at v4.2 72 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23 24struct mempolicy; 25struct anon_vma; 26struct anon_vma_chain; 27struct file_ra_state; 28struct user_struct; 29struct writeback_control; 30struct bdi_writeback; 31 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 33extern unsigned long max_mapnr; 34 35static inline void set_max_mapnr(unsigned long limit) 36{ 37 max_mapnr = limit; 38} 39#else 40static inline void set_max_mapnr(unsigned long limit) { } 41#endif 42 43extern unsigned long totalram_pages; 44extern void * high_memory; 45extern int page_cluster; 46 47#ifdef CONFIG_SYSCTL 48extern int sysctl_legacy_va_layout; 49#else 50#define sysctl_legacy_va_layout 0 51#endif 52 53#include <asm/page.h> 54#include <asm/pgtable.h> 55#include <asm/processor.h> 56 57#ifndef __pa_symbol 58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 59#endif 60 61/* 62 * To prevent common memory management code establishing 63 * a zero page mapping on a read fault. 64 * This macro should be defined within <asm/pgtable.h>. 65 * s390 does this to prevent multiplexing of hardware bits 66 * related to the physical page in case of virtualization. 67 */ 68#ifndef mm_forbids_zeropage 69#define mm_forbids_zeropage(X) (0) 70#endif 71 72extern unsigned long sysctl_user_reserve_kbytes; 73extern unsigned long sysctl_admin_reserve_kbytes; 74 75extern int sysctl_overcommit_memory; 76extern int sysctl_overcommit_ratio; 77extern unsigned long sysctl_overcommit_kbytes; 78 79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 80 size_t *, loff_t *); 81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 82 size_t *, loff_t *); 83 84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 85 86/* to align the pointer to the (next) page boundary */ 87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 88 89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 91 92/* 93 * Linux kernel virtual memory manager primitives. 94 * The idea being to have a "virtual" mm in the same way 95 * we have a virtual fs - giving a cleaner interface to the 96 * mm details, and allowing different kinds of memory mappings 97 * (from shared memory to executable loading to arbitrary 98 * mmap() functions). 99 */ 100 101extern struct kmem_cache *vm_area_cachep; 102 103#ifndef CONFIG_MMU 104extern struct rb_root nommu_region_tree; 105extern struct rw_semaphore nommu_region_sem; 106 107extern unsigned int kobjsize(const void *objp); 108#endif 109 110/* 111 * vm_flags in vm_area_struct, see mm_types.h. 112 */ 113#define VM_NONE 0x00000000 114 115#define VM_READ 0x00000001 /* currently active flags */ 116#define VM_WRITE 0x00000002 117#define VM_EXEC 0x00000004 118#define VM_SHARED 0x00000008 119 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 122#define VM_MAYWRITE 0x00000020 123#define VM_MAYEXEC 0x00000040 124#define VM_MAYSHARE 0x00000080 125 126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 127#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 128#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 129 130#define VM_LOCKED 0x00002000 131#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 132 133 /* Used by sys_madvise() */ 134#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 135#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 136 137#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 138#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 139#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 140#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 141#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 143#define VM_ARCH_2 0x02000000 144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 145 146#ifdef CONFIG_MEM_SOFT_DIRTY 147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 148#else 149# define VM_SOFTDIRTY 0 150#endif 151 152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 156 157#if defined(CONFIG_X86) 158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 159#elif defined(CONFIG_PPC) 160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 161#elif defined(CONFIG_PARISC) 162# define VM_GROWSUP VM_ARCH_1 163#elif defined(CONFIG_METAG) 164# define VM_GROWSUP VM_ARCH_1 165#elif defined(CONFIG_IA64) 166# define VM_GROWSUP VM_ARCH_1 167#elif !defined(CONFIG_MMU) 168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 169#endif 170 171#if defined(CONFIG_X86) 172/* MPX specific bounds table or bounds directory */ 173# define VM_MPX VM_ARCH_2 174#endif 175 176#ifndef VM_GROWSUP 177# define VM_GROWSUP VM_NONE 178#endif 179 180/* Bits set in the VMA until the stack is in its final location */ 181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 182 183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 185#endif 186 187#ifdef CONFIG_STACK_GROWSUP 188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 189#else 190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 191#endif 192 193/* 194 * Special vmas that are non-mergable, non-mlock()able. 195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 196 */ 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 198 199/* This mask defines which mm->def_flags a process can inherit its parent */ 200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 201 202/* 203 * mapping from the currently active vm_flags protection bits (the 204 * low four bits) to a page protection mask.. 205 */ 206extern pgprot_t protection_map[16]; 207 208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 209#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 210#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 211#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 212#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 213#define FAULT_FLAG_TRIED 0x20 /* Second try */ 214#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 215 216/* 217 * vm_fault is filled by the the pagefault handler and passed to the vma's 218 * ->fault function. The vma's ->fault is responsible for returning a bitmask 219 * of VM_FAULT_xxx flags that give details about how the fault was handled. 220 * 221 * pgoff should be used in favour of virtual_address, if possible. 222 */ 223struct vm_fault { 224 unsigned int flags; /* FAULT_FLAG_xxx flags */ 225 pgoff_t pgoff; /* Logical page offset based on vma */ 226 void __user *virtual_address; /* Faulting virtual address */ 227 228 struct page *cow_page; /* Handler may choose to COW */ 229 struct page *page; /* ->fault handlers should return a 230 * page here, unless VM_FAULT_NOPAGE 231 * is set (which is also implied by 232 * VM_FAULT_ERROR). 233 */ 234 /* for ->map_pages() only */ 235 pgoff_t max_pgoff; /* map pages for offset from pgoff till 236 * max_pgoff inclusive */ 237 pte_t *pte; /* pte entry associated with ->pgoff */ 238}; 239 240/* 241 * These are the virtual MM functions - opening of an area, closing and 242 * unmapping it (needed to keep files on disk up-to-date etc), pointer 243 * to the functions called when a no-page or a wp-page exception occurs. 244 */ 245struct vm_operations_struct { 246 void (*open)(struct vm_area_struct * area); 247 void (*close)(struct vm_area_struct * area); 248 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 249 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 250 251 /* notification that a previously read-only page is about to become 252 * writable, if an error is returned it will cause a SIGBUS */ 253 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 254 255 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 256 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 257 258 /* called by access_process_vm when get_user_pages() fails, typically 259 * for use by special VMAs that can switch between memory and hardware 260 */ 261 int (*access)(struct vm_area_struct *vma, unsigned long addr, 262 void *buf, int len, int write); 263 264 /* Called by the /proc/PID/maps code to ask the vma whether it 265 * has a special name. Returning non-NULL will also cause this 266 * vma to be dumped unconditionally. */ 267 const char *(*name)(struct vm_area_struct *vma); 268 269#ifdef CONFIG_NUMA 270 /* 271 * set_policy() op must add a reference to any non-NULL @new mempolicy 272 * to hold the policy upon return. Caller should pass NULL @new to 273 * remove a policy and fall back to surrounding context--i.e. do not 274 * install a MPOL_DEFAULT policy, nor the task or system default 275 * mempolicy. 276 */ 277 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 278 279 /* 280 * get_policy() op must add reference [mpol_get()] to any policy at 281 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 282 * in mm/mempolicy.c will do this automatically. 283 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 284 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 285 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 286 * must return NULL--i.e., do not "fallback" to task or system default 287 * policy. 288 */ 289 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 290 unsigned long addr); 291#endif 292 /* 293 * Called by vm_normal_page() for special PTEs to find the 294 * page for @addr. This is useful if the default behavior 295 * (using pte_page()) would not find the correct page. 296 */ 297 struct page *(*find_special_page)(struct vm_area_struct *vma, 298 unsigned long addr); 299}; 300 301struct mmu_gather; 302struct inode; 303 304#define page_private(page) ((page)->private) 305#define set_page_private(page, v) ((page)->private = (v)) 306 307/* It's valid only if the page is free path or free_list */ 308static inline void set_freepage_migratetype(struct page *page, int migratetype) 309{ 310 page->index = migratetype; 311} 312 313/* It's valid only if the page is free path or free_list */ 314static inline int get_freepage_migratetype(struct page *page) 315{ 316 return page->index; 317} 318 319/* 320 * FIXME: take this include out, include page-flags.h in 321 * files which need it (119 of them) 322 */ 323#include <linux/page-flags.h> 324#include <linux/huge_mm.h> 325 326/* 327 * Methods to modify the page usage count. 328 * 329 * What counts for a page usage: 330 * - cache mapping (page->mapping) 331 * - private data (page->private) 332 * - page mapped in a task's page tables, each mapping 333 * is counted separately 334 * 335 * Also, many kernel routines increase the page count before a critical 336 * routine so they can be sure the page doesn't go away from under them. 337 */ 338 339/* 340 * Drop a ref, return true if the refcount fell to zero (the page has no users) 341 */ 342static inline int put_page_testzero(struct page *page) 343{ 344 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 345 return atomic_dec_and_test(&page->_count); 346} 347 348/* 349 * Try to grab a ref unless the page has a refcount of zero, return false if 350 * that is the case. 351 * This can be called when MMU is off so it must not access 352 * any of the virtual mappings. 353 */ 354static inline int get_page_unless_zero(struct page *page) 355{ 356 return atomic_inc_not_zero(&page->_count); 357} 358 359/* 360 * Try to drop a ref unless the page has a refcount of one, return false if 361 * that is the case. 362 * This is to make sure that the refcount won't become zero after this drop. 363 * This can be called when MMU is off so it must not access 364 * any of the virtual mappings. 365 */ 366static inline int put_page_unless_one(struct page *page) 367{ 368 return atomic_add_unless(&page->_count, -1, 1); 369} 370 371extern int page_is_ram(unsigned long pfn); 372extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 373 374/* Support for virtually mapped pages */ 375struct page *vmalloc_to_page(const void *addr); 376unsigned long vmalloc_to_pfn(const void *addr); 377 378/* 379 * Determine if an address is within the vmalloc range 380 * 381 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 382 * is no special casing required. 383 */ 384static inline int is_vmalloc_addr(const void *x) 385{ 386#ifdef CONFIG_MMU 387 unsigned long addr = (unsigned long)x; 388 389 return addr >= VMALLOC_START && addr < VMALLOC_END; 390#else 391 return 0; 392#endif 393} 394#ifdef CONFIG_MMU 395extern int is_vmalloc_or_module_addr(const void *x); 396#else 397static inline int is_vmalloc_or_module_addr(const void *x) 398{ 399 return 0; 400} 401#endif 402 403extern void kvfree(const void *addr); 404 405static inline void compound_lock(struct page *page) 406{ 407#ifdef CONFIG_TRANSPARENT_HUGEPAGE 408 VM_BUG_ON_PAGE(PageSlab(page), page); 409 bit_spin_lock(PG_compound_lock, &page->flags); 410#endif 411} 412 413static inline void compound_unlock(struct page *page) 414{ 415#ifdef CONFIG_TRANSPARENT_HUGEPAGE 416 VM_BUG_ON_PAGE(PageSlab(page), page); 417 bit_spin_unlock(PG_compound_lock, &page->flags); 418#endif 419} 420 421static inline unsigned long compound_lock_irqsave(struct page *page) 422{ 423 unsigned long uninitialized_var(flags); 424#ifdef CONFIG_TRANSPARENT_HUGEPAGE 425 local_irq_save(flags); 426 compound_lock(page); 427#endif 428 return flags; 429} 430 431static inline void compound_unlock_irqrestore(struct page *page, 432 unsigned long flags) 433{ 434#ifdef CONFIG_TRANSPARENT_HUGEPAGE 435 compound_unlock(page); 436 local_irq_restore(flags); 437#endif 438} 439 440static inline struct page *compound_head_by_tail(struct page *tail) 441{ 442 struct page *head = tail->first_page; 443 444 /* 445 * page->first_page may be a dangling pointer to an old 446 * compound page, so recheck that it is still a tail 447 * page before returning. 448 */ 449 smp_rmb(); 450 if (likely(PageTail(tail))) 451 return head; 452 return tail; 453} 454 455/* 456 * Since either compound page could be dismantled asynchronously in THP 457 * or we access asynchronously arbitrary positioned struct page, there 458 * would be tail flag race. To handle this race, we should call 459 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 460 */ 461static inline struct page *compound_head(struct page *page) 462{ 463 if (unlikely(PageTail(page))) 464 return compound_head_by_tail(page); 465 return page; 466} 467 468/* 469 * If we access compound page synchronously such as access to 470 * allocated page, there is no need to handle tail flag race, so we can 471 * check tail flag directly without any synchronization primitive. 472 */ 473static inline struct page *compound_head_fast(struct page *page) 474{ 475 if (unlikely(PageTail(page))) 476 return page->first_page; 477 return page; 478} 479 480/* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485static inline void page_mapcount_reset(struct page *page) 486{ 487 atomic_set(&(page)->_mapcount, -1); 488} 489 490static inline int page_mapcount(struct page *page) 491{ 492 VM_BUG_ON_PAGE(PageSlab(page), page); 493 return atomic_read(&page->_mapcount) + 1; 494} 495 496static inline int page_count(struct page *page) 497{ 498 return atomic_read(&compound_head(page)->_count); 499} 500 501static inline bool __compound_tail_refcounted(struct page *page) 502{ 503 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 504} 505 506/* 507 * This takes a head page as parameter and tells if the 508 * tail page reference counting can be skipped. 509 * 510 * For this to be safe, PageSlab and PageHeadHuge must remain true on 511 * any given page where they return true here, until all tail pins 512 * have been released. 513 */ 514static inline bool compound_tail_refcounted(struct page *page) 515{ 516 VM_BUG_ON_PAGE(!PageHead(page), page); 517 return __compound_tail_refcounted(page); 518} 519 520static inline void get_huge_page_tail(struct page *page) 521{ 522 /* 523 * __split_huge_page_refcount() cannot run from under us. 524 */ 525 VM_BUG_ON_PAGE(!PageTail(page), page); 526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 528 if (compound_tail_refcounted(page->first_page)) 529 atomic_inc(&page->_mapcount); 530} 531 532extern bool __get_page_tail(struct page *page); 533 534static inline void get_page(struct page *page) 535{ 536 if (unlikely(PageTail(page))) 537 if (likely(__get_page_tail(page))) 538 return; 539 /* 540 * Getting a normal page or the head of a compound page 541 * requires to already have an elevated page->_count. 542 */ 543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 544 atomic_inc(&page->_count); 545} 546 547static inline struct page *virt_to_head_page(const void *x) 548{ 549 struct page *page = virt_to_page(x); 550 551 /* 552 * We don't need to worry about synchronization of tail flag 553 * when we call virt_to_head_page() since it is only called for 554 * already allocated page and this page won't be freed until 555 * this virt_to_head_page() is finished. So use _fast variant. 556 */ 557 return compound_head_fast(page); 558} 559 560/* 561 * Setup the page count before being freed into the page allocator for 562 * the first time (boot or memory hotplug) 563 */ 564static inline void init_page_count(struct page *page) 565{ 566 atomic_set(&page->_count, 1); 567} 568 569void put_page(struct page *page); 570void put_pages_list(struct list_head *pages); 571 572void split_page(struct page *page, unsigned int order); 573int split_free_page(struct page *page); 574 575/* 576 * Compound pages have a destructor function. Provide a 577 * prototype for that function and accessor functions. 578 * These are _only_ valid on the head of a PG_compound page. 579 */ 580 581static inline void set_compound_page_dtor(struct page *page, 582 compound_page_dtor *dtor) 583{ 584 page[1].compound_dtor = dtor; 585} 586 587static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 588{ 589 return page[1].compound_dtor; 590} 591 592static inline int compound_order(struct page *page) 593{ 594 if (!PageHead(page)) 595 return 0; 596 return page[1].compound_order; 597} 598 599static inline void set_compound_order(struct page *page, unsigned long order) 600{ 601 page[1].compound_order = order; 602} 603 604#ifdef CONFIG_MMU 605/* 606 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 607 * servicing faults for write access. In the normal case, do always want 608 * pte_mkwrite. But get_user_pages can cause write faults for mappings 609 * that do not have writing enabled, when used by access_process_vm. 610 */ 611static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 612{ 613 if (likely(vma->vm_flags & VM_WRITE)) 614 pte = pte_mkwrite(pte); 615 return pte; 616} 617 618void do_set_pte(struct vm_area_struct *vma, unsigned long address, 619 struct page *page, pte_t *pte, bool write, bool anon); 620#endif 621 622/* 623 * Multiple processes may "see" the same page. E.g. for untouched 624 * mappings of /dev/null, all processes see the same page full of 625 * zeroes, and text pages of executables and shared libraries have 626 * only one copy in memory, at most, normally. 627 * 628 * For the non-reserved pages, page_count(page) denotes a reference count. 629 * page_count() == 0 means the page is free. page->lru is then used for 630 * freelist management in the buddy allocator. 631 * page_count() > 0 means the page has been allocated. 632 * 633 * Pages are allocated by the slab allocator in order to provide memory 634 * to kmalloc and kmem_cache_alloc. In this case, the management of the 635 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 636 * unless a particular usage is carefully commented. (the responsibility of 637 * freeing the kmalloc memory is the caller's, of course). 638 * 639 * A page may be used by anyone else who does a __get_free_page(). 640 * In this case, page_count still tracks the references, and should only 641 * be used through the normal accessor functions. The top bits of page->flags 642 * and page->virtual store page management information, but all other fields 643 * are unused and could be used privately, carefully. The management of this 644 * page is the responsibility of the one who allocated it, and those who have 645 * subsequently been given references to it. 646 * 647 * The other pages (we may call them "pagecache pages") are completely 648 * managed by the Linux memory manager: I/O, buffers, swapping etc. 649 * The following discussion applies only to them. 650 * 651 * A pagecache page contains an opaque `private' member, which belongs to the 652 * page's address_space. Usually, this is the address of a circular list of 653 * the page's disk buffers. PG_private must be set to tell the VM to call 654 * into the filesystem to release these pages. 655 * 656 * A page may belong to an inode's memory mapping. In this case, page->mapping 657 * is the pointer to the inode, and page->index is the file offset of the page, 658 * in units of PAGE_CACHE_SIZE. 659 * 660 * If pagecache pages are not associated with an inode, they are said to be 661 * anonymous pages. These may become associated with the swapcache, and in that 662 * case PG_swapcache is set, and page->private is an offset into the swapcache. 663 * 664 * In either case (swapcache or inode backed), the pagecache itself holds one 665 * reference to the page. Setting PG_private should also increment the 666 * refcount. The each user mapping also has a reference to the page. 667 * 668 * The pagecache pages are stored in a per-mapping radix tree, which is 669 * rooted at mapping->page_tree, and indexed by offset. 670 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 671 * lists, we instead now tag pages as dirty/writeback in the radix tree. 672 * 673 * All pagecache pages may be subject to I/O: 674 * - inode pages may need to be read from disk, 675 * - inode pages which have been modified and are MAP_SHARED may need 676 * to be written back to the inode on disk, 677 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 678 * modified may need to be swapped out to swap space and (later) to be read 679 * back into memory. 680 */ 681 682/* 683 * The zone field is never updated after free_area_init_core() 684 * sets it, so none of the operations on it need to be atomic. 685 */ 686 687/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 688#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 689#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 690#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 691#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 692 693/* 694 * Define the bit shifts to access each section. For non-existent 695 * sections we define the shift as 0; that plus a 0 mask ensures 696 * the compiler will optimise away reference to them. 697 */ 698#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 699#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 700#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 701#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 702 703/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 704#ifdef NODE_NOT_IN_PAGE_FLAGS 705#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 706#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 707 SECTIONS_PGOFF : ZONES_PGOFF) 708#else 709#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 710#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 711 NODES_PGOFF : ZONES_PGOFF) 712#endif 713 714#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 715 716#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 717#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 718#endif 719 720#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 721#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 722#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 723#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 724#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 725 726static inline enum zone_type page_zonenum(const struct page *page) 727{ 728 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 729} 730 731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 732#define SECTION_IN_PAGE_FLAGS 733#endif 734 735/* 736 * The identification function is mainly used by the buddy allocator for 737 * determining if two pages could be buddies. We are not really identifying 738 * the zone since we could be using the section number id if we do not have 739 * node id available in page flags. 740 * We only guarantee that it will return the same value for two combinable 741 * pages in a zone. 742 */ 743static inline int page_zone_id(struct page *page) 744{ 745 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 746} 747 748static inline int zone_to_nid(struct zone *zone) 749{ 750#ifdef CONFIG_NUMA 751 return zone->node; 752#else 753 return 0; 754#endif 755} 756 757#ifdef NODE_NOT_IN_PAGE_FLAGS 758extern int page_to_nid(const struct page *page); 759#else 760static inline int page_to_nid(const struct page *page) 761{ 762 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 763} 764#endif 765 766#ifdef CONFIG_NUMA_BALANCING 767static inline int cpu_pid_to_cpupid(int cpu, int pid) 768{ 769 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 770} 771 772static inline int cpupid_to_pid(int cpupid) 773{ 774 return cpupid & LAST__PID_MASK; 775} 776 777static inline int cpupid_to_cpu(int cpupid) 778{ 779 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 780} 781 782static inline int cpupid_to_nid(int cpupid) 783{ 784 return cpu_to_node(cpupid_to_cpu(cpupid)); 785} 786 787static inline bool cpupid_pid_unset(int cpupid) 788{ 789 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 790} 791 792static inline bool cpupid_cpu_unset(int cpupid) 793{ 794 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 795} 796 797static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 798{ 799 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 800} 801 802#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 803#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 804static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 805{ 806 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 807} 808 809static inline int page_cpupid_last(struct page *page) 810{ 811 return page->_last_cpupid; 812} 813static inline void page_cpupid_reset_last(struct page *page) 814{ 815 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 816} 817#else 818static inline int page_cpupid_last(struct page *page) 819{ 820 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 821} 822 823extern int page_cpupid_xchg_last(struct page *page, int cpupid); 824 825static inline void page_cpupid_reset_last(struct page *page) 826{ 827 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 828 829 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 830 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 831} 832#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 833#else /* !CONFIG_NUMA_BALANCING */ 834static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 835{ 836 return page_to_nid(page); /* XXX */ 837} 838 839static inline int page_cpupid_last(struct page *page) 840{ 841 return page_to_nid(page); /* XXX */ 842} 843 844static inline int cpupid_to_nid(int cpupid) 845{ 846 return -1; 847} 848 849static inline int cpupid_to_pid(int cpupid) 850{ 851 return -1; 852} 853 854static inline int cpupid_to_cpu(int cpupid) 855{ 856 return -1; 857} 858 859static inline int cpu_pid_to_cpupid(int nid, int pid) 860{ 861 return -1; 862} 863 864static inline bool cpupid_pid_unset(int cpupid) 865{ 866 return 1; 867} 868 869static inline void page_cpupid_reset_last(struct page *page) 870{ 871} 872 873static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 874{ 875 return false; 876} 877#endif /* CONFIG_NUMA_BALANCING */ 878 879static inline struct zone *page_zone(const struct page *page) 880{ 881 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 882} 883 884#ifdef SECTION_IN_PAGE_FLAGS 885static inline void set_page_section(struct page *page, unsigned long section) 886{ 887 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 888 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 889} 890 891static inline unsigned long page_to_section(const struct page *page) 892{ 893 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 894} 895#endif 896 897static inline void set_page_zone(struct page *page, enum zone_type zone) 898{ 899 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 900 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 901} 902 903static inline void set_page_node(struct page *page, unsigned long node) 904{ 905 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 906 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 907} 908 909static inline void set_page_links(struct page *page, enum zone_type zone, 910 unsigned long node, unsigned long pfn) 911{ 912 set_page_zone(page, zone); 913 set_page_node(page, node); 914#ifdef SECTION_IN_PAGE_FLAGS 915 set_page_section(page, pfn_to_section_nr(pfn)); 916#endif 917} 918 919/* 920 * Some inline functions in vmstat.h depend on page_zone() 921 */ 922#include <linux/vmstat.h> 923 924static __always_inline void *lowmem_page_address(const struct page *page) 925{ 926 return __va(PFN_PHYS(page_to_pfn(page))); 927} 928 929#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 930#define HASHED_PAGE_VIRTUAL 931#endif 932 933#if defined(WANT_PAGE_VIRTUAL) 934static inline void *page_address(const struct page *page) 935{ 936 return page->virtual; 937} 938static inline void set_page_address(struct page *page, void *address) 939{ 940 page->virtual = address; 941} 942#define page_address_init() do { } while(0) 943#endif 944 945#if defined(HASHED_PAGE_VIRTUAL) 946void *page_address(const struct page *page); 947void set_page_address(struct page *page, void *virtual); 948void page_address_init(void); 949#endif 950 951#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 952#define page_address(page) lowmem_page_address(page) 953#define set_page_address(page, address) do { } while(0) 954#define page_address_init() do { } while(0) 955#endif 956 957extern void *page_rmapping(struct page *page); 958extern struct anon_vma *page_anon_vma(struct page *page); 959extern struct address_space *page_mapping(struct page *page); 960 961extern struct address_space *__page_file_mapping(struct page *); 962 963static inline 964struct address_space *page_file_mapping(struct page *page) 965{ 966 if (unlikely(PageSwapCache(page))) 967 return __page_file_mapping(page); 968 969 return page->mapping; 970} 971 972/* 973 * Return the pagecache index of the passed page. Regular pagecache pages 974 * use ->index whereas swapcache pages use ->private 975 */ 976static inline pgoff_t page_index(struct page *page) 977{ 978 if (unlikely(PageSwapCache(page))) 979 return page_private(page); 980 return page->index; 981} 982 983extern pgoff_t __page_file_index(struct page *page); 984 985/* 986 * Return the file index of the page. Regular pagecache pages use ->index 987 * whereas swapcache pages use swp_offset(->private) 988 */ 989static inline pgoff_t page_file_index(struct page *page) 990{ 991 if (unlikely(PageSwapCache(page))) 992 return __page_file_index(page); 993 994 return page->index; 995} 996 997/* 998 * Return true if this page is mapped into pagetables. 999 */ 1000static inline int page_mapped(struct page *page) 1001{ 1002 return atomic_read(&(page)->_mapcount) >= 0; 1003} 1004 1005/* 1006 * Return true only if the page has been allocated with 1007 * ALLOC_NO_WATERMARKS and the low watermark was not 1008 * met implying that the system is under some pressure. 1009 */ 1010static inline bool page_is_pfmemalloc(struct page *page) 1011{ 1012 /* 1013 * Page index cannot be this large so this must be 1014 * a pfmemalloc page. 1015 */ 1016 return page->index == -1UL; 1017} 1018 1019/* 1020 * Only to be called by the page allocator on a freshly allocated 1021 * page. 1022 */ 1023static inline void set_page_pfmemalloc(struct page *page) 1024{ 1025 page->index = -1UL; 1026} 1027 1028static inline void clear_page_pfmemalloc(struct page *page) 1029{ 1030 page->index = 0; 1031} 1032 1033/* 1034 * Different kinds of faults, as returned by handle_mm_fault(). 1035 * Used to decide whether a process gets delivered SIGBUS or 1036 * just gets major/minor fault counters bumped up. 1037 */ 1038 1039#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1040 1041#define VM_FAULT_OOM 0x0001 1042#define VM_FAULT_SIGBUS 0x0002 1043#define VM_FAULT_MAJOR 0x0004 1044#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1045#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1046#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1047#define VM_FAULT_SIGSEGV 0x0040 1048 1049#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1050#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1051#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1052#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1053 1054#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1055 1056#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1057 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1058 VM_FAULT_FALLBACK) 1059 1060/* Encode hstate index for a hwpoisoned large page */ 1061#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1062#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1063 1064/* 1065 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1066 */ 1067extern void pagefault_out_of_memory(void); 1068 1069#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1070 1071/* 1072 * Flags passed to show_mem() and show_free_areas() to suppress output in 1073 * various contexts. 1074 */ 1075#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1076 1077extern void show_free_areas(unsigned int flags); 1078extern bool skip_free_areas_node(unsigned int flags, int nid); 1079 1080int shmem_zero_setup(struct vm_area_struct *); 1081#ifdef CONFIG_SHMEM 1082bool shmem_mapping(struct address_space *mapping); 1083#else 1084static inline bool shmem_mapping(struct address_space *mapping) 1085{ 1086 return false; 1087} 1088#endif 1089 1090extern int can_do_mlock(void); 1091extern int user_shm_lock(size_t, struct user_struct *); 1092extern void user_shm_unlock(size_t, struct user_struct *); 1093 1094/* 1095 * Parameter block passed down to zap_pte_range in exceptional cases. 1096 */ 1097struct zap_details { 1098 struct address_space *check_mapping; /* Check page->mapping if set */ 1099 pgoff_t first_index; /* Lowest page->index to unmap */ 1100 pgoff_t last_index; /* Highest page->index to unmap */ 1101}; 1102 1103struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1104 pte_t pte); 1105 1106int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1107 unsigned long size); 1108void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1109 unsigned long size, struct zap_details *); 1110void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1111 unsigned long start, unsigned long end); 1112 1113/** 1114 * mm_walk - callbacks for walk_page_range 1115 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1116 * this handler is required to be able to handle 1117 * pmd_trans_huge() pmds. They may simply choose to 1118 * split_huge_page() instead of handling it explicitly. 1119 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1120 * @pte_hole: if set, called for each hole at all levels 1121 * @hugetlb_entry: if set, called for each hugetlb entry 1122 * @test_walk: caller specific callback function to determine whether 1123 * we walk over the current vma or not. A positive returned 1124 * value means "do page table walk over the current vma," 1125 * and a negative one means "abort current page table walk 1126 * right now." 0 means "skip the current vma." 1127 * @mm: mm_struct representing the target process of page table walk 1128 * @vma: vma currently walked (NULL if walking outside vmas) 1129 * @private: private data for callbacks' usage 1130 * 1131 * (see the comment on walk_page_range() for more details) 1132 */ 1133struct mm_walk { 1134 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1135 unsigned long next, struct mm_walk *walk); 1136 int (*pte_entry)(pte_t *pte, unsigned long addr, 1137 unsigned long next, struct mm_walk *walk); 1138 int (*pte_hole)(unsigned long addr, unsigned long next, 1139 struct mm_walk *walk); 1140 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1141 unsigned long addr, unsigned long next, 1142 struct mm_walk *walk); 1143 int (*test_walk)(unsigned long addr, unsigned long next, 1144 struct mm_walk *walk); 1145 struct mm_struct *mm; 1146 struct vm_area_struct *vma; 1147 void *private; 1148}; 1149 1150int walk_page_range(unsigned long addr, unsigned long end, 1151 struct mm_walk *walk); 1152int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1153void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1154 unsigned long end, unsigned long floor, unsigned long ceiling); 1155int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1156 struct vm_area_struct *vma); 1157void unmap_mapping_range(struct address_space *mapping, 1158 loff_t const holebegin, loff_t const holelen, int even_cows); 1159int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1160 unsigned long *pfn); 1161int follow_phys(struct vm_area_struct *vma, unsigned long address, 1162 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1163int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1164 void *buf, int len, int write); 1165 1166static inline void unmap_shared_mapping_range(struct address_space *mapping, 1167 loff_t const holebegin, loff_t const holelen) 1168{ 1169 unmap_mapping_range(mapping, holebegin, holelen, 0); 1170} 1171 1172extern void truncate_pagecache(struct inode *inode, loff_t new); 1173extern void truncate_setsize(struct inode *inode, loff_t newsize); 1174void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1175void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1176int truncate_inode_page(struct address_space *mapping, struct page *page); 1177int generic_error_remove_page(struct address_space *mapping, struct page *page); 1178int invalidate_inode_page(struct page *page); 1179 1180#ifdef CONFIG_MMU 1181extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1182 unsigned long address, unsigned int flags); 1183extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1184 unsigned long address, unsigned int fault_flags); 1185#else 1186static inline int handle_mm_fault(struct mm_struct *mm, 1187 struct vm_area_struct *vma, unsigned long address, 1188 unsigned int flags) 1189{ 1190 /* should never happen if there's no MMU */ 1191 BUG(); 1192 return VM_FAULT_SIGBUS; 1193} 1194static inline int fixup_user_fault(struct task_struct *tsk, 1195 struct mm_struct *mm, unsigned long address, 1196 unsigned int fault_flags) 1197{ 1198 /* should never happen if there's no MMU */ 1199 BUG(); 1200 return -EFAULT; 1201} 1202#endif 1203 1204extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1205extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1206 void *buf, int len, int write); 1207 1208long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1209 unsigned long start, unsigned long nr_pages, 1210 unsigned int foll_flags, struct page **pages, 1211 struct vm_area_struct **vmas, int *nonblocking); 1212long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1213 unsigned long start, unsigned long nr_pages, 1214 int write, int force, struct page **pages, 1215 struct vm_area_struct **vmas); 1216long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1217 unsigned long start, unsigned long nr_pages, 1218 int write, int force, struct page **pages, 1219 int *locked); 1220long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1221 unsigned long start, unsigned long nr_pages, 1222 int write, int force, struct page **pages, 1223 unsigned int gup_flags); 1224long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1225 unsigned long start, unsigned long nr_pages, 1226 int write, int force, struct page **pages); 1227int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1228 struct page **pages); 1229struct kvec; 1230int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1231 struct page **pages); 1232int get_kernel_page(unsigned long start, int write, struct page **pages); 1233struct page *get_dump_page(unsigned long addr); 1234 1235extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1236extern void do_invalidatepage(struct page *page, unsigned int offset, 1237 unsigned int length); 1238 1239int __set_page_dirty_nobuffers(struct page *page); 1240int __set_page_dirty_no_writeback(struct page *page); 1241int redirty_page_for_writepage(struct writeback_control *wbc, 1242 struct page *page); 1243void account_page_dirtied(struct page *page, struct address_space *mapping, 1244 struct mem_cgroup *memcg); 1245void account_page_cleaned(struct page *page, struct address_space *mapping, 1246 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1247int set_page_dirty(struct page *page); 1248int set_page_dirty_lock(struct page *page); 1249void cancel_dirty_page(struct page *page); 1250int clear_page_dirty_for_io(struct page *page); 1251 1252int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1253 1254/* Is the vma a continuation of the stack vma above it? */ 1255static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1256{ 1257 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1258} 1259 1260static inline int stack_guard_page_start(struct vm_area_struct *vma, 1261 unsigned long addr) 1262{ 1263 return (vma->vm_flags & VM_GROWSDOWN) && 1264 (vma->vm_start == addr) && 1265 !vma_growsdown(vma->vm_prev, addr); 1266} 1267 1268/* Is the vma a continuation of the stack vma below it? */ 1269static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1270{ 1271 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1272} 1273 1274static inline int stack_guard_page_end(struct vm_area_struct *vma, 1275 unsigned long addr) 1276{ 1277 return (vma->vm_flags & VM_GROWSUP) && 1278 (vma->vm_end == addr) && 1279 !vma_growsup(vma->vm_next, addr); 1280} 1281 1282extern struct task_struct *task_of_stack(struct task_struct *task, 1283 struct vm_area_struct *vma, bool in_group); 1284 1285extern unsigned long move_page_tables(struct vm_area_struct *vma, 1286 unsigned long old_addr, struct vm_area_struct *new_vma, 1287 unsigned long new_addr, unsigned long len, 1288 bool need_rmap_locks); 1289extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1290 unsigned long end, pgprot_t newprot, 1291 int dirty_accountable, int prot_numa); 1292extern int mprotect_fixup(struct vm_area_struct *vma, 1293 struct vm_area_struct **pprev, unsigned long start, 1294 unsigned long end, unsigned long newflags); 1295 1296/* 1297 * doesn't attempt to fault and will return short. 1298 */ 1299int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1300 struct page **pages); 1301/* 1302 * per-process(per-mm_struct) statistics. 1303 */ 1304static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1305{ 1306 long val = atomic_long_read(&mm->rss_stat.count[member]); 1307 1308#ifdef SPLIT_RSS_COUNTING 1309 /* 1310 * counter is updated in asynchronous manner and may go to minus. 1311 * But it's never be expected number for users. 1312 */ 1313 if (val < 0) 1314 val = 0; 1315#endif 1316 return (unsigned long)val; 1317} 1318 1319static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1320{ 1321 atomic_long_add(value, &mm->rss_stat.count[member]); 1322} 1323 1324static inline void inc_mm_counter(struct mm_struct *mm, int member) 1325{ 1326 atomic_long_inc(&mm->rss_stat.count[member]); 1327} 1328 1329static inline void dec_mm_counter(struct mm_struct *mm, int member) 1330{ 1331 atomic_long_dec(&mm->rss_stat.count[member]); 1332} 1333 1334static inline unsigned long get_mm_rss(struct mm_struct *mm) 1335{ 1336 return get_mm_counter(mm, MM_FILEPAGES) + 1337 get_mm_counter(mm, MM_ANONPAGES); 1338} 1339 1340static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1341{ 1342 return max(mm->hiwater_rss, get_mm_rss(mm)); 1343} 1344 1345static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1346{ 1347 return max(mm->hiwater_vm, mm->total_vm); 1348} 1349 1350static inline void update_hiwater_rss(struct mm_struct *mm) 1351{ 1352 unsigned long _rss = get_mm_rss(mm); 1353 1354 if ((mm)->hiwater_rss < _rss) 1355 (mm)->hiwater_rss = _rss; 1356} 1357 1358static inline void update_hiwater_vm(struct mm_struct *mm) 1359{ 1360 if (mm->hiwater_vm < mm->total_vm) 1361 mm->hiwater_vm = mm->total_vm; 1362} 1363 1364static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1365{ 1366 mm->hiwater_rss = get_mm_rss(mm); 1367} 1368 1369static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1370 struct mm_struct *mm) 1371{ 1372 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1373 1374 if (*maxrss < hiwater_rss) 1375 *maxrss = hiwater_rss; 1376} 1377 1378#if defined(SPLIT_RSS_COUNTING) 1379void sync_mm_rss(struct mm_struct *mm); 1380#else 1381static inline void sync_mm_rss(struct mm_struct *mm) 1382{ 1383} 1384#endif 1385 1386int vma_wants_writenotify(struct vm_area_struct *vma); 1387 1388extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1389 spinlock_t **ptl); 1390static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1391 spinlock_t **ptl) 1392{ 1393 pte_t *ptep; 1394 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1395 return ptep; 1396} 1397 1398#ifdef __PAGETABLE_PUD_FOLDED 1399static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1400 unsigned long address) 1401{ 1402 return 0; 1403} 1404#else 1405int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1406#endif 1407 1408#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1409static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1410 unsigned long address) 1411{ 1412 return 0; 1413} 1414 1415static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1416 1417static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1418{ 1419 return 0; 1420} 1421 1422static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1423static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1424 1425#else 1426int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1427 1428static inline void mm_nr_pmds_init(struct mm_struct *mm) 1429{ 1430 atomic_long_set(&mm->nr_pmds, 0); 1431} 1432 1433static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1434{ 1435 return atomic_long_read(&mm->nr_pmds); 1436} 1437 1438static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1439{ 1440 atomic_long_inc(&mm->nr_pmds); 1441} 1442 1443static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1444{ 1445 atomic_long_dec(&mm->nr_pmds); 1446} 1447#endif 1448 1449int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1450 pmd_t *pmd, unsigned long address); 1451int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1452 1453/* 1454 * The following ifdef needed to get the 4level-fixup.h header to work. 1455 * Remove it when 4level-fixup.h has been removed. 1456 */ 1457#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1458static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1459{ 1460 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1461 NULL: pud_offset(pgd, address); 1462} 1463 1464static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1465{ 1466 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1467 NULL: pmd_offset(pud, address); 1468} 1469#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1470 1471#if USE_SPLIT_PTE_PTLOCKS 1472#if ALLOC_SPLIT_PTLOCKS 1473void __init ptlock_cache_init(void); 1474extern bool ptlock_alloc(struct page *page); 1475extern void ptlock_free(struct page *page); 1476 1477static inline spinlock_t *ptlock_ptr(struct page *page) 1478{ 1479 return page->ptl; 1480} 1481#else /* ALLOC_SPLIT_PTLOCKS */ 1482static inline void ptlock_cache_init(void) 1483{ 1484} 1485 1486static inline bool ptlock_alloc(struct page *page) 1487{ 1488 return true; 1489} 1490 1491static inline void ptlock_free(struct page *page) 1492{ 1493} 1494 1495static inline spinlock_t *ptlock_ptr(struct page *page) 1496{ 1497 return &page->ptl; 1498} 1499#endif /* ALLOC_SPLIT_PTLOCKS */ 1500 1501static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1502{ 1503 return ptlock_ptr(pmd_page(*pmd)); 1504} 1505 1506static inline bool ptlock_init(struct page *page) 1507{ 1508 /* 1509 * prep_new_page() initialize page->private (and therefore page->ptl) 1510 * with 0. Make sure nobody took it in use in between. 1511 * 1512 * It can happen if arch try to use slab for page table allocation: 1513 * slab code uses page->slab_cache and page->first_page (for tail 1514 * pages), which share storage with page->ptl. 1515 */ 1516 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1517 if (!ptlock_alloc(page)) 1518 return false; 1519 spin_lock_init(ptlock_ptr(page)); 1520 return true; 1521} 1522 1523/* Reset page->mapping so free_pages_check won't complain. */ 1524static inline void pte_lock_deinit(struct page *page) 1525{ 1526 page->mapping = NULL; 1527 ptlock_free(page); 1528} 1529 1530#else /* !USE_SPLIT_PTE_PTLOCKS */ 1531/* 1532 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1533 */ 1534static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1535{ 1536 return &mm->page_table_lock; 1537} 1538static inline void ptlock_cache_init(void) {} 1539static inline bool ptlock_init(struct page *page) { return true; } 1540static inline void pte_lock_deinit(struct page *page) {} 1541#endif /* USE_SPLIT_PTE_PTLOCKS */ 1542 1543static inline void pgtable_init(void) 1544{ 1545 ptlock_cache_init(); 1546 pgtable_cache_init(); 1547} 1548 1549static inline bool pgtable_page_ctor(struct page *page) 1550{ 1551 inc_zone_page_state(page, NR_PAGETABLE); 1552 return ptlock_init(page); 1553} 1554 1555static inline void pgtable_page_dtor(struct page *page) 1556{ 1557 pte_lock_deinit(page); 1558 dec_zone_page_state(page, NR_PAGETABLE); 1559} 1560 1561#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1562({ \ 1563 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1564 pte_t *__pte = pte_offset_map(pmd, address); \ 1565 *(ptlp) = __ptl; \ 1566 spin_lock(__ptl); \ 1567 __pte; \ 1568}) 1569 1570#define pte_unmap_unlock(pte, ptl) do { \ 1571 spin_unlock(ptl); \ 1572 pte_unmap(pte); \ 1573} while (0) 1574 1575#define pte_alloc_map(mm, vma, pmd, address) \ 1576 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1577 pmd, address))? \ 1578 NULL: pte_offset_map(pmd, address)) 1579 1580#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1581 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1582 pmd, address))? \ 1583 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1584 1585#define pte_alloc_kernel(pmd, address) \ 1586 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1587 NULL: pte_offset_kernel(pmd, address)) 1588 1589#if USE_SPLIT_PMD_PTLOCKS 1590 1591static struct page *pmd_to_page(pmd_t *pmd) 1592{ 1593 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1594 return virt_to_page((void *)((unsigned long) pmd & mask)); 1595} 1596 1597static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1598{ 1599 return ptlock_ptr(pmd_to_page(pmd)); 1600} 1601 1602static inline bool pgtable_pmd_page_ctor(struct page *page) 1603{ 1604#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1605 page->pmd_huge_pte = NULL; 1606#endif 1607 return ptlock_init(page); 1608} 1609 1610static inline void pgtable_pmd_page_dtor(struct page *page) 1611{ 1612#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1613 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1614#endif 1615 ptlock_free(page); 1616} 1617 1618#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1619 1620#else 1621 1622static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1623{ 1624 return &mm->page_table_lock; 1625} 1626 1627static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1628static inline void pgtable_pmd_page_dtor(struct page *page) {} 1629 1630#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1631 1632#endif 1633 1634static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1635{ 1636 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1637 spin_lock(ptl); 1638 return ptl; 1639} 1640 1641extern void free_area_init(unsigned long * zones_size); 1642extern void free_area_init_node(int nid, unsigned long * zones_size, 1643 unsigned long zone_start_pfn, unsigned long *zholes_size); 1644extern void free_initmem(void); 1645 1646/* 1647 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1648 * into the buddy system. The freed pages will be poisoned with pattern 1649 * "poison" if it's within range [0, UCHAR_MAX]. 1650 * Return pages freed into the buddy system. 1651 */ 1652extern unsigned long free_reserved_area(void *start, void *end, 1653 int poison, char *s); 1654 1655#ifdef CONFIG_HIGHMEM 1656/* 1657 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1658 * and totalram_pages. 1659 */ 1660extern void free_highmem_page(struct page *page); 1661#endif 1662 1663extern void adjust_managed_page_count(struct page *page, long count); 1664extern void mem_init_print_info(const char *str); 1665 1666extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1667 1668/* Free the reserved page into the buddy system, so it gets managed. */ 1669static inline void __free_reserved_page(struct page *page) 1670{ 1671 ClearPageReserved(page); 1672 init_page_count(page); 1673 __free_page(page); 1674} 1675 1676static inline void free_reserved_page(struct page *page) 1677{ 1678 __free_reserved_page(page); 1679 adjust_managed_page_count(page, 1); 1680} 1681 1682static inline void mark_page_reserved(struct page *page) 1683{ 1684 SetPageReserved(page); 1685 adjust_managed_page_count(page, -1); 1686} 1687 1688/* 1689 * Default method to free all the __init memory into the buddy system. 1690 * The freed pages will be poisoned with pattern "poison" if it's within 1691 * range [0, UCHAR_MAX]. 1692 * Return pages freed into the buddy system. 1693 */ 1694static inline unsigned long free_initmem_default(int poison) 1695{ 1696 extern char __init_begin[], __init_end[]; 1697 1698 return free_reserved_area(&__init_begin, &__init_end, 1699 poison, "unused kernel"); 1700} 1701 1702static inline unsigned long get_num_physpages(void) 1703{ 1704 int nid; 1705 unsigned long phys_pages = 0; 1706 1707 for_each_online_node(nid) 1708 phys_pages += node_present_pages(nid); 1709 1710 return phys_pages; 1711} 1712 1713#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1714/* 1715 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1716 * zones, allocate the backing mem_map and account for memory holes in a more 1717 * architecture independent manner. This is a substitute for creating the 1718 * zone_sizes[] and zholes_size[] arrays and passing them to 1719 * free_area_init_node() 1720 * 1721 * An architecture is expected to register range of page frames backed by 1722 * physical memory with memblock_add[_node]() before calling 1723 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1724 * usage, an architecture is expected to do something like 1725 * 1726 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1727 * max_highmem_pfn}; 1728 * for_each_valid_physical_page_range() 1729 * memblock_add_node(base, size, nid) 1730 * free_area_init_nodes(max_zone_pfns); 1731 * 1732 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1733 * registered physical page range. Similarly 1734 * sparse_memory_present_with_active_regions() calls memory_present() for 1735 * each range when SPARSEMEM is enabled. 1736 * 1737 * See mm/page_alloc.c for more information on each function exposed by 1738 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1739 */ 1740extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1741unsigned long node_map_pfn_alignment(void); 1742unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1743 unsigned long end_pfn); 1744extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1745 unsigned long end_pfn); 1746extern void get_pfn_range_for_nid(unsigned int nid, 1747 unsigned long *start_pfn, unsigned long *end_pfn); 1748extern unsigned long find_min_pfn_with_active_regions(void); 1749extern void free_bootmem_with_active_regions(int nid, 1750 unsigned long max_low_pfn); 1751extern void sparse_memory_present_with_active_regions(int nid); 1752 1753#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1754 1755#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1756 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1757static inline int __early_pfn_to_nid(unsigned long pfn, 1758 struct mminit_pfnnid_cache *state) 1759{ 1760 return 0; 1761} 1762#else 1763/* please see mm/page_alloc.c */ 1764extern int __meminit early_pfn_to_nid(unsigned long pfn); 1765/* there is a per-arch backend function. */ 1766extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1767 struct mminit_pfnnid_cache *state); 1768#endif 1769 1770extern void set_dma_reserve(unsigned long new_dma_reserve); 1771extern void memmap_init_zone(unsigned long, int, unsigned long, 1772 unsigned long, enum memmap_context); 1773extern void setup_per_zone_wmarks(void); 1774extern int __meminit init_per_zone_wmark_min(void); 1775extern void mem_init(void); 1776extern void __init mmap_init(void); 1777extern void show_mem(unsigned int flags); 1778extern void si_meminfo(struct sysinfo * val); 1779extern void si_meminfo_node(struct sysinfo *val, int nid); 1780 1781extern __printf(3, 4) 1782void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1783 1784extern void setup_per_cpu_pageset(void); 1785 1786extern void zone_pcp_update(struct zone *zone); 1787extern void zone_pcp_reset(struct zone *zone); 1788 1789/* page_alloc.c */ 1790extern int min_free_kbytes; 1791 1792/* nommu.c */ 1793extern atomic_long_t mmap_pages_allocated; 1794extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1795 1796/* interval_tree.c */ 1797void vma_interval_tree_insert(struct vm_area_struct *node, 1798 struct rb_root *root); 1799void vma_interval_tree_insert_after(struct vm_area_struct *node, 1800 struct vm_area_struct *prev, 1801 struct rb_root *root); 1802void vma_interval_tree_remove(struct vm_area_struct *node, 1803 struct rb_root *root); 1804struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1805 unsigned long start, unsigned long last); 1806struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1807 unsigned long start, unsigned long last); 1808 1809#define vma_interval_tree_foreach(vma, root, start, last) \ 1810 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1811 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1812 1813void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1814 struct rb_root *root); 1815void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1816 struct rb_root *root); 1817struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1818 struct rb_root *root, unsigned long start, unsigned long last); 1819struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1820 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1821#ifdef CONFIG_DEBUG_VM_RB 1822void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1823#endif 1824 1825#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1826 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1827 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1828 1829/* mmap.c */ 1830extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1831extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1832 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1833extern struct vm_area_struct *vma_merge(struct mm_struct *, 1834 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1835 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1836 struct mempolicy *); 1837extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1838extern int split_vma(struct mm_struct *, 1839 struct vm_area_struct *, unsigned long addr, int new_below); 1840extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1841extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1842 struct rb_node **, struct rb_node *); 1843extern void unlink_file_vma(struct vm_area_struct *); 1844extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1845 unsigned long addr, unsigned long len, pgoff_t pgoff, 1846 bool *need_rmap_locks); 1847extern void exit_mmap(struct mm_struct *); 1848 1849static inline int check_data_rlimit(unsigned long rlim, 1850 unsigned long new, 1851 unsigned long start, 1852 unsigned long end_data, 1853 unsigned long start_data) 1854{ 1855 if (rlim < RLIM_INFINITY) { 1856 if (((new - start) + (end_data - start_data)) > rlim) 1857 return -ENOSPC; 1858 } 1859 1860 return 0; 1861} 1862 1863extern int mm_take_all_locks(struct mm_struct *mm); 1864extern void mm_drop_all_locks(struct mm_struct *mm); 1865 1866extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1867extern struct file *get_mm_exe_file(struct mm_struct *mm); 1868 1869extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1870extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1871 unsigned long addr, unsigned long len, 1872 unsigned long flags, 1873 const struct vm_special_mapping *spec); 1874/* This is an obsolete alternative to _install_special_mapping. */ 1875extern int install_special_mapping(struct mm_struct *mm, 1876 unsigned long addr, unsigned long len, 1877 unsigned long flags, struct page **pages); 1878 1879extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1880 1881extern unsigned long mmap_region(struct file *file, unsigned long addr, 1882 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1883extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1884 unsigned long len, unsigned long prot, unsigned long flags, 1885 unsigned long pgoff, unsigned long *populate); 1886extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1887 1888#ifdef CONFIG_MMU 1889extern int __mm_populate(unsigned long addr, unsigned long len, 1890 int ignore_errors); 1891static inline void mm_populate(unsigned long addr, unsigned long len) 1892{ 1893 /* Ignore errors */ 1894 (void) __mm_populate(addr, len, 1); 1895} 1896#else 1897static inline void mm_populate(unsigned long addr, unsigned long len) {} 1898#endif 1899 1900/* These take the mm semaphore themselves */ 1901extern unsigned long vm_brk(unsigned long, unsigned long); 1902extern int vm_munmap(unsigned long, size_t); 1903extern unsigned long vm_mmap(struct file *, unsigned long, 1904 unsigned long, unsigned long, 1905 unsigned long, unsigned long); 1906 1907struct vm_unmapped_area_info { 1908#define VM_UNMAPPED_AREA_TOPDOWN 1 1909 unsigned long flags; 1910 unsigned long length; 1911 unsigned long low_limit; 1912 unsigned long high_limit; 1913 unsigned long align_mask; 1914 unsigned long align_offset; 1915}; 1916 1917extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1918extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1919 1920/* 1921 * Search for an unmapped address range. 1922 * 1923 * We are looking for a range that: 1924 * - does not intersect with any VMA; 1925 * - is contained within the [low_limit, high_limit) interval; 1926 * - is at least the desired size. 1927 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1928 */ 1929static inline unsigned long 1930vm_unmapped_area(struct vm_unmapped_area_info *info) 1931{ 1932 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1933 return unmapped_area_topdown(info); 1934 else 1935 return unmapped_area(info); 1936} 1937 1938/* truncate.c */ 1939extern void truncate_inode_pages(struct address_space *, loff_t); 1940extern void truncate_inode_pages_range(struct address_space *, 1941 loff_t lstart, loff_t lend); 1942extern void truncate_inode_pages_final(struct address_space *); 1943 1944/* generic vm_area_ops exported for stackable file systems */ 1945extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1946extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1947extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1948 1949/* mm/page-writeback.c */ 1950int write_one_page(struct page *page, int wait); 1951void task_dirty_inc(struct task_struct *tsk); 1952 1953/* readahead.c */ 1954#define VM_MAX_READAHEAD 128 /* kbytes */ 1955#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1956 1957int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1958 pgoff_t offset, unsigned long nr_to_read); 1959 1960void page_cache_sync_readahead(struct address_space *mapping, 1961 struct file_ra_state *ra, 1962 struct file *filp, 1963 pgoff_t offset, 1964 unsigned long size); 1965 1966void page_cache_async_readahead(struct address_space *mapping, 1967 struct file_ra_state *ra, 1968 struct file *filp, 1969 struct page *pg, 1970 pgoff_t offset, 1971 unsigned long size); 1972 1973unsigned long max_sane_readahead(unsigned long nr); 1974 1975/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1976extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1977 1978/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1979extern int expand_downwards(struct vm_area_struct *vma, 1980 unsigned long address); 1981#if VM_GROWSUP 1982extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1983#else 1984 #define expand_upwards(vma, address) (0) 1985#endif 1986 1987/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1988extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1989extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1990 struct vm_area_struct **pprev); 1991 1992/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1993 NULL if none. Assume start_addr < end_addr. */ 1994static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1995{ 1996 struct vm_area_struct * vma = find_vma(mm,start_addr); 1997 1998 if (vma && end_addr <= vma->vm_start) 1999 vma = NULL; 2000 return vma; 2001} 2002 2003static inline unsigned long vma_pages(struct vm_area_struct *vma) 2004{ 2005 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2006} 2007 2008/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2009static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2010 unsigned long vm_start, unsigned long vm_end) 2011{ 2012 struct vm_area_struct *vma = find_vma(mm, vm_start); 2013 2014 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2015 vma = NULL; 2016 2017 return vma; 2018} 2019 2020#ifdef CONFIG_MMU 2021pgprot_t vm_get_page_prot(unsigned long vm_flags); 2022void vma_set_page_prot(struct vm_area_struct *vma); 2023#else 2024static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2025{ 2026 return __pgprot(0); 2027} 2028static inline void vma_set_page_prot(struct vm_area_struct *vma) 2029{ 2030 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2031} 2032#endif 2033 2034#ifdef CONFIG_NUMA_BALANCING 2035unsigned long change_prot_numa(struct vm_area_struct *vma, 2036 unsigned long start, unsigned long end); 2037#endif 2038 2039struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2040int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2041 unsigned long pfn, unsigned long size, pgprot_t); 2042int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2043int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2044 unsigned long pfn); 2045int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2046 unsigned long pfn); 2047int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2048 2049 2050struct page *follow_page_mask(struct vm_area_struct *vma, 2051 unsigned long address, unsigned int foll_flags, 2052 unsigned int *page_mask); 2053 2054static inline struct page *follow_page(struct vm_area_struct *vma, 2055 unsigned long address, unsigned int foll_flags) 2056{ 2057 unsigned int unused_page_mask; 2058 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2059} 2060 2061#define FOLL_WRITE 0x01 /* check pte is writable */ 2062#define FOLL_TOUCH 0x02 /* mark page accessed */ 2063#define FOLL_GET 0x04 /* do get_page on page */ 2064#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2065#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2066#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2067 * and return without waiting upon it */ 2068#define FOLL_POPULATE 0x40 /* fault in page */ 2069#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2070#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2071#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2072#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2073#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2074 2075typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2076 void *data); 2077extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2078 unsigned long size, pte_fn_t fn, void *data); 2079 2080#ifdef CONFIG_PROC_FS 2081void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2082#else 2083static inline void vm_stat_account(struct mm_struct *mm, 2084 unsigned long flags, struct file *file, long pages) 2085{ 2086 mm->total_vm += pages; 2087} 2088#endif /* CONFIG_PROC_FS */ 2089 2090#ifdef CONFIG_DEBUG_PAGEALLOC 2091extern bool _debug_pagealloc_enabled; 2092extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2093 2094static inline bool debug_pagealloc_enabled(void) 2095{ 2096 return _debug_pagealloc_enabled; 2097} 2098 2099static inline void 2100kernel_map_pages(struct page *page, int numpages, int enable) 2101{ 2102 if (!debug_pagealloc_enabled()) 2103 return; 2104 2105 __kernel_map_pages(page, numpages, enable); 2106} 2107#ifdef CONFIG_HIBERNATION 2108extern bool kernel_page_present(struct page *page); 2109#endif /* CONFIG_HIBERNATION */ 2110#else 2111static inline void 2112kernel_map_pages(struct page *page, int numpages, int enable) {} 2113#ifdef CONFIG_HIBERNATION 2114static inline bool kernel_page_present(struct page *page) { return true; } 2115#endif /* CONFIG_HIBERNATION */ 2116#endif 2117 2118#ifdef __HAVE_ARCH_GATE_AREA 2119extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2120extern int in_gate_area_no_mm(unsigned long addr); 2121extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2122#else 2123static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2124{ 2125 return NULL; 2126} 2127static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2128static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2129{ 2130 return 0; 2131} 2132#endif /* __HAVE_ARCH_GATE_AREA */ 2133 2134#ifdef CONFIG_SYSCTL 2135extern int sysctl_drop_caches; 2136int drop_caches_sysctl_handler(struct ctl_table *, int, 2137 void __user *, size_t *, loff_t *); 2138#endif 2139 2140void drop_slab(void); 2141void drop_slab_node(int nid); 2142 2143#ifndef CONFIG_MMU 2144#define randomize_va_space 0 2145#else 2146extern int randomize_va_space; 2147#endif 2148 2149const char * arch_vma_name(struct vm_area_struct *vma); 2150void print_vma_addr(char *prefix, unsigned long rip); 2151 2152void sparse_mem_maps_populate_node(struct page **map_map, 2153 unsigned long pnum_begin, 2154 unsigned long pnum_end, 2155 unsigned long map_count, 2156 int nodeid); 2157 2158struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2159pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2160pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2161pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2162pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2163void *vmemmap_alloc_block(unsigned long size, int node); 2164void *vmemmap_alloc_block_buf(unsigned long size, int node); 2165void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2166int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2167 int node); 2168int vmemmap_populate(unsigned long start, unsigned long end, int node); 2169void vmemmap_populate_print_last(void); 2170#ifdef CONFIG_MEMORY_HOTPLUG 2171void vmemmap_free(unsigned long start, unsigned long end); 2172#endif 2173void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2174 unsigned long size); 2175 2176enum mf_flags { 2177 MF_COUNT_INCREASED = 1 << 0, 2178 MF_ACTION_REQUIRED = 1 << 1, 2179 MF_MUST_KILL = 1 << 2, 2180 MF_SOFT_OFFLINE = 1 << 3, 2181}; 2182extern int memory_failure(unsigned long pfn, int trapno, int flags); 2183extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2184extern int unpoison_memory(unsigned long pfn); 2185extern int get_hwpoison_page(struct page *page); 2186extern int sysctl_memory_failure_early_kill; 2187extern int sysctl_memory_failure_recovery; 2188extern void shake_page(struct page *p, int access); 2189extern atomic_long_t num_poisoned_pages; 2190extern int soft_offline_page(struct page *page, int flags); 2191 2192 2193/* 2194 * Error handlers for various types of pages. 2195 */ 2196enum mf_result { 2197 MF_IGNORED, /* Error: cannot be handled */ 2198 MF_FAILED, /* Error: handling failed */ 2199 MF_DELAYED, /* Will be handled later */ 2200 MF_RECOVERED, /* Successfully recovered */ 2201}; 2202 2203enum mf_action_page_type { 2204 MF_MSG_KERNEL, 2205 MF_MSG_KERNEL_HIGH_ORDER, 2206 MF_MSG_SLAB, 2207 MF_MSG_DIFFERENT_COMPOUND, 2208 MF_MSG_POISONED_HUGE, 2209 MF_MSG_HUGE, 2210 MF_MSG_FREE_HUGE, 2211 MF_MSG_UNMAP_FAILED, 2212 MF_MSG_DIRTY_SWAPCACHE, 2213 MF_MSG_CLEAN_SWAPCACHE, 2214 MF_MSG_DIRTY_MLOCKED_LRU, 2215 MF_MSG_CLEAN_MLOCKED_LRU, 2216 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2217 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2218 MF_MSG_DIRTY_LRU, 2219 MF_MSG_CLEAN_LRU, 2220 MF_MSG_TRUNCATED_LRU, 2221 MF_MSG_BUDDY, 2222 MF_MSG_BUDDY_2ND, 2223 MF_MSG_UNKNOWN, 2224}; 2225 2226#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2227extern void clear_huge_page(struct page *page, 2228 unsigned long addr, 2229 unsigned int pages_per_huge_page); 2230extern void copy_user_huge_page(struct page *dst, struct page *src, 2231 unsigned long addr, struct vm_area_struct *vma, 2232 unsigned int pages_per_huge_page); 2233#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2234 2235extern struct page_ext_operations debug_guardpage_ops; 2236extern struct page_ext_operations page_poisoning_ops; 2237 2238#ifdef CONFIG_DEBUG_PAGEALLOC 2239extern unsigned int _debug_guardpage_minorder; 2240extern bool _debug_guardpage_enabled; 2241 2242static inline unsigned int debug_guardpage_minorder(void) 2243{ 2244 return _debug_guardpage_minorder; 2245} 2246 2247static inline bool debug_guardpage_enabled(void) 2248{ 2249 return _debug_guardpage_enabled; 2250} 2251 2252static inline bool page_is_guard(struct page *page) 2253{ 2254 struct page_ext *page_ext; 2255 2256 if (!debug_guardpage_enabled()) 2257 return false; 2258 2259 page_ext = lookup_page_ext(page); 2260 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2261} 2262#else 2263static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2264static inline bool debug_guardpage_enabled(void) { return false; } 2265static inline bool page_is_guard(struct page *page) { return false; } 2266#endif /* CONFIG_DEBUG_PAGEALLOC */ 2267 2268#if MAX_NUMNODES > 1 2269void __init setup_nr_node_ids(void); 2270#else 2271static inline void setup_nr_node_ids(void) {} 2272#endif 2273 2274#endif /* __KERNEL__ */ 2275#endif /* _LINUX_MM_H */