at v4.20-rc2 31 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/cryptohash.h> 20#include <linux/set_memory.h> 21#include <linux/kallsyms.h> 22#include <linux/if_vlan.h> 23 24#include <net/sch_generic.h> 25 26#include <uapi/linux/filter.h> 27#include <uapi/linux/bpf.h> 28 29struct sk_buff; 30struct sock; 31struct seccomp_data; 32struct bpf_prog_aux; 33struct xdp_rxq_info; 34struct xdp_buff; 35struct sock_reuseport; 36 37/* ArgX, context and stack frame pointer register positions. Note, 38 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 39 * calls in BPF_CALL instruction. 40 */ 41#define BPF_REG_ARG1 BPF_REG_1 42#define BPF_REG_ARG2 BPF_REG_2 43#define BPF_REG_ARG3 BPF_REG_3 44#define BPF_REG_ARG4 BPF_REG_4 45#define BPF_REG_ARG5 BPF_REG_5 46#define BPF_REG_CTX BPF_REG_6 47#define BPF_REG_FP BPF_REG_10 48 49/* Additional register mappings for converted user programs. */ 50#define BPF_REG_A BPF_REG_0 51#define BPF_REG_X BPF_REG_7 52#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 53#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 54#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 55 56/* Kernel hidden auxiliary/helper register for hardening step. 57 * Only used by eBPF JITs. It's nothing more than a temporary 58 * register that JITs use internally, only that here it's part 59 * of eBPF instructions that have been rewritten for blinding 60 * constants. See JIT pre-step in bpf_jit_blind_constants(). 61 */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_JIT_REG (MAX_BPF_REG + 1) 64 65/* unused opcode to mark special call to bpf_tail_call() helper */ 66#define BPF_TAIL_CALL 0xf0 67 68/* unused opcode to mark call to interpreter with arguments */ 69#define BPF_CALL_ARGS 0xe0 70 71/* As per nm, we expose JITed images as text (code) section for 72 * kallsyms. That way, tools like perf can find it to match 73 * addresses. 74 */ 75#define BPF_SYM_ELF_TYPE 't' 76 77/* BPF program can access up to 512 bytes of stack space. */ 78#define MAX_BPF_STACK 512 79 80/* Helper macros for filter block array initializers. */ 81 82/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 83 84#define BPF_ALU64_REG(OP, DST, SRC) \ 85 ((struct bpf_insn) { \ 86 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 87 .dst_reg = DST, \ 88 .src_reg = SRC, \ 89 .off = 0, \ 90 .imm = 0 }) 91 92#define BPF_ALU32_REG(OP, DST, SRC) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 95 .dst_reg = DST, \ 96 .src_reg = SRC, \ 97 .off = 0, \ 98 .imm = 0 }) 99 100/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 101 102#define BPF_ALU64_IMM(OP, DST, IMM) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 105 .dst_reg = DST, \ 106 .src_reg = 0, \ 107 .off = 0, \ 108 .imm = IMM }) 109 110#define BPF_ALU32_IMM(OP, DST, IMM) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = IMM }) 117 118/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 119 120#define BPF_ENDIAN(TYPE, DST, LEN) \ 121 ((struct bpf_insn) { \ 122 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 123 .dst_reg = DST, \ 124 .src_reg = 0, \ 125 .off = 0, \ 126 .imm = LEN }) 127 128/* Short form of mov, dst_reg = src_reg */ 129 130#define BPF_MOV64_REG(DST, SRC) \ 131 ((struct bpf_insn) { \ 132 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 133 .dst_reg = DST, \ 134 .src_reg = SRC, \ 135 .off = 0, \ 136 .imm = 0 }) 137 138#define BPF_MOV32_REG(DST, SRC) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU | BPF_MOV | BPF_X, \ 141 .dst_reg = DST, \ 142 .src_reg = SRC, \ 143 .off = 0, \ 144 .imm = 0 }) 145 146/* Short form of mov, dst_reg = imm32 */ 147 148#define BPF_MOV64_IMM(DST, IMM) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = IMM }) 155 156#define BPF_MOV32_IMM(DST, IMM) \ 157 ((struct bpf_insn) { \ 158 .code = BPF_ALU | BPF_MOV | BPF_K, \ 159 .dst_reg = DST, \ 160 .src_reg = 0, \ 161 .off = 0, \ 162 .imm = IMM }) 163 164/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 165#define BPF_LD_IMM64(DST, IMM) \ 166 BPF_LD_IMM64_RAW(DST, 0, IMM) 167 168#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_LD | BPF_DW | BPF_IMM, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = (__u32) (IMM) }), \ 175 ((struct bpf_insn) { \ 176 .code = 0, /* zero is reserved opcode */ \ 177 .dst_reg = 0, \ 178 .src_reg = 0, \ 179 .off = 0, \ 180 .imm = ((__u64) (IMM)) >> 32 }) 181 182/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 183#define BPF_LD_MAP_FD(DST, MAP_FD) \ 184 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 185 186/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 187 188#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 189 ((struct bpf_insn) { \ 190 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 191 .dst_reg = DST, \ 192 .src_reg = SRC, \ 193 .off = 0, \ 194 .imm = IMM }) 195 196#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 197 ((struct bpf_insn) { \ 198 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 199 .dst_reg = DST, \ 200 .src_reg = SRC, \ 201 .off = 0, \ 202 .imm = IMM }) 203 204/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 205 206#define BPF_LD_ABS(SIZE, IMM) \ 207 ((struct bpf_insn) { \ 208 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 209 .dst_reg = 0, \ 210 .src_reg = 0, \ 211 .off = 0, \ 212 .imm = IMM }) 213 214/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 215 216#define BPF_LD_IND(SIZE, SRC, IMM) \ 217 ((struct bpf_insn) { \ 218 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 219 .dst_reg = 0, \ 220 .src_reg = SRC, \ 221 .off = 0, \ 222 .imm = IMM }) 223 224/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 225 226#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 227 ((struct bpf_insn) { \ 228 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 229 .dst_reg = DST, \ 230 .src_reg = SRC, \ 231 .off = OFF, \ 232 .imm = 0 }) 233 234/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 235 236#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 237 ((struct bpf_insn) { \ 238 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 239 .dst_reg = DST, \ 240 .src_reg = SRC, \ 241 .off = OFF, \ 242 .imm = 0 }) 243 244/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 245 246#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 247 ((struct bpf_insn) { \ 248 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 249 .dst_reg = DST, \ 250 .src_reg = SRC, \ 251 .off = OFF, \ 252 .imm = 0 }) 253 254/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 255 256#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 257 ((struct bpf_insn) { \ 258 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 259 .dst_reg = DST, \ 260 .src_reg = 0, \ 261 .off = OFF, \ 262 .imm = IMM }) 263 264/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 265 266#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 267 ((struct bpf_insn) { \ 268 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 269 .dst_reg = DST, \ 270 .src_reg = SRC, \ 271 .off = OFF, \ 272 .imm = 0 }) 273 274/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 275 276#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 277 ((struct bpf_insn) { \ 278 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 279 .dst_reg = DST, \ 280 .src_reg = 0, \ 281 .off = OFF, \ 282 .imm = IMM }) 283 284/* Unconditional jumps, goto pc + off16 */ 285 286#define BPF_JMP_A(OFF) \ 287 ((struct bpf_insn) { \ 288 .code = BPF_JMP | BPF_JA, \ 289 .dst_reg = 0, \ 290 .src_reg = 0, \ 291 .off = OFF, \ 292 .imm = 0 }) 293 294/* Relative call */ 295 296#define BPF_CALL_REL(TGT) \ 297 ((struct bpf_insn) { \ 298 .code = BPF_JMP | BPF_CALL, \ 299 .dst_reg = 0, \ 300 .src_reg = BPF_PSEUDO_CALL, \ 301 .off = 0, \ 302 .imm = TGT }) 303 304/* Function call */ 305 306#define BPF_CAST_CALL(x) \ 307 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 308 309#define BPF_EMIT_CALL(FUNC) \ 310 ((struct bpf_insn) { \ 311 .code = BPF_JMP | BPF_CALL, \ 312 .dst_reg = 0, \ 313 .src_reg = 0, \ 314 .off = 0, \ 315 .imm = ((FUNC) - __bpf_call_base) }) 316 317/* Raw code statement block */ 318 319#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 320 ((struct bpf_insn) { \ 321 .code = CODE, \ 322 .dst_reg = DST, \ 323 .src_reg = SRC, \ 324 .off = OFF, \ 325 .imm = IMM }) 326 327/* Program exit */ 328 329#define BPF_EXIT_INSN() \ 330 ((struct bpf_insn) { \ 331 .code = BPF_JMP | BPF_EXIT, \ 332 .dst_reg = 0, \ 333 .src_reg = 0, \ 334 .off = 0, \ 335 .imm = 0 }) 336 337/* Internal classic blocks for direct assignment */ 338 339#define __BPF_STMT(CODE, K) \ 340 ((struct sock_filter) BPF_STMT(CODE, K)) 341 342#define __BPF_JUMP(CODE, K, JT, JF) \ 343 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 344 345#define bytes_to_bpf_size(bytes) \ 346({ \ 347 int bpf_size = -EINVAL; \ 348 \ 349 if (bytes == sizeof(u8)) \ 350 bpf_size = BPF_B; \ 351 else if (bytes == sizeof(u16)) \ 352 bpf_size = BPF_H; \ 353 else if (bytes == sizeof(u32)) \ 354 bpf_size = BPF_W; \ 355 else if (bytes == sizeof(u64)) \ 356 bpf_size = BPF_DW; \ 357 \ 358 bpf_size; \ 359}) 360 361#define bpf_size_to_bytes(bpf_size) \ 362({ \ 363 int bytes = -EINVAL; \ 364 \ 365 if (bpf_size == BPF_B) \ 366 bytes = sizeof(u8); \ 367 else if (bpf_size == BPF_H) \ 368 bytes = sizeof(u16); \ 369 else if (bpf_size == BPF_W) \ 370 bytes = sizeof(u32); \ 371 else if (bpf_size == BPF_DW) \ 372 bytes = sizeof(u64); \ 373 \ 374 bytes; \ 375}) 376 377#define BPF_SIZEOF(type) \ 378 ({ \ 379 const int __size = bytes_to_bpf_size(sizeof(type)); \ 380 BUILD_BUG_ON(__size < 0); \ 381 __size; \ 382 }) 383 384#define BPF_FIELD_SIZEOF(type, field) \ 385 ({ \ 386 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 387 BUILD_BUG_ON(__size < 0); \ 388 __size; \ 389 }) 390 391#define BPF_LDST_BYTES(insn) \ 392 ({ \ 393 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 394 WARN_ON(__size < 0); \ 395 __size; \ 396 }) 397 398#define __BPF_MAP_0(m, v, ...) v 399#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 400#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 401#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 402#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 403#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 404 405#define __BPF_REG_0(...) __BPF_PAD(5) 406#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 407#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 408#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 409#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 410#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 411 412#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 413#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 414 415#define __BPF_CAST(t, a) \ 416 (__force t) \ 417 (__force \ 418 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 419 (unsigned long)0, (t)0))) a 420#define __BPF_V void 421#define __BPF_N 422 423#define __BPF_DECL_ARGS(t, a) t a 424#define __BPF_DECL_REGS(t, a) u64 a 425 426#define __BPF_PAD(n) \ 427 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 428 u64, __ur_3, u64, __ur_4, u64, __ur_5) 429 430#define BPF_CALL_x(x, name, ...) \ 431 static __always_inline \ 432 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 433 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 434 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 435 { \ 436 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 437 } \ 438 static __always_inline \ 439 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 440 441#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 442#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 443#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 444#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 445#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 446#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 447 448#define bpf_ctx_range(TYPE, MEMBER) \ 449 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 450#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 451 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 452 453#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 454 ({ \ 455 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 456 *(PTR_SIZE) = (SIZE); \ 457 offsetof(TYPE, MEMBER); \ 458 }) 459 460#ifdef CONFIG_COMPAT 461/* A struct sock_filter is architecture independent. */ 462struct compat_sock_fprog { 463 u16 len; 464 compat_uptr_t filter; /* struct sock_filter * */ 465}; 466#endif 467 468struct sock_fprog_kern { 469 u16 len; 470 struct sock_filter *filter; 471}; 472 473struct bpf_binary_header { 474 u32 pages; 475 /* Some arches need word alignment for their instructions */ 476 u8 image[] __aligned(4); 477}; 478 479struct bpf_prog { 480 u16 pages; /* Number of allocated pages */ 481 u16 jited:1, /* Is our filter JIT'ed? */ 482 jit_requested:1,/* archs need to JIT the prog */ 483 undo_set_mem:1, /* Passed set_memory_ro() checkpoint */ 484 gpl_compatible:1, /* Is filter GPL compatible? */ 485 cb_access:1, /* Is control block accessed? */ 486 dst_needed:1, /* Do we need dst entry? */ 487 blinded:1, /* Was blinded */ 488 is_func:1, /* program is a bpf function */ 489 kprobe_override:1, /* Do we override a kprobe? */ 490 has_callchain_buf:1; /* callchain buffer allocated? */ 491 enum bpf_prog_type type; /* Type of BPF program */ 492 enum bpf_attach_type expected_attach_type; /* For some prog types */ 493 u32 len; /* Number of filter blocks */ 494 u32 jited_len; /* Size of jited insns in bytes */ 495 u8 tag[BPF_TAG_SIZE]; 496 struct bpf_prog_aux *aux; /* Auxiliary fields */ 497 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 498 unsigned int (*bpf_func)(const void *ctx, 499 const struct bpf_insn *insn); 500 /* Instructions for interpreter */ 501 union { 502 struct sock_filter insns[0]; 503 struct bpf_insn insnsi[0]; 504 }; 505}; 506 507struct sk_filter { 508 refcount_t refcnt; 509 struct rcu_head rcu; 510 struct bpf_prog *prog; 511}; 512 513#define BPF_PROG_RUN(filter, ctx) (*(filter)->bpf_func)(ctx, (filter)->insnsi) 514 515#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 516 517struct bpf_skb_data_end { 518 struct qdisc_skb_cb qdisc_cb; 519 void *data_meta; 520 void *data_end; 521}; 522 523struct bpf_redirect_info { 524 u32 ifindex; 525 u32 flags; 526 struct bpf_map *map; 527 struct bpf_map *map_to_flush; 528 u32 kern_flags; 529}; 530 531DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 532 533/* flags for bpf_redirect_info kern_flags */ 534#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 535 536/* Compute the linear packet data range [data, data_end) which 537 * will be accessed by various program types (cls_bpf, act_bpf, 538 * lwt, ...). Subsystems allowing direct data access must (!) 539 * ensure that cb[] area can be written to when BPF program is 540 * invoked (otherwise cb[] save/restore is necessary). 541 */ 542static inline void bpf_compute_data_pointers(struct sk_buff *skb) 543{ 544 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 545 546 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 547 cb->data_meta = skb->data - skb_metadata_len(skb); 548 cb->data_end = skb->data + skb_headlen(skb); 549} 550 551/* Similar to bpf_compute_data_pointers(), except that save orginal 552 * data in cb->data and cb->meta_data for restore. 553 */ 554static inline void bpf_compute_and_save_data_end( 555 struct sk_buff *skb, void **saved_data_end) 556{ 557 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 558 559 *saved_data_end = cb->data_end; 560 cb->data_end = skb->data + skb_headlen(skb); 561} 562 563/* Restore data saved by bpf_compute_data_pointers(). */ 564static inline void bpf_restore_data_end( 565 struct sk_buff *skb, void *saved_data_end) 566{ 567 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 568 569 cb->data_end = saved_data_end; 570} 571 572static inline u8 *bpf_skb_cb(struct sk_buff *skb) 573{ 574 /* eBPF programs may read/write skb->cb[] area to transfer meta 575 * data between tail calls. Since this also needs to work with 576 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 577 * 578 * In some socket filter cases, the cb unfortunately needs to be 579 * saved/restored so that protocol specific skb->cb[] data won't 580 * be lost. In any case, due to unpriviledged eBPF programs 581 * attached to sockets, we need to clear the bpf_skb_cb() area 582 * to not leak previous contents to user space. 583 */ 584 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 585 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 586 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 587 588 return qdisc_skb_cb(skb)->data; 589} 590 591static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 592 struct sk_buff *skb) 593{ 594 u8 *cb_data = bpf_skb_cb(skb); 595 u8 cb_saved[BPF_SKB_CB_LEN]; 596 u32 res; 597 598 if (unlikely(prog->cb_access)) { 599 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 600 memset(cb_data, 0, sizeof(cb_saved)); 601 } 602 603 res = BPF_PROG_RUN(prog, skb); 604 605 if (unlikely(prog->cb_access)) 606 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 607 608 return res; 609} 610 611static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 612 struct sk_buff *skb) 613{ 614 u8 *cb_data = bpf_skb_cb(skb); 615 616 if (unlikely(prog->cb_access)) 617 memset(cb_data, 0, BPF_SKB_CB_LEN); 618 619 return BPF_PROG_RUN(prog, skb); 620} 621 622static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 623 struct xdp_buff *xdp) 624{ 625 /* Caller needs to hold rcu_read_lock() (!), otherwise program 626 * can be released while still running, or map elements could be 627 * freed early while still having concurrent users. XDP fastpath 628 * already takes rcu_read_lock() when fetching the program, so 629 * it's not necessary here anymore. 630 */ 631 return BPF_PROG_RUN(prog, xdp); 632} 633 634static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 635{ 636 return prog->len * sizeof(struct bpf_insn); 637} 638 639static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 640{ 641 return round_up(bpf_prog_insn_size(prog) + 642 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 643} 644 645static inline unsigned int bpf_prog_size(unsigned int proglen) 646{ 647 return max(sizeof(struct bpf_prog), 648 offsetof(struct bpf_prog, insns[proglen])); 649} 650 651static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 652{ 653 /* When classic BPF programs have been loaded and the arch 654 * does not have a classic BPF JIT (anymore), they have been 655 * converted via bpf_migrate_filter() to eBPF and thus always 656 * have an unspec program type. 657 */ 658 return prog->type == BPF_PROG_TYPE_UNSPEC; 659} 660 661static inline u32 bpf_ctx_off_adjust_machine(u32 size) 662{ 663 const u32 size_machine = sizeof(unsigned long); 664 665 if (size > size_machine && size % size_machine == 0) 666 size = size_machine; 667 668 return size; 669} 670 671static inline bool bpf_ctx_narrow_align_ok(u32 off, u32 size_access, 672 u32 size_default) 673{ 674 size_default = bpf_ctx_off_adjust_machine(size_default); 675 size_access = bpf_ctx_off_adjust_machine(size_access); 676 677#ifdef __LITTLE_ENDIAN 678 return (off & (size_default - 1)) == 0; 679#else 680 return (off & (size_default - 1)) + size_access == size_default; 681#endif 682} 683 684static inline bool 685bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 686{ 687 return bpf_ctx_narrow_align_ok(off, size, size_default) && 688 size <= size_default && (size & (size - 1)) == 0; 689} 690 691#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 692 693static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 694{ 695 fp->undo_set_mem = 1; 696 set_memory_ro((unsigned long)fp, fp->pages); 697} 698 699static inline void bpf_prog_unlock_ro(struct bpf_prog *fp) 700{ 701 if (fp->undo_set_mem) 702 set_memory_rw((unsigned long)fp, fp->pages); 703} 704 705static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 706{ 707 set_memory_ro((unsigned long)hdr, hdr->pages); 708} 709 710static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr) 711{ 712 set_memory_rw((unsigned long)hdr, hdr->pages); 713} 714 715static inline struct bpf_binary_header * 716bpf_jit_binary_hdr(const struct bpf_prog *fp) 717{ 718 unsigned long real_start = (unsigned long)fp->bpf_func; 719 unsigned long addr = real_start & PAGE_MASK; 720 721 return (void *)addr; 722} 723 724int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 725static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 726{ 727 return sk_filter_trim_cap(sk, skb, 1); 728} 729 730struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 731void bpf_prog_free(struct bpf_prog *fp); 732 733bool bpf_opcode_in_insntable(u8 code); 734 735struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 736struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 737 gfp_t gfp_extra_flags); 738void __bpf_prog_free(struct bpf_prog *fp); 739 740static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 741{ 742 bpf_prog_unlock_ro(fp); 743 __bpf_prog_free(fp); 744} 745 746typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 747 unsigned int flen); 748 749int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 750int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 751 bpf_aux_classic_check_t trans, bool save_orig); 752void bpf_prog_destroy(struct bpf_prog *fp); 753 754int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 755int sk_attach_bpf(u32 ufd, struct sock *sk); 756int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 757int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 758void sk_reuseport_prog_free(struct bpf_prog *prog); 759int sk_detach_filter(struct sock *sk); 760int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 761 unsigned int len); 762 763bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 764void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 765 766u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 767#define __bpf_call_base_args \ 768 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 769 __bpf_call_base) 770 771struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 772void bpf_jit_compile(struct bpf_prog *prog); 773bool bpf_helper_changes_pkt_data(void *func); 774 775static inline bool bpf_dump_raw_ok(void) 776{ 777 /* Reconstruction of call-sites is dependent on kallsyms, 778 * thus make dump the same restriction. 779 */ 780 return kallsyms_show_value() == 1; 781} 782 783struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 784 const struct bpf_insn *patch, u32 len); 785 786void bpf_clear_redirect_map(struct bpf_map *map); 787 788static inline bool xdp_return_frame_no_direct(void) 789{ 790 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 791 792 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 793} 794 795static inline void xdp_set_return_frame_no_direct(void) 796{ 797 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 798 799 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 800} 801 802static inline void xdp_clear_return_frame_no_direct(void) 803{ 804 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 805 806 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 807} 808 809static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 810 unsigned int pktlen) 811{ 812 unsigned int len; 813 814 if (unlikely(!(fwd->flags & IFF_UP))) 815 return -ENETDOWN; 816 817 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 818 if (pktlen > len) 819 return -EMSGSIZE; 820 821 return 0; 822} 823 824/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 825 * same cpu context. Further for best results no more than a single map 826 * for the do_redirect/do_flush pair should be used. This limitation is 827 * because we only track one map and force a flush when the map changes. 828 * This does not appear to be a real limitation for existing software. 829 */ 830int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 831 struct xdp_buff *xdp, struct bpf_prog *prog); 832int xdp_do_redirect(struct net_device *dev, 833 struct xdp_buff *xdp, 834 struct bpf_prog *prog); 835void xdp_do_flush_map(void); 836 837void bpf_warn_invalid_xdp_action(u32 act); 838 839#ifdef CONFIG_INET 840struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 841 struct bpf_prog *prog, struct sk_buff *skb, 842 u32 hash); 843#else 844static inline struct sock * 845bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 846 struct bpf_prog *prog, struct sk_buff *skb, 847 u32 hash) 848{ 849 return NULL; 850} 851#endif 852 853#ifdef CONFIG_BPF_JIT 854extern int bpf_jit_enable; 855extern int bpf_jit_harden; 856extern int bpf_jit_kallsyms; 857extern int bpf_jit_limit; 858 859typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 860 861struct bpf_binary_header * 862bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 863 unsigned int alignment, 864 bpf_jit_fill_hole_t bpf_fill_ill_insns); 865void bpf_jit_binary_free(struct bpf_binary_header *hdr); 866 867void bpf_jit_free(struct bpf_prog *fp); 868 869struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 870void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 871 872static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 873 u32 pass, void *image) 874{ 875 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 876 proglen, pass, image, current->comm, task_pid_nr(current)); 877 878 if (image) 879 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 880 16, 1, image, proglen, false); 881} 882 883static inline bool bpf_jit_is_ebpf(void) 884{ 885# ifdef CONFIG_HAVE_EBPF_JIT 886 return true; 887# else 888 return false; 889# endif 890} 891 892static inline bool ebpf_jit_enabled(void) 893{ 894 return bpf_jit_enable && bpf_jit_is_ebpf(); 895} 896 897static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 898{ 899 return fp->jited && bpf_jit_is_ebpf(); 900} 901 902static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 903{ 904 /* These are the prerequisites, should someone ever have the 905 * idea to call blinding outside of them, we make sure to 906 * bail out. 907 */ 908 if (!bpf_jit_is_ebpf()) 909 return false; 910 if (!prog->jit_requested) 911 return false; 912 if (!bpf_jit_harden) 913 return false; 914 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 915 return false; 916 917 return true; 918} 919 920static inline bool bpf_jit_kallsyms_enabled(void) 921{ 922 /* There are a couple of corner cases where kallsyms should 923 * not be enabled f.e. on hardening. 924 */ 925 if (bpf_jit_harden) 926 return false; 927 if (!bpf_jit_kallsyms) 928 return false; 929 if (bpf_jit_kallsyms == 1) 930 return true; 931 932 return false; 933} 934 935const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 936 unsigned long *off, char *sym); 937bool is_bpf_text_address(unsigned long addr); 938int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 939 char *sym); 940 941static inline const char * 942bpf_address_lookup(unsigned long addr, unsigned long *size, 943 unsigned long *off, char **modname, char *sym) 944{ 945 const char *ret = __bpf_address_lookup(addr, size, off, sym); 946 947 if (ret && modname) 948 *modname = NULL; 949 return ret; 950} 951 952void bpf_prog_kallsyms_add(struct bpf_prog *fp); 953void bpf_prog_kallsyms_del(struct bpf_prog *fp); 954 955#else /* CONFIG_BPF_JIT */ 956 957static inline bool ebpf_jit_enabled(void) 958{ 959 return false; 960} 961 962static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 963{ 964 return false; 965} 966 967static inline void bpf_jit_free(struct bpf_prog *fp) 968{ 969 bpf_prog_unlock_free(fp); 970} 971 972static inline bool bpf_jit_kallsyms_enabled(void) 973{ 974 return false; 975} 976 977static inline const char * 978__bpf_address_lookup(unsigned long addr, unsigned long *size, 979 unsigned long *off, char *sym) 980{ 981 return NULL; 982} 983 984static inline bool is_bpf_text_address(unsigned long addr) 985{ 986 return false; 987} 988 989static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 990 char *type, char *sym) 991{ 992 return -ERANGE; 993} 994 995static inline const char * 996bpf_address_lookup(unsigned long addr, unsigned long *size, 997 unsigned long *off, char **modname, char *sym) 998{ 999 return NULL; 1000} 1001 1002static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1003{ 1004} 1005 1006static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1007{ 1008} 1009#endif /* CONFIG_BPF_JIT */ 1010 1011void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp); 1012void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1013 1014#define BPF_ANC BIT(15) 1015 1016static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1017{ 1018 switch (first->code) { 1019 case BPF_RET | BPF_K: 1020 case BPF_LD | BPF_W | BPF_LEN: 1021 return false; 1022 1023 case BPF_LD | BPF_W | BPF_ABS: 1024 case BPF_LD | BPF_H | BPF_ABS: 1025 case BPF_LD | BPF_B | BPF_ABS: 1026 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1027 return true; 1028 return false; 1029 1030 default: 1031 return true; 1032 } 1033} 1034 1035static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1036{ 1037 BUG_ON(ftest->code & BPF_ANC); 1038 1039 switch (ftest->code) { 1040 case BPF_LD | BPF_W | BPF_ABS: 1041 case BPF_LD | BPF_H | BPF_ABS: 1042 case BPF_LD | BPF_B | BPF_ABS: 1043#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1044 return BPF_ANC | SKF_AD_##CODE 1045 switch (ftest->k) { 1046 BPF_ANCILLARY(PROTOCOL); 1047 BPF_ANCILLARY(PKTTYPE); 1048 BPF_ANCILLARY(IFINDEX); 1049 BPF_ANCILLARY(NLATTR); 1050 BPF_ANCILLARY(NLATTR_NEST); 1051 BPF_ANCILLARY(MARK); 1052 BPF_ANCILLARY(QUEUE); 1053 BPF_ANCILLARY(HATYPE); 1054 BPF_ANCILLARY(RXHASH); 1055 BPF_ANCILLARY(CPU); 1056 BPF_ANCILLARY(ALU_XOR_X); 1057 BPF_ANCILLARY(VLAN_TAG); 1058 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1059 BPF_ANCILLARY(PAY_OFFSET); 1060 BPF_ANCILLARY(RANDOM); 1061 BPF_ANCILLARY(VLAN_TPID); 1062 } 1063 /* Fallthrough. */ 1064 default: 1065 return ftest->code; 1066 } 1067} 1068 1069void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1070 int k, unsigned int size); 1071 1072static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1073 unsigned int size, void *buffer) 1074{ 1075 if (k >= 0) 1076 return skb_header_pointer(skb, k, size, buffer); 1077 1078 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1079} 1080 1081static inline int bpf_tell_extensions(void) 1082{ 1083 return SKF_AD_MAX; 1084} 1085 1086struct bpf_sock_addr_kern { 1087 struct sock *sk; 1088 struct sockaddr *uaddr; 1089 /* Temporary "register" to make indirect stores to nested structures 1090 * defined above. We need three registers to make such a store, but 1091 * only two (src and dst) are available at convert_ctx_access time 1092 */ 1093 u64 tmp_reg; 1094 void *t_ctx; /* Attach type specific context. */ 1095}; 1096 1097struct bpf_sock_ops_kern { 1098 struct sock *sk; 1099 u32 op; 1100 union { 1101 u32 args[4]; 1102 u32 reply; 1103 u32 replylong[4]; 1104 }; 1105 u32 is_fullsock; 1106 u64 temp; /* temp and everything after is not 1107 * initialized to 0 before calling 1108 * the BPF program. New fields that 1109 * should be initialized to 0 should 1110 * be inserted before temp. 1111 * temp is scratch storage used by 1112 * sock_ops_convert_ctx_access 1113 * as temporary storage of a register. 1114 */ 1115}; 1116 1117#endif /* __LINUX_FILTER_H__ */