_resv_unavail(void)
6546{
6547 phys_addr_t start, end;
6548 u64 i, pgcnt;
6549 phys_addr_t next = 0;
6550
6551 /*
6552 * Loop through unavailable ranges not covered by memblock.memory.
6553 */
6554 pgcnt = 0;
6555 for_each_mem_range(i, &memblock.memory, NULL,
6556 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6557 if (next < start)
6558 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6559 next = end;
6560 }
6561 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6562
6563 /*
6564 * Struct pages that do not have backing memory. This could be because
6565 * firmware is using some of this memory, or for some other reasons.
6566 */
6567 if (pgcnt)
6568 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6569}
6570#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6571
6572#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6573
6574#if MAX_NUMNODES > 1
6575/*
6576 * Figure out the number of possible node ids.
6577 */
6578void __init setup_nr_node_ids(void)
6579{
6580 unsigned int highest;
6581
6582 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6583 nr_node_ids = highest + 1;
6584}
6585#endif
6586
6587/**
6588 * node_map_pfn_alignment - determine the maximum internode alignment
6589 *
6590 * This function should be called after node map is populated and sorted.
6591 * It calculates the maximum power of two alignment which can distinguish
6592 * all the nodes.
6593 *
6594 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6595 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6596 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6597 * shifted, 1GiB is enough and this function will indicate so.
6598 *
6599 * This is used to test whether pfn -> nid mapping of the chosen memory
6600 * model has fine enough granularity to avoid incorrect mapping for the
6601 * populated node map.
6602 *
6603 * Returns the determined alignment in pfn's. 0 if there is no alignment
6604 * requirement (single node).
6605 */
6606unsigned long __init node_map_pfn_alignment(void)
6607{
6608 unsigned long accl_mask = 0, last_end = 0;
6609 unsigned long start, end, mask;
6610 int last_nid = -1;
6611 int i, nid;
6612
6613 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6614 if (!start || last_nid < 0 || last_nid == nid) {
6615 last_nid = nid;
6616 last_end = end;
6617 continue;
6618 }
6619
6620 /*
6621 * Start with a mask granular enough to pin-point to the
6622 * start pfn and tick off bits one-by-one until it becomes
6623 * too coarse to separate the current node from the last.
6624 */
6625 mask = ~((1 << __ffs(start)) - 1);
6626 while (mask && last_end <= (start & (mask << 1)))
6627 mask <<= 1;
6628
6629 /* accumulate all internode masks */
6630 accl_mask |= mask;
6631 }
6632
6633 /* convert mask to number of pages */
6634 return ~accl_mask + 1;
6635}
6636
6637/* Find the lowest pfn for a node */
6638static unsigned long __init find_min_pfn_for_node(int nid)
6639{
6640 unsigned long min_pfn = ULONG_MAX;
6641 unsigned long start_pfn;
6642 int i;
6643
6644 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6645 min_pfn = min(min_pfn, start_pfn);
6646
6647 if (min_pfn == ULONG_MAX) {
6648 pr_warn("Could not find start_pfn for node %d\n", nid);
6649 return 0;
6650 }
6651
6652 return min_pfn;
6653}
6654
6655/**
6656 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6657 *
6658 * It returns the minimum PFN based on information provided via
6659 * memblock_set_node().
6660 */
6661unsigned long __init find_min_pfn_with_active_regions(void)
6662{
6663 return find_min_pfn_for_node(MAX_NUMNODES);
6664}
6665
6666/*
6667 * early_calculate_totalpages()
6668 * Sum pages in active regions for movable zone.
6669 * Populate N_MEMORY for calculating usable_nodes.
6670 */
6671static unsigned long __init early_calculate_totalpages(void)
6672{
6673 unsigned long totalpages = 0;
6674 unsigned long start_pfn, end_pfn;
6675 int i, nid;
6676
6677 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6678 unsigned long pages = end_pfn - start_pfn;
6679
6680 totalpages += pages;
6681 if (pages)
6682 node_set_state(nid, N_MEMORY);
6683 }
6684 return totalpages;
6685}
6686
6687/*
6688 * Find the PFN the Movable zone begins in each node. Kernel memory
6689 * is spread evenly between nodes as long as the nodes have enough
6690 * memory. When they don't, some nodes will have more kernelcore than
6691 * others
6692 */
6693static void __init find_zone_movable_pfns_for_nodes(void)
6694{
6695 int i, nid;
6696 unsigned long usable_startpfn;
6697 unsigned long kernelcore_node, kernelcore_remaining;
6698 /* save the state before borrow the nodemask */
6699 nodemask_t saved_node_state = node_states[N_MEMORY];
6700 unsigned long totalpages = early_calculate_totalpages();
6701 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6702 struct memblock_region *r;
6703
6704 /* Need to find movable_zone earlier when movable_node is specified. */
6705 find_usable_zone_for_movable();
6706
6707 /*
6708 * If movable_node is specified, ignore kernelcore and movablecore
6709 * options.
6710 */
6711 if (movable_node_is_enabled()) {
6712 for_each_memblock(memory, r) {
6713 if (!memblock_is_hotpluggable(r))
6714 continue;
6715
6716 nid = r->nid;
6717
6718 usable_startpfn = PFN_DOWN(r->base);
6719 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6720 min(usable_startpfn, zone_movable_pfn[nid]) :
6721 usable_startpfn;
6722 }
6723
6724 goto out2;
6725 }
6726
6727 /*
6728 * If kernelcore=mirror is specified, ignore movablecore option
6729 */
6730 if (mirrored_kernelcore) {
6731 bool mem_below_4gb_not_mirrored = false;
6732
6733 for_each_memblock(memory, r) {
6734 if (memblock_is_mirror(r))
6735 continue;
6736
6737 nid = r->nid;
6738
6739 usable_startpfn = memblock_region_memory_base_pfn(r);
6740
6741 if (usable_startpfn < 0x100000) {
6742 mem_below_4gb_not_mirrored = true;
6743 continue;
6744 }
6745
6746 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6747 min(usable_startpfn, zone_movable_pfn[nid]) :
6748 usable_startpfn;
6749 }
6750
6751 if (mem_below_4gb_not_mirrored)
6752 pr_warn("This configuration results in unmirrored kernel memory.");
6753
6754 goto out2;
6755 }
6756
6757 /*
6758 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6759 * amount of necessary memory.
6760 */
6761 if (required_kernelcore_percent)
6762 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6763 10000UL;
6764 if (required_movablecore_percent)
6765 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6766 10000UL;
6767
6768 /*
6769 * If movablecore= was specified, calculate what size of
6770 * kernelcore that corresponds so that memory usable for
6771 * any allocation type is evenly spread. If both kernelcore
6772 * and movablecore are specified, then the value of kernelcore
6773 * will be used for required_kernelcore if it's greater than
6774 * what movablecore would have allowed.
6775 */
6776 if (required_movablecore) {
6777 unsigned long corepages;
6778
6779 /*
6780 * Round-up so that ZONE_MOVABLE is at least as large as what
6781 * was requested by the user
6782 */
6783 required_movablecore =
6784 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6785 required_movablecore = min(totalpages, required_movablecore);
6786 corepages = totalpages - required_movablecore;
6787
6788 required_kernelcore = max(required_kernelcore, corepages);
6789 }
6790
6791 /*
6792 * If kernelcore was not specified or kernelcore size is larger
6793 * than totalpages, there is no ZONE_MOVABLE.
6794 */
6795 if (!required_kernelcore || required_kernelcore >= totalpages)
6796 goto out;
6797
6798 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6799 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6800
6801restart:
6802 /* Spread kernelcore memory as evenly as possible throughout nodes */
6803 kernelcore_node = required_kernelcore / usable_nodes;
6804 for_each_node_state(nid, N_MEMORY) {
6805 unsigned long start_pfn, end_pfn;
6806
6807 /*
6808 * Recalculate kernelcore_node if the division per node
6809 * now exceeds what is necessary to satisfy the requested
6810 * amount of memory for the kernel
6811 */
6812 if (required_kernelcore < kernelcore_node)
6813 kernelcore_node = required_kernelcore / usable_nodes;
6814
6815 /*
6816 * As the map is walked, we track how much memory is usable
6817 * by the kernel using kernelcore_remaining. When it is
6818 * 0, the rest of the node is usable by ZONE_MOVABLE
6819 */
6820 kernelcore_remaining = kernelcore_node;
6821
6822 /* Go through each range of PFNs within this node */
6823 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6824 unsigned long size_pages;
6825
6826 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6827 if (start_pfn >= end_pfn)
6828 continue;
6829
6830 /* Account for what is only usable for kernelcore */
6831 if (start_pfn < usable_startpfn) {
6832 unsigned long kernel_pages;
6833 kernel_pages = min(end_pfn, usable_startpfn)
6834 - start_pfn;
6835
6836 kernelcore_remaining -= min(kernel_pages,
6837 kernelcore_remaining);
6838 required_kernelcore -= min(kernel_pages,
6839 required_kernelcore);
6840
6841 /* Continue if range is now fully accounted */
6842 if (end_pfn <= usable_startpfn) {
6843
6844 /*
6845 * Push zone_movable_pfn to the end so
6846 * that if we have to rebalance
6847 * kernelcore across nodes, we will
6848 * not double account here
6849 */
6850 zone_movable_pfn[nid] = end_pfn;
6851 continue;
6852 }
6853 start_pfn = usable_startpfn;
6854 }
6855
6856 /*
6857 * The usable PFN range for ZONE_MOVABLE is from
6858 * start_pfn->end_pfn. Calculate size_pages as the
6859 * number of pages used as kernelcore
6860 */
6861 size_pages = end_pfn - start_pfn;
6862 if (size_pages > kernelcore_remaining)
6863 size_pages = kernelcore_remaining;
6864 zone_movable_pfn[nid] = start_pfn + size_pages;
6865
6866 /*
6867 * Some kernelcore has been met, update counts and
6868 * break if the kernelcore for this node has been
6869 * satisfied
6870 */
6871 required_kernelcore -= min(required_kernelcore,
6872 size_pages);
6873 kernelcore_remaining -= size_pages;
6874 if (!kernelcore_remaining)
6875 break;
6876 }
6877 }
6878
6879 /*
6880 * If there is still required_kernelcore, we do another pass with one
6881 * less node in the count. This will push zone_movable_pfn[nid] further
6882 * along on the nodes that still have memory until kernelcore is
6883 * satisfied
6884 */
6885 usable_nodes--;
6886 if (usable_nodes && required_kernelcore > usable_nodes)
6887 goto restart;
6888
6889out2:
6890 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6891 for (nid = 0; nid < MAX_NUMNODES; nid++)
6892 zone_movable_pfn[nid] =
6893 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6894
6895out:
6896 /* restore the node_state */
6897 node_states[N_MEMORY] = saved_node_state;
6898}
6899
6900/* Any regular or high memory on that node ? */
6901static void check_for_memory(pg_data_t *pgdat, int nid)
6902{
6903 enum zone_type zone_type;
6904
6905 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6906 struct zone *zone = &pgdat->node_zones[zone_type];
6907 if (populated_zone(zone)) {
6908 if (IS_ENABLED(CONFIG_HIGHMEM))
6909 node_set_state(nid, N_HIGH_MEMORY);
6910 if (zone_type <= ZONE_NORMAL)
6911 node_set_state(nid, N_NORMAL_MEMORY);
6912 break;
6913 }
6914 }
6915}
6916
6917/**
6918 * free_area_init_nodes - Initialise all pg_data_t and zone data
6919 * @max_zone_pfn: an array of max PFNs for each zone
6920 *
6921 * This will call free_area_init_node() for each active node in the system.
6922 * Using the page ranges provided by memblock_set_node(), the size of each
6923 * zone in each node and their holes is calculated. If the maximum PFN
6924 * between two adjacent zones match, it is assumed that the zone is empty.
6925 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6926 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6927 * starts where the previous one ended. For example, ZONE_DMA32 starts
6928 * at arch_max_dma_pfn.
6929 */
6930void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6931{
6932 unsigned long start_pfn, end_pfn;
6933 int i, nid;
6934
6935 /* Record where the zone boundaries are */
6936 memset(arch_zone_lowest_possible_pfn, 0,
6937 sizeof(arch_zone_lowest_possible_pfn));
6938 memset(arch_zone_highest_possible_pfn, 0,
6939 sizeof(arch_zone_highest_possible_pfn));
6940
6941 start_pfn = find_min_pfn_with_active_regions();
6942
6943 for (i = 0; i < MAX_NR_ZONES; i++) {
6944 if (i == ZONE_MOVABLE)
6945 continue;
6946
6947 end_pfn = max(max_zone_pfn[i], start_pfn);
6948 arch_zone_lowest_possible_pfn[i] = start_pfn;
6949 arch_zone_highest_possible_pfn[i] = end_pfn;
6950
6951 start_pfn = end_pfn;
6952 }
6953
6954 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6955 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6956 find_zone_movable_pfns_for_nodes();
6957
6958 /* Print out the zone ranges */
6959 pr_info("Zone ranges:\n");
6960 for (i = 0; i < MAX_NR_ZONES; i++) {
6961 if (i == ZONE_MOVABLE)
6962 continue;
6963 pr_info(" %-8s ", zone_names[i]);
6964 if (arch_zone_lowest_possible_pfn[i] ==
6965 arch_zone_highest_possible_pfn[i])
6966 pr_cont("empty\n");
6967 else
6968 pr_cont("[mem %#018Lx-%#018Lx]\n",
6969 (u64)arch_zone_lowest_possible_pfn[i]
6970 << PAGE_SHIFT,
6971 ((u64)arch_zone_highest_possible_pfn[i]
6972 << PAGE_SHIFT) - 1);
6973 }
6974
6975 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6976 pr_info("Movable zone start for each node\n");
6977 for (i = 0; i < MAX_NUMNODES; i++) {
6978 if (zone_movable_pfn[i])
6979 pr_info(" Node %d: %#018Lx\n", i,
6980 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6981 }
6982
6983 /* Print out the early node map */
6984 pr_info("Early memory node ranges\n");
6985 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6986 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6987 (u64)start_pfn << PAGE_SHIFT,
6988 ((u64)end_pfn << PAGE_SHIFT) - 1);
6989
6990 /* Initialise every node */
6991 mminit_verify_pageflags_layout();
6992 setup_nr_node_ids();
6993 zero_resv_unavail();
6994 for_each_online_node(nid) {
6995 pg_data_t *pgdat = NODE_DATA(nid);
6996 free_area_init_node(nid, NULL,
6997 find_min_pfn_for_node(nid), NULL);
6998
6999 /* Any memory on that node */
7000 if (pgdat->node_present_pages)
7001 node_set_state(nid, N_MEMORY);
7002 check_for_memory(pgdat, nid);
7003 }
7004}
7005
7006static int __init cmdline_parse_core(char *p, unsigned long *core,
7007 unsigned long *percent)
7008{
7009 unsigned long long coremem;
7010 char *endptr;
7011
7012 if (!p)
7013 return -EINVAL;
7014
7015 /* Value may be a percentage of total memory, otherwise bytes */
7016 coremem = simple_strtoull(p, &endptr, 0);
7017 if (*endptr == '%') {
7018 /* Paranoid check for percent values greater than 100 */
7019 WARN_ON(coremem > 100);
7020
7021 *percent = coremem;
7022 } else {
7023 coremem = memparse(p, &p);
7024 /* Paranoid check that UL is enough for the coremem value */
7025 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7026
7027 *core = coremem >> PAGE_SHIFT;
7028 *percent = 0UL;
7029 }
7030 return 0;
7031}
7032
7033/*
7034 * kernelcore=size sets the amount of memory for use for allocations that
7035 * cannot be reclaimed or migrated.
7036 */
7037static int __init cmdline_parse_kernelcore(char *p)
7038{
7039 /* parse kernelcore=mirror */
7040 if (parse_option_str(p, "mirror")) {
7041 mirrored_kernelcore = true;
7042 return 0;
7043 }
7044
7045 return cmdline_parse_core(p, &required_kernelcore,
7046 &required_kernelcore_percent);
7047}
7048
7049/*
7050 * movablecore=size sets the amount of memory for use for allocations that
7051 * can be reclaimed or migrated.
7052 */
7053static int __init cmdline_parse_movablecore(char *p)
7054{
7055 return cmdline_parse_core(p, &required_movablecore,
7056 &required_movablecore_percent);
7057}
7058
7059early_param("kernelcore", cmdline_parse_kernelcore);
7060early_param("movablecore", cmdline_parse_movablecore);
7061
7062#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7063
7064void adjust_managed_page_count(struct page *page, long count)
7065{
7066 spin_lock(&managed_page_count_lock);
7067 page_zone(page)->managed_pages += count;
7068 totalram_pages += count;
7069#ifdef CONFIG_HIGHMEM
7070 if (PageHighMem(page))
7071 totalhigh_pages += count;
7072#endif
7073 spin_unlock(&managed_page_count_lock);
7074}
7075EXPORT_SYMBOL(adjust_managed_page_count);
7076
7077unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7078{
7079 void *pos;
7080 unsigned long pages = 0;
7081
7082 start = (void *)PAGE_ALIGN((unsigned long)start);
7083 end = (void *)((unsigned long)end & PAGE_MASK);
7084 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7085 struct page *page = virt_to_page(pos);
7086 void *direct_map_addr;
7087
7088 /*
7089 * 'direct_map_addr' might be different from 'pos'
7090 * because some architectures' virt_to_page()
7091 * work with aliases. Getting the direct map
7092 * address ensures that we get a _writeable_
7093 * alias for the memset().
7094 */
7095 direct_map_addr = page_address(page);
7096 if ((unsigned int)poison <= 0xFF)
7097 memset(direct_map_addr, poison, PAGE_SIZE);
7098
7099 free_reserved_page(page);
7100 }
7101
7102 if (pages && s)
7103 pr_info("Freeing %s memory: %ldK\n",
7104 s, pages << (PAGE_SHIFT - 10));
7105
7106 return pages;
7107}
7108EXPORT_SYMBOL(free_reserved_area);
7109
7110#ifdef CONFIG_HIGHMEM
7111void free_highmem_page(struct page *page)
7112{
7113 __free_reserved_page(page);
7114 totalram_pages++;
7115 page_zone(page)->managed_pages++;
7116 totalhigh_pages++;
7117}
7118#endif
7119
7120
7121void __init mem_init_print_info(const char *str)
7122{
7123 unsigned long physpages, codesize, datasize, rosize, bss_size;
7124 unsigned long init_code_size, init_data_size;
7125
7126 physpages = get_num_physpages();
7127 codesize = _etext - _stext;
7128 datasize = _edata - _sdata;
7129 rosize = __end_rodata - __start_rodata;
7130 bss_size = __bss_stop - __bss_start;
7131 init_data_size = __init_end - __init_begin;
7132 init_code_size = _einittext - _sinittext;
7133
7134 /*
7135 * Detect special cases and adjust section sizes accordingly:
7136 * 1) .init.* may be embedded into .data sections
7137 * 2) .init.text.* may be out of [__init_begin, __init_end],
7138 * please refer to arch/tile/kernel/vmlinux.lds.S.
7139 * 3) .rodata.* may be embedded into .text or .data sections.
7140 */
7141#define adj_init_size(start, end, size, pos, adj) \
7142 do { \
7143 if (start <= pos && pos < end && size > adj) \
7144 size -= adj; \
7145 } while (0)
7146
7147 adj_init_size(__init_begin, __init_end, init_data_size,
7148 _sinittext, init_code_size);
7149 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7150 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7151 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7152 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7153
7154#undef adj_init_size
7155
7156 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7157#ifdef CONFIG_HIGHMEM
7158 ", %luK highmem"
7159#endif
7160 "%s%s)\n",
7161 nr_free_pages() << (PAGE_SHIFT - 10),
7162 physpages << (PAGE_SHIFT - 10),
7163 codesize >> 10, datasize >> 10, rosize >> 10,
7164 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7165 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7166 totalcma_pages << (PAGE_SHIFT - 10),
7167#ifdef CONFIG_HIGHMEM
7168 totalhigh_pages << (PAGE_SHIFT - 10),
7169#endif
7170 str ? ", " : "", str ? str : "");
7171}
7172
7173/**
7174 * set_dma_reserve - set the specified number of pages reserved in the first zone
7175 * @new_dma_reserve: The number of pages to mark reserved
7176 *
7177 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7178 * In the DMA zone, a significant percentage may be consumed by kernel image
7179 * and other unfreeable allocations which can skew the watermarks badly. This
7180 * function may optionally be used to account for unfreeable pages in the
7181 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7182 * smaller per-cpu batchsize.
7183 */
7184void __init set_dma_reserve(unsigned long new_dma_reserve)
7185{
7186 dma_reserve = new_dma_reserve;
7187}
7188
7189void __init free_area_init(unsigned long *zones_size)
7190{
7191 zero_resv_unavail();
7192 free_area_init_node(0, zones_size,
7193 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7194}
7195
7196static int page_alloc_cpu_dead(unsigned int cpu)
7197{
7198
7199 lru_add_drain_cpu(cpu);
7200 drain_pages(cpu);
7201
7202 /*
7203 * Spill the event counters of the dead processor
7204 * into the current processors event counters.
7205 * This artificially elevates the count of the current
7206 * processor.
7207 */
7208 vm_events_fold_cpu(cpu);
7209
7210 /*
7211 * Zero the differential counters of the dead processor
7212 * so that the vm statistics are consistent.
7213 *
7214 * This is only okay since the processor is dead and cannot
7215 * race with what we are doing.
7216 */
7217 cpu_vm_stats_fold(cpu);
7218 return 0;
7219}
7220
7221void __init page_alloc_init(void)
7222{
7223 int ret;
7224
7225 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7226 "mm/page_alloc:dead", NULL,
7227 page_alloc_cpu_dead);
7228 WARN_ON(ret < 0);
7229}
7230
7231/*
7232 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7233 * or min_free_kbytes changes.
7234 */
7235static void calculate_totalreserve_pages(void)
7236{
7237 struct pglist_data *pgdat;
7238 unsigned long reserve_pages = 0;
7239 enum zone_type i, j;
7240
7241 for_each_online_pgdat(pgdat) {
7242
7243 pgdat->totalreserve_pages = 0;
7244
7245 for (i = 0; i < MAX_NR_ZONES; i++) {
7246 struct zone *zone = pgdat->node_zones + i;
7247 long max = 0;
7248
7249 /* Find valid and maximum lowmem_reserve in the zone */
7250 for (j = i; j < MAX_NR_ZONES; j++) {
7251 if (zone->lowmem_reserve[j] > max)
7252 max = zone->lowmem_reserve[j];
7253 }
7254
7255 /* we treat the high watermark as reserved pages. */
7256 max += high_wmark_pages(zone);
7257
7258 if (max > zone->managed_pages)
7259 max = zone->managed_pages;
7260
7261 pgdat->totalreserve_pages += max;
7262
7263 reserve_pages += max;
7264 }
7265 }
7266 totalreserve_pages = reserve_pages;
7267}
7268
7269/*
7270 * setup_per_zone_lowmem_reserve - called whenever
7271 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7272 * has a correct pages reserved value, so an adequate number of
7273 * pages are left in the zone after a successful __alloc_pages().
7274 */
7275static void setup_per_zone_lowmem_reserve(void)
7276{
7277 struct pglist_data *pgdat;
7278 enum zone_type j, idx;
7279
7280 for_each_online_pgdat(pgdat) {
7281 for (j = 0; j < MAX_NR_ZONES; j++) {
7282 struct zone *zone = pgdat->node_zones + j;
7283 unsigned long managed_pages = zone->managed_pages;
7284
7285 zone->lowmem_reserve[j] = 0;
7286
7287 idx = j;
7288 while (idx) {
7289 struct zone *lower_zone;
7290
7291 idx--;
7292 lower_zone = pgdat->node_zones + idx;
7293
7294 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7295 sysctl_lowmem_reserve_ratio[idx] = 0;
7296 lower_zone->lowmem_reserve[j] = 0;
7297 } else {
7298 lower_zone->lowmem_reserve[j] =
7299 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7300 }
7301 managed_pages += lower_zone->managed_pages;
7302 }
7303 }
7304 }
7305
7306 /* update totalreserve_pages */
7307 calculate_totalreserve_pages();
7308}
7309
7310static void __setup_per_zone_wmarks(void)
7311{
7312 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7313 unsigned long lowmem_pages = 0;
7314 struct zone *zone;
7315 unsigned long flags;
7316
7317 /* Calculate total number of !ZONE_HIGHMEM pages */
7318 for_each_zone(zone) {
7319 if (!is_highmem(zone))
7320 lowmem_pages += zone->managed_pages;
7321 }
7322
7323 for_each_zone(zone) {
7324 u64 tmp;
7325
7326 spin_lock_irqsave(&zone->lock, flags);
7327 tmp = (u64)pages_min * zone->managed_pages;
7328 do_div(tmp, lowmem_pages);
7329 if (is_highmem(zone)) {
7330 /*
7331 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7332 * need highmem pages, so cap pages_min to a small
7333 * value here.
7334 *
7335 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7336 * deltas control asynch page reclaim, and so should
7337 * not be capped for highmem.
7338 */
7339 unsigned long min_pages;
7340
7341 min_pages = zone->managed_pages / 1024;
7342 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7343 zone->watermark[WMARK_MIN] = min_pages;
7344 } else {
7345 /*
7346 * If it's a lowmem zone, reserve a number of pages
7347 * proportionate to the zone's size.
7348 */
7349 zone->watermark[WMARK_MIN] = tmp;
7350 }
7351
7352 /*
7353 * Set the kswapd watermarks distance according to the
7354 * scale factor in proportion to available memory, but
7355 * ensure a minimum size on small systems.
7356 */
7357 tmp = max_t(u64, tmp >> 2,
7358 mult_frac(zone->managed_pages,
7359 watermark_scale_factor, 10000));
7360
7361 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7362 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7363
7364 spin_unlock_irqrestore(&zone->lock, flags);
7365 }
7366
7367 /* update totalreserve_pages */
7368 calculate_totalreserve_pages();
7369}
7370
7371/**
7372 * setup_per_zone_wmarks - called when min_free_kbytes changes
7373 * or when memory is hot-{added|removed}
7374 *
7375 * Ensures that the watermark[min,low,high] values for each zone are set
7376 * correctly with respect to min_free_kbytes.
7377 */
7378void setup_per_zone_wmarks(void)
7379{
7380 static DEFINE_SPINLOCK(lock);
7381
7382 spin_lock(&lock);
7383 __setup_per_zone_wmarks();
7384 spin_unlock(&lock);
7385}
7386
7387/*
7388 * Initialise min_free_kbytes.
7389 *
7390 * For small machines we want it small (128k min). For large machines
7391 * we want it large (64MB max). But it is not linear, because network
7392 * bandwidth does not increase linearly with machine size. We use
7393 *
7394 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7395 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7396 *
7397 * which yields
7398 *
7399 * 16MB: 512k
7400 * 32MB: 724k
7401 * 64MB: 1024k
7402 * 128MB: 1448k
7403 * 256MB: 2048k
7404 * 512MB: 2896k
7405 * 1024MB: 4096k
7406 * 2048MB: 5792k
7407 * 4096MB: 8192k
7408 * 8192MB: 11584k
7409 * 16384MB: 16384k
7410 */
7411int __meminit init_per_zone_wmark_min(void)
7412{
7413 unsigned long lowmem_kbytes;
7414 int new_min_free_kbytes;
7415
7416 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7417 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7418
7419 if (new_min_free_kbytes > user_min_free_kbytes) {
7420 min_free_kbytes = new_min_free_kbytes;
7421 if (min_free_kbytes < 128)
7422 min_free_kbytes = 128;
7423 if (min_free_kbytes > 65536)
7424 min_free_kbytes = 65536;
7425 } else {
7426 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7427 new_min_free_kbytes, user_min_free_kbytes);
7428 }
7429 setup_per_zone_wmarks();
7430 refresh_zone_stat_thresholds();
7431 setup_per_zone_lowmem_reserve();
7432
7433#ifdef CONFIG_NUMA
7434 setup_min_unmapped_ratio();
7435 setup_min_slab_ratio();
7436#endif
7437
7438 return 0;
7439}
7440core_initcall(init_per_zone_wmark_min)
7441
7442/*
7443 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7444 * that we can call two helper functions whenever min_free_kbytes
7445 * changes.
7446 */
7447int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7448 void __user *buffer, size_t *length, loff_t *ppos)
7449{
7450 int rc;
7451
7452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7453 if (rc)
7454 return rc;
7455
7456 if (write) {
7457 user_min_free_kbytes = min_free_kbytes;
7458 setup_per_zone_wmarks();
7459 }
7460 return 0;
7461}
7462
7463int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7464 void __user *buffer, size_t *length, loff_t *ppos)
7465{
7466 int rc;
7467
7468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7469 if (rc)
7470 return rc;
7471
7472 if (write)
7473 setup_per_zone_wmarks();
7474
7475 return 0;
7476}
7477
7478#ifdef CONFIG_NUMA
7479static void setup_min_unmapped_ratio(void)
7480{
7481 pg_data_t *pgdat;
7482 struct zone *zone;
7483
7484 for_each_online_pgdat(pgdat)
7485 pgdat->min_unmapped_pages = 0;
7486
7487 for_each_zone(zone)
7488 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7489 sysctl_min_unmapped_ratio) / 100;
7490}
7491
7492
7493int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7494 void __user *buffer, size_t *length, loff_t *ppos)
7495{
7496 int rc;
7497
7498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7499 if (rc)
7500 return rc;
7501
7502 setup_min_unmapped_ratio();
7503
7504 return 0;
7505}
7506
7507static void setup_min_slab_ratio(void)
7508{
7509 pg_data_t *pgdat;
7510 struct zone *zone;
7511
7512 for_each_online_pgdat(pgdat)
7513 pgdat->min_slab_pages = 0;
7514
7515 for_each_zone(zone)
7516 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7517 sysctl_min_slab_ratio) / 100;
7518}
7519
7520int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7521 void __user *buffer, size_t *length, loff_t *ppos)
7522{
7523 int rc;
7524
7525 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7526 if (rc)
7527 return rc;
7528
7529 setup_min_slab_ratio();
7530
7531 return 0;
7532}
7533#endif
7534
7535/*
7536 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7537 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7538 * whenever sysctl_lowmem_reserve_ratio changes.
7539 *
7540 * The reserve ratio obviously has absolutely no relation with the
7541 * minimum watermarks. The lowmem reserve ratio can only make sense
7542 * if in function of the boot time zone sizes.
7543 */
7544int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7545 void __user *buffer, size_t *length, loff_t *ppos)
7546{
7547 proc_dointvec_minmax(table, write, buffer, length, ppos);
7548 setup_per_zone_lowmem_reserve();
7549 return 0;
7550}
7551
7552/*
7553 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7554 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7555 * pagelist can have before it gets flushed back to buddy allocator.
7556 */
7557int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7558 void __user *buffer, size_t *length, loff_t *ppos)
7559{
7560 struct zone *zone;
7561 int old_percpu_pagelist_fraction;
7562 int ret;
7563
7564 mutex_lock(&pcp_batch_high_lock);
7565 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7566
7567 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7568 if (!write || ret < 0)
7569 goto out;
7570
7571 /* Sanity checking to avoid pcp imbalance */
7572 if (percpu_pagelist_fraction &&
7573 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7574 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7575 ret = -EINVAL;
7576 goto out;
7577 }
7578
7579 /* No change? */
7580 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7581 goto out;
7582
7583 for_each_populated_zone(zone) {
7584 unsigned int cpu;
7585
7586 for_each_possible_cpu(cpu)
7587 pageset_set_high_and_batch(zone,
7588 per_cpu_ptr(zone->pageset, cpu));
7589 }
7590out:
7591 mutex_unlock(&pcp_batch_high_lock);
7592 return ret;
7593}
7594
7595#ifdef CONFIG_NUMA
7596int hashdist = HASHDIST_DEFAULT;
7597
7598static int __init set_hashdist(char *str)
7599{
7600 if (!str)
7601 return 0;
7602 hashdist = simple_strtoul(str, &str, 0);
7603 return 1;
7604}
7605__setup("hashdist=", set_hashdist);
7606#endif
7607
7608#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7609/*
7610 * Returns the number of pages that arch has reserved but
7611 * is not known to alloc_large_system_hash().
7612 */
7613static unsigned long __init arch_reserved_kernel_pages(void)
7614{
7615 return 0;
7616}
7617#endif
7618
7619/*
7620 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7621 * machines. As memory size is increased the scale is also increased but at
7622 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7623 * quadruples the scale is increased by one, which means the size of hash table
7624 * only doubles, instead of quadrupling as well.
7625 * Because 32-bit systems cannot have large physical memory, where this scaling
7626 * makes sense, it is disabled on such platforms.
7627 */
7628#if __BITS_PER_LONG > 32
7629#define ADAPT_SCALE_BASE (64ul << 30)
7630#define ADAPT_SCALE_SHIFT 2
7631#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7632#endif
7633
7634/*
7635 * allocate a large system hash table from bootmem
7636 * - it is assumed that the hash table must contain an exact power-of-2
7637 * quantity of entries
7638 * - limit is the number of hash buckets, not the total allocation size
7639 */
7640void *__init alloc_large_system_hash(const char *tablename,
7641 unsigned long bucketsize,
7642 unsigned long numentries,
7643 int scale,
7644 int flags,
7645 unsigned int *_hash_shift,
7646 unsigned int *_hash_mask,
7647 unsigned long low_limit,
7648 unsigned long high_limit)
7649{
7650 unsigned long long max = high_limit;
7651 unsigned long log2qty, size;
7652 void *table = NULL;
7653 gfp_t gfp_flags;
7654
7655 /* allow the kernel cmdline to have a say */
7656 if (!numentries) {
7657 /* round applicable memory size up to nearest megabyte */
7658 numentries = nr_kernel_pages;
7659 numentries -= arch_reserved_kernel_pages();
7660
7661 /* It isn't necessary when PAGE_SIZE >= 1MB */
7662 if (PAGE_SHIFT < 20)
7663 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7664
7665#if __BITS_PER_LONG > 32
7666 if (!high_limit) {
7667 unsigned long adapt;
7668
7669 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7670 adapt <<= ADAPT_SCALE_SHIFT)
7671 scale++;
7672 }
7673#endif
7674
7675 /* limit to 1 bucket per 2^scale bytes of low memory */
7676 if (scale > PAGE_SHIFT)
7677 numentries >>= (scale - PAGE_SHIFT);
7678 else
7679 numentries <<= (PAGE_SHIFT - scale);
7680
7681 /* Make sure we've got at least a 0-order allocation.. */
7682 if (unlikely(flags & HASH_SMALL)) {
7683 /* Makes no sense without HASH_EARLY */
7684 WARN_ON(!(flags & HASH_EARLY));
7685 if (!(numentries >> *_hash_shift)) {
7686 numentries = 1UL << *_hash_shift;
7687 BUG_ON(!numentries);
7688 }
7689 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7690 numentries = PAGE_SIZE / bucketsize;
7691 }
7692 numentries = roundup_pow_of_two(numentries);
7693
7694 /* limit allocation size to 1/16 total memory by default */
7695 if (max == 0) {
7696 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7697 do_div(max, bucketsize);
7698 }
7699 max = min(max, 0x80000000ULL);
7700
7701 if (numentries < low_limit)
7702 numentries = low_limit;
7703 if (numentries > max)
7704 numentries = max;
7705
7706 log2qty = ilog2(numentries);
7707
7708 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7709 do {
7710 size = bucketsize << log2qty;
7711 if (flags & HASH_EARLY) {
7712 if (flags & HASH_ZERO)
7713 table = memblock_alloc_nopanic(size,
7714 SMP_CACHE_BYTES);
7715 else
7716 table = memblock_alloc_raw(size,
7717 SMP_CACHE_BYTES);
7718 } else if (hashdist) {
7719 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7720 } else {
7721 /*
7722 * If bucketsize is not a power-of-two, we may free
7723 * some pages at the end of hash table which
7724 * alloc_pages_exact() automatically does
7725 */
7726 if (get_order(size) < MAX_ORDER) {
7727 table = alloc_pages_exact(size, gfp_flags);
7728 kmemleak_alloc(table, size, 1, gfp_flags);
7729 }
7730 }
7731 } while (!table && size > PAGE_SIZE && --log2qty);
7732
7733 if (!table)
7734 panic("Failed to allocate %s hash table\n", tablename);
7735
7736 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7737 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7738
7739 if (_hash_shift)
7740 *_hash_shift = log2qty;
7741 if (_hash_mask)
7742 *_hash_mask = (1 << log2qty) - 1;
7743
7744 return table;
7745}
7746
7747/*
7748 * This function checks whether pageblock includes unmovable pages or not.
7749 * If @count is not zero, it is okay to include less @count unmovable pages
7750 *
7751 * PageLRU check without isolation or lru_lock could race so that
7752 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7753 * check without lock_page also may miss some movable non-lru pages at
7754 * race condition. So you can't expect this function should be exact.
7755 */
7756bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7757 int migratetype,
7758 bool skip_hwpoisoned_pages)
7759{
7760 unsigned long pfn, iter, found;
7761
7762 /*
7763 * TODO we could make this much more efficient by not checking every
7764 * page in the range if we know all of them are in MOVABLE_ZONE and
7765 * that the movable zone guarantees that pages are migratable but
7766 * the later is not the case right now unfortunatelly. E.g. movablecore
7767 * can still lead to having bootmem allocations in zone_movable.
7768 */
7769
7770 /*
7771 * CMA allocations (alloc_contig_range) really need to mark isolate
7772 * CMA pageblocks even when they are not movable in fact so consider
7773 * them movable here.
7774 */
7775 if (is_migrate_cma(migratetype) &&
7776 is_migrate_cma(get_pageblock_migratetype(page)))
7777 return false;
7778
7779 pfn = page_to_pfn(page);
7780 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7781 unsigned long check = pfn + iter;
7782
7783 if (!pfn_valid_within(check))
7784 continue;
7785
7786 page = pfn_to_page(check);
7787
7788 if (PageReserved(page))
7789 goto unmovable;
7790
7791 /*
7792 * Hugepages are not in LRU lists, but they're movable.
7793 * We need not scan over tail pages bacause we don't
7794 * handle each tail page individually in migration.
7795 */
7796 if (PageHuge(page)) {
7797
7798 if (!hugepage_migration_supported(page_hstate(page)))
7799 goto unmovable;
7800
7801 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7802 continue;
7803 }
7804
7805 /*
7806 * We can't use page_count without pin a page
7807 * because another CPU can free compound page.
7808 * This check already skips compound tails of THP
7809 * because their page->_refcount is zero at all time.
7810 */
7811 if (!page_ref_count(page)) {
7812 if (PageBuddy(page))
7813 iter += (1 << page_order(page)) - 1;
7814 continue;
7815 }
7816
7817 /*
7818 * The HWPoisoned page may be not in buddy system, and
7819 * page_count() is not 0.
7820 */
7821 if (skip_hwpoisoned_pages && PageHWPoison(page))
7822 continue;
7823
7824 if (__PageMovable(page))
7825 continue;
7826
7827 if (!PageLRU(page))
7828 found++;
7829 /*
7830 * If there are RECLAIMABLE pages, we need to check
7831 * it. But now, memory offline itself doesn't call
7832 * shrink_node_slabs() and it still to be fixed.
7833 */
7834 /*
7835 * If the page is not RAM, page_count()should be 0.
7836 * we don't need more check. This is an _used_ not-movable page.
7837 *
7838 * The problematic thing here is PG_reserved pages. PG_reserved
7839 * is set to both of a memory hole page and a _used_ kernel
7840 * page at boot.
7841 */
7842 if (found > count)
7843 goto unmovable;
7844 }
7845 return false;
7846unmovable:
7847 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7848 return true;
7849}
7850
7851#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7852
7853static unsigned long pfn_max_align_down(unsigned long pfn)
7854{
7855 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7856 pageblock_nr_pages) - 1);
7857}
7858
7859static unsigned long pfn_max_align_up(unsigned long pfn)
7860{
7861 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7862 pageblock_nr_pages));
7863}
7864
7865/* [start, end) must belong to a single zone. */
7866static int __alloc_contig_migrate_range(struct compact_control *cc,
7867 unsigned long start, unsigned long end)
7868{
7869 /* This function is based on compact_zone() from compaction.c. */
7870 unsigned long nr_reclaimed;
7871 unsigned long pfn = start;
7872 unsigned int tries = 0;
7873 int ret = 0;
7874
7875 migrate_prep();
7876
7877 while (pfn < end || !list_empty(&cc->migratepages)) {
7878 if (fatal_signal_pending(current)) {
7879 ret = -EINTR;
7880 break;
7881 }
7882
7883 if (list_empty(&cc->migratepages)) {
7884 cc->nr_migratepages = 0;
7885 pfn = isolate_migratepages_range(cc, pfn, end);
7886 if (!pfn) {
7887 ret = -EINTR;
7888 break;
7889 }
7890 tries = 0;
7891 } else if (++tries == 5) {
7892 ret = ret < 0 ? ret : -EBUSY;
7893 break;
7894 }
7895
7896 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7897 &cc->migratepages);
7898 cc->nr_migratepages -= nr_reclaimed;
7899
7900 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7901 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7902 }
7903 if (ret < 0) {
7904 putback_movable_pages(&cc->migratepages);
7905 return ret;
7906 }
7907 return 0;
7908}
7909
7910/**
7911 * alloc_contig_range() -- tries to allocate given range of pages
7912 * @start: start PFN to allocate
7913 * @end: one-past-the-last PFN to allocate
7914 * @migratetype: migratetype of the underlaying pageblocks (either
7915 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7916 * in range must have the same migratetype and it must
7917 * be either of the two.
7918 * @gfp_mask: GFP mask to use during compaction
7919 *
7920 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7921 * aligned. The PFN range must belong to a single zone.
7922 *
7923 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7924 * pageblocks in the range. Once isolated, the pageblocks should not
7925 * be modified by others.
7926 *
7927 * Returns zero on success or negative error code. On success all
7928 * pages which PFN is in [start, end) are allocated for the caller and
7929 * need to be freed with free_contig_range().
7930 */
7931int alloc_contig_range(unsigned long start, unsigned long end,
7932 unsigned migratetype, gfp_t gfp_mask)
7933{
7934 unsigned long outer_start, outer_end;
7935 unsigned int order;
7936 int ret = 0;
7937
7938 struct compact_control cc = {
7939 .nr_migratepages = 0,
7940 .order = -1,
7941 .zone = page_zone(pfn_to_page(start)),
7942 .mode = MIGRATE_SYNC,
7943 .ignore_skip_hint = true,
7944 .no_set_skip_hint = true,
7945 .gfp_mask = current_gfp_context(gfp_mask),
7946 };
7947 INIT_LIST_HEAD(&cc.migratepages);
7948
7949 /*
7950 * What we do here is we mark all pageblocks in range as
7951 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7952 * have different sizes, and due to the way page allocator
7953 * work, we align the range to biggest of the two pages so
7954 * that page allocator won't try to merge buddies from
7955 * different pageblocks and change MIGRATE_ISOLATE to some
7956 * other migration type.
7957 *
7958 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7959 * migrate the pages from an unaligned range (ie. pages that
7960 * we are interested in). This will put all the pages in
7961 * range back to page allocator as MIGRATE_ISOLATE.
7962 *
7963 * When this is done, we take the pages in range from page
7964 * allocator removing them from the buddy system. This way
7965 * page allocator will never consider using them.
7966 *
7967 * This lets us mark the pageblocks back as
7968 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7969 * aligned range but not in the unaligned, original range are
7970 * put back to page allocator so that buddy can use them.
7971 */
7972
7973 ret = start_isolate_page_range(pfn_max_align_down(start),
7974 pfn_max_align_up(end), migratetype,
7975 false);
7976 if (ret)
7977 return ret;
7978
7979 /*
7980 * In case of -EBUSY, we'd like to know which page causes problem.
7981 * So, just fall through. test_pages_isolated() has a tracepoint
7982 * which will report the busy page.
7983 *
7984 * It is possible that busy pages could become available before
7985 * the call to test_pages_isolated, and the range will actually be
7986 * allocated. So, if we fall through be sure to clear ret so that
7987 * -EBUSY is not accidentally used or returned to caller.
7988 */
7989 ret = __alloc_contig_migrate_range(&cc, start, end);
7990 if (ret && ret != -EBUSY)
7991 goto done;
7992 ret =0;
7993
7994 /*
7995 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7996 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7997 * more, all pages in [start, end) are free in page allocator.
7998 * What we are going to do is to allocate all pages from
7999 * [start, end) (that is remove them from page allocator).
8000 *
8001 * The only problem is that pages at the beginning and at the
8002 * end of interesting range may be not aligned with pages that
8003 * page allocator holds, ie. they can be part of higher order
8004 * pages. Because of this, we reserve the bigger range and
8005 * once this is done free the pages we are not interested in.
8006 *
8007 * We don't have to hold zone->lock here because the pages are
8008 * isolated thus they won't get removed from buddy.
8009 */
8010
8011 lru_add_drain_all();
8012 drain_all_pages(cc.zone);
8013
8014 order = 0;
8015 outer_start = start;
8016 while (!PageBuddy(pfn_to_page(outer_start))) {
8017 if (++order >= MAX_ORDER) {
8018 outer_start = start;
8019 break;
8020 }
8021 outer_start &= ~0UL << order;
8022 }
8023
8024 if (outer_start != start) {
8025 order = page_order(pfn_to_page(outer_start));
8026
8027 /*
8028 * outer_start page could be small order buddy page and
8029 * it doesn't include start page. Adjust outer_start
8030 * in this case to report failed page properly
8031 * on tracepoint in test_pages_isolated()
8032 */
8033 if (outer_start + (1UL << order) <= start)
8034 outer_start = start;
8035 }
8036
8037 /* Make sure the range is really isolated. */
8038 if (test_pages_isolated(outer_start, end, false)) {
8039 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8040 __func__, outer_start, end);
8041 ret = -EBUSY;
8042 goto done;
8043 }
8044
8045 /* Grab isolated pages from freelists. */
8046 outer_end = isolate_freepages_range(&cc, outer_start, end);
8047 if (!outer_end) {
8048 ret = -EBUSY;
8049 goto done;
8050 }
8051
8052 /* Free head and tail (if any) */
8053 if (start != outer_start)
8054 free_contig_range(outer_start, start - outer_start);
8055 if (end != outer_end)
8056 free_contig_range(end, outer_end - end);
8057
8058done:
8059 undo_isolate_page_range(pfn_max_align_down(start),
8060 pfn_max_align_up(end), migratetype);
8061 return ret;
8062}
8063
8064void free_contig_range(unsigned long pfn, unsigned nr_pages)
8065{
8066 unsigned int count = 0;
8067
8068 for (; nr_pages--; pfn++) {
8069 struct page *page = pfn_to_page(pfn);
8070
8071 count += page_count(page) != 1;
8072 __free_page(page);
8073 }
8074 WARN(count != 0, "%d pages are still in use!\n", count);
8075}
8076#endif
8077
8078#ifdef CONFIG_MEMORY_HOTPLUG
8079/*
8080 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8081 * page high values need to be recalulated.
8082 */
8083void __meminit zone_pcp_update(struct zone *zone)
8084{
8085 unsigned cpu;
8086 mutex_lock(&pcp_batch_high_lock);
8087 for_each_possible_cpu(cpu)
8088 pageset_set_high_and_batch(zone,
8089 per_cpu_ptr(zone->pageset, cpu));
8090 mutex_unlock(&pcp_batch_high_lock);
8091}
8092#endif
8093
8094void zone_pcp_reset(struct zone *zone)
8095{
8096 unsigned long flags;
8097 int cpu;
8098 struct per_cpu_pageset *pset;
8099
8100 /* avoid races with drain_pages() */
8101 local_irq_save(flags);
8102 if (zone->pageset != &boot_pageset) {
8103 for_each_online_cpu(cpu) {
8104 pset = per_cpu_ptr(zone->pageset, cpu);
8105 drain_zonestat(zone, pset);
8106 }
8107 free_percpu(zone->pageset);
8108 zone->pageset = &boot_pageset;
8109 }
8110 local_irq_restore(flags);
8111}
8112
8113#ifdef CONFIG_MEMORY_HOTREMOVE
8114/*
8115 * All pages in the range must be in a single zone and isolated
8116 * before calling this.
8117 */
8118void
8119__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8120{
8121 struct page *page;
8122 struct zone *zone;
8123 unsigned int order, i;
8124 unsigned long pfn;
8125 unsigned long flags;
8126 /* find the first valid pfn */
8127 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8128 if (pfn_valid(pfn))
8129 break;
8130 if (pfn == end_pfn)
8131 return;
8132 offline_mem_sections(pfn, end_pfn);
8133 zone = page_zone(pfn_to_page(pfn));
8134 spin_lock_irqsave(&zone->lock, flags);
8135 pfn = start_pfn;
8136 while (pfn < end_pfn) {
8137 if (!pfn_valid(pfn)) {
8138 pfn++;
8139 continue;
8140 }
8141 page = pfn_to_page(pfn);
8142 /*
8143 * The HWPoisoned page may be not in buddy system, and
8144 * page_count() is not 0.
8145 */
8146 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8147 pfn++;
8148 SetPageReserved(page);
8149 continue;
8150 }
8151
8152 BUG_ON(page_count(page));
8153 BUG_ON(!PageBuddy(page));
8154 order = page_order(page);
8155#ifdef CONFIG_DEBUG_VM
8156 pr_info("remove from free list %lx %d %lx\n",
8157 pfn, 1 << order, end_pfn);
8158#endif
8159 list_del(&page->lru);
8160 rmv_page_order(page);
8161 zone->free_area[order].nr_free--;
8162 for (i = 0; i < (1 << order); i++)
8163 SetPageReserved((page+i));
8164 pfn += (1 << order);
8165 }
8166 spin_unlock_irqrestore(&zone->lock, flags);
8167}
8168#endif
8169
8170bool is_free_buddy_page(struct page *page)
8171{
8172 struct zone *zone = page_zone(page);
8173 unsigned long pfn = page_to_pfn(page);
8174 unsigned long flags;
8175 unsigned int order;
8176
8177 spin_lock_irqsave(&zone->lock, flags);
8178 for (order = 0; order < MAX_ORDER; order++) {
8179 struct page *page_head = page - (pfn & ((1 << order) - 1));
8180
8181 if (PageBuddy(page_head) && page_order(page_head) >= order)
8182 break;
8183 }
8184 spin_unlock_irqrestore(&zone->lock, flags);
8185
8186 return order < MAX_ORDER;
8187}
8188
8189#ifdef CONFIG_MEMORY_FAILURE
8190/*
8191 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8192 * test is performed under the zone lock to prevent a race against page
8193 * allocation.
8194 */
8195bool set_hwpoison_free_buddy_page(struct page *page)
8196{
8197 struct zone *zone = page_zone(page);
8198 unsigned long pfn = page_to_pfn(page);
8199 unsigned long flags;
8200 unsigned int order;
8201 bool hwpoisoned = false;
8202
8203 spin_lock_irqsave(&zone->lock, flags);
8204 for (order = 0; order < MAX_ORDER; order++) {
8205 struct page *page_head = page - (pfn & ((1 << order) - 1));
8206
8207 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8208 if (!TestSetPageHWPoison(page))
8209 hwpoisoned = true;
8210 break;
8211 }
8212 }
8213 spin_unlock_irqrestore(&zone->lock, flags);
8214
8215 return hwpoisoned;
8216}
8217#endif