Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23
24struct mempolicy;
25struct anon_vma;
26struct anon_vma_chain;
27struct file_ra_state;
28struct user_struct;
29struct writeback_control;
30struct bdi_writeback;
31
32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
33extern unsigned long max_mapnr;
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
41#endif
42
43extern unsigned long totalram_pages;
44extern void * high_memory;
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
56
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
72extern unsigned long sysctl_user_reserve_kbytes;
73extern unsigned long sysctl_admin_reserve_kbytes;
74
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
101extern struct kmem_cache *vm_area_cachep;
102
103#ifndef CONFIG_MMU
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
111 * vm_flags in vm_area_struct, see mm_types.h.
112 */
113#define VM_NONE 0x00000000
114
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
127#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
128#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
129
130#define VM_LOCKED 0x00002000
131#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
132
133 /* Used by sys_madvise() */
134#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
135#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
136
137#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
138#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
139#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
140#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
141#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143#define VM_ARCH_2 0x02000000
144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146#ifdef CONFIG_MEM_SOFT_DIRTY
147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148#else
149# define VM_SOFTDIRTY 0
150#endif
151
152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157#if defined(CONFIG_X86)
158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159#elif defined(CONFIG_PPC)
160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161#elif defined(CONFIG_PARISC)
162# define VM_GROWSUP VM_ARCH_1
163#elif defined(CONFIG_METAG)
164# define VM_GROWSUP VM_ARCH_1
165#elif defined(CONFIG_IA64)
166# define VM_GROWSUP VM_ARCH_1
167#elif !defined(CONFIG_MMU)
168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169#endif
170
171#if defined(CONFIG_X86)
172/* MPX specific bounds table or bounds directory */
173# define VM_MPX VM_ARCH_2
174#endif
175
176#ifndef VM_GROWSUP
177# define VM_GROWSUP VM_NONE
178#endif
179
180/* Bits set in the VMA until the stack is in its final location */
181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185#endif
186
187#ifdef CONFIG_STACK_GROWSUP
188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189#else
190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#endif
192
193/*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199/* This mask defines which mm->def_flags a process can inherit its parent */
200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202/*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206extern pgprot_t protection_map[16];
207
208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
210#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
211#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
212#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
213#define FAULT_FLAG_TRIED 0x20 /* Second try */
214#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
215
216/*
217 * vm_fault is filled by the the pagefault handler and passed to the vma's
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
220 *
221 * pgoff should be used in favour of virtual_address, if possible.
222 */
223struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
228 struct page *cow_page; /* Handler may choose to COW */
229 struct page *page; /* ->fault handlers should return a
230 * page here, unless VM_FAULT_NOPAGE
231 * is set (which is also implied by
232 * VM_FAULT_ERROR).
233 */
234 /* for ->map_pages() only */
235 pgoff_t max_pgoff; /* map pages for offset from pgoff till
236 * max_pgoff inclusive */
237 pte_t *pte; /* pte entry associated with ->pgoff */
238};
239
240/*
241 * These are the virtual MM functions - opening of an area, closing and
242 * unmapping it (needed to keep files on disk up-to-date etc), pointer
243 * to the functions called when a no-page or a wp-page exception occurs.
244 */
245struct vm_operations_struct {
246 void (*open)(struct vm_area_struct * area);
247 void (*close)(struct vm_area_struct * area);
248 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
249 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
250
251 /* notification that a previously read-only page is about to become
252 * writable, if an error is returned it will cause a SIGBUS */
253 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
254
255 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
256 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
257
258 /* called by access_process_vm when get_user_pages() fails, typically
259 * for use by special VMAs that can switch between memory and hardware
260 */
261 int (*access)(struct vm_area_struct *vma, unsigned long addr,
262 void *buf, int len, int write);
263
264 /* Called by the /proc/PID/maps code to ask the vma whether it
265 * has a special name. Returning non-NULL will also cause this
266 * vma to be dumped unconditionally. */
267 const char *(*name)(struct vm_area_struct *vma);
268
269#ifdef CONFIG_NUMA
270 /*
271 * set_policy() op must add a reference to any non-NULL @new mempolicy
272 * to hold the policy upon return. Caller should pass NULL @new to
273 * remove a policy and fall back to surrounding context--i.e. do not
274 * install a MPOL_DEFAULT policy, nor the task or system default
275 * mempolicy.
276 */
277 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
278
279 /*
280 * get_policy() op must add reference [mpol_get()] to any policy at
281 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
282 * in mm/mempolicy.c will do this automatically.
283 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
284 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
285 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
286 * must return NULL--i.e., do not "fallback" to task or system default
287 * policy.
288 */
289 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
290 unsigned long addr);
291#endif
292 /*
293 * Called by vm_normal_page() for special PTEs to find the
294 * page for @addr. This is useful if the default behavior
295 * (using pte_page()) would not find the correct page.
296 */
297 struct page *(*find_special_page)(struct vm_area_struct *vma,
298 unsigned long addr);
299};
300
301struct mmu_gather;
302struct inode;
303
304#define page_private(page) ((page)->private)
305#define set_page_private(page, v) ((page)->private = (v))
306
307/* It's valid only if the page is free path or free_list */
308static inline void set_freepage_migratetype(struct page *page, int migratetype)
309{
310 page->index = migratetype;
311}
312
313/* It's valid only if the page is free path or free_list */
314static inline int get_freepage_migratetype(struct page *page)
315{
316 return page->index;
317}
318
319/*
320 * FIXME: take this include out, include page-flags.h in
321 * files which need it (119 of them)
322 */
323#include <linux/page-flags.h>
324#include <linux/huge_mm.h>
325
326/*
327 * Methods to modify the page usage count.
328 *
329 * What counts for a page usage:
330 * - cache mapping (page->mapping)
331 * - private data (page->private)
332 * - page mapped in a task's page tables, each mapping
333 * is counted separately
334 *
335 * Also, many kernel routines increase the page count before a critical
336 * routine so they can be sure the page doesn't go away from under them.
337 */
338
339/*
340 * Drop a ref, return true if the refcount fell to zero (the page has no users)
341 */
342static inline int put_page_testzero(struct page *page)
343{
344 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
345 return atomic_dec_and_test(&page->_count);
346}
347
348/*
349 * Try to grab a ref unless the page has a refcount of zero, return false if
350 * that is the case.
351 * This can be called when MMU is off so it must not access
352 * any of the virtual mappings.
353 */
354static inline int get_page_unless_zero(struct page *page)
355{
356 return atomic_inc_not_zero(&page->_count);
357}
358
359/*
360 * Try to drop a ref unless the page has a refcount of one, return false if
361 * that is the case.
362 * This is to make sure that the refcount won't become zero after this drop.
363 * This can be called when MMU is off so it must not access
364 * any of the virtual mappings.
365 */
366static inline int put_page_unless_one(struct page *page)
367{
368 return atomic_add_unless(&page->_count, -1, 1);
369}
370
371extern int page_is_ram(unsigned long pfn);
372extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
373
374/* Support for virtually mapped pages */
375struct page *vmalloc_to_page(const void *addr);
376unsigned long vmalloc_to_pfn(const void *addr);
377
378/*
379 * Determine if an address is within the vmalloc range
380 *
381 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
382 * is no special casing required.
383 */
384static inline int is_vmalloc_addr(const void *x)
385{
386#ifdef CONFIG_MMU
387 unsigned long addr = (unsigned long)x;
388
389 return addr >= VMALLOC_START && addr < VMALLOC_END;
390#else
391 return 0;
392#endif
393}
394#ifdef CONFIG_MMU
395extern int is_vmalloc_or_module_addr(const void *x);
396#else
397static inline int is_vmalloc_or_module_addr(const void *x)
398{
399 return 0;
400}
401#endif
402
403extern void kvfree(const void *addr);
404
405static inline void compound_lock(struct page *page)
406{
407#ifdef CONFIG_TRANSPARENT_HUGEPAGE
408 VM_BUG_ON_PAGE(PageSlab(page), page);
409 bit_spin_lock(PG_compound_lock, &page->flags);
410#endif
411}
412
413static inline void compound_unlock(struct page *page)
414{
415#ifdef CONFIG_TRANSPARENT_HUGEPAGE
416 VM_BUG_ON_PAGE(PageSlab(page), page);
417 bit_spin_unlock(PG_compound_lock, &page->flags);
418#endif
419}
420
421static inline unsigned long compound_lock_irqsave(struct page *page)
422{
423 unsigned long uninitialized_var(flags);
424#ifdef CONFIG_TRANSPARENT_HUGEPAGE
425 local_irq_save(flags);
426 compound_lock(page);
427#endif
428 return flags;
429}
430
431static inline void compound_unlock_irqrestore(struct page *page,
432 unsigned long flags)
433{
434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435 compound_unlock(page);
436 local_irq_restore(flags);
437#endif
438}
439
440static inline struct page *compound_head_by_tail(struct page *tail)
441{
442 struct page *head = tail->first_page;
443
444 /*
445 * page->first_page may be a dangling pointer to an old
446 * compound page, so recheck that it is still a tail
447 * page before returning.
448 */
449 smp_rmb();
450 if (likely(PageTail(tail)))
451 return head;
452 return tail;
453}
454
455/*
456 * Since either compound page could be dismantled asynchronously in THP
457 * or we access asynchronously arbitrary positioned struct page, there
458 * would be tail flag race. To handle this race, we should call
459 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
460 */
461static inline struct page *compound_head(struct page *page)
462{
463 if (unlikely(PageTail(page)))
464 return compound_head_by_tail(page);
465 return page;
466}
467
468/*
469 * If we access compound page synchronously such as access to
470 * allocated page, there is no need to handle tail flag race, so we can
471 * check tail flag directly without any synchronization primitive.
472 */
473static inline struct page *compound_head_fast(struct page *page)
474{
475 if (unlikely(PageTail(page)))
476 return page->first_page;
477 return page;
478}
479
480/*
481 * The atomic page->_mapcount, starts from -1: so that transitions
482 * both from it and to it can be tracked, using atomic_inc_and_test
483 * and atomic_add_negative(-1).
484 */
485static inline void page_mapcount_reset(struct page *page)
486{
487 atomic_set(&(page)->_mapcount, -1);
488}
489
490static inline int page_mapcount(struct page *page)
491{
492 VM_BUG_ON_PAGE(PageSlab(page), page);
493 return atomic_read(&page->_mapcount) + 1;
494}
495
496static inline int page_count(struct page *page)
497{
498 return atomic_read(&compound_head(page)->_count);
499}
500
501static inline bool __compound_tail_refcounted(struct page *page)
502{
503 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
504}
505
506/*
507 * This takes a head page as parameter and tells if the
508 * tail page reference counting can be skipped.
509 *
510 * For this to be safe, PageSlab and PageHeadHuge must remain true on
511 * any given page where they return true here, until all tail pins
512 * have been released.
513 */
514static inline bool compound_tail_refcounted(struct page *page)
515{
516 VM_BUG_ON_PAGE(!PageHead(page), page);
517 return __compound_tail_refcounted(page);
518}
519
520static inline void get_huge_page_tail(struct page *page)
521{
522 /*
523 * __split_huge_page_refcount() cannot run from under us.
524 */
525 VM_BUG_ON_PAGE(!PageTail(page), page);
526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
528 if (compound_tail_refcounted(page->first_page))
529 atomic_inc(&page->_mapcount);
530}
531
532extern bool __get_page_tail(struct page *page);
533
534static inline void get_page(struct page *page)
535{
536 if (unlikely(PageTail(page)))
537 if (likely(__get_page_tail(page)))
538 return;
539 /*
540 * Getting a normal page or the head of a compound page
541 * requires to already have an elevated page->_count.
542 */
543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
544 atomic_inc(&page->_count);
545}
546
547static inline struct page *virt_to_head_page(const void *x)
548{
549 struct page *page = virt_to_page(x);
550
551 /*
552 * We don't need to worry about synchronization of tail flag
553 * when we call virt_to_head_page() since it is only called for
554 * already allocated page and this page won't be freed until
555 * this virt_to_head_page() is finished. So use _fast variant.
556 */
557 return compound_head_fast(page);
558}
559
560/*
561 * Setup the page count before being freed into the page allocator for
562 * the first time (boot or memory hotplug)
563 */
564static inline void init_page_count(struct page *page)
565{
566 atomic_set(&page->_count, 1);
567}
568
569void put_page(struct page *page);
570void put_pages_list(struct list_head *pages);
571
572void split_page(struct page *page, unsigned int order);
573int split_free_page(struct page *page);
574
575/*
576 * Compound pages have a destructor function. Provide a
577 * prototype for that function and accessor functions.
578 * These are _only_ valid on the head of a PG_compound page.
579 */
580
581static inline void set_compound_page_dtor(struct page *page,
582 compound_page_dtor *dtor)
583{
584 page[1].compound_dtor = dtor;
585}
586
587static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
588{
589 return page[1].compound_dtor;
590}
591
592static inline int compound_order(struct page *page)
593{
594 if (!PageHead(page))
595 return 0;
596 return page[1].compound_order;
597}
598
599static inline void set_compound_order(struct page *page, unsigned long order)
600{
601 page[1].compound_order = order;
602}
603
604#ifdef CONFIG_MMU
605/*
606 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
607 * servicing faults for write access. In the normal case, do always want
608 * pte_mkwrite. But get_user_pages can cause write faults for mappings
609 * that do not have writing enabled, when used by access_process_vm.
610 */
611static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
612{
613 if (likely(vma->vm_flags & VM_WRITE))
614 pte = pte_mkwrite(pte);
615 return pte;
616}
617
618void do_set_pte(struct vm_area_struct *vma, unsigned long address,
619 struct page *page, pte_t *pte, bool write, bool anon);
620#endif
621
622/*
623 * Multiple processes may "see" the same page. E.g. for untouched
624 * mappings of /dev/null, all processes see the same page full of
625 * zeroes, and text pages of executables and shared libraries have
626 * only one copy in memory, at most, normally.
627 *
628 * For the non-reserved pages, page_count(page) denotes a reference count.
629 * page_count() == 0 means the page is free. page->lru is then used for
630 * freelist management in the buddy allocator.
631 * page_count() > 0 means the page has been allocated.
632 *
633 * Pages are allocated by the slab allocator in order to provide memory
634 * to kmalloc and kmem_cache_alloc. In this case, the management of the
635 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
636 * unless a particular usage is carefully commented. (the responsibility of
637 * freeing the kmalloc memory is the caller's, of course).
638 *
639 * A page may be used by anyone else who does a __get_free_page().
640 * In this case, page_count still tracks the references, and should only
641 * be used through the normal accessor functions. The top bits of page->flags
642 * and page->virtual store page management information, but all other fields
643 * are unused and could be used privately, carefully. The management of this
644 * page is the responsibility of the one who allocated it, and those who have
645 * subsequently been given references to it.
646 *
647 * The other pages (we may call them "pagecache pages") are completely
648 * managed by the Linux memory manager: I/O, buffers, swapping etc.
649 * The following discussion applies only to them.
650 *
651 * A pagecache page contains an opaque `private' member, which belongs to the
652 * page's address_space. Usually, this is the address of a circular list of
653 * the page's disk buffers. PG_private must be set to tell the VM to call
654 * into the filesystem to release these pages.
655 *
656 * A page may belong to an inode's memory mapping. In this case, page->mapping
657 * is the pointer to the inode, and page->index is the file offset of the page,
658 * in units of PAGE_CACHE_SIZE.
659 *
660 * If pagecache pages are not associated with an inode, they are said to be
661 * anonymous pages. These may become associated with the swapcache, and in that
662 * case PG_swapcache is set, and page->private is an offset into the swapcache.
663 *
664 * In either case (swapcache or inode backed), the pagecache itself holds one
665 * reference to the page. Setting PG_private should also increment the
666 * refcount. The each user mapping also has a reference to the page.
667 *
668 * The pagecache pages are stored in a per-mapping radix tree, which is
669 * rooted at mapping->page_tree, and indexed by offset.
670 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
671 * lists, we instead now tag pages as dirty/writeback in the radix tree.
672 *
673 * All pagecache pages may be subject to I/O:
674 * - inode pages may need to be read from disk,
675 * - inode pages which have been modified and are MAP_SHARED may need
676 * to be written back to the inode on disk,
677 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
678 * modified may need to be swapped out to swap space and (later) to be read
679 * back into memory.
680 */
681
682/*
683 * The zone field is never updated after free_area_init_core()
684 * sets it, so none of the operations on it need to be atomic.
685 */
686
687/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
688#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
689#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
690#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
691#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
692
693/*
694 * Define the bit shifts to access each section. For non-existent
695 * sections we define the shift as 0; that plus a 0 mask ensures
696 * the compiler will optimise away reference to them.
697 */
698#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
699#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
700#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
701#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
702
703/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
704#ifdef NODE_NOT_IN_PAGE_FLAGS
705#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
706#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
707 SECTIONS_PGOFF : ZONES_PGOFF)
708#else
709#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
710#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
711 NODES_PGOFF : ZONES_PGOFF)
712#endif
713
714#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
715
716#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
717#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
718#endif
719
720#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
721#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
722#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
723#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
724#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
725
726static inline enum zone_type page_zonenum(const struct page *page)
727{
728 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
729}
730
731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732#define SECTION_IN_PAGE_FLAGS
733#endif
734
735/*
736 * The identification function is mainly used by the buddy allocator for
737 * determining if two pages could be buddies. We are not really identifying
738 * the zone since we could be using the section number id if we do not have
739 * node id available in page flags.
740 * We only guarantee that it will return the same value for two combinable
741 * pages in a zone.
742 */
743static inline int page_zone_id(struct page *page)
744{
745 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
746}
747
748static inline int zone_to_nid(struct zone *zone)
749{
750#ifdef CONFIG_NUMA
751 return zone->node;
752#else
753 return 0;
754#endif
755}
756
757#ifdef NODE_NOT_IN_PAGE_FLAGS
758extern int page_to_nid(const struct page *page);
759#else
760static inline int page_to_nid(const struct page *page)
761{
762 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
763}
764#endif
765
766#ifdef CONFIG_NUMA_BALANCING
767static inline int cpu_pid_to_cpupid(int cpu, int pid)
768{
769 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
770}
771
772static inline int cpupid_to_pid(int cpupid)
773{
774 return cpupid & LAST__PID_MASK;
775}
776
777static inline int cpupid_to_cpu(int cpupid)
778{
779 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
780}
781
782static inline int cpupid_to_nid(int cpupid)
783{
784 return cpu_to_node(cpupid_to_cpu(cpupid));
785}
786
787static inline bool cpupid_pid_unset(int cpupid)
788{
789 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
790}
791
792static inline bool cpupid_cpu_unset(int cpupid)
793{
794 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
795}
796
797static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
798{
799 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
800}
801
802#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
803#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
804static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
805{
806 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
807}
808
809static inline int page_cpupid_last(struct page *page)
810{
811 return page->_last_cpupid;
812}
813static inline void page_cpupid_reset_last(struct page *page)
814{
815 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
816}
817#else
818static inline int page_cpupid_last(struct page *page)
819{
820 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
821}
822
823extern int page_cpupid_xchg_last(struct page *page, int cpupid);
824
825static inline void page_cpupid_reset_last(struct page *page)
826{
827 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
828
829 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
830 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
831}
832#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
833#else /* !CONFIG_NUMA_BALANCING */
834static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
835{
836 return page_to_nid(page); /* XXX */
837}
838
839static inline int page_cpupid_last(struct page *page)
840{
841 return page_to_nid(page); /* XXX */
842}
843
844static inline int cpupid_to_nid(int cpupid)
845{
846 return -1;
847}
848
849static inline int cpupid_to_pid(int cpupid)
850{
851 return -1;
852}
853
854static inline int cpupid_to_cpu(int cpupid)
855{
856 return -1;
857}
858
859static inline int cpu_pid_to_cpupid(int nid, int pid)
860{
861 return -1;
862}
863
864static inline bool cpupid_pid_unset(int cpupid)
865{
866 return 1;
867}
868
869static inline void page_cpupid_reset_last(struct page *page)
870{
871}
872
873static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
874{
875 return false;
876}
877#endif /* CONFIG_NUMA_BALANCING */
878
879static inline struct zone *page_zone(const struct page *page)
880{
881 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
882}
883
884#ifdef SECTION_IN_PAGE_FLAGS
885static inline void set_page_section(struct page *page, unsigned long section)
886{
887 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
888 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
889}
890
891static inline unsigned long page_to_section(const struct page *page)
892{
893 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
894}
895#endif
896
897static inline void set_page_zone(struct page *page, enum zone_type zone)
898{
899 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
900 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
901}
902
903static inline void set_page_node(struct page *page, unsigned long node)
904{
905 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
906 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
907}
908
909static inline void set_page_links(struct page *page, enum zone_type zone,
910 unsigned long node, unsigned long pfn)
911{
912 set_page_zone(page, zone);
913 set_page_node(page, node);
914#ifdef SECTION_IN_PAGE_FLAGS
915 set_page_section(page, pfn_to_section_nr(pfn));
916#endif
917}
918
919/*
920 * Some inline functions in vmstat.h depend on page_zone()
921 */
922#include <linux/vmstat.h>
923
924static __always_inline void *lowmem_page_address(const struct page *page)
925{
926 return __va(PFN_PHYS(page_to_pfn(page)));
927}
928
929#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
930#define HASHED_PAGE_VIRTUAL
931#endif
932
933#if defined(WANT_PAGE_VIRTUAL)
934static inline void *page_address(const struct page *page)
935{
936 return page->virtual;
937}
938static inline void set_page_address(struct page *page, void *address)
939{
940 page->virtual = address;
941}
942#define page_address_init() do { } while(0)
943#endif
944
945#if defined(HASHED_PAGE_VIRTUAL)
946void *page_address(const struct page *page);
947void set_page_address(struct page *page, void *virtual);
948void page_address_init(void);
949#endif
950
951#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
952#define page_address(page) lowmem_page_address(page)
953#define set_page_address(page, address) do { } while(0)
954#define page_address_init() do { } while(0)
955#endif
956
957extern void *page_rmapping(struct page *page);
958extern struct anon_vma *page_anon_vma(struct page *page);
959extern struct address_space *page_mapping(struct page *page);
960
961extern struct address_space *__page_file_mapping(struct page *);
962
963static inline
964struct address_space *page_file_mapping(struct page *page)
965{
966 if (unlikely(PageSwapCache(page)))
967 return __page_file_mapping(page);
968
969 return page->mapping;
970}
971
972/*
973 * Return the pagecache index of the passed page. Regular pagecache pages
974 * use ->index whereas swapcache pages use ->private
975 */
976static inline pgoff_t page_index(struct page *page)
977{
978 if (unlikely(PageSwapCache(page)))
979 return page_private(page);
980 return page->index;
981}
982
983extern pgoff_t __page_file_index(struct page *page);
984
985/*
986 * Return the file index of the page. Regular pagecache pages use ->index
987 * whereas swapcache pages use swp_offset(->private)
988 */
989static inline pgoff_t page_file_index(struct page *page)
990{
991 if (unlikely(PageSwapCache(page)))
992 return __page_file_index(page);
993
994 return page->index;
995}
996
997/*
998 * Return true if this page is mapped into pagetables.
999 */
1000static inline int page_mapped(struct page *page)
1001{
1002 return atomic_read(&(page)->_mapcount) >= 0;
1003}
1004
1005/*
1006 * Return true only if the page has been allocated with
1007 * ALLOC_NO_WATERMARKS and the low watermark was not
1008 * met implying that the system is under some pressure.
1009 */
1010static inline bool page_is_pfmemalloc(struct page *page)
1011{
1012 /*
1013 * Page index cannot be this large so this must be
1014 * a pfmemalloc page.
1015 */
1016 return page->index == -1UL;
1017}
1018
1019/*
1020 * Only to be called by the page allocator on a freshly allocated
1021 * page.
1022 */
1023static inline void set_page_pfmemalloc(struct page *page)
1024{
1025 page->index = -1UL;
1026}
1027
1028static inline void clear_page_pfmemalloc(struct page *page)
1029{
1030 page->index = 0;
1031}
1032
1033/*
1034 * Different kinds of faults, as returned by handle_mm_fault().
1035 * Used to decide whether a process gets delivered SIGBUS or
1036 * just gets major/minor fault counters bumped up.
1037 */
1038
1039#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1040
1041#define VM_FAULT_OOM 0x0001
1042#define VM_FAULT_SIGBUS 0x0002
1043#define VM_FAULT_MAJOR 0x0004
1044#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1045#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1046#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1047#define VM_FAULT_SIGSEGV 0x0040
1048
1049#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1050#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1051#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1052#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1053
1054#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1055
1056#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1057 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1058 VM_FAULT_FALLBACK)
1059
1060/* Encode hstate index for a hwpoisoned large page */
1061#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1062#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1063
1064/*
1065 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1066 */
1067extern void pagefault_out_of_memory(void);
1068
1069#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1070
1071/*
1072 * Flags passed to show_mem() and show_free_areas() to suppress output in
1073 * various contexts.
1074 */
1075#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1076
1077extern void show_free_areas(unsigned int flags);
1078extern bool skip_free_areas_node(unsigned int flags, int nid);
1079
1080int shmem_zero_setup(struct vm_area_struct *);
1081#ifdef CONFIG_SHMEM
1082bool shmem_mapping(struct address_space *mapping);
1083#else
1084static inline bool shmem_mapping(struct address_space *mapping)
1085{
1086 return false;
1087}
1088#endif
1089
1090extern int can_do_mlock(void);
1091extern int user_shm_lock(size_t, struct user_struct *);
1092extern void user_shm_unlock(size_t, struct user_struct *);
1093
1094/*
1095 * Parameter block passed down to zap_pte_range in exceptional cases.
1096 */
1097struct zap_details {
1098 struct address_space *check_mapping; /* Check page->mapping if set */
1099 pgoff_t first_index; /* Lowest page->index to unmap */
1100 pgoff_t last_index; /* Highest page->index to unmap */
1101};
1102
1103struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1104 pte_t pte);
1105
1106int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1107 unsigned long size);
1108void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1109 unsigned long size, struct zap_details *);
1110void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1111 unsigned long start, unsigned long end);
1112
1113/**
1114 * mm_walk - callbacks for walk_page_range
1115 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1116 * this handler is required to be able to handle
1117 * pmd_trans_huge() pmds. They may simply choose to
1118 * split_huge_page() instead of handling it explicitly.
1119 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1120 * @pte_hole: if set, called for each hole at all levels
1121 * @hugetlb_entry: if set, called for each hugetlb entry
1122 * @test_walk: caller specific callback function to determine whether
1123 * we walk over the current vma or not. A positive returned
1124 * value means "do page table walk over the current vma,"
1125 * and a negative one means "abort current page table walk
1126 * right now." 0 means "skip the current vma."
1127 * @mm: mm_struct representing the target process of page table walk
1128 * @vma: vma currently walked (NULL if walking outside vmas)
1129 * @private: private data for callbacks' usage
1130 *
1131 * (see the comment on walk_page_range() for more details)
1132 */
1133struct mm_walk {
1134 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1135 unsigned long next, struct mm_walk *walk);
1136 int (*pte_entry)(pte_t *pte, unsigned long addr,
1137 unsigned long next, struct mm_walk *walk);
1138 int (*pte_hole)(unsigned long addr, unsigned long next,
1139 struct mm_walk *walk);
1140 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1141 unsigned long addr, unsigned long next,
1142 struct mm_walk *walk);
1143 int (*test_walk)(unsigned long addr, unsigned long next,
1144 struct mm_walk *walk);
1145 struct mm_struct *mm;
1146 struct vm_area_struct *vma;
1147 void *private;
1148};
1149
1150int walk_page_range(unsigned long addr, unsigned long end,
1151 struct mm_walk *walk);
1152int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1153void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1154 unsigned long end, unsigned long floor, unsigned long ceiling);
1155int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1156 struct vm_area_struct *vma);
1157void unmap_mapping_range(struct address_space *mapping,
1158 loff_t const holebegin, loff_t const holelen, int even_cows);
1159int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1160 unsigned long *pfn);
1161int follow_phys(struct vm_area_struct *vma, unsigned long address,
1162 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1163int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1164 void *buf, int len, int write);
1165
1166static inline void unmap_shared_mapping_range(struct address_space *mapping,
1167 loff_t const holebegin, loff_t const holelen)
1168{
1169 unmap_mapping_range(mapping, holebegin, holelen, 0);
1170}
1171
1172extern void truncate_pagecache(struct inode *inode, loff_t new);
1173extern void truncate_setsize(struct inode *inode, loff_t newsize);
1174void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1175void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1176int truncate_inode_page(struct address_space *mapping, struct page *page);
1177int generic_error_remove_page(struct address_space *mapping, struct page *page);
1178int invalidate_inode_page(struct page *page);
1179
1180#ifdef CONFIG_MMU
1181extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1182 unsigned long address, unsigned int flags);
1183extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1184 unsigned long address, unsigned int fault_flags);
1185#else
1186static inline int handle_mm_fault(struct mm_struct *mm,
1187 struct vm_area_struct *vma, unsigned long address,
1188 unsigned int flags)
1189{
1190 /* should never happen if there's no MMU */
1191 BUG();
1192 return VM_FAULT_SIGBUS;
1193}
1194static inline int fixup_user_fault(struct task_struct *tsk,
1195 struct mm_struct *mm, unsigned long address,
1196 unsigned int fault_flags)
1197{
1198 /* should never happen if there's no MMU */
1199 BUG();
1200 return -EFAULT;
1201}
1202#endif
1203
1204extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1205extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1206 void *buf, int len, int write);
1207
1208long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1209 unsigned long start, unsigned long nr_pages,
1210 unsigned int foll_flags, struct page **pages,
1211 struct vm_area_struct **vmas, int *nonblocking);
1212long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1213 unsigned long start, unsigned long nr_pages,
1214 int write, int force, struct page **pages,
1215 struct vm_area_struct **vmas);
1216long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1217 unsigned long start, unsigned long nr_pages,
1218 int write, int force, struct page **pages,
1219 int *locked);
1220long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1221 unsigned long start, unsigned long nr_pages,
1222 int write, int force, struct page **pages,
1223 unsigned int gup_flags);
1224long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1225 unsigned long start, unsigned long nr_pages,
1226 int write, int force, struct page **pages);
1227int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1228 struct page **pages);
1229struct kvec;
1230int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1231 struct page **pages);
1232int get_kernel_page(unsigned long start, int write, struct page **pages);
1233struct page *get_dump_page(unsigned long addr);
1234
1235extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1236extern void do_invalidatepage(struct page *page, unsigned int offset,
1237 unsigned int length);
1238
1239int __set_page_dirty_nobuffers(struct page *page);
1240int __set_page_dirty_no_writeback(struct page *page);
1241int redirty_page_for_writepage(struct writeback_control *wbc,
1242 struct page *page);
1243void account_page_dirtied(struct page *page, struct address_space *mapping,
1244 struct mem_cgroup *memcg);
1245void account_page_cleaned(struct page *page, struct address_space *mapping,
1246 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1247int set_page_dirty(struct page *page);
1248int set_page_dirty_lock(struct page *page);
1249void cancel_dirty_page(struct page *page);
1250int clear_page_dirty_for_io(struct page *page);
1251
1252int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1253
1254/* Is the vma a continuation of the stack vma above it? */
1255static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1256{
1257 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1258}
1259
1260static inline int stack_guard_page_start(struct vm_area_struct *vma,
1261 unsigned long addr)
1262{
1263 return (vma->vm_flags & VM_GROWSDOWN) &&
1264 (vma->vm_start == addr) &&
1265 !vma_growsdown(vma->vm_prev, addr);
1266}
1267
1268/* Is the vma a continuation of the stack vma below it? */
1269static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1270{
1271 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1272}
1273
1274static inline int stack_guard_page_end(struct vm_area_struct *vma,
1275 unsigned long addr)
1276{
1277 return (vma->vm_flags & VM_GROWSUP) &&
1278 (vma->vm_end == addr) &&
1279 !vma_growsup(vma->vm_next, addr);
1280}
1281
1282extern struct task_struct *task_of_stack(struct task_struct *task,
1283 struct vm_area_struct *vma, bool in_group);
1284
1285extern unsigned long move_page_tables(struct vm_area_struct *vma,
1286 unsigned long old_addr, struct vm_area_struct *new_vma,
1287 unsigned long new_addr, unsigned long len,
1288 bool need_rmap_locks);
1289extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1290 unsigned long end, pgprot_t newprot,
1291 int dirty_accountable, int prot_numa);
1292extern int mprotect_fixup(struct vm_area_struct *vma,
1293 struct vm_area_struct **pprev, unsigned long start,
1294 unsigned long end, unsigned long newflags);
1295
1296/*
1297 * doesn't attempt to fault and will return short.
1298 */
1299int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1300 struct page **pages);
1301/*
1302 * per-process(per-mm_struct) statistics.
1303 */
1304static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1305{
1306 long val = atomic_long_read(&mm->rss_stat.count[member]);
1307
1308#ifdef SPLIT_RSS_COUNTING
1309 /*
1310 * counter is updated in asynchronous manner and may go to minus.
1311 * But it's never be expected number for users.
1312 */
1313 if (val < 0)
1314 val = 0;
1315#endif
1316 return (unsigned long)val;
1317}
1318
1319static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1320{
1321 atomic_long_add(value, &mm->rss_stat.count[member]);
1322}
1323
1324static inline void inc_mm_counter(struct mm_struct *mm, int member)
1325{
1326 atomic_long_inc(&mm->rss_stat.count[member]);
1327}
1328
1329static inline void dec_mm_counter(struct mm_struct *mm, int member)
1330{
1331 atomic_long_dec(&mm->rss_stat.count[member]);
1332}
1333
1334static inline unsigned long get_mm_rss(struct mm_struct *mm)
1335{
1336 return get_mm_counter(mm, MM_FILEPAGES) +
1337 get_mm_counter(mm, MM_ANONPAGES);
1338}
1339
1340static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1341{
1342 return max(mm->hiwater_rss, get_mm_rss(mm));
1343}
1344
1345static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1346{
1347 return max(mm->hiwater_vm, mm->total_vm);
1348}
1349
1350static inline void update_hiwater_rss(struct mm_struct *mm)
1351{
1352 unsigned long _rss = get_mm_rss(mm);
1353
1354 if ((mm)->hiwater_rss < _rss)
1355 (mm)->hiwater_rss = _rss;
1356}
1357
1358static inline void update_hiwater_vm(struct mm_struct *mm)
1359{
1360 if (mm->hiwater_vm < mm->total_vm)
1361 mm->hiwater_vm = mm->total_vm;
1362}
1363
1364static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1365{
1366 mm->hiwater_rss = get_mm_rss(mm);
1367}
1368
1369static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1370 struct mm_struct *mm)
1371{
1372 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1373
1374 if (*maxrss < hiwater_rss)
1375 *maxrss = hiwater_rss;
1376}
1377
1378#if defined(SPLIT_RSS_COUNTING)
1379void sync_mm_rss(struct mm_struct *mm);
1380#else
1381static inline void sync_mm_rss(struct mm_struct *mm)
1382{
1383}
1384#endif
1385
1386int vma_wants_writenotify(struct vm_area_struct *vma);
1387
1388extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1389 spinlock_t **ptl);
1390static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391 spinlock_t **ptl)
1392{
1393 pte_t *ptep;
1394 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1395 return ptep;
1396}
1397
1398#ifdef __PAGETABLE_PUD_FOLDED
1399static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1400 unsigned long address)
1401{
1402 return 0;
1403}
1404#else
1405int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1406#endif
1407
1408#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1409static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1410 unsigned long address)
1411{
1412 return 0;
1413}
1414
1415static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1416
1417static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1418{
1419 return 0;
1420}
1421
1422static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1423static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1424
1425#else
1426int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1427
1428static inline void mm_nr_pmds_init(struct mm_struct *mm)
1429{
1430 atomic_long_set(&mm->nr_pmds, 0);
1431}
1432
1433static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1434{
1435 return atomic_long_read(&mm->nr_pmds);
1436}
1437
1438static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1439{
1440 atomic_long_inc(&mm->nr_pmds);
1441}
1442
1443static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1444{
1445 atomic_long_dec(&mm->nr_pmds);
1446}
1447#endif
1448
1449int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1450 pmd_t *pmd, unsigned long address);
1451int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1452
1453/*
1454 * The following ifdef needed to get the 4level-fixup.h header to work.
1455 * Remove it when 4level-fixup.h has been removed.
1456 */
1457#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1458static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1459{
1460 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1461 NULL: pud_offset(pgd, address);
1462}
1463
1464static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1465{
1466 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1467 NULL: pmd_offset(pud, address);
1468}
1469#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1470
1471#if USE_SPLIT_PTE_PTLOCKS
1472#if ALLOC_SPLIT_PTLOCKS
1473void __init ptlock_cache_init(void);
1474extern bool ptlock_alloc(struct page *page);
1475extern void ptlock_free(struct page *page);
1476
1477static inline spinlock_t *ptlock_ptr(struct page *page)
1478{
1479 return page->ptl;
1480}
1481#else /* ALLOC_SPLIT_PTLOCKS */
1482static inline void ptlock_cache_init(void)
1483{
1484}
1485
1486static inline bool ptlock_alloc(struct page *page)
1487{
1488 return true;
1489}
1490
1491static inline void ptlock_free(struct page *page)
1492{
1493}
1494
1495static inline spinlock_t *ptlock_ptr(struct page *page)
1496{
1497 return &page->ptl;
1498}
1499#endif /* ALLOC_SPLIT_PTLOCKS */
1500
1501static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1502{
1503 return ptlock_ptr(pmd_page(*pmd));
1504}
1505
1506static inline bool ptlock_init(struct page *page)
1507{
1508 /*
1509 * prep_new_page() initialize page->private (and therefore page->ptl)
1510 * with 0. Make sure nobody took it in use in between.
1511 *
1512 * It can happen if arch try to use slab for page table allocation:
1513 * slab code uses page->slab_cache and page->first_page (for tail
1514 * pages), which share storage with page->ptl.
1515 */
1516 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1517 if (!ptlock_alloc(page))
1518 return false;
1519 spin_lock_init(ptlock_ptr(page));
1520 return true;
1521}
1522
1523/* Reset page->mapping so free_pages_check won't complain. */
1524static inline void pte_lock_deinit(struct page *page)
1525{
1526 page->mapping = NULL;
1527 ptlock_free(page);
1528}
1529
1530#else /* !USE_SPLIT_PTE_PTLOCKS */
1531/*
1532 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1533 */
1534static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1535{
1536 return &mm->page_table_lock;
1537}
1538static inline void ptlock_cache_init(void) {}
1539static inline bool ptlock_init(struct page *page) { return true; }
1540static inline void pte_lock_deinit(struct page *page) {}
1541#endif /* USE_SPLIT_PTE_PTLOCKS */
1542
1543static inline void pgtable_init(void)
1544{
1545 ptlock_cache_init();
1546 pgtable_cache_init();
1547}
1548
1549static inline bool pgtable_page_ctor(struct page *page)
1550{
1551 inc_zone_page_state(page, NR_PAGETABLE);
1552 return ptlock_init(page);
1553}
1554
1555static inline void pgtable_page_dtor(struct page *page)
1556{
1557 pte_lock_deinit(page);
1558 dec_zone_page_state(page, NR_PAGETABLE);
1559}
1560
1561#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1562({ \
1563 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1564 pte_t *__pte = pte_offset_map(pmd, address); \
1565 *(ptlp) = __ptl; \
1566 spin_lock(__ptl); \
1567 __pte; \
1568})
1569
1570#define pte_unmap_unlock(pte, ptl) do { \
1571 spin_unlock(ptl); \
1572 pte_unmap(pte); \
1573} while (0)
1574
1575#define pte_alloc_map(mm, vma, pmd, address) \
1576 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1577 pmd, address))? \
1578 NULL: pte_offset_map(pmd, address))
1579
1580#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1581 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1582 pmd, address))? \
1583 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1584
1585#define pte_alloc_kernel(pmd, address) \
1586 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1587 NULL: pte_offset_kernel(pmd, address))
1588
1589#if USE_SPLIT_PMD_PTLOCKS
1590
1591static struct page *pmd_to_page(pmd_t *pmd)
1592{
1593 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1594 return virt_to_page((void *)((unsigned long) pmd & mask));
1595}
1596
1597static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1598{
1599 return ptlock_ptr(pmd_to_page(pmd));
1600}
1601
1602static inline bool pgtable_pmd_page_ctor(struct page *page)
1603{
1604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1605 page->pmd_huge_pte = NULL;
1606#endif
1607 return ptlock_init(page);
1608}
1609
1610static inline void pgtable_pmd_page_dtor(struct page *page)
1611{
1612#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1613 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1614#endif
1615 ptlock_free(page);
1616}
1617
1618#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1619
1620#else
1621
1622static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1623{
1624 return &mm->page_table_lock;
1625}
1626
1627static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1628static inline void pgtable_pmd_page_dtor(struct page *page) {}
1629
1630#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1631
1632#endif
1633
1634static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1635{
1636 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1637 spin_lock(ptl);
1638 return ptl;
1639}
1640
1641extern void free_area_init(unsigned long * zones_size);
1642extern void free_area_init_node(int nid, unsigned long * zones_size,
1643 unsigned long zone_start_pfn, unsigned long *zholes_size);
1644extern void free_initmem(void);
1645
1646/*
1647 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1648 * into the buddy system. The freed pages will be poisoned with pattern
1649 * "poison" if it's within range [0, UCHAR_MAX].
1650 * Return pages freed into the buddy system.
1651 */
1652extern unsigned long free_reserved_area(void *start, void *end,
1653 int poison, char *s);
1654
1655#ifdef CONFIG_HIGHMEM
1656/*
1657 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1658 * and totalram_pages.
1659 */
1660extern void free_highmem_page(struct page *page);
1661#endif
1662
1663extern void adjust_managed_page_count(struct page *page, long count);
1664extern void mem_init_print_info(const char *str);
1665
1666extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1667
1668/* Free the reserved page into the buddy system, so it gets managed. */
1669static inline void __free_reserved_page(struct page *page)
1670{
1671 ClearPageReserved(page);
1672 init_page_count(page);
1673 __free_page(page);
1674}
1675
1676static inline void free_reserved_page(struct page *page)
1677{
1678 __free_reserved_page(page);
1679 adjust_managed_page_count(page, 1);
1680}
1681
1682static inline void mark_page_reserved(struct page *page)
1683{
1684 SetPageReserved(page);
1685 adjust_managed_page_count(page, -1);
1686}
1687
1688/*
1689 * Default method to free all the __init memory into the buddy system.
1690 * The freed pages will be poisoned with pattern "poison" if it's within
1691 * range [0, UCHAR_MAX].
1692 * Return pages freed into the buddy system.
1693 */
1694static inline unsigned long free_initmem_default(int poison)
1695{
1696 extern char __init_begin[], __init_end[];
1697
1698 return free_reserved_area(&__init_begin, &__init_end,
1699 poison, "unused kernel");
1700}
1701
1702static inline unsigned long get_num_physpages(void)
1703{
1704 int nid;
1705 unsigned long phys_pages = 0;
1706
1707 for_each_online_node(nid)
1708 phys_pages += node_present_pages(nid);
1709
1710 return phys_pages;
1711}
1712
1713#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1714/*
1715 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1716 * zones, allocate the backing mem_map and account for memory holes in a more
1717 * architecture independent manner. This is a substitute for creating the
1718 * zone_sizes[] and zholes_size[] arrays and passing them to
1719 * free_area_init_node()
1720 *
1721 * An architecture is expected to register range of page frames backed by
1722 * physical memory with memblock_add[_node]() before calling
1723 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1724 * usage, an architecture is expected to do something like
1725 *
1726 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1727 * max_highmem_pfn};
1728 * for_each_valid_physical_page_range()
1729 * memblock_add_node(base, size, nid)
1730 * free_area_init_nodes(max_zone_pfns);
1731 *
1732 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1733 * registered physical page range. Similarly
1734 * sparse_memory_present_with_active_regions() calls memory_present() for
1735 * each range when SPARSEMEM is enabled.
1736 *
1737 * See mm/page_alloc.c for more information on each function exposed by
1738 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1739 */
1740extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1741unsigned long node_map_pfn_alignment(void);
1742unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1743 unsigned long end_pfn);
1744extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1745 unsigned long end_pfn);
1746extern void get_pfn_range_for_nid(unsigned int nid,
1747 unsigned long *start_pfn, unsigned long *end_pfn);
1748extern unsigned long find_min_pfn_with_active_regions(void);
1749extern void free_bootmem_with_active_regions(int nid,
1750 unsigned long max_low_pfn);
1751extern void sparse_memory_present_with_active_regions(int nid);
1752
1753#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1754
1755#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1756 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1757static inline int __early_pfn_to_nid(unsigned long pfn,
1758 struct mminit_pfnnid_cache *state)
1759{
1760 return 0;
1761}
1762#else
1763/* please see mm/page_alloc.c */
1764extern int __meminit early_pfn_to_nid(unsigned long pfn);
1765/* there is a per-arch backend function. */
1766extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1767 struct mminit_pfnnid_cache *state);
1768#endif
1769
1770extern void set_dma_reserve(unsigned long new_dma_reserve);
1771extern void memmap_init_zone(unsigned long, int, unsigned long,
1772 unsigned long, enum memmap_context);
1773extern void setup_per_zone_wmarks(void);
1774extern int __meminit init_per_zone_wmark_min(void);
1775extern void mem_init(void);
1776extern void __init mmap_init(void);
1777extern void show_mem(unsigned int flags);
1778extern void si_meminfo(struct sysinfo * val);
1779extern void si_meminfo_node(struct sysinfo *val, int nid);
1780
1781extern __printf(3, 4)
1782void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1783
1784extern void setup_per_cpu_pageset(void);
1785
1786extern void zone_pcp_update(struct zone *zone);
1787extern void zone_pcp_reset(struct zone *zone);
1788
1789/* page_alloc.c */
1790extern int min_free_kbytes;
1791
1792/* nommu.c */
1793extern atomic_long_t mmap_pages_allocated;
1794extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1795
1796/* interval_tree.c */
1797void vma_interval_tree_insert(struct vm_area_struct *node,
1798 struct rb_root *root);
1799void vma_interval_tree_insert_after(struct vm_area_struct *node,
1800 struct vm_area_struct *prev,
1801 struct rb_root *root);
1802void vma_interval_tree_remove(struct vm_area_struct *node,
1803 struct rb_root *root);
1804struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1805 unsigned long start, unsigned long last);
1806struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1807 unsigned long start, unsigned long last);
1808
1809#define vma_interval_tree_foreach(vma, root, start, last) \
1810 for (vma = vma_interval_tree_iter_first(root, start, last); \
1811 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1812
1813void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1814 struct rb_root *root);
1815void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1816 struct rb_root *root);
1817struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1818 struct rb_root *root, unsigned long start, unsigned long last);
1819struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1820 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1821#ifdef CONFIG_DEBUG_VM_RB
1822void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1823#endif
1824
1825#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1826 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1827 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1828
1829/* mmap.c */
1830extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1831extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1832 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1833extern struct vm_area_struct *vma_merge(struct mm_struct *,
1834 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1835 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1836 struct mempolicy *);
1837extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1838extern int split_vma(struct mm_struct *,
1839 struct vm_area_struct *, unsigned long addr, int new_below);
1840extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1841extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1842 struct rb_node **, struct rb_node *);
1843extern void unlink_file_vma(struct vm_area_struct *);
1844extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1845 unsigned long addr, unsigned long len, pgoff_t pgoff,
1846 bool *need_rmap_locks);
1847extern void exit_mmap(struct mm_struct *);
1848
1849static inline int check_data_rlimit(unsigned long rlim,
1850 unsigned long new,
1851 unsigned long start,
1852 unsigned long end_data,
1853 unsigned long start_data)
1854{
1855 if (rlim < RLIM_INFINITY) {
1856 if (((new - start) + (end_data - start_data)) > rlim)
1857 return -ENOSPC;
1858 }
1859
1860 return 0;
1861}
1862
1863extern int mm_take_all_locks(struct mm_struct *mm);
1864extern void mm_drop_all_locks(struct mm_struct *mm);
1865
1866extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1867extern struct file *get_mm_exe_file(struct mm_struct *mm);
1868
1869extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1870extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1871 unsigned long addr, unsigned long len,
1872 unsigned long flags,
1873 const struct vm_special_mapping *spec);
1874/* This is an obsolete alternative to _install_special_mapping. */
1875extern int install_special_mapping(struct mm_struct *mm,
1876 unsigned long addr, unsigned long len,
1877 unsigned long flags, struct page **pages);
1878
1879extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1880
1881extern unsigned long mmap_region(struct file *file, unsigned long addr,
1882 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1883extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1884 unsigned long len, unsigned long prot, unsigned long flags,
1885 unsigned long pgoff, unsigned long *populate);
1886extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1887
1888#ifdef CONFIG_MMU
1889extern int __mm_populate(unsigned long addr, unsigned long len,
1890 int ignore_errors);
1891static inline void mm_populate(unsigned long addr, unsigned long len)
1892{
1893 /* Ignore errors */
1894 (void) __mm_populate(addr, len, 1);
1895}
1896#else
1897static inline void mm_populate(unsigned long addr, unsigned long len) {}
1898#endif
1899
1900/* These take the mm semaphore themselves */
1901extern unsigned long vm_brk(unsigned long, unsigned long);
1902extern int vm_munmap(unsigned long, size_t);
1903extern unsigned long vm_mmap(struct file *, unsigned long,
1904 unsigned long, unsigned long,
1905 unsigned long, unsigned long);
1906
1907struct vm_unmapped_area_info {
1908#define VM_UNMAPPED_AREA_TOPDOWN 1
1909 unsigned long flags;
1910 unsigned long length;
1911 unsigned long low_limit;
1912 unsigned long high_limit;
1913 unsigned long align_mask;
1914 unsigned long align_offset;
1915};
1916
1917extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1918extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1919
1920/*
1921 * Search for an unmapped address range.
1922 *
1923 * We are looking for a range that:
1924 * - does not intersect with any VMA;
1925 * - is contained within the [low_limit, high_limit) interval;
1926 * - is at least the desired size.
1927 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1928 */
1929static inline unsigned long
1930vm_unmapped_area(struct vm_unmapped_area_info *info)
1931{
1932 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1933 return unmapped_area_topdown(info);
1934 else
1935 return unmapped_area(info);
1936}
1937
1938/* truncate.c */
1939extern void truncate_inode_pages(struct address_space *, loff_t);
1940extern void truncate_inode_pages_range(struct address_space *,
1941 loff_t lstart, loff_t lend);
1942extern void truncate_inode_pages_final(struct address_space *);
1943
1944/* generic vm_area_ops exported for stackable file systems */
1945extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1946extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1947extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1948
1949/* mm/page-writeback.c */
1950int write_one_page(struct page *page, int wait);
1951void task_dirty_inc(struct task_struct *tsk);
1952
1953/* readahead.c */
1954#define VM_MAX_READAHEAD 128 /* kbytes */
1955#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1956
1957int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1958 pgoff_t offset, unsigned long nr_to_read);
1959
1960void page_cache_sync_readahead(struct address_space *mapping,
1961 struct file_ra_state *ra,
1962 struct file *filp,
1963 pgoff_t offset,
1964 unsigned long size);
1965
1966void page_cache_async_readahead(struct address_space *mapping,
1967 struct file_ra_state *ra,
1968 struct file *filp,
1969 struct page *pg,
1970 pgoff_t offset,
1971 unsigned long size);
1972
1973unsigned long max_sane_readahead(unsigned long nr);
1974
1975/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1976extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1977
1978/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1979extern int expand_downwards(struct vm_area_struct *vma,
1980 unsigned long address);
1981#if VM_GROWSUP
1982extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1983#else
1984 #define expand_upwards(vma, address) (0)
1985#endif
1986
1987/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1988extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1989extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1990 struct vm_area_struct **pprev);
1991
1992/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1993 NULL if none. Assume start_addr < end_addr. */
1994static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1995{
1996 struct vm_area_struct * vma = find_vma(mm,start_addr);
1997
1998 if (vma && end_addr <= vma->vm_start)
1999 vma = NULL;
2000 return vma;
2001}
2002
2003static inline unsigned long vma_pages(struct vm_area_struct *vma)
2004{
2005 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2006}
2007
2008/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2009static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2010 unsigned long vm_start, unsigned long vm_end)
2011{
2012 struct vm_area_struct *vma = find_vma(mm, vm_start);
2013
2014 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2015 vma = NULL;
2016
2017 return vma;
2018}
2019
2020#ifdef CONFIG_MMU
2021pgprot_t vm_get_page_prot(unsigned long vm_flags);
2022void vma_set_page_prot(struct vm_area_struct *vma);
2023#else
2024static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2025{
2026 return __pgprot(0);
2027}
2028static inline void vma_set_page_prot(struct vm_area_struct *vma)
2029{
2030 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2031}
2032#endif
2033
2034#ifdef CONFIG_NUMA_BALANCING
2035unsigned long change_prot_numa(struct vm_area_struct *vma,
2036 unsigned long start, unsigned long end);
2037#endif
2038
2039struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2040int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2041 unsigned long pfn, unsigned long size, pgprot_t);
2042int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2043int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2044 unsigned long pfn);
2045int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2046 unsigned long pfn);
2047int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2048
2049
2050struct page *follow_page_mask(struct vm_area_struct *vma,
2051 unsigned long address, unsigned int foll_flags,
2052 unsigned int *page_mask);
2053
2054static inline struct page *follow_page(struct vm_area_struct *vma,
2055 unsigned long address, unsigned int foll_flags)
2056{
2057 unsigned int unused_page_mask;
2058 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2059}
2060
2061#define FOLL_WRITE 0x01 /* check pte is writable */
2062#define FOLL_TOUCH 0x02 /* mark page accessed */
2063#define FOLL_GET 0x04 /* do get_page on page */
2064#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2065#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2066#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2067 * and return without waiting upon it */
2068#define FOLL_POPULATE 0x40 /* fault in page */
2069#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2070#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2071#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2072#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2073#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2074
2075typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2076 void *data);
2077extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2078 unsigned long size, pte_fn_t fn, void *data);
2079
2080#ifdef CONFIG_PROC_FS
2081void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2082#else
2083static inline void vm_stat_account(struct mm_struct *mm,
2084 unsigned long flags, struct file *file, long pages)
2085{
2086 mm->total_vm += pages;
2087}
2088#endif /* CONFIG_PROC_FS */
2089
2090#ifdef CONFIG_DEBUG_PAGEALLOC
2091extern bool _debug_pagealloc_enabled;
2092extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2093
2094static inline bool debug_pagealloc_enabled(void)
2095{
2096 return _debug_pagealloc_enabled;
2097}
2098
2099static inline void
2100kernel_map_pages(struct page *page, int numpages, int enable)
2101{
2102 if (!debug_pagealloc_enabled())
2103 return;
2104
2105 __kernel_map_pages(page, numpages, enable);
2106}
2107#ifdef CONFIG_HIBERNATION
2108extern bool kernel_page_present(struct page *page);
2109#endif /* CONFIG_HIBERNATION */
2110#else
2111static inline void
2112kernel_map_pages(struct page *page, int numpages, int enable) {}
2113#ifdef CONFIG_HIBERNATION
2114static inline bool kernel_page_present(struct page *page) { return true; }
2115#endif /* CONFIG_HIBERNATION */
2116#endif
2117
2118#ifdef __HAVE_ARCH_GATE_AREA
2119extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2120extern int in_gate_area_no_mm(unsigned long addr);
2121extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2122#else
2123static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2124{
2125 return NULL;
2126}
2127static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2128static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2129{
2130 return 0;
2131}
2132#endif /* __HAVE_ARCH_GATE_AREA */
2133
2134#ifdef CONFIG_SYSCTL
2135extern int sysctl_drop_caches;
2136int drop_caches_sysctl_handler(struct ctl_table *, int,
2137 void __user *, size_t *, loff_t *);
2138#endif
2139
2140void drop_slab(void);
2141void drop_slab_node(int nid);
2142
2143#ifndef CONFIG_MMU
2144#define randomize_va_space 0
2145#else
2146extern int randomize_va_space;
2147#endif
2148
2149const char * arch_vma_name(struct vm_area_struct *vma);
2150void print_vma_addr(char *prefix, unsigned long rip);
2151
2152void sparse_mem_maps_populate_node(struct page **map_map,
2153 unsigned long pnum_begin,
2154 unsigned long pnum_end,
2155 unsigned long map_count,
2156 int nodeid);
2157
2158struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2159pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2160pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2161pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2162pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2163void *vmemmap_alloc_block(unsigned long size, int node);
2164void *vmemmap_alloc_block_buf(unsigned long size, int node);
2165void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2166int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2167 int node);
2168int vmemmap_populate(unsigned long start, unsigned long end, int node);
2169void vmemmap_populate_print_last(void);
2170#ifdef CONFIG_MEMORY_HOTPLUG
2171void vmemmap_free(unsigned long start, unsigned long end);
2172#endif
2173void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2174 unsigned long size);
2175
2176enum mf_flags {
2177 MF_COUNT_INCREASED = 1 << 0,
2178 MF_ACTION_REQUIRED = 1 << 1,
2179 MF_MUST_KILL = 1 << 2,
2180 MF_SOFT_OFFLINE = 1 << 3,
2181};
2182extern int memory_failure(unsigned long pfn, int trapno, int flags);
2183extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2184extern int unpoison_memory(unsigned long pfn);
2185extern int get_hwpoison_page(struct page *page);
2186extern int sysctl_memory_failure_early_kill;
2187extern int sysctl_memory_failure_recovery;
2188extern void shake_page(struct page *p, int access);
2189extern atomic_long_t num_poisoned_pages;
2190extern int soft_offline_page(struct page *page, int flags);
2191
2192
2193/*
2194 * Error handlers for various types of pages.
2195 */
2196enum mf_result {
2197 MF_IGNORED, /* Error: cannot be handled */
2198 MF_FAILED, /* Error: handling failed */
2199 MF_DELAYED, /* Will be handled later */
2200 MF_RECOVERED, /* Successfully recovered */
2201};
2202
2203enum mf_action_page_type {
2204 MF_MSG_KERNEL,
2205 MF_MSG_KERNEL_HIGH_ORDER,
2206 MF_MSG_SLAB,
2207 MF_MSG_DIFFERENT_COMPOUND,
2208 MF_MSG_POISONED_HUGE,
2209 MF_MSG_HUGE,
2210 MF_MSG_FREE_HUGE,
2211 MF_MSG_UNMAP_FAILED,
2212 MF_MSG_DIRTY_SWAPCACHE,
2213 MF_MSG_CLEAN_SWAPCACHE,
2214 MF_MSG_DIRTY_MLOCKED_LRU,
2215 MF_MSG_CLEAN_MLOCKED_LRU,
2216 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2217 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2218 MF_MSG_DIRTY_LRU,
2219 MF_MSG_CLEAN_LRU,
2220 MF_MSG_TRUNCATED_LRU,
2221 MF_MSG_BUDDY,
2222 MF_MSG_BUDDY_2ND,
2223 MF_MSG_UNKNOWN,
2224};
2225
2226#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2227extern void clear_huge_page(struct page *page,
2228 unsigned long addr,
2229 unsigned int pages_per_huge_page);
2230extern void copy_user_huge_page(struct page *dst, struct page *src,
2231 unsigned long addr, struct vm_area_struct *vma,
2232 unsigned int pages_per_huge_page);
2233#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2234
2235extern struct page_ext_operations debug_guardpage_ops;
2236extern struct page_ext_operations page_poisoning_ops;
2237
2238#ifdef CONFIG_DEBUG_PAGEALLOC
2239extern unsigned int _debug_guardpage_minorder;
2240extern bool _debug_guardpage_enabled;
2241
2242static inline unsigned int debug_guardpage_minorder(void)
2243{
2244 return _debug_guardpage_minorder;
2245}
2246
2247static inline bool debug_guardpage_enabled(void)
2248{
2249 return _debug_guardpage_enabled;
2250}
2251
2252static inline bool page_is_guard(struct page *page)
2253{
2254 struct page_ext *page_ext;
2255
2256 if (!debug_guardpage_enabled())
2257 return false;
2258
2259 page_ext = lookup_page_ext(page);
2260 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2261}
2262#else
2263static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2264static inline bool debug_guardpage_enabled(void) { return false; }
2265static inline bool page_is_guard(struct page *page) { return false; }
2266#endif /* CONFIG_DEBUG_PAGEALLOC */
2267
2268#if MAX_NUMNODES > 1
2269void __init setup_nr_node_ids(void);
2270#else
2271static inline void setup_nr_node_ids(void) {}
2272#endif
2273
2274#endif /* __KERNEL__ */
2275#endif /* _LINUX_MM_H */