Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/bug.h>
21#include <linux/cache.h>
22#include <linux/rbtree.h>
23#include <linux/socket.h>
24#include <linux/refcount.h>
25
26#include <linux/atomic.h>
27#include <asm/types.h>
28#include <linux/spinlock.h>
29#include <linux/net.h>
30#include <linux/textsearch.h>
31#include <net/checksum.h>
32#include <linux/rcupdate.h>
33#include <linux/hrtimer.h>
34#include <linux/dma-mapping.h>
35#include <linux/netdev_features.h>
36#include <linux/sched.h>
37#include <linux/sched/clock.h>
38#include <net/flow_dissector.h>
39#include <linux/splice.h>
40#include <linux/in6.h>
41#include <linux/if_packet.h>
42#include <net/flow.h>
43
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219/* Don't change this without changing skb_csum_unnecessary! */
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
224
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229#define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241struct net_device;
242struct scatterlist;
243struct pipe_inode_info;
244struct iov_iter;
245struct napi_struct;
246struct bpf_prog;
247union bpf_attr;
248
249#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
250struct nf_conntrack {
251 atomic_t use;
252};
253#endif
254
255#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
256struct nf_bridge_info {
257 refcount_t use;
258 enum {
259 BRNF_PROTO_UNCHANGED,
260 BRNF_PROTO_8021Q,
261 BRNF_PROTO_PPPOE
262 } orig_proto:8;
263 u8 pkt_otherhost:1;
264 u8 in_prerouting:1;
265 u8 bridged_dnat:1;
266 __u16 frag_max_size;
267 struct net_device *physindev;
268
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
271 union {
272 /* prerouting: detect dnat in orig/reply direction */
273 __be32 ipv4_daddr;
274 struct in6_addr ipv6_daddr;
275
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
279 */
280 char neigh_header[8];
281 };
282};
283#endif
284
285struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
289
290 __u32 qlen;
291 spinlock_t lock;
292};
293
294struct sk_buff;
295
296/* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
299 *
300 * Since GRO uses frags we allocate at least 16 regardless of page
301 * size.
302 */
303#if (65536/PAGE_SIZE + 1) < 16
304#define MAX_SKB_FRAGS 16UL
305#else
306#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307#endif
308extern int sysctl_max_skb_frags;
309
310/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
312 */
313#define GSO_BY_FRAGS 0xFFFF
314
315typedef struct skb_frag_struct skb_frag_t;
316
317struct skb_frag_struct {
318 struct {
319 struct page *p;
320 } page;
321#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 __u32 page_offset;
323 __u32 size;
324#else
325 __u16 page_offset;
326 __u16 size;
327#endif
328};
329
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336{
337 frag->size = size;
338}
339
340static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341{
342 frag->size += delta;
343}
344
345static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346{
347 frag->size -= delta;
348}
349
350static inline bool skb_frag_must_loop(struct page *p)
351{
352#if defined(CONFIG_HIGHMEM)
353 if (PageHighMem(p))
354 return true;
355#endif
356 return false;
357}
358
359/**
360 * skb_frag_foreach_page - loop over pages in a fragment
361 *
362 * @f: skb frag to operate on
363 * @f_off: offset from start of f->page.p
364 * @f_len: length from f_off to loop over
365 * @p: (temp var) current page
366 * @p_off: (temp var) offset from start of current page,
367 * non-zero only on first page.
368 * @p_len: (temp var) length in current page,
369 * < PAGE_SIZE only on first and last page.
370 * @copied: (temp var) length so far, excluding current p_len.
371 *
372 * A fragment can hold a compound page, in which case per-page
373 * operations, notably kmap_atomic, must be called for each
374 * regular page.
375 */
376#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
378 p_off = (f_off) & (PAGE_SIZE - 1), \
379 p_len = skb_frag_must_loop(p) ? \
380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied = 0; \
382 copied < f_len; \
383 copied += p_len, p++, p_off = 0, \
384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
385
386#define HAVE_HW_TIME_STAMP
387
388/**
389 * struct skb_shared_hwtstamps - hardware time stamps
390 * @hwtstamp: hardware time stamp transformed into duration
391 * since arbitrary point in time
392 *
393 * Software time stamps generated by ktime_get_real() are stored in
394 * skb->tstamp.
395 *
396 * hwtstamps can only be compared against other hwtstamps from
397 * the same device.
398 *
399 * This structure is attached to packets as part of the
400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401 */
402struct skb_shared_hwtstamps {
403 ktime_t hwtstamp;
404};
405
406/* Definitions for tx_flags in struct skb_shared_info */
407enum {
408 /* generate hardware time stamp */
409 SKBTX_HW_TSTAMP = 1 << 0,
410
411 /* generate software time stamp when queueing packet to NIC */
412 SKBTX_SW_TSTAMP = 1 << 1,
413
414 /* device driver is going to provide hardware time stamp */
415 SKBTX_IN_PROGRESS = 1 << 2,
416
417 /* device driver supports TX zero-copy buffers */
418 SKBTX_DEV_ZEROCOPY = 1 << 3,
419
420 /* generate wifi status information (where possible) */
421 SKBTX_WIFI_STATUS = 1 << 4,
422
423 /* This indicates at least one fragment might be overwritten
424 * (as in vmsplice(), sendfile() ...)
425 * If we need to compute a TX checksum, we'll need to copy
426 * all frags to avoid possible bad checksum
427 */
428 SKBTX_SHARED_FRAG = 1 << 5,
429
430 /* generate software time stamp when entering packet scheduling */
431 SKBTX_SCHED_TSTAMP = 1 << 6,
432};
433
434#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
436 SKBTX_SCHED_TSTAMP)
437#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438
439/*
440 * The callback notifies userspace to release buffers when skb DMA is done in
441 * lower device, the skb last reference should be 0 when calling this.
442 * The zerocopy_success argument is true if zero copy transmit occurred,
443 * false on data copy or out of memory error caused by data copy attempt.
444 * The ctx field is used to track device context.
445 * The desc field is used to track userspace buffer index.
446 */
447struct ubuf_info {
448 void (*callback)(struct ubuf_info *, bool zerocopy_success);
449 union {
450 struct {
451 unsigned long desc;
452 void *ctx;
453 };
454 struct {
455 u32 id;
456 u16 len;
457 u16 zerocopy:1;
458 u32 bytelen;
459 };
460 };
461 refcount_t refcnt;
462
463 struct mmpin {
464 struct user_struct *user;
465 unsigned int num_pg;
466 } mmp;
467};
468
469#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470
471int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472void mm_unaccount_pinned_pages(struct mmpin *mmp);
473
474struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 struct ubuf_info *uarg);
477
478static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479{
480 refcount_inc(&uarg->refcnt);
481}
482
483void sock_zerocopy_put(struct ubuf_info *uarg);
484void sock_zerocopy_put_abort(struct ubuf_info *uarg);
485
486void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487
488int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
489 struct msghdr *msg, int len,
490 struct ubuf_info *uarg);
491
492/* This data is invariant across clones and lives at
493 * the end of the header data, ie. at skb->end.
494 */
495struct skb_shared_info {
496 __u8 __unused;
497 __u8 meta_len;
498 __u8 nr_frags;
499 __u8 tx_flags;
500 unsigned short gso_size;
501 /* Warning: this field is not always filled in (UFO)! */
502 unsigned short gso_segs;
503 struct sk_buff *frag_list;
504 struct skb_shared_hwtstamps hwtstamps;
505 unsigned int gso_type;
506 u32 tskey;
507
508 /*
509 * Warning : all fields before dataref are cleared in __alloc_skb()
510 */
511 atomic_t dataref;
512
513 /* Intermediate layers must ensure that destructor_arg
514 * remains valid until skb destructor */
515 void * destructor_arg;
516
517 /* must be last field, see pskb_expand_head() */
518 skb_frag_t frags[MAX_SKB_FRAGS];
519};
520
521/* We divide dataref into two halves. The higher 16 bits hold references
522 * to the payload part of skb->data. The lower 16 bits hold references to
523 * the entire skb->data. A clone of a headerless skb holds the length of
524 * the header in skb->hdr_len.
525 *
526 * All users must obey the rule that the skb->data reference count must be
527 * greater than or equal to the payload reference count.
528 *
529 * Holding a reference to the payload part means that the user does not
530 * care about modifications to the header part of skb->data.
531 */
532#define SKB_DATAREF_SHIFT 16
533#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
534
535
536enum {
537 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
538 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
539 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
540};
541
542enum {
543 SKB_GSO_TCPV4 = 1 << 0,
544
545 /* This indicates the skb is from an untrusted source. */
546 SKB_GSO_DODGY = 1 << 1,
547
548 /* This indicates the tcp segment has CWR set. */
549 SKB_GSO_TCP_ECN = 1 << 2,
550
551 SKB_GSO_TCP_FIXEDID = 1 << 3,
552
553 SKB_GSO_TCPV6 = 1 << 4,
554
555 SKB_GSO_FCOE = 1 << 5,
556
557 SKB_GSO_GRE = 1 << 6,
558
559 SKB_GSO_GRE_CSUM = 1 << 7,
560
561 SKB_GSO_IPXIP4 = 1 << 8,
562
563 SKB_GSO_IPXIP6 = 1 << 9,
564
565 SKB_GSO_UDP_TUNNEL = 1 << 10,
566
567 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
568
569 SKB_GSO_PARTIAL = 1 << 12,
570
571 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
572
573 SKB_GSO_SCTP = 1 << 14,
574
575 SKB_GSO_ESP = 1 << 15,
576
577 SKB_GSO_UDP = 1 << 16,
578
579 SKB_GSO_UDP_L4 = 1 << 17,
580};
581
582#if BITS_PER_LONG > 32
583#define NET_SKBUFF_DATA_USES_OFFSET 1
584#endif
585
586#ifdef NET_SKBUFF_DATA_USES_OFFSET
587typedef unsigned int sk_buff_data_t;
588#else
589typedef unsigned char *sk_buff_data_t;
590#endif
591
592/**
593 * struct sk_buff - socket buffer
594 * @next: Next buffer in list
595 * @prev: Previous buffer in list
596 * @tstamp: Time we arrived/left
597 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
598 * @sk: Socket we are owned by
599 * @dev: Device we arrived on/are leaving by
600 * @cb: Control buffer. Free for use by every layer. Put private vars here
601 * @_skb_refdst: destination entry (with norefcount bit)
602 * @sp: the security path, used for xfrm
603 * @len: Length of actual data
604 * @data_len: Data length
605 * @mac_len: Length of link layer header
606 * @hdr_len: writable header length of cloned skb
607 * @csum: Checksum (must include start/offset pair)
608 * @csum_start: Offset from skb->head where checksumming should start
609 * @csum_offset: Offset from csum_start where checksum should be stored
610 * @priority: Packet queueing priority
611 * @ignore_df: allow local fragmentation
612 * @cloned: Head may be cloned (check refcnt to be sure)
613 * @ip_summed: Driver fed us an IP checksum
614 * @nohdr: Payload reference only, must not modify header
615 * @pkt_type: Packet class
616 * @fclone: skbuff clone status
617 * @ipvs_property: skbuff is owned by ipvs
618 * @tc_skip_classify: do not classify packet. set by IFB device
619 * @tc_at_ingress: used within tc_classify to distinguish in/egress
620 * @tc_redirected: packet was redirected by a tc action
621 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
622 * @peeked: this packet has been seen already, so stats have been
623 * done for it, don't do them again
624 * @nf_trace: netfilter packet trace flag
625 * @protocol: Packet protocol from driver
626 * @destructor: Destruct function
627 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
628 * @_nfct: Associated connection, if any (with nfctinfo bits)
629 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
630 * @skb_iif: ifindex of device we arrived on
631 * @tc_index: Traffic control index
632 * @hash: the packet hash
633 * @queue_mapping: Queue mapping for multiqueue devices
634 * @xmit_more: More SKBs are pending for this queue
635 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
636 * @ndisc_nodetype: router type (from link layer)
637 * @ooo_okay: allow the mapping of a socket to a queue to be changed
638 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
639 * ports.
640 * @sw_hash: indicates hash was computed in software stack
641 * @wifi_acked_valid: wifi_acked was set
642 * @wifi_acked: whether frame was acked on wifi or not
643 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
644 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
645 * @dst_pending_confirm: need to confirm neighbour
646 * @decrypted: Decrypted SKB
647 * @napi_id: id of the NAPI struct this skb came from
648 * @secmark: security marking
649 * @mark: Generic packet mark
650 * @vlan_proto: vlan encapsulation protocol
651 * @vlan_tci: vlan tag control information
652 * @inner_protocol: Protocol (encapsulation)
653 * @inner_transport_header: Inner transport layer header (encapsulation)
654 * @inner_network_header: Network layer header (encapsulation)
655 * @inner_mac_header: Link layer header (encapsulation)
656 * @transport_header: Transport layer header
657 * @network_header: Network layer header
658 * @mac_header: Link layer header
659 * @tail: Tail pointer
660 * @end: End pointer
661 * @head: Head of buffer
662 * @data: Data head pointer
663 * @truesize: Buffer size
664 * @users: User count - see {datagram,tcp}.c
665 */
666
667struct sk_buff {
668 union {
669 struct {
670 /* These two members must be first. */
671 struct sk_buff *next;
672 struct sk_buff *prev;
673
674 union {
675 struct net_device *dev;
676 /* Some protocols might use this space to store information,
677 * while device pointer would be NULL.
678 * UDP receive path is one user.
679 */
680 unsigned long dev_scratch;
681 };
682 };
683 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
684 struct list_head list;
685 };
686
687 union {
688 struct sock *sk;
689 int ip_defrag_offset;
690 };
691
692 union {
693 ktime_t tstamp;
694 u64 skb_mstamp_ns; /* earliest departure time */
695 };
696 /*
697 * This is the control buffer. It is free to use for every
698 * layer. Please put your private variables there. If you
699 * want to keep them across layers you have to do a skb_clone()
700 * first. This is owned by whoever has the skb queued ATM.
701 */
702 char cb[48] __aligned(8);
703
704 union {
705 struct {
706 unsigned long _skb_refdst;
707 void (*destructor)(struct sk_buff *skb);
708 };
709 struct list_head tcp_tsorted_anchor;
710 };
711
712#ifdef CONFIG_XFRM
713 struct sec_path *sp;
714#endif
715#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
716 unsigned long _nfct;
717#endif
718#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
719 struct nf_bridge_info *nf_bridge;
720#endif
721 unsigned int len,
722 data_len;
723 __u16 mac_len,
724 hdr_len;
725
726 /* Following fields are _not_ copied in __copy_skb_header()
727 * Note that queue_mapping is here mostly to fill a hole.
728 */
729 __u16 queue_mapping;
730
731/* if you move cloned around you also must adapt those constants */
732#ifdef __BIG_ENDIAN_BITFIELD
733#define CLONED_MASK (1 << 7)
734#else
735#define CLONED_MASK 1
736#endif
737#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
738
739 __u8 __cloned_offset[0];
740 __u8 cloned:1,
741 nohdr:1,
742 fclone:2,
743 peeked:1,
744 head_frag:1,
745 xmit_more:1,
746 pfmemalloc:1;
747
748 /* fields enclosed in headers_start/headers_end are copied
749 * using a single memcpy() in __copy_skb_header()
750 */
751 /* private: */
752 __u32 headers_start[0];
753 /* public: */
754
755/* if you move pkt_type around you also must adapt those constants */
756#ifdef __BIG_ENDIAN_BITFIELD
757#define PKT_TYPE_MAX (7 << 5)
758#else
759#define PKT_TYPE_MAX 7
760#endif
761#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
762
763 __u8 __pkt_type_offset[0];
764 __u8 pkt_type:3;
765 __u8 ignore_df:1;
766 __u8 nf_trace:1;
767 __u8 ip_summed:2;
768 __u8 ooo_okay:1;
769
770 __u8 l4_hash:1;
771 __u8 sw_hash:1;
772 __u8 wifi_acked_valid:1;
773 __u8 wifi_acked:1;
774 __u8 no_fcs:1;
775 /* Indicates the inner headers are valid in the skbuff. */
776 __u8 encapsulation:1;
777 __u8 encap_hdr_csum:1;
778 __u8 csum_valid:1;
779
780 __u8 csum_complete_sw:1;
781 __u8 csum_level:2;
782 __u8 csum_not_inet:1;
783 __u8 dst_pending_confirm:1;
784#ifdef CONFIG_IPV6_NDISC_NODETYPE
785 __u8 ndisc_nodetype:2;
786#endif
787 __u8 ipvs_property:1;
788
789 __u8 inner_protocol_type:1;
790 __u8 remcsum_offload:1;
791#ifdef CONFIG_NET_SWITCHDEV
792 __u8 offload_fwd_mark:1;
793 __u8 offload_mr_fwd_mark:1;
794#endif
795#ifdef CONFIG_NET_CLS_ACT
796 __u8 tc_skip_classify:1;
797 __u8 tc_at_ingress:1;
798 __u8 tc_redirected:1;
799 __u8 tc_from_ingress:1;
800#endif
801#ifdef CONFIG_TLS_DEVICE
802 __u8 decrypted:1;
803#endif
804
805#ifdef CONFIG_NET_SCHED
806 __u16 tc_index; /* traffic control index */
807#endif
808
809 union {
810 __wsum csum;
811 struct {
812 __u16 csum_start;
813 __u16 csum_offset;
814 };
815 };
816 __u32 priority;
817 int skb_iif;
818 __u32 hash;
819 __be16 vlan_proto;
820 __u16 vlan_tci;
821#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
822 union {
823 unsigned int napi_id;
824 unsigned int sender_cpu;
825 };
826#endif
827#ifdef CONFIG_NETWORK_SECMARK
828 __u32 secmark;
829#endif
830
831 union {
832 __u32 mark;
833 __u32 reserved_tailroom;
834 };
835
836 union {
837 __be16 inner_protocol;
838 __u8 inner_ipproto;
839 };
840
841 __u16 inner_transport_header;
842 __u16 inner_network_header;
843 __u16 inner_mac_header;
844
845 __be16 protocol;
846 __u16 transport_header;
847 __u16 network_header;
848 __u16 mac_header;
849
850 /* private: */
851 __u32 headers_end[0];
852 /* public: */
853
854 /* These elements must be at the end, see alloc_skb() for details. */
855 sk_buff_data_t tail;
856 sk_buff_data_t end;
857 unsigned char *head,
858 *data;
859 unsigned int truesize;
860 refcount_t users;
861};
862
863#ifdef __KERNEL__
864/*
865 * Handling routines are only of interest to the kernel
866 */
867
868#define SKB_ALLOC_FCLONE 0x01
869#define SKB_ALLOC_RX 0x02
870#define SKB_ALLOC_NAPI 0x04
871
872/* Returns true if the skb was allocated from PFMEMALLOC reserves */
873static inline bool skb_pfmemalloc(const struct sk_buff *skb)
874{
875 return unlikely(skb->pfmemalloc);
876}
877
878/*
879 * skb might have a dst pointer attached, refcounted or not.
880 * _skb_refdst low order bit is set if refcount was _not_ taken
881 */
882#define SKB_DST_NOREF 1UL
883#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
884
885#define SKB_NFCT_PTRMASK ~(7UL)
886/**
887 * skb_dst - returns skb dst_entry
888 * @skb: buffer
889 *
890 * Returns skb dst_entry, regardless of reference taken or not.
891 */
892static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
893{
894 /* If refdst was not refcounted, check we still are in a
895 * rcu_read_lock section
896 */
897 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
898 !rcu_read_lock_held() &&
899 !rcu_read_lock_bh_held());
900 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
901}
902
903/**
904 * skb_dst_set - sets skb dst
905 * @skb: buffer
906 * @dst: dst entry
907 *
908 * Sets skb dst, assuming a reference was taken on dst and should
909 * be released by skb_dst_drop()
910 */
911static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
912{
913 skb->_skb_refdst = (unsigned long)dst;
914}
915
916/**
917 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
918 * @skb: buffer
919 * @dst: dst entry
920 *
921 * Sets skb dst, assuming a reference was not taken on dst.
922 * If dst entry is cached, we do not take reference and dst_release
923 * will be avoided by refdst_drop. If dst entry is not cached, we take
924 * reference, so that last dst_release can destroy the dst immediately.
925 */
926static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
927{
928 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
929 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
930}
931
932/**
933 * skb_dst_is_noref - Test if skb dst isn't refcounted
934 * @skb: buffer
935 */
936static inline bool skb_dst_is_noref(const struct sk_buff *skb)
937{
938 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
939}
940
941static inline struct rtable *skb_rtable(const struct sk_buff *skb)
942{
943 return (struct rtable *)skb_dst(skb);
944}
945
946/* For mangling skb->pkt_type from user space side from applications
947 * such as nft, tc, etc, we only allow a conservative subset of
948 * possible pkt_types to be set.
949*/
950static inline bool skb_pkt_type_ok(u32 ptype)
951{
952 return ptype <= PACKET_OTHERHOST;
953}
954
955static inline unsigned int skb_napi_id(const struct sk_buff *skb)
956{
957#ifdef CONFIG_NET_RX_BUSY_POLL
958 return skb->napi_id;
959#else
960 return 0;
961#endif
962}
963
964/* decrement the reference count and return true if we can free the skb */
965static inline bool skb_unref(struct sk_buff *skb)
966{
967 if (unlikely(!skb))
968 return false;
969 if (likely(refcount_read(&skb->users) == 1))
970 smp_rmb();
971 else if (likely(!refcount_dec_and_test(&skb->users)))
972 return false;
973
974 return true;
975}
976
977void skb_release_head_state(struct sk_buff *skb);
978void kfree_skb(struct sk_buff *skb);
979void kfree_skb_list(struct sk_buff *segs);
980void skb_tx_error(struct sk_buff *skb);
981void consume_skb(struct sk_buff *skb);
982void __consume_stateless_skb(struct sk_buff *skb);
983void __kfree_skb(struct sk_buff *skb);
984extern struct kmem_cache *skbuff_head_cache;
985
986void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
987bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
988 bool *fragstolen, int *delta_truesize);
989
990struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
991 int node);
992struct sk_buff *__build_skb(void *data, unsigned int frag_size);
993struct sk_buff *build_skb(void *data, unsigned int frag_size);
994static inline struct sk_buff *alloc_skb(unsigned int size,
995 gfp_t priority)
996{
997 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
998}
999
1000struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1001 unsigned long data_len,
1002 int max_page_order,
1003 int *errcode,
1004 gfp_t gfp_mask);
1005
1006/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1007struct sk_buff_fclones {
1008 struct sk_buff skb1;
1009
1010 struct sk_buff skb2;
1011
1012 refcount_t fclone_ref;
1013};
1014
1015/**
1016 * skb_fclone_busy - check if fclone is busy
1017 * @sk: socket
1018 * @skb: buffer
1019 *
1020 * Returns true if skb is a fast clone, and its clone is not freed.
1021 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1022 * so we also check that this didnt happen.
1023 */
1024static inline bool skb_fclone_busy(const struct sock *sk,
1025 const struct sk_buff *skb)
1026{
1027 const struct sk_buff_fclones *fclones;
1028
1029 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1030
1031 return skb->fclone == SKB_FCLONE_ORIG &&
1032 refcount_read(&fclones->fclone_ref) > 1 &&
1033 fclones->skb2.sk == sk;
1034}
1035
1036static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1037 gfp_t priority)
1038{
1039 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1040}
1041
1042struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1043void skb_headers_offset_update(struct sk_buff *skb, int off);
1044int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1045struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1046void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1047struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1048struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1049 gfp_t gfp_mask, bool fclone);
1050static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1051 gfp_t gfp_mask)
1052{
1053 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1054}
1055
1056int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1057struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1058 unsigned int headroom);
1059struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1060 int newtailroom, gfp_t priority);
1061int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1062 int offset, int len);
1063int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1064 int offset, int len);
1065int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1066int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1067
1068/**
1069 * skb_pad - zero pad the tail of an skb
1070 * @skb: buffer to pad
1071 * @pad: space to pad
1072 *
1073 * Ensure that a buffer is followed by a padding area that is zero
1074 * filled. Used by network drivers which may DMA or transfer data
1075 * beyond the buffer end onto the wire.
1076 *
1077 * May return error in out of memory cases. The skb is freed on error.
1078 */
1079static inline int skb_pad(struct sk_buff *skb, int pad)
1080{
1081 return __skb_pad(skb, pad, true);
1082}
1083#define dev_kfree_skb(a) consume_skb(a)
1084
1085int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1086 int offset, size_t size);
1087
1088struct skb_seq_state {
1089 __u32 lower_offset;
1090 __u32 upper_offset;
1091 __u32 frag_idx;
1092 __u32 stepped_offset;
1093 struct sk_buff *root_skb;
1094 struct sk_buff *cur_skb;
1095 __u8 *frag_data;
1096};
1097
1098void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct skb_seq_state *st);
1100unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1101 struct skb_seq_state *st);
1102void skb_abort_seq_read(struct skb_seq_state *st);
1103
1104unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1105 unsigned int to, struct ts_config *config);
1106
1107/*
1108 * Packet hash types specify the type of hash in skb_set_hash.
1109 *
1110 * Hash types refer to the protocol layer addresses which are used to
1111 * construct a packet's hash. The hashes are used to differentiate or identify
1112 * flows of the protocol layer for the hash type. Hash types are either
1113 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1114 *
1115 * Properties of hashes:
1116 *
1117 * 1) Two packets in different flows have different hash values
1118 * 2) Two packets in the same flow should have the same hash value
1119 *
1120 * A hash at a higher layer is considered to be more specific. A driver should
1121 * set the most specific hash possible.
1122 *
1123 * A driver cannot indicate a more specific hash than the layer at which a hash
1124 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1125 *
1126 * A driver may indicate a hash level which is less specific than the
1127 * actual layer the hash was computed on. For instance, a hash computed
1128 * at L4 may be considered an L3 hash. This should only be done if the
1129 * driver can't unambiguously determine that the HW computed the hash at
1130 * the higher layer. Note that the "should" in the second property above
1131 * permits this.
1132 */
1133enum pkt_hash_types {
1134 PKT_HASH_TYPE_NONE, /* Undefined type */
1135 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1136 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1137 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1138};
1139
1140static inline void skb_clear_hash(struct sk_buff *skb)
1141{
1142 skb->hash = 0;
1143 skb->sw_hash = 0;
1144 skb->l4_hash = 0;
1145}
1146
1147static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1148{
1149 if (!skb->l4_hash)
1150 skb_clear_hash(skb);
1151}
1152
1153static inline void
1154__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1155{
1156 skb->l4_hash = is_l4;
1157 skb->sw_hash = is_sw;
1158 skb->hash = hash;
1159}
1160
1161static inline void
1162skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1163{
1164 /* Used by drivers to set hash from HW */
1165 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1166}
1167
1168static inline void
1169__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1170{
1171 __skb_set_hash(skb, hash, true, is_l4);
1172}
1173
1174void __skb_get_hash(struct sk_buff *skb);
1175u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1176u32 skb_get_poff(const struct sk_buff *skb);
1177u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1178 const struct flow_keys_basic *keys, int hlen);
1179__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1180 void *data, int hlen_proto);
1181
1182static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1183 int thoff, u8 ip_proto)
1184{
1185 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1186}
1187
1188void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1189 const struct flow_dissector_key *key,
1190 unsigned int key_count);
1191
1192#ifdef CONFIG_NET
1193int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1194 struct bpf_prog *prog);
1195
1196int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1197#else
1198static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1199 struct bpf_prog *prog)
1200{
1201 return -EOPNOTSUPP;
1202}
1203
1204static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1205{
1206 return -EOPNOTSUPP;
1207}
1208#endif
1209
1210bool __skb_flow_dissect(const struct sk_buff *skb,
1211 struct flow_dissector *flow_dissector,
1212 void *target_container,
1213 void *data, __be16 proto, int nhoff, int hlen,
1214 unsigned int flags);
1215
1216static inline bool skb_flow_dissect(const struct sk_buff *skb,
1217 struct flow_dissector *flow_dissector,
1218 void *target_container, unsigned int flags)
1219{
1220 return __skb_flow_dissect(skb, flow_dissector, target_container,
1221 NULL, 0, 0, 0, flags);
1222}
1223
1224static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1225 struct flow_keys *flow,
1226 unsigned int flags)
1227{
1228 memset(flow, 0, sizeof(*flow));
1229 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1230 NULL, 0, 0, 0, flags);
1231}
1232
1233static inline bool
1234skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1235 struct flow_keys_basic *flow, void *data,
1236 __be16 proto, int nhoff, int hlen,
1237 unsigned int flags)
1238{
1239 memset(flow, 0, sizeof(*flow));
1240 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1241 data, proto, nhoff, hlen, flags);
1242}
1243
1244void
1245skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1246 struct flow_dissector *flow_dissector,
1247 void *target_container);
1248
1249static inline __u32 skb_get_hash(struct sk_buff *skb)
1250{
1251 if (!skb->l4_hash && !skb->sw_hash)
1252 __skb_get_hash(skb);
1253
1254 return skb->hash;
1255}
1256
1257static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1258{
1259 if (!skb->l4_hash && !skb->sw_hash) {
1260 struct flow_keys keys;
1261 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1262
1263 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1264 }
1265
1266 return skb->hash;
1267}
1268
1269__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1270
1271static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1272{
1273 return skb->hash;
1274}
1275
1276static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1277{
1278 to->hash = from->hash;
1279 to->sw_hash = from->sw_hash;
1280 to->l4_hash = from->l4_hash;
1281};
1282
1283#ifdef NET_SKBUFF_DATA_USES_OFFSET
1284static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1285{
1286 return skb->head + skb->end;
1287}
1288
1289static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1290{
1291 return skb->end;
1292}
1293#else
1294static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1295{
1296 return skb->end;
1297}
1298
1299static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1300{
1301 return skb->end - skb->head;
1302}
1303#endif
1304
1305/* Internal */
1306#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1307
1308static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1309{
1310 return &skb_shinfo(skb)->hwtstamps;
1311}
1312
1313static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1314{
1315 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1316
1317 return is_zcopy ? skb_uarg(skb) : NULL;
1318}
1319
1320static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1321{
1322 if (skb && uarg && !skb_zcopy(skb)) {
1323 sock_zerocopy_get(uarg);
1324 skb_shinfo(skb)->destructor_arg = uarg;
1325 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1326 }
1327}
1328
1329/* Release a reference on a zerocopy structure */
1330static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1331{
1332 struct ubuf_info *uarg = skb_zcopy(skb);
1333
1334 if (uarg) {
1335 if (uarg->callback == sock_zerocopy_callback) {
1336 uarg->zerocopy = uarg->zerocopy && zerocopy;
1337 sock_zerocopy_put(uarg);
1338 } else {
1339 uarg->callback(uarg, zerocopy);
1340 }
1341
1342 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1343 }
1344}
1345
1346/* Abort a zerocopy operation and revert zckey on error in send syscall */
1347static inline void skb_zcopy_abort(struct sk_buff *skb)
1348{
1349 struct ubuf_info *uarg = skb_zcopy(skb);
1350
1351 if (uarg) {
1352 sock_zerocopy_put_abort(uarg);
1353 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1354 }
1355}
1356
1357static inline void skb_mark_not_on_list(struct sk_buff *skb)
1358{
1359 skb->next = NULL;
1360}
1361
1362static inline void skb_list_del_init(struct sk_buff *skb)
1363{
1364 __list_del_entry(&skb->list);
1365 skb_mark_not_on_list(skb);
1366}
1367
1368/**
1369 * skb_queue_empty - check if a queue is empty
1370 * @list: queue head
1371 *
1372 * Returns true if the queue is empty, false otherwise.
1373 */
1374static inline int skb_queue_empty(const struct sk_buff_head *list)
1375{
1376 return list->next == (const struct sk_buff *) list;
1377}
1378
1379/**
1380 * skb_queue_is_last - check if skb is the last entry in the queue
1381 * @list: queue head
1382 * @skb: buffer
1383 *
1384 * Returns true if @skb is the last buffer on the list.
1385 */
1386static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1387 const struct sk_buff *skb)
1388{
1389 return skb->next == (const struct sk_buff *) list;
1390}
1391
1392/**
1393 * skb_queue_is_first - check if skb is the first entry in the queue
1394 * @list: queue head
1395 * @skb: buffer
1396 *
1397 * Returns true if @skb is the first buffer on the list.
1398 */
1399static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1400 const struct sk_buff *skb)
1401{
1402 return skb->prev == (const struct sk_buff *) list;
1403}
1404
1405/**
1406 * skb_queue_next - return the next packet in the queue
1407 * @list: queue head
1408 * @skb: current buffer
1409 *
1410 * Return the next packet in @list after @skb. It is only valid to
1411 * call this if skb_queue_is_last() evaluates to false.
1412 */
1413static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1414 const struct sk_buff *skb)
1415{
1416 /* This BUG_ON may seem severe, but if we just return then we
1417 * are going to dereference garbage.
1418 */
1419 BUG_ON(skb_queue_is_last(list, skb));
1420 return skb->next;
1421}
1422
1423/**
1424 * skb_queue_prev - return the prev packet in the queue
1425 * @list: queue head
1426 * @skb: current buffer
1427 *
1428 * Return the prev packet in @list before @skb. It is only valid to
1429 * call this if skb_queue_is_first() evaluates to false.
1430 */
1431static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1432 const struct sk_buff *skb)
1433{
1434 /* This BUG_ON may seem severe, but if we just return then we
1435 * are going to dereference garbage.
1436 */
1437 BUG_ON(skb_queue_is_first(list, skb));
1438 return skb->prev;
1439}
1440
1441/**
1442 * skb_get - reference buffer
1443 * @skb: buffer to reference
1444 *
1445 * Makes another reference to a socket buffer and returns a pointer
1446 * to the buffer.
1447 */
1448static inline struct sk_buff *skb_get(struct sk_buff *skb)
1449{
1450 refcount_inc(&skb->users);
1451 return skb;
1452}
1453
1454/*
1455 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1456 */
1457
1458/**
1459 * skb_cloned - is the buffer a clone
1460 * @skb: buffer to check
1461 *
1462 * Returns true if the buffer was generated with skb_clone() and is
1463 * one of multiple shared copies of the buffer. Cloned buffers are
1464 * shared data so must not be written to under normal circumstances.
1465 */
1466static inline int skb_cloned(const struct sk_buff *skb)
1467{
1468 return skb->cloned &&
1469 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1470}
1471
1472static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1473{
1474 might_sleep_if(gfpflags_allow_blocking(pri));
1475
1476 if (skb_cloned(skb))
1477 return pskb_expand_head(skb, 0, 0, pri);
1478
1479 return 0;
1480}
1481
1482/**
1483 * skb_header_cloned - is the header a clone
1484 * @skb: buffer to check
1485 *
1486 * Returns true if modifying the header part of the buffer requires
1487 * the data to be copied.
1488 */
1489static inline int skb_header_cloned(const struct sk_buff *skb)
1490{
1491 int dataref;
1492
1493 if (!skb->cloned)
1494 return 0;
1495
1496 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1497 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1498 return dataref != 1;
1499}
1500
1501static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1502{
1503 might_sleep_if(gfpflags_allow_blocking(pri));
1504
1505 if (skb_header_cloned(skb))
1506 return pskb_expand_head(skb, 0, 0, pri);
1507
1508 return 0;
1509}
1510
1511/**
1512 * __skb_header_release - release reference to header
1513 * @skb: buffer to operate on
1514 */
1515static inline void __skb_header_release(struct sk_buff *skb)
1516{
1517 skb->nohdr = 1;
1518 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1519}
1520
1521
1522/**
1523 * skb_shared - is the buffer shared
1524 * @skb: buffer to check
1525 *
1526 * Returns true if more than one person has a reference to this
1527 * buffer.
1528 */
1529static inline int skb_shared(const struct sk_buff *skb)
1530{
1531 return refcount_read(&skb->users) != 1;
1532}
1533
1534/**
1535 * skb_share_check - check if buffer is shared and if so clone it
1536 * @skb: buffer to check
1537 * @pri: priority for memory allocation
1538 *
1539 * If the buffer is shared the buffer is cloned and the old copy
1540 * drops a reference. A new clone with a single reference is returned.
1541 * If the buffer is not shared the original buffer is returned. When
1542 * being called from interrupt status or with spinlocks held pri must
1543 * be GFP_ATOMIC.
1544 *
1545 * NULL is returned on a memory allocation failure.
1546 */
1547static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1548{
1549 might_sleep_if(gfpflags_allow_blocking(pri));
1550 if (skb_shared(skb)) {
1551 struct sk_buff *nskb = skb_clone(skb, pri);
1552
1553 if (likely(nskb))
1554 consume_skb(skb);
1555 else
1556 kfree_skb(skb);
1557 skb = nskb;
1558 }
1559 return skb;
1560}
1561
1562/*
1563 * Copy shared buffers into a new sk_buff. We effectively do COW on
1564 * packets to handle cases where we have a local reader and forward
1565 * and a couple of other messy ones. The normal one is tcpdumping
1566 * a packet thats being forwarded.
1567 */
1568
1569/**
1570 * skb_unshare - make a copy of a shared buffer
1571 * @skb: buffer to check
1572 * @pri: priority for memory allocation
1573 *
1574 * If the socket buffer is a clone then this function creates a new
1575 * copy of the data, drops a reference count on the old copy and returns
1576 * the new copy with the reference count at 1. If the buffer is not a clone
1577 * the original buffer is returned. When called with a spinlock held or
1578 * from interrupt state @pri must be %GFP_ATOMIC
1579 *
1580 * %NULL is returned on a memory allocation failure.
1581 */
1582static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1583 gfp_t pri)
1584{
1585 might_sleep_if(gfpflags_allow_blocking(pri));
1586 if (skb_cloned(skb)) {
1587 struct sk_buff *nskb = skb_copy(skb, pri);
1588
1589 /* Free our shared copy */
1590 if (likely(nskb))
1591 consume_skb(skb);
1592 else
1593 kfree_skb(skb);
1594 skb = nskb;
1595 }
1596 return skb;
1597}
1598
1599/**
1600 * skb_peek - peek at the head of an &sk_buff_head
1601 * @list_: list to peek at
1602 *
1603 * Peek an &sk_buff. Unlike most other operations you _MUST_
1604 * be careful with this one. A peek leaves the buffer on the
1605 * list and someone else may run off with it. You must hold
1606 * the appropriate locks or have a private queue to do this.
1607 *
1608 * Returns %NULL for an empty list or a pointer to the head element.
1609 * The reference count is not incremented and the reference is therefore
1610 * volatile. Use with caution.
1611 */
1612static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1613{
1614 struct sk_buff *skb = list_->next;
1615
1616 if (skb == (struct sk_buff *)list_)
1617 skb = NULL;
1618 return skb;
1619}
1620
1621/**
1622 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1623 * @list_: list to peek at
1624 *
1625 * Like skb_peek(), but the caller knows that the list is not empty.
1626 */
1627static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1628{
1629 return list_->next;
1630}
1631
1632/**
1633 * skb_peek_next - peek skb following the given one from a queue
1634 * @skb: skb to start from
1635 * @list_: list to peek at
1636 *
1637 * Returns %NULL when the end of the list is met or a pointer to the
1638 * next element. The reference count is not incremented and the
1639 * reference is therefore volatile. Use with caution.
1640 */
1641static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1642 const struct sk_buff_head *list_)
1643{
1644 struct sk_buff *next = skb->next;
1645
1646 if (next == (struct sk_buff *)list_)
1647 next = NULL;
1648 return next;
1649}
1650
1651/**
1652 * skb_peek_tail - peek at the tail of an &sk_buff_head
1653 * @list_: list to peek at
1654 *
1655 * Peek an &sk_buff. Unlike most other operations you _MUST_
1656 * be careful with this one. A peek leaves the buffer on the
1657 * list and someone else may run off with it. You must hold
1658 * the appropriate locks or have a private queue to do this.
1659 *
1660 * Returns %NULL for an empty list or a pointer to the tail element.
1661 * The reference count is not incremented and the reference is therefore
1662 * volatile. Use with caution.
1663 */
1664static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1665{
1666 struct sk_buff *skb = list_->prev;
1667
1668 if (skb == (struct sk_buff *)list_)
1669 skb = NULL;
1670 return skb;
1671
1672}
1673
1674/**
1675 * skb_queue_len - get queue length
1676 * @list_: list to measure
1677 *
1678 * Return the length of an &sk_buff queue.
1679 */
1680static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1681{
1682 return list_->qlen;
1683}
1684
1685/**
1686 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1687 * @list: queue to initialize
1688 *
1689 * This initializes only the list and queue length aspects of
1690 * an sk_buff_head object. This allows to initialize the list
1691 * aspects of an sk_buff_head without reinitializing things like
1692 * the spinlock. It can also be used for on-stack sk_buff_head
1693 * objects where the spinlock is known to not be used.
1694 */
1695static inline void __skb_queue_head_init(struct sk_buff_head *list)
1696{
1697 list->prev = list->next = (struct sk_buff *)list;
1698 list->qlen = 0;
1699}
1700
1701/*
1702 * This function creates a split out lock class for each invocation;
1703 * this is needed for now since a whole lot of users of the skb-queue
1704 * infrastructure in drivers have different locking usage (in hardirq)
1705 * than the networking core (in softirq only). In the long run either the
1706 * network layer or drivers should need annotation to consolidate the
1707 * main types of usage into 3 classes.
1708 */
1709static inline void skb_queue_head_init(struct sk_buff_head *list)
1710{
1711 spin_lock_init(&list->lock);
1712 __skb_queue_head_init(list);
1713}
1714
1715static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1716 struct lock_class_key *class)
1717{
1718 skb_queue_head_init(list);
1719 lockdep_set_class(&list->lock, class);
1720}
1721
1722/*
1723 * Insert an sk_buff on a list.
1724 *
1725 * The "__skb_xxxx()" functions are the non-atomic ones that
1726 * can only be called with interrupts disabled.
1727 */
1728void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1729 struct sk_buff_head *list);
1730static inline void __skb_insert(struct sk_buff *newsk,
1731 struct sk_buff *prev, struct sk_buff *next,
1732 struct sk_buff_head *list)
1733{
1734 newsk->next = next;
1735 newsk->prev = prev;
1736 next->prev = prev->next = newsk;
1737 list->qlen++;
1738}
1739
1740static inline void __skb_queue_splice(const struct sk_buff_head *list,
1741 struct sk_buff *prev,
1742 struct sk_buff *next)
1743{
1744 struct sk_buff *first = list->next;
1745 struct sk_buff *last = list->prev;
1746
1747 first->prev = prev;
1748 prev->next = first;
1749
1750 last->next = next;
1751 next->prev = last;
1752}
1753
1754/**
1755 * skb_queue_splice - join two skb lists, this is designed for stacks
1756 * @list: the new list to add
1757 * @head: the place to add it in the first list
1758 */
1759static inline void skb_queue_splice(const struct sk_buff_head *list,
1760 struct sk_buff_head *head)
1761{
1762 if (!skb_queue_empty(list)) {
1763 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1764 head->qlen += list->qlen;
1765 }
1766}
1767
1768/**
1769 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1770 * @list: the new list to add
1771 * @head: the place to add it in the first list
1772 *
1773 * The list at @list is reinitialised
1774 */
1775static inline void skb_queue_splice_init(struct sk_buff_head *list,
1776 struct sk_buff_head *head)
1777{
1778 if (!skb_queue_empty(list)) {
1779 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1780 head->qlen += list->qlen;
1781 __skb_queue_head_init(list);
1782 }
1783}
1784
1785/**
1786 * skb_queue_splice_tail - join two skb lists, each list being a queue
1787 * @list: the new list to add
1788 * @head: the place to add it in the first list
1789 */
1790static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1791 struct sk_buff_head *head)
1792{
1793 if (!skb_queue_empty(list)) {
1794 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1795 head->qlen += list->qlen;
1796 }
1797}
1798
1799/**
1800 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1801 * @list: the new list to add
1802 * @head: the place to add it in the first list
1803 *
1804 * Each of the lists is a queue.
1805 * The list at @list is reinitialised
1806 */
1807static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1808 struct sk_buff_head *head)
1809{
1810 if (!skb_queue_empty(list)) {
1811 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1812 head->qlen += list->qlen;
1813 __skb_queue_head_init(list);
1814 }
1815}
1816
1817/**
1818 * __skb_queue_after - queue a buffer at the list head
1819 * @list: list to use
1820 * @prev: place after this buffer
1821 * @newsk: buffer to queue
1822 *
1823 * Queue a buffer int the middle of a list. This function takes no locks
1824 * and you must therefore hold required locks before calling it.
1825 *
1826 * A buffer cannot be placed on two lists at the same time.
1827 */
1828static inline void __skb_queue_after(struct sk_buff_head *list,
1829 struct sk_buff *prev,
1830 struct sk_buff *newsk)
1831{
1832 __skb_insert(newsk, prev, prev->next, list);
1833}
1834
1835void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1836 struct sk_buff_head *list);
1837
1838static inline void __skb_queue_before(struct sk_buff_head *list,
1839 struct sk_buff *next,
1840 struct sk_buff *newsk)
1841{
1842 __skb_insert(newsk, next->prev, next, list);
1843}
1844
1845/**
1846 * __skb_queue_head - queue a buffer at the list head
1847 * @list: list to use
1848 * @newsk: buffer to queue
1849 *
1850 * Queue a buffer at the start of a list. This function takes no locks
1851 * and you must therefore hold required locks before calling it.
1852 *
1853 * A buffer cannot be placed on two lists at the same time.
1854 */
1855void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1856static inline void __skb_queue_head(struct sk_buff_head *list,
1857 struct sk_buff *newsk)
1858{
1859 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1860}
1861
1862/**
1863 * __skb_queue_tail - queue a buffer at the list tail
1864 * @list: list to use
1865 * @newsk: buffer to queue
1866 *
1867 * Queue a buffer at the end of a list. This function takes no locks
1868 * and you must therefore hold required locks before calling it.
1869 *
1870 * A buffer cannot be placed on two lists at the same time.
1871 */
1872void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1873static inline void __skb_queue_tail(struct sk_buff_head *list,
1874 struct sk_buff *newsk)
1875{
1876 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1877}
1878
1879/*
1880 * remove sk_buff from list. _Must_ be called atomically, and with
1881 * the list known..
1882 */
1883void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1884static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1885{
1886 struct sk_buff *next, *prev;
1887
1888 list->qlen--;
1889 next = skb->next;
1890 prev = skb->prev;
1891 skb->next = skb->prev = NULL;
1892 next->prev = prev;
1893 prev->next = next;
1894}
1895
1896/**
1897 * __skb_dequeue - remove from the head of the queue
1898 * @list: list to dequeue from
1899 *
1900 * Remove the head of the list. This function does not take any locks
1901 * so must be used with appropriate locks held only. The head item is
1902 * returned or %NULL if the list is empty.
1903 */
1904struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1905static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1906{
1907 struct sk_buff *skb = skb_peek(list);
1908 if (skb)
1909 __skb_unlink(skb, list);
1910 return skb;
1911}
1912
1913/**
1914 * __skb_dequeue_tail - remove from the tail of the queue
1915 * @list: list to dequeue from
1916 *
1917 * Remove the tail of the list. This function does not take any locks
1918 * so must be used with appropriate locks held only. The tail item is
1919 * returned or %NULL if the list is empty.
1920 */
1921struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1922static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1923{
1924 struct sk_buff *skb = skb_peek_tail(list);
1925 if (skb)
1926 __skb_unlink(skb, list);
1927 return skb;
1928}
1929
1930
1931static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1932{
1933 return skb->data_len;
1934}
1935
1936static inline unsigned int skb_headlen(const struct sk_buff *skb)
1937{
1938 return skb->len - skb->data_len;
1939}
1940
1941static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1942{
1943 unsigned int i, len = 0;
1944
1945 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1946 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1947 return len;
1948}
1949
1950static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1951{
1952 return skb_headlen(skb) + __skb_pagelen(skb);
1953}
1954
1955/**
1956 * __skb_fill_page_desc - initialise a paged fragment in an skb
1957 * @skb: buffer containing fragment to be initialised
1958 * @i: paged fragment index to initialise
1959 * @page: the page to use for this fragment
1960 * @off: the offset to the data with @page
1961 * @size: the length of the data
1962 *
1963 * Initialises the @i'th fragment of @skb to point to &size bytes at
1964 * offset @off within @page.
1965 *
1966 * Does not take any additional reference on the fragment.
1967 */
1968static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1969 struct page *page, int off, int size)
1970{
1971 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1972
1973 /*
1974 * Propagate page pfmemalloc to the skb if we can. The problem is
1975 * that not all callers have unique ownership of the page but rely
1976 * on page_is_pfmemalloc doing the right thing(tm).
1977 */
1978 frag->page.p = page;
1979 frag->page_offset = off;
1980 skb_frag_size_set(frag, size);
1981
1982 page = compound_head(page);
1983 if (page_is_pfmemalloc(page))
1984 skb->pfmemalloc = true;
1985}
1986
1987/**
1988 * skb_fill_page_desc - initialise a paged fragment in an skb
1989 * @skb: buffer containing fragment to be initialised
1990 * @i: paged fragment index to initialise
1991 * @page: the page to use for this fragment
1992 * @off: the offset to the data with @page
1993 * @size: the length of the data
1994 *
1995 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1996 * @skb to point to @size bytes at offset @off within @page. In
1997 * addition updates @skb such that @i is the last fragment.
1998 *
1999 * Does not take any additional reference on the fragment.
2000 */
2001static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2002 struct page *page, int off, int size)
2003{
2004 __skb_fill_page_desc(skb, i, page, off, size);
2005 skb_shinfo(skb)->nr_frags = i + 1;
2006}
2007
2008void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2009 int size, unsigned int truesize);
2010
2011void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2012 unsigned int truesize);
2013
2014#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
2015#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
2016#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2017
2018#ifdef NET_SKBUFF_DATA_USES_OFFSET
2019static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2020{
2021 return skb->head + skb->tail;
2022}
2023
2024static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2025{
2026 skb->tail = skb->data - skb->head;
2027}
2028
2029static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2030{
2031 skb_reset_tail_pointer(skb);
2032 skb->tail += offset;
2033}
2034
2035#else /* NET_SKBUFF_DATA_USES_OFFSET */
2036static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2037{
2038 return skb->tail;
2039}
2040
2041static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2042{
2043 skb->tail = skb->data;
2044}
2045
2046static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2047{
2048 skb->tail = skb->data + offset;
2049}
2050
2051#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2052
2053/*
2054 * Add data to an sk_buff
2055 */
2056void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2057void *skb_put(struct sk_buff *skb, unsigned int len);
2058static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2059{
2060 void *tmp = skb_tail_pointer(skb);
2061 SKB_LINEAR_ASSERT(skb);
2062 skb->tail += len;
2063 skb->len += len;
2064 return tmp;
2065}
2066
2067static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2068{
2069 void *tmp = __skb_put(skb, len);
2070
2071 memset(tmp, 0, len);
2072 return tmp;
2073}
2074
2075static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2076 unsigned int len)
2077{
2078 void *tmp = __skb_put(skb, len);
2079
2080 memcpy(tmp, data, len);
2081 return tmp;
2082}
2083
2084static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2085{
2086 *(u8 *)__skb_put(skb, 1) = val;
2087}
2088
2089static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2090{
2091 void *tmp = skb_put(skb, len);
2092
2093 memset(tmp, 0, len);
2094
2095 return tmp;
2096}
2097
2098static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2099 unsigned int len)
2100{
2101 void *tmp = skb_put(skb, len);
2102
2103 memcpy(tmp, data, len);
2104
2105 return tmp;
2106}
2107
2108static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2109{
2110 *(u8 *)skb_put(skb, 1) = val;
2111}
2112
2113void *skb_push(struct sk_buff *skb, unsigned int len);
2114static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2115{
2116 skb->data -= len;
2117 skb->len += len;
2118 return skb->data;
2119}
2120
2121void *skb_pull(struct sk_buff *skb, unsigned int len);
2122static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2123{
2124 skb->len -= len;
2125 BUG_ON(skb->len < skb->data_len);
2126 return skb->data += len;
2127}
2128
2129static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2130{
2131 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2132}
2133
2134void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2135
2136static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2137{
2138 if (len > skb_headlen(skb) &&
2139 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2140 return NULL;
2141 skb->len -= len;
2142 return skb->data += len;
2143}
2144
2145static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2146{
2147 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2148}
2149
2150static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2151{
2152 if (likely(len <= skb_headlen(skb)))
2153 return 1;
2154 if (unlikely(len > skb->len))
2155 return 0;
2156 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2157}
2158
2159void skb_condense(struct sk_buff *skb);
2160
2161/**
2162 * skb_headroom - bytes at buffer head
2163 * @skb: buffer to check
2164 *
2165 * Return the number of bytes of free space at the head of an &sk_buff.
2166 */
2167static inline unsigned int skb_headroom(const struct sk_buff *skb)
2168{
2169 return skb->data - skb->head;
2170}
2171
2172/**
2173 * skb_tailroom - bytes at buffer end
2174 * @skb: buffer to check
2175 *
2176 * Return the number of bytes of free space at the tail of an sk_buff
2177 */
2178static inline int skb_tailroom(const struct sk_buff *skb)
2179{
2180 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2181}
2182
2183/**
2184 * skb_availroom - bytes at buffer end
2185 * @skb: buffer to check
2186 *
2187 * Return the number of bytes of free space at the tail of an sk_buff
2188 * allocated by sk_stream_alloc()
2189 */
2190static inline int skb_availroom(const struct sk_buff *skb)
2191{
2192 if (skb_is_nonlinear(skb))
2193 return 0;
2194
2195 return skb->end - skb->tail - skb->reserved_tailroom;
2196}
2197
2198/**
2199 * skb_reserve - adjust headroom
2200 * @skb: buffer to alter
2201 * @len: bytes to move
2202 *
2203 * Increase the headroom of an empty &sk_buff by reducing the tail
2204 * room. This is only allowed for an empty buffer.
2205 */
2206static inline void skb_reserve(struct sk_buff *skb, int len)
2207{
2208 skb->data += len;
2209 skb->tail += len;
2210}
2211
2212/**
2213 * skb_tailroom_reserve - adjust reserved_tailroom
2214 * @skb: buffer to alter
2215 * @mtu: maximum amount of headlen permitted
2216 * @needed_tailroom: minimum amount of reserved_tailroom
2217 *
2218 * Set reserved_tailroom so that headlen can be as large as possible but
2219 * not larger than mtu and tailroom cannot be smaller than
2220 * needed_tailroom.
2221 * The required headroom should already have been reserved before using
2222 * this function.
2223 */
2224static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2225 unsigned int needed_tailroom)
2226{
2227 SKB_LINEAR_ASSERT(skb);
2228 if (mtu < skb_tailroom(skb) - needed_tailroom)
2229 /* use at most mtu */
2230 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2231 else
2232 /* use up to all available space */
2233 skb->reserved_tailroom = needed_tailroom;
2234}
2235
2236#define ENCAP_TYPE_ETHER 0
2237#define ENCAP_TYPE_IPPROTO 1
2238
2239static inline void skb_set_inner_protocol(struct sk_buff *skb,
2240 __be16 protocol)
2241{
2242 skb->inner_protocol = protocol;
2243 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2244}
2245
2246static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2247 __u8 ipproto)
2248{
2249 skb->inner_ipproto = ipproto;
2250 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2251}
2252
2253static inline void skb_reset_inner_headers(struct sk_buff *skb)
2254{
2255 skb->inner_mac_header = skb->mac_header;
2256 skb->inner_network_header = skb->network_header;
2257 skb->inner_transport_header = skb->transport_header;
2258}
2259
2260static inline void skb_reset_mac_len(struct sk_buff *skb)
2261{
2262 skb->mac_len = skb->network_header - skb->mac_header;
2263}
2264
2265static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2266 *skb)
2267{
2268 return skb->head + skb->inner_transport_header;
2269}
2270
2271static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2272{
2273 return skb_inner_transport_header(skb) - skb->data;
2274}
2275
2276static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2277{
2278 skb->inner_transport_header = skb->data - skb->head;
2279}
2280
2281static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2282 const int offset)
2283{
2284 skb_reset_inner_transport_header(skb);
2285 skb->inner_transport_header += offset;
2286}
2287
2288static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2289{
2290 return skb->head + skb->inner_network_header;
2291}
2292
2293static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2294{
2295 skb->inner_network_header = skb->data - skb->head;
2296}
2297
2298static inline void skb_set_inner_network_header(struct sk_buff *skb,
2299 const int offset)
2300{
2301 skb_reset_inner_network_header(skb);
2302 skb->inner_network_header += offset;
2303}
2304
2305static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2306{
2307 return skb->head + skb->inner_mac_header;
2308}
2309
2310static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2311{
2312 skb->inner_mac_header = skb->data - skb->head;
2313}
2314
2315static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2316 const int offset)
2317{
2318 skb_reset_inner_mac_header(skb);
2319 skb->inner_mac_header += offset;
2320}
2321static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2322{
2323 return skb->transport_header != (typeof(skb->transport_header))~0U;
2324}
2325
2326static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2327{
2328 return skb->head + skb->transport_header;
2329}
2330
2331static inline void skb_reset_transport_header(struct sk_buff *skb)
2332{
2333 skb->transport_header = skb->data - skb->head;
2334}
2335
2336static inline void skb_set_transport_header(struct sk_buff *skb,
2337 const int offset)
2338{
2339 skb_reset_transport_header(skb);
2340 skb->transport_header += offset;
2341}
2342
2343static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2344{
2345 return skb->head + skb->network_header;
2346}
2347
2348static inline void skb_reset_network_header(struct sk_buff *skb)
2349{
2350 skb->network_header = skb->data - skb->head;
2351}
2352
2353static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2354{
2355 skb_reset_network_header(skb);
2356 skb->network_header += offset;
2357}
2358
2359static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2360{
2361 return skb->head + skb->mac_header;
2362}
2363
2364static inline int skb_mac_offset(const struct sk_buff *skb)
2365{
2366 return skb_mac_header(skb) - skb->data;
2367}
2368
2369static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2370{
2371 return skb->network_header - skb->mac_header;
2372}
2373
2374static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2375{
2376 return skb->mac_header != (typeof(skb->mac_header))~0U;
2377}
2378
2379static inline void skb_reset_mac_header(struct sk_buff *skb)
2380{
2381 skb->mac_header = skb->data - skb->head;
2382}
2383
2384static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2385{
2386 skb_reset_mac_header(skb);
2387 skb->mac_header += offset;
2388}
2389
2390static inline void skb_pop_mac_header(struct sk_buff *skb)
2391{
2392 skb->mac_header = skb->network_header;
2393}
2394
2395static inline void skb_probe_transport_header(struct sk_buff *skb,
2396 const int offset_hint)
2397{
2398 struct flow_keys_basic keys;
2399
2400 if (skb_transport_header_was_set(skb))
2401 return;
2402
2403 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2404 skb_set_transport_header(skb, keys.control.thoff);
2405 else
2406 skb_set_transport_header(skb, offset_hint);
2407}
2408
2409static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2410{
2411 if (skb_mac_header_was_set(skb)) {
2412 const unsigned char *old_mac = skb_mac_header(skb);
2413
2414 skb_set_mac_header(skb, -skb->mac_len);
2415 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2416 }
2417}
2418
2419static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2420{
2421 return skb->csum_start - skb_headroom(skb);
2422}
2423
2424static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2425{
2426 return skb->head + skb->csum_start;
2427}
2428
2429static inline int skb_transport_offset(const struct sk_buff *skb)
2430{
2431 return skb_transport_header(skb) - skb->data;
2432}
2433
2434static inline u32 skb_network_header_len(const struct sk_buff *skb)
2435{
2436 return skb->transport_header - skb->network_header;
2437}
2438
2439static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2440{
2441 return skb->inner_transport_header - skb->inner_network_header;
2442}
2443
2444static inline int skb_network_offset(const struct sk_buff *skb)
2445{
2446 return skb_network_header(skb) - skb->data;
2447}
2448
2449static inline int skb_inner_network_offset(const struct sk_buff *skb)
2450{
2451 return skb_inner_network_header(skb) - skb->data;
2452}
2453
2454static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2455{
2456 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2457}
2458
2459/*
2460 * CPUs often take a performance hit when accessing unaligned memory
2461 * locations. The actual performance hit varies, it can be small if the
2462 * hardware handles it or large if we have to take an exception and fix it
2463 * in software.
2464 *
2465 * Since an ethernet header is 14 bytes network drivers often end up with
2466 * the IP header at an unaligned offset. The IP header can be aligned by
2467 * shifting the start of the packet by 2 bytes. Drivers should do this
2468 * with:
2469 *
2470 * skb_reserve(skb, NET_IP_ALIGN);
2471 *
2472 * The downside to this alignment of the IP header is that the DMA is now
2473 * unaligned. On some architectures the cost of an unaligned DMA is high
2474 * and this cost outweighs the gains made by aligning the IP header.
2475 *
2476 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2477 * to be overridden.
2478 */
2479#ifndef NET_IP_ALIGN
2480#define NET_IP_ALIGN 2
2481#endif
2482
2483/*
2484 * The networking layer reserves some headroom in skb data (via
2485 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2486 * the header has to grow. In the default case, if the header has to grow
2487 * 32 bytes or less we avoid the reallocation.
2488 *
2489 * Unfortunately this headroom changes the DMA alignment of the resulting
2490 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2491 * on some architectures. An architecture can override this value,
2492 * perhaps setting it to a cacheline in size (since that will maintain
2493 * cacheline alignment of the DMA). It must be a power of 2.
2494 *
2495 * Various parts of the networking layer expect at least 32 bytes of
2496 * headroom, you should not reduce this.
2497 *
2498 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2499 * to reduce average number of cache lines per packet.
2500 * get_rps_cpus() for example only access one 64 bytes aligned block :
2501 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2502 */
2503#ifndef NET_SKB_PAD
2504#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2505#endif
2506
2507int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2508
2509static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2510{
2511 if (unlikely(skb_is_nonlinear(skb))) {
2512 WARN_ON(1);
2513 return;
2514 }
2515 skb->len = len;
2516 skb_set_tail_pointer(skb, len);
2517}
2518
2519static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2520{
2521 __skb_set_length(skb, len);
2522}
2523
2524void skb_trim(struct sk_buff *skb, unsigned int len);
2525
2526static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2527{
2528 if (skb->data_len)
2529 return ___pskb_trim(skb, len);
2530 __skb_trim(skb, len);
2531 return 0;
2532}
2533
2534static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2535{
2536 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2537}
2538
2539/**
2540 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2541 * @skb: buffer to alter
2542 * @len: new length
2543 *
2544 * This is identical to pskb_trim except that the caller knows that
2545 * the skb is not cloned so we should never get an error due to out-
2546 * of-memory.
2547 */
2548static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2549{
2550 int err = pskb_trim(skb, len);
2551 BUG_ON(err);
2552}
2553
2554static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2555{
2556 unsigned int diff = len - skb->len;
2557
2558 if (skb_tailroom(skb) < diff) {
2559 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2560 GFP_ATOMIC);
2561 if (ret)
2562 return ret;
2563 }
2564 __skb_set_length(skb, len);
2565 return 0;
2566}
2567
2568/**
2569 * skb_orphan - orphan a buffer
2570 * @skb: buffer to orphan
2571 *
2572 * If a buffer currently has an owner then we call the owner's
2573 * destructor function and make the @skb unowned. The buffer continues
2574 * to exist but is no longer charged to its former owner.
2575 */
2576static inline void skb_orphan(struct sk_buff *skb)
2577{
2578 if (skb->destructor) {
2579 skb->destructor(skb);
2580 skb->destructor = NULL;
2581 skb->sk = NULL;
2582 } else {
2583 BUG_ON(skb->sk);
2584 }
2585}
2586
2587/**
2588 * skb_orphan_frags - orphan the frags contained in a buffer
2589 * @skb: buffer to orphan frags from
2590 * @gfp_mask: allocation mask for replacement pages
2591 *
2592 * For each frag in the SKB which needs a destructor (i.e. has an
2593 * owner) create a copy of that frag and release the original
2594 * page by calling the destructor.
2595 */
2596static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2597{
2598 if (likely(!skb_zcopy(skb)))
2599 return 0;
2600 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2601 return 0;
2602 return skb_copy_ubufs(skb, gfp_mask);
2603}
2604
2605/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2606static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2607{
2608 if (likely(!skb_zcopy(skb)))
2609 return 0;
2610 return skb_copy_ubufs(skb, gfp_mask);
2611}
2612
2613/**
2614 * __skb_queue_purge - empty a list
2615 * @list: list to empty
2616 *
2617 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2618 * the list and one reference dropped. This function does not take the
2619 * list lock and the caller must hold the relevant locks to use it.
2620 */
2621void skb_queue_purge(struct sk_buff_head *list);
2622static inline void __skb_queue_purge(struct sk_buff_head *list)
2623{
2624 struct sk_buff *skb;
2625 while ((skb = __skb_dequeue(list)) != NULL)
2626 kfree_skb(skb);
2627}
2628
2629unsigned int skb_rbtree_purge(struct rb_root *root);
2630
2631void *netdev_alloc_frag(unsigned int fragsz);
2632
2633struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2634 gfp_t gfp_mask);
2635
2636/**
2637 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2638 * @dev: network device to receive on
2639 * @length: length to allocate
2640 *
2641 * Allocate a new &sk_buff and assign it a usage count of one. The
2642 * buffer has unspecified headroom built in. Users should allocate
2643 * the headroom they think they need without accounting for the
2644 * built in space. The built in space is used for optimisations.
2645 *
2646 * %NULL is returned if there is no free memory. Although this function
2647 * allocates memory it can be called from an interrupt.
2648 */
2649static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2650 unsigned int length)
2651{
2652 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2653}
2654
2655/* legacy helper around __netdev_alloc_skb() */
2656static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2657 gfp_t gfp_mask)
2658{
2659 return __netdev_alloc_skb(NULL, length, gfp_mask);
2660}
2661
2662/* legacy helper around netdev_alloc_skb() */
2663static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2664{
2665 return netdev_alloc_skb(NULL, length);
2666}
2667
2668
2669static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2670 unsigned int length, gfp_t gfp)
2671{
2672 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2673
2674 if (NET_IP_ALIGN && skb)
2675 skb_reserve(skb, NET_IP_ALIGN);
2676 return skb;
2677}
2678
2679static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2680 unsigned int length)
2681{
2682 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2683}
2684
2685static inline void skb_free_frag(void *addr)
2686{
2687 page_frag_free(addr);
2688}
2689
2690void *napi_alloc_frag(unsigned int fragsz);
2691struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2692 unsigned int length, gfp_t gfp_mask);
2693static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2694 unsigned int length)
2695{
2696 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2697}
2698void napi_consume_skb(struct sk_buff *skb, int budget);
2699
2700void __kfree_skb_flush(void);
2701void __kfree_skb_defer(struct sk_buff *skb);
2702
2703/**
2704 * __dev_alloc_pages - allocate page for network Rx
2705 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2706 * @order: size of the allocation
2707 *
2708 * Allocate a new page.
2709 *
2710 * %NULL is returned if there is no free memory.
2711*/
2712static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2713 unsigned int order)
2714{
2715 /* This piece of code contains several assumptions.
2716 * 1. This is for device Rx, therefor a cold page is preferred.
2717 * 2. The expectation is the user wants a compound page.
2718 * 3. If requesting a order 0 page it will not be compound
2719 * due to the check to see if order has a value in prep_new_page
2720 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2721 * code in gfp_to_alloc_flags that should be enforcing this.
2722 */
2723 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2724
2725 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2726}
2727
2728static inline struct page *dev_alloc_pages(unsigned int order)
2729{
2730 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2731}
2732
2733/**
2734 * __dev_alloc_page - allocate a page for network Rx
2735 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2736 *
2737 * Allocate a new page.
2738 *
2739 * %NULL is returned if there is no free memory.
2740 */
2741static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2742{
2743 return __dev_alloc_pages(gfp_mask, 0);
2744}
2745
2746static inline struct page *dev_alloc_page(void)
2747{
2748 return dev_alloc_pages(0);
2749}
2750
2751/**
2752 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2753 * @page: The page that was allocated from skb_alloc_page
2754 * @skb: The skb that may need pfmemalloc set
2755 */
2756static inline void skb_propagate_pfmemalloc(struct page *page,
2757 struct sk_buff *skb)
2758{
2759 if (page_is_pfmemalloc(page))
2760 skb->pfmemalloc = true;
2761}
2762
2763/**
2764 * skb_frag_page - retrieve the page referred to by a paged fragment
2765 * @frag: the paged fragment
2766 *
2767 * Returns the &struct page associated with @frag.
2768 */
2769static inline struct page *skb_frag_page(const skb_frag_t *frag)
2770{
2771 return frag->page.p;
2772}
2773
2774/**
2775 * __skb_frag_ref - take an addition reference on a paged fragment.
2776 * @frag: the paged fragment
2777 *
2778 * Takes an additional reference on the paged fragment @frag.
2779 */
2780static inline void __skb_frag_ref(skb_frag_t *frag)
2781{
2782 get_page(skb_frag_page(frag));
2783}
2784
2785/**
2786 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2787 * @skb: the buffer
2788 * @f: the fragment offset.
2789 *
2790 * Takes an additional reference on the @f'th paged fragment of @skb.
2791 */
2792static inline void skb_frag_ref(struct sk_buff *skb, int f)
2793{
2794 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2795}
2796
2797/**
2798 * __skb_frag_unref - release a reference on a paged fragment.
2799 * @frag: the paged fragment
2800 *
2801 * Releases a reference on the paged fragment @frag.
2802 */
2803static inline void __skb_frag_unref(skb_frag_t *frag)
2804{
2805 put_page(skb_frag_page(frag));
2806}
2807
2808/**
2809 * skb_frag_unref - release a reference on a paged fragment of an skb.
2810 * @skb: the buffer
2811 * @f: the fragment offset
2812 *
2813 * Releases a reference on the @f'th paged fragment of @skb.
2814 */
2815static inline void skb_frag_unref(struct sk_buff *skb, int f)
2816{
2817 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2818}
2819
2820/**
2821 * skb_frag_address - gets the address of the data contained in a paged fragment
2822 * @frag: the paged fragment buffer
2823 *
2824 * Returns the address of the data within @frag. The page must already
2825 * be mapped.
2826 */
2827static inline void *skb_frag_address(const skb_frag_t *frag)
2828{
2829 return page_address(skb_frag_page(frag)) + frag->page_offset;
2830}
2831
2832/**
2833 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2834 * @frag: the paged fragment buffer
2835 *
2836 * Returns the address of the data within @frag. Checks that the page
2837 * is mapped and returns %NULL otherwise.
2838 */
2839static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2840{
2841 void *ptr = page_address(skb_frag_page(frag));
2842 if (unlikely(!ptr))
2843 return NULL;
2844
2845 return ptr + frag->page_offset;
2846}
2847
2848/**
2849 * __skb_frag_set_page - sets the page contained in a paged fragment
2850 * @frag: the paged fragment
2851 * @page: the page to set
2852 *
2853 * Sets the fragment @frag to contain @page.
2854 */
2855static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2856{
2857 frag->page.p = page;
2858}
2859
2860/**
2861 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2862 * @skb: the buffer
2863 * @f: the fragment offset
2864 * @page: the page to set
2865 *
2866 * Sets the @f'th fragment of @skb to contain @page.
2867 */
2868static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2869 struct page *page)
2870{
2871 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2872}
2873
2874bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2875
2876/**
2877 * skb_frag_dma_map - maps a paged fragment via the DMA API
2878 * @dev: the device to map the fragment to
2879 * @frag: the paged fragment to map
2880 * @offset: the offset within the fragment (starting at the
2881 * fragment's own offset)
2882 * @size: the number of bytes to map
2883 * @dir: the direction of the mapping (``PCI_DMA_*``)
2884 *
2885 * Maps the page associated with @frag to @device.
2886 */
2887static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2888 const skb_frag_t *frag,
2889 size_t offset, size_t size,
2890 enum dma_data_direction dir)
2891{
2892 return dma_map_page(dev, skb_frag_page(frag),
2893 frag->page_offset + offset, size, dir);
2894}
2895
2896static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2897 gfp_t gfp_mask)
2898{
2899 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2900}
2901
2902
2903static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2904 gfp_t gfp_mask)
2905{
2906 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2907}
2908
2909
2910/**
2911 * skb_clone_writable - is the header of a clone writable
2912 * @skb: buffer to check
2913 * @len: length up to which to write
2914 *
2915 * Returns true if modifying the header part of the cloned buffer
2916 * does not requires the data to be copied.
2917 */
2918static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2919{
2920 return !skb_header_cloned(skb) &&
2921 skb_headroom(skb) + len <= skb->hdr_len;
2922}
2923
2924static inline int skb_try_make_writable(struct sk_buff *skb,
2925 unsigned int write_len)
2926{
2927 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2928 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2929}
2930
2931static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2932 int cloned)
2933{
2934 int delta = 0;
2935
2936 if (headroom > skb_headroom(skb))
2937 delta = headroom - skb_headroom(skb);
2938
2939 if (delta || cloned)
2940 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2941 GFP_ATOMIC);
2942 return 0;
2943}
2944
2945/**
2946 * skb_cow - copy header of skb when it is required
2947 * @skb: buffer to cow
2948 * @headroom: needed headroom
2949 *
2950 * If the skb passed lacks sufficient headroom or its data part
2951 * is shared, data is reallocated. If reallocation fails, an error
2952 * is returned and original skb is not changed.
2953 *
2954 * The result is skb with writable area skb->head...skb->tail
2955 * and at least @headroom of space at head.
2956 */
2957static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2958{
2959 return __skb_cow(skb, headroom, skb_cloned(skb));
2960}
2961
2962/**
2963 * skb_cow_head - skb_cow but only making the head writable
2964 * @skb: buffer to cow
2965 * @headroom: needed headroom
2966 *
2967 * This function is identical to skb_cow except that we replace the
2968 * skb_cloned check by skb_header_cloned. It should be used when
2969 * you only need to push on some header and do not need to modify
2970 * the data.
2971 */
2972static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2973{
2974 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2975}
2976
2977/**
2978 * skb_padto - pad an skbuff up to a minimal size
2979 * @skb: buffer to pad
2980 * @len: minimal length
2981 *
2982 * Pads up a buffer to ensure the trailing bytes exist and are
2983 * blanked. If the buffer already contains sufficient data it
2984 * is untouched. Otherwise it is extended. Returns zero on
2985 * success. The skb is freed on error.
2986 */
2987static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2988{
2989 unsigned int size = skb->len;
2990 if (likely(size >= len))
2991 return 0;
2992 return skb_pad(skb, len - size);
2993}
2994
2995/**
2996 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2997 * @skb: buffer to pad
2998 * @len: minimal length
2999 * @free_on_error: free buffer on error
3000 *
3001 * Pads up a buffer to ensure the trailing bytes exist and are
3002 * blanked. If the buffer already contains sufficient data it
3003 * is untouched. Otherwise it is extended. Returns zero on
3004 * success. The skb is freed on error if @free_on_error is true.
3005 */
3006static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3007 bool free_on_error)
3008{
3009 unsigned int size = skb->len;
3010
3011 if (unlikely(size < len)) {
3012 len -= size;
3013 if (__skb_pad(skb, len, free_on_error))
3014 return -ENOMEM;
3015 __skb_put(skb, len);
3016 }
3017 return 0;
3018}
3019
3020/**
3021 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3022 * @skb: buffer to pad
3023 * @len: minimal length
3024 *
3025 * Pads up a buffer to ensure the trailing bytes exist and are
3026 * blanked. If the buffer already contains sufficient data it
3027 * is untouched. Otherwise it is extended. Returns zero on
3028 * success. The skb is freed on error.
3029 */
3030static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3031{
3032 return __skb_put_padto(skb, len, true);
3033}
3034
3035static inline int skb_add_data(struct sk_buff *skb,
3036 struct iov_iter *from, int copy)
3037{
3038 const int off = skb->len;
3039
3040 if (skb->ip_summed == CHECKSUM_NONE) {
3041 __wsum csum = 0;
3042 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3043 &csum, from)) {
3044 skb->csum = csum_block_add(skb->csum, csum, off);
3045 return 0;
3046 }
3047 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3048 return 0;
3049
3050 __skb_trim(skb, off);
3051 return -EFAULT;
3052}
3053
3054static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3055 const struct page *page, int off)
3056{
3057 if (skb_zcopy(skb))
3058 return false;
3059 if (i) {
3060 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3061
3062 return page == skb_frag_page(frag) &&
3063 off == frag->page_offset + skb_frag_size(frag);
3064 }
3065 return false;
3066}
3067
3068static inline int __skb_linearize(struct sk_buff *skb)
3069{
3070 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3071}
3072
3073/**
3074 * skb_linearize - convert paged skb to linear one
3075 * @skb: buffer to linarize
3076 *
3077 * If there is no free memory -ENOMEM is returned, otherwise zero
3078 * is returned and the old skb data released.
3079 */
3080static inline int skb_linearize(struct sk_buff *skb)
3081{
3082 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3083}
3084
3085/**
3086 * skb_has_shared_frag - can any frag be overwritten
3087 * @skb: buffer to test
3088 *
3089 * Return true if the skb has at least one frag that might be modified
3090 * by an external entity (as in vmsplice()/sendfile())
3091 */
3092static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3093{
3094 return skb_is_nonlinear(skb) &&
3095 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3096}
3097
3098/**
3099 * skb_linearize_cow - make sure skb is linear and writable
3100 * @skb: buffer to process
3101 *
3102 * If there is no free memory -ENOMEM is returned, otherwise zero
3103 * is returned and the old skb data released.
3104 */
3105static inline int skb_linearize_cow(struct sk_buff *skb)
3106{
3107 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3108 __skb_linearize(skb) : 0;
3109}
3110
3111static __always_inline void
3112__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3113 unsigned int off)
3114{
3115 if (skb->ip_summed == CHECKSUM_COMPLETE)
3116 skb->csum = csum_block_sub(skb->csum,
3117 csum_partial(start, len, 0), off);
3118 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3119 skb_checksum_start_offset(skb) < 0)
3120 skb->ip_summed = CHECKSUM_NONE;
3121}
3122
3123/**
3124 * skb_postpull_rcsum - update checksum for received skb after pull
3125 * @skb: buffer to update
3126 * @start: start of data before pull
3127 * @len: length of data pulled
3128 *
3129 * After doing a pull on a received packet, you need to call this to
3130 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3131 * CHECKSUM_NONE so that it can be recomputed from scratch.
3132 */
3133static inline void skb_postpull_rcsum(struct sk_buff *skb,
3134 const void *start, unsigned int len)
3135{
3136 __skb_postpull_rcsum(skb, start, len, 0);
3137}
3138
3139static __always_inline void
3140__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3141 unsigned int off)
3142{
3143 if (skb->ip_summed == CHECKSUM_COMPLETE)
3144 skb->csum = csum_block_add(skb->csum,
3145 csum_partial(start, len, 0), off);
3146}
3147
3148/**
3149 * skb_postpush_rcsum - update checksum for received skb after push
3150 * @skb: buffer to update
3151 * @start: start of data after push
3152 * @len: length of data pushed
3153 *
3154 * After doing a push on a received packet, you need to call this to
3155 * update the CHECKSUM_COMPLETE checksum.
3156 */
3157static inline void skb_postpush_rcsum(struct sk_buff *skb,
3158 const void *start, unsigned int len)
3159{
3160 __skb_postpush_rcsum(skb, start, len, 0);
3161}
3162
3163void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3164
3165/**
3166 * skb_push_rcsum - push skb and update receive checksum
3167 * @skb: buffer to update
3168 * @len: length of data pulled
3169 *
3170 * This function performs an skb_push on the packet and updates
3171 * the CHECKSUM_COMPLETE checksum. It should be used on
3172 * receive path processing instead of skb_push unless you know
3173 * that the checksum difference is zero (e.g., a valid IP header)
3174 * or you are setting ip_summed to CHECKSUM_NONE.
3175 */
3176static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3177{
3178 skb_push(skb, len);
3179 skb_postpush_rcsum(skb, skb->data, len);
3180 return skb->data;
3181}
3182
3183int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3184/**
3185 * pskb_trim_rcsum - trim received skb and update checksum
3186 * @skb: buffer to trim
3187 * @len: new length
3188 *
3189 * This is exactly the same as pskb_trim except that it ensures the
3190 * checksum of received packets are still valid after the operation.
3191 */
3192
3193static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3194{
3195 if (likely(len >= skb->len))
3196 return 0;
3197 return pskb_trim_rcsum_slow(skb, len);
3198}
3199
3200static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3201{
3202 if (skb->ip_summed == CHECKSUM_COMPLETE)
3203 skb->ip_summed = CHECKSUM_NONE;
3204 __skb_trim(skb, len);
3205 return 0;
3206}
3207
3208static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3209{
3210 if (skb->ip_summed == CHECKSUM_COMPLETE)
3211 skb->ip_summed = CHECKSUM_NONE;
3212 return __skb_grow(skb, len);
3213}
3214
3215#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3216#define skb_rb_first(root) rb_to_skb(rb_first(root))
3217#define skb_rb_last(root) rb_to_skb(rb_last(root))
3218#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3219#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3220
3221#define skb_queue_walk(queue, skb) \
3222 for (skb = (queue)->next; \
3223 skb != (struct sk_buff *)(queue); \
3224 skb = skb->next)
3225
3226#define skb_queue_walk_safe(queue, skb, tmp) \
3227 for (skb = (queue)->next, tmp = skb->next; \
3228 skb != (struct sk_buff *)(queue); \
3229 skb = tmp, tmp = skb->next)
3230
3231#define skb_queue_walk_from(queue, skb) \
3232 for (; skb != (struct sk_buff *)(queue); \
3233 skb = skb->next)
3234
3235#define skb_rbtree_walk(skb, root) \
3236 for (skb = skb_rb_first(root); skb != NULL; \
3237 skb = skb_rb_next(skb))
3238
3239#define skb_rbtree_walk_from(skb) \
3240 for (; skb != NULL; \
3241 skb = skb_rb_next(skb))
3242
3243#define skb_rbtree_walk_from_safe(skb, tmp) \
3244 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3245 skb = tmp)
3246
3247#define skb_queue_walk_from_safe(queue, skb, tmp) \
3248 for (tmp = skb->next; \
3249 skb != (struct sk_buff *)(queue); \
3250 skb = tmp, tmp = skb->next)
3251
3252#define skb_queue_reverse_walk(queue, skb) \
3253 for (skb = (queue)->prev; \
3254 skb != (struct sk_buff *)(queue); \
3255 skb = skb->prev)
3256
3257#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3258 for (skb = (queue)->prev, tmp = skb->prev; \
3259 skb != (struct sk_buff *)(queue); \
3260 skb = tmp, tmp = skb->prev)
3261
3262#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3263 for (tmp = skb->prev; \
3264 skb != (struct sk_buff *)(queue); \
3265 skb = tmp, tmp = skb->prev)
3266
3267static inline bool skb_has_frag_list(const struct sk_buff *skb)
3268{
3269 return skb_shinfo(skb)->frag_list != NULL;
3270}
3271
3272static inline void skb_frag_list_init(struct sk_buff *skb)
3273{
3274 skb_shinfo(skb)->frag_list = NULL;
3275}
3276
3277#define skb_walk_frags(skb, iter) \
3278 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3279
3280
3281int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3282 const struct sk_buff *skb);
3283struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3284 struct sk_buff_head *queue,
3285 unsigned int flags,
3286 void (*destructor)(struct sock *sk,
3287 struct sk_buff *skb),
3288 int *peeked, int *off, int *err,
3289 struct sk_buff **last);
3290struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3291 void (*destructor)(struct sock *sk,
3292 struct sk_buff *skb),
3293 int *peeked, int *off, int *err,
3294 struct sk_buff **last);
3295struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3296 void (*destructor)(struct sock *sk,
3297 struct sk_buff *skb),
3298 int *peeked, int *off, int *err);
3299struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3300 int *err);
3301__poll_t datagram_poll(struct file *file, struct socket *sock,
3302 struct poll_table_struct *wait);
3303int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3304 struct iov_iter *to, int size);
3305static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3306 struct msghdr *msg, int size)
3307{
3308 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3309}
3310int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3311 struct msghdr *msg);
3312int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3313 struct iov_iter *from, int len);
3314int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3315void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3316void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3317static inline void skb_free_datagram_locked(struct sock *sk,
3318 struct sk_buff *skb)
3319{
3320 __skb_free_datagram_locked(sk, skb, 0);
3321}
3322int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3323int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3324int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3325__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3326 int len, __wsum csum);
3327int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3328 struct pipe_inode_info *pipe, unsigned int len,
3329 unsigned int flags);
3330int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3331 int len);
3332int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3333void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3334unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3335int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3336 int len, int hlen);
3337void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3338int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3339void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3340bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3341bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3342struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3343struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3344int skb_ensure_writable(struct sk_buff *skb, int write_len);
3345int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3346int skb_vlan_pop(struct sk_buff *skb);
3347int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3348struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3349 gfp_t gfp);
3350
3351static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3352{
3353 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3354}
3355
3356static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3357{
3358 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3359}
3360
3361struct skb_checksum_ops {
3362 __wsum (*update)(const void *mem, int len, __wsum wsum);
3363 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3364};
3365
3366extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3367
3368__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3369 __wsum csum, const struct skb_checksum_ops *ops);
3370__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3371 __wsum csum);
3372
3373static inline void * __must_check
3374__skb_header_pointer(const struct sk_buff *skb, int offset,
3375 int len, void *data, int hlen, void *buffer)
3376{
3377 if (hlen - offset >= len)
3378 return data + offset;
3379
3380 if (!skb ||
3381 skb_copy_bits(skb, offset, buffer, len) < 0)
3382 return NULL;
3383
3384 return buffer;
3385}
3386
3387static inline void * __must_check
3388skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3389{
3390 return __skb_header_pointer(skb, offset, len, skb->data,
3391 skb_headlen(skb), buffer);
3392}
3393
3394/**
3395 * skb_needs_linearize - check if we need to linearize a given skb
3396 * depending on the given device features.
3397 * @skb: socket buffer to check
3398 * @features: net device features
3399 *
3400 * Returns true if either:
3401 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3402 * 2. skb is fragmented and the device does not support SG.
3403 */
3404static inline bool skb_needs_linearize(struct sk_buff *skb,
3405 netdev_features_t features)
3406{
3407 return skb_is_nonlinear(skb) &&
3408 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3409 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3410}
3411
3412static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3413 void *to,
3414 const unsigned int len)
3415{
3416 memcpy(to, skb->data, len);
3417}
3418
3419static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3420 const int offset, void *to,
3421 const unsigned int len)
3422{
3423 memcpy(to, skb->data + offset, len);
3424}
3425
3426static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3427 const void *from,
3428 const unsigned int len)
3429{
3430 memcpy(skb->data, from, len);
3431}
3432
3433static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3434 const int offset,
3435 const void *from,
3436 const unsigned int len)
3437{
3438 memcpy(skb->data + offset, from, len);
3439}
3440
3441void skb_init(void);
3442
3443static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3444{
3445 return skb->tstamp;
3446}
3447
3448/**
3449 * skb_get_timestamp - get timestamp from a skb
3450 * @skb: skb to get stamp from
3451 * @stamp: pointer to struct timeval to store stamp in
3452 *
3453 * Timestamps are stored in the skb as offsets to a base timestamp.
3454 * This function converts the offset back to a struct timeval and stores
3455 * it in stamp.
3456 */
3457static inline void skb_get_timestamp(const struct sk_buff *skb,
3458 struct timeval *stamp)
3459{
3460 *stamp = ktime_to_timeval(skb->tstamp);
3461}
3462
3463static inline void skb_get_timestampns(const struct sk_buff *skb,
3464 struct timespec *stamp)
3465{
3466 *stamp = ktime_to_timespec(skb->tstamp);
3467}
3468
3469static inline void __net_timestamp(struct sk_buff *skb)
3470{
3471 skb->tstamp = ktime_get_real();
3472}
3473
3474static inline ktime_t net_timedelta(ktime_t t)
3475{
3476 return ktime_sub(ktime_get_real(), t);
3477}
3478
3479static inline ktime_t net_invalid_timestamp(void)
3480{
3481 return 0;
3482}
3483
3484static inline u8 skb_metadata_len(const struct sk_buff *skb)
3485{
3486 return skb_shinfo(skb)->meta_len;
3487}
3488
3489static inline void *skb_metadata_end(const struct sk_buff *skb)
3490{
3491 return skb_mac_header(skb);
3492}
3493
3494static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3495 const struct sk_buff *skb_b,
3496 u8 meta_len)
3497{
3498 const void *a = skb_metadata_end(skb_a);
3499 const void *b = skb_metadata_end(skb_b);
3500 /* Using more efficient varaiant than plain call to memcmp(). */
3501#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3502 u64 diffs = 0;
3503
3504 switch (meta_len) {
3505#define __it(x, op) (x -= sizeof(u##op))
3506#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3507 case 32: diffs |= __it_diff(a, b, 64);
3508 /* fall through */
3509 case 24: diffs |= __it_diff(a, b, 64);
3510 /* fall through */
3511 case 16: diffs |= __it_diff(a, b, 64);
3512 /* fall through */
3513 case 8: diffs |= __it_diff(a, b, 64);
3514 break;
3515 case 28: diffs |= __it_diff(a, b, 64);
3516 /* fall through */
3517 case 20: diffs |= __it_diff(a, b, 64);
3518 /* fall through */
3519 case 12: diffs |= __it_diff(a, b, 64);
3520 /* fall through */
3521 case 4: diffs |= __it_diff(a, b, 32);
3522 break;
3523 }
3524 return diffs;
3525#else
3526 return memcmp(a - meta_len, b - meta_len, meta_len);
3527#endif
3528}
3529
3530static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3531 const struct sk_buff *skb_b)
3532{
3533 u8 len_a = skb_metadata_len(skb_a);
3534 u8 len_b = skb_metadata_len(skb_b);
3535
3536 if (!(len_a | len_b))
3537 return false;
3538
3539 return len_a != len_b ?
3540 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3541}
3542
3543static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3544{
3545 skb_shinfo(skb)->meta_len = meta_len;
3546}
3547
3548static inline void skb_metadata_clear(struct sk_buff *skb)
3549{
3550 skb_metadata_set(skb, 0);
3551}
3552
3553struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3554
3555#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3556
3557void skb_clone_tx_timestamp(struct sk_buff *skb);
3558bool skb_defer_rx_timestamp(struct sk_buff *skb);
3559
3560#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3561
3562static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3563{
3564}
3565
3566static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3567{
3568 return false;
3569}
3570
3571#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3572
3573/**
3574 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3575 *
3576 * PHY drivers may accept clones of transmitted packets for
3577 * timestamping via their phy_driver.txtstamp method. These drivers
3578 * must call this function to return the skb back to the stack with a
3579 * timestamp.
3580 *
3581 * @skb: clone of the the original outgoing packet
3582 * @hwtstamps: hardware time stamps
3583 *
3584 */
3585void skb_complete_tx_timestamp(struct sk_buff *skb,
3586 struct skb_shared_hwtstamps *hwtstamps);
3587
3588void __skb_tstamp_tx(struct sk_buff *orig_skb,
3589 struct skb_shared_hwtstamps *hwtstamps,
3590 struct sock *sk, int tstype);
3591
3592/**
3593 * skb_tstamp_tx - queue clone of skb with send time stamps
3594 * @orig_skb: the original outgoing packet
3595 * @hwtstamps: hardware time stamps, may be NULL if not available
3596 *
3597 * If the skb has a socket associated, then this function clones the
3598 * skb (thus sharing the actual data and optional structures), stores
3599 * the optional hardware time stamping information (if non NULL) or
3600 * generates a software time stamp (otherwise), then queues the clone
3601 * to the error queue of the socket. Errors are silently ignored.
3602 */
3603void skb_tstamp_tx(struct sk_buff *orig_skb,
3604 struct skb_shared_hwtstamps *hwtstamps);
3605
3606/**
3607 * skb_tx_timestamp() - Driver hook for transmit timestamping
3608 *
3609 * Ethernet MAC Drivers should call this function in their hard_xmit()
3610 * function immediately before giving the sk_buff to the MAC hardware.
3611 *
3612 * Specifically, one should make absolutely sure that this function is
3613 * called before TX completion of this packet can trigger. Otherwise
3614 * the packet could potentially already be freed.
3615 *
3616 * @skb: A socket buffer.
3617 */
3618static inline void skb_tx_timestamp(struct sk_buff *skb)
3619{
3620 skb_clone_tx_timestamp(skb);
3621 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3622 skb_tstamp_tx(skb, NULL);
3623}
3624
3625/**
3626 * skb_complete_wifi_ack - deliver skb with wifi status
3627 *
3628 * @skb: the original outgoing packet
3629 * @acked: ack status
3630 *
3631 */
3632void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3633
3634__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3635__sum16 __skb_checksum_complete(struct sk_buff *skb);
3636
3637static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3638{
3639 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3640 skb->csum_valid ||
3641 (skb->ip_summed == CHECKSUM_PARTIAL &&
3642 skb_checksum_start_offset(skb) >= 0));
3643}
3644
3645/**
3646 * skb_checksum_complete - Calculate checksum of an entire packet
3647 * @skb: packet to process
3648 *
3649 * This function calculates the checksum over the entire packet plus
3650 * the value of skb->csum. The latter can be used to supply the
3651 * checksum of a pseudo header as used by TCP/UDP. It returns the
3652 * checksum.
3653 *
3654 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3655 * this function can be used to verify that checksum on received
3656 * packets. In that case the function should return zero if the
3657 * checksum is correct. In particular, this function will return zero
3658 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3659 * hardware has already verified the correctness of the checksum.
3660 */
3661static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3662{
3663 return skb_csum_unnecessary(skb) ?
3664 0 : __skb_checksum_complete(skb);
3665}
3666
3667static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3668{
3669 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3670 if (skb->csum_level == 0)
3671 skb->ip_summed = CHECKSUM_NONE;
3672 else
3673 skb->csum_level--;
3674 }
3675}
3676
3677static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3678{
3679 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3680 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3681 skb->csum_level++;
3682 } else if (skb->ip_summed == CHECKSUM_NONE) {
3683 skb->ip_summed = CHECKSUM_UNNECESSARY;
3684 skb->csum_level = 0;
3685 }
3686}
3687
3688/* Check if we need to perform checksum complete validation.
3689 *
3690 * Returns true if checksum complete is needed, false otherwise
3691 * (either checksum is unnecessary or zero checksum is allowed).
3692 */
3693static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3694 bool zero_okay,
3695 __sum16 check)
3696{
3697 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3698 skb->csum_valid = 1;
3699 __skb_decr_checksum_unnecessary(skb);
3700 return false;
3701 }
3702
3703 return true;
3704}
3705
3706/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3707 * in checksum_init.
3708 */
3709#define CHECKSUM_BREAK 76
3710
3711/* Unset checksum-complete
3712 *
3713 * Unset checksum complete can be done when packet is being modified
3714 * (uncompressed for instance) and checksum-complete value is
3715 * invalidated.
3716 */
3717static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3718{
3719 if (skb->ip_summed == CHECKSUM_COMPLETE)
3720 skb->ip_summed = CHECKSUM_NONE;
3721}
3722
3723/* Validate (init) checksum based on checksum complete.
3724 *
3725 * Return values:
3726 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3727 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3728 * checksum is stored in skb->csum for use in __skb_checksum_complete
3729 * non-zero: value of invalid checksum
3730 *
3731 */
3732static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3733 bool complete,
3734 __wsum psum)
3735{
3736 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3737 if (!csum_fold(csum_add(psum, skb->csum))) {
3738 skb->csum_valid = 1;
3739 return 0;
3740 }
3741 }
3742
3743 skb->csum = psum;
3744
3745 if (complete || skb->len <= CHECKSUM_BREAK) {
3746 __sum16 csum;
3747
3748 csum = __skb_checksum_complete(skb);
3749 skb->csum_valid = !csum;
3750 return csum;
3751 }
3752
3753 return 0;
3754}
3755
3756static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3757{
3758 return 0;
3759}
3760
3761/* Perform checksum validate (init). Note that this is a macro since we only
3762 * want to calculate the pseudo header which is an input function if necessary.
3763 * First we try to validate without any computation (checksum unnecessary) and
3764 * then calculate based on checksum complete calling the function to compute
3765 * pseudo header.
3766 *
3767 * Return values:
3768 * 0: checksum is validated or try to in skb_checksum_complete
3769 * non-zero: value of invalid checksum
3770 */
3771#define __skb_checksum_validate(skb, proto, complete, \
3772 zero_okay, check, compute_pseudo) \
3773({ \
3774 __sum16 __ret = 0; \
3775 skb->csum_valid = 0; \
3776 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3777 __ret = __skb_checksum_validate_complete(skb, \
3778 complete, compute_pseudo(skb, proto)); \
3779 __ret; \
3780})
3781
3782#define skb_checksum_init(skb, proto, compute_pseudo) \
3783 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3784
3785#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3786 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3787
3788#define skb_checksum_validate(skb, proto, compute_pseudo) \
3789 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3790
3791#define skb_checksum_validate_zero_check(skb, proto, check, \
3792 compute_pseudo) \
3793 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3794
3795#define skb_checksum_simple_validate(skb) \
3796 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3797
3798static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3799{
3800 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3801}
3802
3803static inline void __skb_checksum_convert(struct sk_buff *skb,
3804 __sum16 check, __wsum pseudo)
3805{
3806 skb->csum = ~pseudo;
3807 skb->ip_summed = CHECKSUM_COMPLETE;
3808}
3809
3810#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3811do { \
3812 if (__skb_checksum_convert_check(skb)) \
3813 __skb_checksum_convert(skb, check, \
3814 compute_pseudo(skb, proto)); \
3815} while (0)
3816
3817static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3818 u16 start, u16 offset)
3819{
3820 skb->ip_summed = CHECKSUM_PARTIAL;
3821 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3822 skb->csum_offset = offset - start;
3823}
3824
3825/* Update skbuf and packet to reflect the remote checksum offload operation.
3826 * When called, ptr indicates the starting point for skb->csum when
3827 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3828 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3829 */
3830static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3831 int start, int offset, bool nopartial)
3832{
3833 __wsum delta;
3834
3835 if (!nopartial) {
3836 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3837 return;
3838 }
3839
3840 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3841 __skb_checksum_complete(skb);
3842 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3843 }
3844
3845 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3846
3847 /* Adjust skb->csum since we changed the packet */
3848 skb->csum = csum_add(skb->csum, delta);
3849}
3850
3851static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3852{
3853#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3854 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3855#else
3856 return NULL;
3857#endif
3858}
3859
3860#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3861void nf_conntrack_destroy(struct nf_conntrack *nfct);
3862static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3863{
3864 if (nfct && atomic_dec_and_test(&nfct->use))
3865 nf_conntrack_destroy(nfct);
3866}
3867static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3868{
3869 if (nfct)
3870 atomic_inc(&nfct->use);
3871}
3872#endif
3873#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3874static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3875{
3876 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3877 kfree(nf_bridge);
3878}
3879static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3880{
3881 if (nf_bridge)
3882 refcount_inc(&nf_bridge->use);
3883}
3884#endif /* CONFIG_BRIDGE_NETFILTER */
3885static inline void nf_reset(struct sk_buff *skb)
3886{
3887#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3888 nf_conntrack_put(skb_nfct(skb));
3889 skb->_nfct = 0;
3890#endif
3891#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3892 nf_bridge_put(skb->nf_bridge);
3893 skb->nf_bridge = NULL;
3894#endif
3895}
3896
3897static inline void nf_reset_trace(struct sk_buff *skb)
3898{
3899#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3900 skb->nf_trace = 0;
3901#endif
3902}
3903
3904static inline void ipvs_reset(struct sk_buff *skb)
3905{
3906#if IS_ENABLED(CONFIG_IP_VS)
3907 skb->ipvs_property = 0;
3908#endif
3909}
3910
3911/* Note: This doesn't put any conntrack and bridge info in dst. */
3912static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3913 bool copy)
3914{
3915#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3916 dst->_nfct = src->_nfct;
3917 nf_conntrack_get(skb_nfct(src));
3918#endif
3919#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3920 dst->nf_bridge = src->nf_bridge;
3921 nf_bridge_get(src->nf_bridge);
3922#endif
3923#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3924 if (copy)
3925 dst->nf_trace = src->nf_trace;
3926#endif
3927}
3928
3929static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3930{
3931#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3932 nf_conntrack_put(skb_nfct(dst));
3933#endif
3934#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3935 nf_bridge_put(dst->nf_bridge);
3936#endif
3937 __nf_copy(dst, src, true);
3938}
3939
3940#ifdef CONFIG_NETWORK_SECMARK
3941static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3942{
3943 to->secmark = from->secmark;
3944}
3945
3946static inline void skb_init_secmark(struct sk_buff *skb)
3947{
3948 skb->secmark = 0;
3949}
3950#else
3951static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3952{ }
3953
3954static inline void skb_init_secmark(struct sk_buff *skb)
3955{ }
3956#endif
3957
3958static inline bool skb_irq_freeable(const struct sk_buff *skb)
3959{
3960 return !skb->destructor &&
3961#if IS_ENABLED(CONFIG_XFRM)
3962 !skb->sp &&
3963#endif
3964 !skb_nfct(skb) &&
3965 !skb->_skb_refdst &&
3966 !skb_has_frag_list(skb);
3967}
3968
3969static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3970{
3971 skb->queue_mapping = queue_mapping;
3972}
3973
3974static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3975{
3976 return skb->queue_mapping;
3977}
3978
3979static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3980{
3981 to->queue_mapping = from->queue_mapping;
3982}
3983
3984static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3985{
3986 skb->queue_mapping = rx_queue + 1;
3987}
3988
3989static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3990{
3991 return skb->queue_mapping - 1;
3992}
3993
3994static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3995{
3996 return skb->queue_mapping != 0;
3997}
3998
3999static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4000{
4001 skb->dst_pending_confirm = val;
4002}
4003
4004static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4005{
4006 return skb->dst_pending_confirm != 0;
4007}
4008
4009static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4010{
4011#ifdef CONFIG_XFRM
4012 return skb->sp;
4013#else
4014 return NULL;
4015#endif
4016}
4017
4018/* Keeps track of mac header offset relative to skb->head.
4019 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4020 * For non-tunnel skb it points to skb_mac_header() and for
4021 * tunnel skb it points to outer mac header.
4022 * Keeps track of level of encapsulation of network headers.
4023 */
4024struct skb_gso_cb {
4025 union {
4026 int mac_offset;
4027 int data_offset;
4028 };
4029 int encap_level;
4030 __wsum csum;
4031 __u16 csum_start;
4032};
4033#define SKB_SGO_CB_OFFSET 32
4034#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4035
4036static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4037{
4038 return (skb_mac_header(inner_skb) - inner_skb->head) -
4039 SKB_GSO_CB(inner_skb)->mac_offset;
4040}
4041
4042static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4043{
4044 int new_headroom, headroom;
4045 int ret;
4046
4047 headroom = skb_headroom(skb);
4048 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4049 if (ret)
4050 return ret;
4051
4052 new_headroom = skb_headroom(skb);
4053 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4054 return 0;
4055}
4056
4057static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4058{
4059 /* Do not update partial checksums if remote checksum is enabled. */
4060 if (skb->remcsum_offload)
4061 return;
4062
4063 SKB_GSO_CB(skb)->csum = res;
4064 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4065}
4066
4067/* Compute the checksum for a gso segment. First compute the checksum value
4068 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4069 * then add in skb->csum (checksum from csum_start to end of packet).
4070 * skb->csum and csum_start are then updated to reflect the checksum of the
4071 * resultant packet starting from the transport header-- the resultant checksum
4072 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4073 * header.
4074 */
4075static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4076{
4077 unsigned char *csum_start = skb_transport_header(skb);
4078 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4079 __wsum partial = SKB_GSO_CB(skb)->csum;
4080
4081 SKB_GSO_CB(skb)->csum = res;
4082 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4083
4084 return csum_fold(csum_partial(csum_start, plen, partial));
4085}
4086
4087static inline bool skb_is_gso(const struct sk_buff *skb)
4088{
4089 return skb_shinfo(skb)->gso_size;
4090}
4091
4092/* Note: Should be called only if skb_is_gso(skb) is true */
4093static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4094{
4095 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4096}
4097
4098/* Note: Should be called only if skb_is_gso(skb) is true */
4099static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4100{
4101 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4102}
4103
4104static inline void skb_gso_reset(struct sk_buff *skb)
4105{
4106 skb_shinfo(skb)->gso_size = 0;
4107 skb_shinfo(skb)->gso_segs = 0;
4108 skb_shinfo(skb)->gso_type = 0;
4109}
4110
4111static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4112 u16 increment)
4113{
4114 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4115 return;
4116 shinfo->gso_size += increment;
4117}
4118
4119static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4120 u16 decrement)
4121{
4122 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4123 return;
4124 shinfo->gso_size -= decrement;
4125}
4126
4127void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4128
4129static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4130{
4131 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4132 * wanted then gso_type will be set. */
4133 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4134
4135 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4136 unlikely(shinfo->gso_type == 0)) {
4137 __skb_warn_lro_forwarding(skb);
4138 return true;
4139 }
4140 return false;
4141}
4142
4143static inline void skb_forward_csum(struct sk_buff *skb)
4144{
4145 /* Unfortunately we don't support this one. Any brave souls? */
4146 if (skb->ip_summed == CHECKSUM_COMPLETE)
4147 skb->ip_summed = CHECKSUM_NONE;
4148}
4149
4150/**
4151 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4152 * @skb: skb to check
4153 *
4154 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4155 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4156 * use this helper, to document places where we make this assertion.
4157 */
4158static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4159{
4160#ifdef DEBUG
4161 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4162#endif
4163}
4164
4165bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4166
4167int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4168struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4169 unsigned int transport_len,
4170 __sum16(*skb_chkf)(struct sk_buff *skb));
4171
4172/**
4173 * skb_head_is_locked - Determine if the skb->head is locked down
4174 * @skb: skb to check
4175 *
4176 * The head on skbs build around a head frag can be removed if they are
4177 * not cloned. This function returns true if the skb head is locked down
4178 * due to either being allocated via kmalloc, or by being a clone with
4179 * multiple references to the head.
4180 */
4181static inline bool skb_head_is_locked(const struct sk_buff *skb)
4182{
4183 return !skb->head_frag || skb_cloned(skb);
4184}
4185
4186/* Local Checksum Offload.
4187 * Compute outer checksum based on the assumption that the
4188 * inner checksum will be offloaded later.
4189 * See Documentation/networking/checksum-offloads.txt for
4190 * explanation of how this works.
4191 * Fill in outer checksum adjustment (e.g. with sum of outer
4192 * pseudo-header) before calling.
4193 * Also ensure that inner checksum is in linear data area.
4194 */
4195static inline __wsum lco_csum(struct sk_buff *skb)
4196{
4197 unsigned char *csum_start = skb_checksum_start(skb);
4198 unsigned char *l4_hdr = skb_transport_header(skb);
4199 __wsum partial;
4200
4201 /* Start with complement of inner checksum adjustment */
4202 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4203 skb->csum_offset));
4204
4205 /* Add in checksum of our headers (incl. outer checksum
4206 * adjustment filled in by caller) and return result.
4207 */
4208 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4209}
4210
4211#endif /* __KERNEL__ */
4212#endif /* _LINUX_SKBUFF_H */