at v4.2 46 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52static void bdev_write_inode(struct inode *inode) 53{ 54 spin_lock(&inode->i_lock); 55 while (inode->i_state & I_DIRTY) { 56 spin_unlock(&inode->i_lock); 57 WARN_ON_ONCE(write_inode_now(inode, true)); 58 spin_lock(&inode->i_lock); 59 } 60 spin_unlock(&inode->i_lock); 61} 62 63/* Kill _all_ buffers and pagecache , dirty or not.. */ 64void kill_bdev(struct block_device *bdev) 65{ 66 struct address_space *mapping = bdev->bd_inode->i_mapping; 67 68 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 69 return; 70 71 invalidate_bh_lrus(); 72 truncate_inode_pages(mapping, 0); 73} 74EXPORT_SYMBOL(kill_bdev); 75 76/* Invalidate clean unused buffers and pagecache. */ 77void invalidate_bdev(struct block_device *bdev) 78{ 79 struct address_space *mapping = bdev->bd_inode->i_mapping; 80 81 if (mapping->nrpages == 0) 82 return; 83 84 invalidate_bh_lrus(); 85 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 86 invalidate_mapping_pages(mapping, 0, -1); 87 /* 99% of the time, we don't need to flush the cleancache on the bdev. 88 * But, for the strange corners, lets be cautious 89 */ 90 cleancache_invalidate_inode(mapping); 91} 92EXPORT_SYMBOL(invalidate_bdev); 93 94int set_blocksize(struct block_device *bdev, int size) 95{ 96 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 97 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 98 return -EINVAL; 99 100 /* Size cannot be smaller than the size supported by the device */ 101 if (size < bdev_logical_block_size(bdev)) 102 return -EINVAL; 103 104 /* Don't change the size if it is same as current */ 105 if (bdev->bd_block_size != size) { 106 sync_blockdev(bdev); 107 bdev->bd_block_size = size; 108 bdev->bd_inode->i_blkbits = blksize_bits(size); 109 kill_bdev(bdev); 110 } 111 return 0; 112} 113 114EXPORT_SYMBOL(set_blocksize); 115 116int sb_set_blocksize(struct super_block *sb, int size) 117{ 118 if (set_blocksize(sb->s_bdev, size)) 119 return 0; 120 /* If we get here, we know size is power of two 121 * and it's value is between 512 and PAGE_SIZE */ 122 sb->s_blocksize = size; 123 sb->s_blocksize_bits = blksize_bits(size); 124 return sb->s_blocksize; 125} 126 127EXPORT_SYMBOL(sb_set_blocksize); 128 129int sb_min_blocksize(struct super_block *sb, int size) 130{ 131 int minsize = bdev_logical_block_size(sb->s_bdev); 132 if (size < minsize) 133 size = minsize; 134 return sb_set_blocksize(sb, size); 135} 136 137EXPORT_SYMBOL(sb_min_blocksize); 138 139static int 140blkdev_get_block(struct inode *inode, sector_t iblock, 141 struct buffer_head *bh, int create) 142{ 143 bh->b_bdev = I_BDEV(inode); 144 bh->b_blocknr = iblock; 145 set_buffer_mapped(bh); 146 return 0; 147} 148 149static ssize_t 150blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset) 151{ 152 struct file *file = iocb->ki_filp; 153 struct inode *inode = file->f_mapping->host; 154 155 if (IS_DAX(inode)) 156 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block, 157 NULL, DIO_SKIP_DIO_COUNT); 158 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset, 159 blkdev_get_block, NULL, NULL, 160 DIO_SKIP_DIO_COUNT); 161} 162 163int __sync_blockdev(struct block_device *bdev, int wait) 164{ 165 if (!bdev) 166 return 0; 167 if (!wait) 168 return filemap_flush(bdev->bd_inode->i_mapping); 169 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 170} 171 172/* 173 * Write out and wait upon all the dirty data associated with a block 174 * device via its mapping. Does not take the superblock lock. 175 */ 176int sync_blockdev(struct block_device *bdev) 177{ 178 return __sync_blockdev(bdev, 1); 179} 180EXPORT_SYMBOL(sync_blockdev); 181 182/* 183 * Write out and wait upon all dirty data associated with this 184 * device. Filesystem data as well as the underlying block 185 * device. Takes the superblock lock. 186 */ 187int fsync_bdev(struct block_device *bdev) 188{ 189 struct super_block *sb = get_super(bdev); 190 if (sb) { 191 int res = sync_filesystem(sb); 192 drop_super(sb); 193 return res; 194 } 195 return sync_blockdev(bdev); 196} 197EXPORT_SYMBOL(fsync_bdev); 198 199/** 200 * freeze_bdev -- lock a filesystem and force it into a consistent state 201 * @bdev: blockdevice to lock 202 * 203 * If a superblock is found on this device, we take the s_umount semaphore 204 * on it to make sure nobody unmounts until the snapshot creation is done. 205 * The reference counter (bd_fsfreeze_count) guarantees that only the last 206 * unfreeze process can unfreeze the frozen filesystem actually when multiple 207 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 208 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 209 * actually. 210 */ 211struct super_block *freeze_bdev(struct block_device *bdev) 212{ 213 struct super_block *sb; 214 int error = 0; 215 216 mutex_lock(&bdev->bd_fsfreeze_mutex); 217 if (++bdev->bd_fsfreeze_count > 1) { 218 /* 219 * We don't even need to grab a reference - the first call 220 * to freeze_bdev grab an active reference and only the last 221 * thaw_bdev drops it. 222 */ 223 sb = get_super(bdev); 224 drop_super(sb); 225 mutex_unlock(&bdev->bd_fsfreeze_mutex); 226 return sb; 227 } 228 229 sb = get_active_super(bdev); 230 if (!sb) 231 goto out; 232 if (sb->s_op->freeze_super) 233 error = sb->s_op->freeze_super(sb); 234 else 235 error = freeze_super(sb); 236 if (error) { 237 deactivate_super(sb); 238 bdev->bd_fsfreeze_count--; 239 mutex_unlock(&bdev->bd_fsfreeze_mutex); 240 return ERR_PTR(error); 241 } 242 deactivate_super(sb); 243 out: 244 sync_blockdev(bdev); 245 mutex_unlock(&bdev->bd_fsfreeze_mutex); 246 return sb; /* thaw_bdev releases s->s_umount */ 247} 248EXPORT_SYMBOL(freeze_bdev); 249 250/** 251 * thaw_bdev -- unlock filesystem 252 * @bdev: blockdevice to unlock 253 * @sb: associated superblock 254 * 255 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 256 */ 257int thaw_bdev(struct block_device *bdev, struct super_block *sb) 258{ 259 int error = -EINVAL; 260 261 mutex_lock(&bdev->bd_fsfreeze_mutex); 262 if (!bdev->bd_fsfreeze_count) 263 goto out; 264 265 error = 0; 266 if (--bdev->bd_fsfreeze_count > 0) 267 goto out; 268 269 if (!sb) 270 goto out; 271 272 if (sb->s_op->thaw_super) 273 error = sb->s_op->thaw_super(sb); 274 else 275 error = thaw_super(sb); 276 if (error) { 277 bdev->bd_fsfreeze_count++; 278 mutex_unlock(&bdev->bd_fsfreeze_mutex); 279 return error; 280 } 281out: 282 mutex_unlock(&bdev->bd_fsfreeze_mutex); 283 return 0; 284} 285EXPORT_SYMBOL(thaw_bdev); 286 287static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 288{ 289 return block_write_full_page(page, blkdev_get_block, wbc); 290} 291 292static int blkdev_readpage(struct file * file, struct page * page) 293{ 294 return block_read_full_page(page, blkdev_get_block); 295} 296 297static int blkdev_readpages(struct file *file, struct address_space *mapping, 298 struct list_head *pages, unsigned nr_pages) 299{ 300 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 301} 302 303static int blkdev_write_begin(struct file *file, struct address_space *mapping, 304 loff_t pos, unsigned len, unsigned flags, 305 struct page **pagep, void **fsdata) 306{ 307 return block_write_begin(mapping, pos, len, flags, pagep, 308 blkdev_get_block); 309} 310 311static int blkdev_write_end(struct file *file, struct address_space *mapping, 312 loff_t pos, unsigned len, unsigned copied, 313 struct page *page, void *fsdata) 314{ 315 int ret; 316 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 317 318 unlock_page(page); 319 page_cache_release(page); 320 321 return ret; 322} 323 324/* 325 * private llseek: 326 * for a block special file file_inode(file)->i_size is zero 327 * so we compute the size by hand (just as in block_read/write above) 328 */ 329static loff_t block_llseek(struct file *file, loff_t offset, int whence) 330{ 331 struct inode *bd_inode = file->f_mapping->host; 332 loff_t retval; 333 334 mutex_lock(&bd_inode->i_mutex); 335 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 336 mutex_unlock(&bd_inode->i_mutex); 337 return retval; 338} 339 340int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 341{ 342 struct inode *bd_inode = filp->f_mapping->host; 343 struct block_device *bdev = I_BDEV(bd_inode); 344 int error; 345 346 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 347 if (error) 348 return error; 349 350 /* 351 * There is no need to serialise calls to blkdev_issue_flush with 352 * i_mutex and doing so causes performance issues with concurrent 353 * O_SYNC writers to a block device. 354 */ 355 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 356 if (error == -EOPNOTSUPP) 357 error = 0; 358 359 return error; 360} 361EXPORT_SYMBOL(blkdev_fsync); 362 363/** 364 * bdev_read_page() - Start reading a page from a block device 365 * @bdev: The device to read the page from 366 * @sector: The offset on the device to read the page to (need not be aligned) 367 * @page: The page to read 368 * 369 * On entry, the page should be locked. It will be unlocked when the page 370 * has been read. If the block driver implements rw_page synchronously, 371 * that will be true on exit from this function, but it need not be. 372 * 373 * Errors returned by this function are usually "soft", eg out of memory, or 374 * queue full; callers should try a different route to read this page rather 375 * than propagate an error back up the stack. 376 * 377 * Return: negative errno if an error occurs, 0 if submission was successful. 378 */ 379int bdev_read_page(struct block_device *bdev, sector_t sector, 380 struct page *page) 381{ 382 const struct block_device_operations *ops = bdev->bd_disk->fops; 383 if (!ops->rw_page || bdev_get_integrity(bdev)) 384 return -EOPNOTSUPP; 385 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 386} 387EXPORT_SYMBOL_GPL(bdev_read_page); 388 389/** 390 * bdev_write_page() - Start writing a page to a block device 391 * @bdev: The device to write the page to 392 * @sector: The offset on the device to write the page to (need not be aligned) 393 * @page: The page to write 394 * @wbc: The writeback_control for the write 395 * 396 * On entry, the page should be locked and not currently under writeback. 397 * On exit, if the write started successfully, the page will be unlocked and 398 * under writeback. If the write failed already (eg the driver failed to 399 * queue the page to the device), the page will still be locked. If the 400 * caller is a ->writepage implementation, it will need to unlock the page. 401 * 402 * Errors returned by this function are usually "soft", eg out of memory, or 403 * queue full; callers should try a different route to write this page rather 404 * than propagate an error back up the stack. 405 * 406 * Return: negative errno if an error occurs, 0 if submission was successful. 407 */ 408int bdev_write_page(struct block_device *bdev, sector_t sector, 409 struct page *page, struct writeback_control *wbc) 410{ 411 int result; 412 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 413 const struct block_device_operations *ops = bdev->bd_disk->fops; 414 if (!ops->rw_page || bdev_get_integrity(bdev)) 415 return -EOPNOTSUPP; 416 set_page_writeback(page); 417 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 418 if (result) 419 end_page_writeback(page); 420 else 421 unlock_page(page); 422 return result; 423} 424EXPORT_SYMBOL_GPL(bdev_write_page); 425 426/** 427 * bdev_direct_access() - Get the address for directly-accessibly memory 428 * @bdev: The device containing the memory 429 * @sector: The offset within the device 430 * @addr: Where to put the address of the memory 431 * @pfn: The Page Frame Number for the memory 432 * @size: The number of bytes requested 433 * 434 * If a block device is made up of directly addressable memory, this function 435 * will tell the caller the PFN and the address of the memory. The address 436 * may be directly dereferenced within the kernel without the need to call 437 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 438 * page tables. 439 * 440 * Return: negative errno if an error occurs, otherwise the number of bytes 441 * accessible at this address. 442 */ 443long bdev_direct_access(struct block_device *bdev, sector_t sector, 444 void **addr, unsigned long *pfn, long size) 445{ 446 long avail; 447 const struct block_device_operations *ops = bdev->bd_disk->fops; 448 449 /* 450 * The device driver is allowed to sleep, in order to make the 451 * memory directly accessible. 452 */ 453 might_sleep(); 454 455 if (size < 0) 456 return size; 457 if (!ops->direct_access) 458 return -EOPNOTSUPP; 459 if ((sector + DIV_ROUND_UP(size, 512)) > 460 part_nr_sects_read(bdev->bd_part)) 461 return -ERANGE; 462 sector += get_start_sect(bdev); 463 if (sector % (PAGE_SIZE / 512)) 464 return -EINVAL; 465 avail = ops->direct_access(bdev, sector, addr, pfn, size); 466 if (!avail) 467 return -ERANGE; 468 return min(avail, size); 469} 470EXPORT_SYMBOL_GPL(bdev_direct_access); 471 472/* 473 * pseudo-fs 474 */ 475 476static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 477static struct kmem_cache * bdev_cachep __read_mostly; 478 479static struct inode *bdev_alloc_inode(struct super_block *sb) 480{ 481 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 482 if (!ei) 483 return NULL; 484 return &ei->vfs_inode; 485} 486 487static void bdev_i_callback(struct rcu_head *head) 488{ 489 struct inode *inode = container_of(head, struct inode, i_rcu); 490 struct bdev_inode *bdi = BDEV_I(inode); 491 492 kmem_cache_free(bdev_cachep, bdi); 493} 494 495static void bdev_destroy_inode(struct inode *inode) 496{ 497 call_rcu(&inode->i_rcu, bdev_i_callback); 498} 499 500static void init_once(void *foo) 501{ 502 struct bdev_inode *ei = (struct bdev_inode *) foo; 503 struct block_device *bdev = &ei->bdev; 504 505 memset(bdev, 0, sizeof(*bdev)); 506 mutex_init(&bdev->bd_mutex); 507 INIT_LIST_HEAD(&bdev->bd_inodes); 508 INIT_LIST_HEAD(&bdev->bd_list); 509#ifdef CONFIG_SYSFS 510 INIT_LIST_HEAD(&bdev->bd_holder_disks); 511#endif 512 inode_init_once(&ei->vfs_inode); 513 /* Initialize mutex for freeze. */ 514 mutex_init(&bdev->bd_fsfreeze_mutex); 515} 516 517static inline void __bd_forget(struct inode *inode) 518{ 519 list_del_init(&inode->i_devices); 520 inode->i_bdev = NULL; 521 inode->i_mapping = &inode->i_data; 522} 523 524static void bdev_evict_inode(struct inode *inode) 525{ 526 struct block_device *bdev = &BDEV_I(inode)->bdev; 527 struct list_head *p; 528 truncate_inode_pages_final(&inode->i_data); 529 invalidate_inode_buffers(inode); /* is it needed here? */ 530 clear_inode(inode); 531 spin_lock(&bdev_lock); 532 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 533 __bd_forget(list_entry(p, struct inode, i_devices)); 534 } 535 list_del_init(&bdev->bd_list); 536 spin_unlock(&bdev_lock); 537} 538 539static const struct super_operations bdev_sops = { 540 .statfs = simple_statfs, 541 .alloc_inode = bdev_alloc_inode, 542 .destroy_inode = bdev_destroy_inode, 543 .drop_inode = generic_delete_inode, 544 .evict_inode = bdev_evict_inode, 545}; 546 547static struct dentry *bd_mount(struct file_system_type *fs_type, 548 int flags, const char *dev_name, void *data) 549{ 550 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 551} 552 553static struct file_system_type bd_type = { 554 .name = "bdev", 555 .mount = bd_mount, 556 .kill_sb = kill_anon_super, 557}; 558 559struct super_block *blockdev_superblock __read_mostly; 560EXPORT_SYMBOL_GPL(blockdev_superblock); 561 562void __init bdev_cache_init(void) 563{ 564 int err; 565 static struct vfsmount *bd_mnt; 566 567 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 568 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 569 SLAB_MEM_SPREAD|SLAB_PANIC), 570 init_once); 571 err = register_filesystem(&bd_type); 572 if (err) 573 panic("Cannot register bdev pseudo-fs"); 574 bd_mnt = kern_mount(&bd_type); 575 if (IS_ERR(bd_mnt)) 576 panic("Cannot create bdev pseudo-fs"); 577 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 578} 579 580/* 581 * Most likely _very_ bad one - but then it's hardly critical for small 582 * /dev and can be fixed when somebody will need really large one. 583 * Keep in mind that it will be fed through icache hash function too. 584 */ 585static inline unsigned long hash(dev_t dev) 586{ 587 return MAJOR(dev)+MINOR(dev); 588} 589 590static int bdev_test(struct inode *inode, void *data) 591{ 592 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 593} 594 595static int bdev_set(struct inode *inode, void *data) 596{ 597 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 598 return 0; 599} 600 601static LIST_HEAD(all_bdevs); 602 603struct block_device *bdget(dev_t dev) 604{ 605 struct block_device *bdev; 606 struct inode *inode; 607 608 inode = iget5_locked(blockdev_superblock, hash(dev), 609 bdev_test, bdev_set, &dev); 610 611 if (!inode) 612 return NULL; 613 614 bdev = &BDEV_I(inode)->bdev; 615 616 if (inode->i_state & I_NEW) { 617 bdev->bd_contains = NULL; 618 bdev->bd_super = NULL; 619 bdev->bd_inode = inode; 620 bdev->bd_block_size = (1 << inode->i_blkbits); 621 bdev->bd_part_count = 0; 622 bdev->bd_invalidated = 0; 623 inode->i_mode = S_IFBLK; 624 inode->i_rdev = dev; 625 inode->i_bdev = bdev; 626 inode->i_data.a_ops = &def_blk_aops; 627 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 628 spin_lock(&bdev_lock); 629 list_add(&bdev->bd_list, &all_bdevs); 630 spin_unlock(&bdev_lock); 631 unlock_new_inode(inode); 632 } 633 return bdev; 634} 635 636EXPORT_SYMBOL(bdget); 637 638/** 639 * bdgrab -- Grab a reference to an already referenced block device 640 * @bdev: Block device to grab a reference to. 641 */ 642struct block_device *bdgrab(struct block_device *bdev) 643{ 644 ihold(bdev->bd_inode); 645 return bdev; 646} 647EXPORT_SYMBOL(bdgrab); 648 649long nr_blockdev_pages(void) 650{ 651 struct block_device *bdev; 652 long ret = 0; 653 spin_lock(&bdev_lock); 654 list_for_each_entry(bdev, &all_bdevs, bd_list) { 655 ret += bdev->bd_inode->i_mapping->nrpages; 656 } 657 spin_unlock(&bdev_lock); 658 return ret; 659} 660 661void bdput(struct block_device *bdev) 662{ 663 iput(bdev->bd_inode); 664} 665 666EXPORT_SYMBOL(bdput); 667 668static struct block_device *bd_acquire(struct inode *inode) 669{ 670 struct block_device *bdev; 671 672 spin_lock(&bdev_lock); 673 bdev = inode->i_bdev; 674 if (bdev) { 675 ihold(bdev->bd_inode); 676 spin_unlock(&bdev_lock); 677 return bdev; 678 } 679 spin_unlock(&bdev_lock); 680 681 bdev = bdget(inode->i_rdev); 682 if (bdev) { 683 spin_lock(&bdev_lock); 684 if (!inode->i_bdev) { 685 /* 686 * We take an additional reference to bd_inode, 687 * and it's released in clear_inode() of inode. 688 * So, we can access it via ->i_mapping always 689 * without igrab(). 690 */ 691 ihold(bdev->bd_inode); 692 inode->i_bdev = bdev; 693 inode->i_mapping = bdev->bd_inode->i_mapping; 694 list_add(&inode->i_devices, &bdev->bd_inodes); 695 } 696 spin_unlock(&bdev_lock); 697 } 698 return bdev; 699} 700 701/* Call when you free inode */ 702 703void bd_forget(struct inode *inode) 704{ 705 struct block_device *bdev = NULL; 706 707 spin_lock(&bdev_lock); 708 if (!sb_is_blkdev_sb(inode->i_sb)) 709 bdev = inode->i_bdev; 710 __bd_forget(inode); 711 spin_unlock(&bdev_lock); 712 713 if (bdev) 714 iput(bdev->bd_inode); 715} 716 717/** 718 * bd_may_claim - test whether a block device can be claimed 719 * @bdev: block device of interest 720 * @whole: whole block device containing @bdev, may equal @bdev 721 * @holder: holder trying to claim @bdev 722 * 723 * Test whether @bdev can be claimed by @holder. 724 * 725 * CONTEXT: 726 * spin_lock(&bdev_lock). 727 * 728 * RETURNS: 729 * %true if @bdev can be claimed, %false otherwise. 730 */ 731static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 732 void *holder) 733{ 734 if (bdev->bd_holder == holder) 735 return true; /* already a holder */ 736 else if (bdev->bd_holder != NULL) 737 return false; /* held by someone else */ 738 else if (bdev->bd_contains == bdev) 739 return true; /* is a whole device which isn't held */ 740 741 else if (whole->bd_holder == bd_may_claim) 742 return true; /* is a partition of a device that is being partitioned */ 743 else if (whole->bd_holder != NULL) 744 return false; /* is a partition of a held device */ 745 else 746 return true; /* is a partition of an un-held device */ 747} 748 749/** 750 * bd_prepare_to_claim - prepare to claim a block device 751 * @bdev: block device of interest 752 * @whole: the whole device containing @bdev, may equal @bdev 753 * @holder: holder trying to claim @bdev 754 * 755 * Prepare to claim @bdev. This function fails if @bdev is already 756 * claimed by another holder and waits if another claiming is in 757 * progress. This function doesn't actually claim. On successful 758 * return, the caller has ownership of bd_claiming and bd_holder[s]. 759 * 760 * CONTEXT: 761 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 762 * it multiple times. 763 * 764 * RETURNS: 765 * 0 if @bdev can be claimed, -EBUSY otherwise. 766 */ 767static int bd_prepare_to_claim(struct block_device *bdev, 768 struct block_device *whole, void *holder) 769{ 770retry: 771 /* if someone else claimed, fail */ 772 if (!bd_may_claim(bdev, whole, holder)) 773 return -EBUSY; 774 775 /* if claiming is already in progress, wait for it to finish */ 776 if (whole->bd_claiming) { 777 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 778 DEFINE_WAIT(wait); 779 780 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 781 spin_unlock(&bdev_lock); 782 schedule(); 783 finish_wait(wq, &wait); 784 spin_lock(&bdev_lock); 785 goto retry; 786 } 787 788 /* yay, all mine */ 789 return 0; 790} 791 792/** 793 * bd_start_claiming - start claiming a block device 794 * @bdev: block device of interest 795 * @holder: holder trying to claim @bdev 796 * 797 * @bdev is about to be opened exclusively. Check @bdev can be opened 798 * exclusively and mark that an exclusive open is in progress. Each 799 * successful call to this function must be matched with a call to 800 * either bd_finish_claiming() or bd_abort_claiming() (which do not 801 * fail). 802 * 803 * This function is used to gain exclusive access to the block device 804 * without actually causing other exclusive open attempts to fail. It 805 * should be used when the open sequence itself requires exclusive 806 * access but may subsequently fail. 807 * 808 * CONTEXT: 809 * Might sleep. 810 * 811 * RETURNS: 812 * Pointer to the block device containing @bdev on success, ERR_PTR() 813 * value on failure. 814 */ 815static struct block_device *bd_start_claiming(struct block_device *bdev, 816 void *holder) 817{ 818 struct gendisk *disk; 819 struct block_device *whole; 820 int partno, err; 821 822 might_sleep(); 823 824 /* 825 * @bdev might not have been initialized properly yet, look up 826 * and grab the outer block device the hard way. 827 */ 828 disk = get_gendisk(bdev->bd_dev, &partno); 829 if (!disk) 830 return ERR_PTR(-ENXIO); 831 832 /* 833 * Normally, @bdev should equal what's returned from bdget_disk() 834 * if partno is 0; however, some drivers (floppy) use multiple 835 * bdev's for the same physical device and @bdev may be one of the 836 * aliases. Keep @bdev if partno is 0. This means claimer 837 * tracking is broken for those devices but it has always been that 838 * way. 839 */ 840 if (partno) 841 whole = bdget_disk(disk, 0); 842 else 843 whole = bdgrab(bdev); 844 845 module_put(disk->fops->owner); 846 put_disk(disk); 847 if (!whole) 848 return ERR_PTR(-ENOMEM); 849 850 /* prepare to claim, if successful, mark claiming in progress */ 851 spin_lock(&bdev_lock); 852 853 err = bd_prepare_to_claim(bdev, whole, holder); 854 if (err == 0) { 855 whole->bd_claiming = holder; 856 spin_unlock(&bdev_lock); 857 return whole; 858 } else { 859 spin_unlock(&bdev_lock); 860 bdput(whole); 861 return ERR_PTR(err); 862 } 863} 864 865#ifdef CONFIG_SYSFS 866struct bd_holder_disk { 867 struct list_head list; 868 struct gendisk *disk; 869 int refcnt; 870}; 871 872static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 873 struct gendisk *disk) 874{ 875 struct bd_holder_disk *holder; 876 877 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 878 if (holder->disk == disk) 879 return holder; 880 return NULL; 881} 882 883static int add_symlink(struct kobject *from, struct kobject *to) 884{ 885 return sysfs_create_link(from, to, kobject_name(to)); 886} 887 888static void del_symlink(struct kobject *from, struct kobject *to) 889{ 890 sysfs_remove_link(from, kobject_name(to)); 891} 892 893/** 894 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 895 * @bdev: the claimed slave bdev 896 * @disk: the holding disk 897 * 898 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 899 * 900 * This functions creates the following sysfs symlinks. 901 * 902 * - from "slaves" directory of the holder @disk to the claimed @bdev 903 * - from "holders" directory of the @bdev to the holder @disk 904 * 905 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 906 * passed to bd_link_disk_holder(), then: 907 * 908 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 909 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 910 * 911 * The caller must have claimed @bdev before calling this function and 912 * ensure that both @bdev and @disk are valid during the creation and 913 * lifetime of these symlinks. 914 * 915 * CONTEXT: 916 * Might sleep. 917 * 918 * RETURNS: 919 * 0 on success, -errno on failure. 920 */ 921int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 922{ 923 struct bd_holder_disk *holder; 924 int ret = 0; 925 926 mutex_lock(&bdev->bd_mutex); 927 928 WARN_ON_ONCE(!bdev->bd_holder); 929 930 /* FIXME: remove the following once add_disk() handles errors */ 931 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 932 goto out_unlock; 933 934 holder = bd_find_holder_disk(bdev, disk); 935 if (holder) { 936 holder->refcnt++; 937 goto out_unlock; 938 } 939 940 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 941 if (!holder) { 942 ret = -ENOMEM; 943 goto out_unlock; 944 } 945 946 INIT_LIST_HEAD(&holder->list); 947 holder->disk = disk; 948 holder->refcnt = 1; 949 950 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 951 if (ret) 952 goto out_free; 953 954 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 955 if (ret) 956 goto out_del; 957 /* 958 * bdev could be deleted beneath us which would implicitly destroy 959 * the holder directory. Hold on to it. 960 */ 961 kobject_get(bdev->bd_part->holder_dir); 962 963 list_add(&holder->list, &bdev->bd_holder_disks); 964 goto out_unlock; 965 966out_del: 967 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 968out_free: 969 kfree(holder); 970out_unlock: 971 mutex_unlock(&bdev->bd_mutex); 972 return ret; 973} 974EXPORT_SYMBOL_GPL(bd_link_disk_holder); 975 976/** 977 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 978 * @bdev: the calimed slave bdev 979 * @disk: the holding disk 980 * 981 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 982 * 983 * CONTEXT: 984 * Might sleep. 985 */ 986void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 987{ 988 struct bd_holder_disk *holder; 989 990 mutex_lock(&bdev->bd_mutex); 991 992 holder = bd_find_holder_disk(bdev, disk); 993 994 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 995 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 996 del_symlink(bdev->bd_part->holder_dir, 997 &disk_to_dev(disk)->kobj); 998 kobject_put(bdev->bd_part->holder_dir); 999 list_del_init(&holder->list); 1000 kfree(holder); 1001 } 1002 1003 mutex_unlock(&bdev->bd_mutex); 1004} 1005EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1006#endif 1007 1008/** 1009 * flush_disk - invalidates all buffer-cache entries on a disk 1010 * 1011 * @bdev: struct block device to be flushed 1012 * @kill_dirty: flag to guide handling of dirty inodes 1013 * 1014 * Invalidates all buffer-cache entries on a disk. It should be called 1015 * when a disk has been changed -- either by a media change or online 1016 * resize. 1017 */ 1018static void flush_disk(struct block_device *bdev, bool kill_dirty) 1019{ 1020 if (__invalidate_device(bdev, kill_dirty)) { 1021 char name[BDEVNAME_SIZE] = ""; 1022 1023 if (bdev->bd_disk) 1024 disk_name(bdev->bd_disk, 0, name); 1025 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1026 "resized disk %s\n", name); 1027 } 1028 1029 if (!bdev->bd_disk) 1030 return; 1031 if (disk_part_scan_enabled(bdev->bd_disk)) 1032 bdev->bd_invalidated = 1; 1033} 1034 1035/** 1036 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1037 * @disk: struct gendisk to check 1038 * @bdev: struct bdev to adjust. 1039 * 1040 * This routine checks to see if the bdev size does not match the disk size 1041 * and adjusts it if it differs. 1042 */ 1043void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1044{ 1045 loff_t disk_size, bdev_size; 1046 1047 disk_size = (loff_t)get_capacity(disk) << 9; 1048 bdev_size = i_size_read(bdev->bd_inode); 1049 if (disk_size != bdev_size) { 1050 char name[BDEVNAME_SIZE]; 1051 1052 disk_name(disk, 0, name); 1053 printk(KERN_INFO 1054 "%s: detected capacity change from %lld to %lld\n", 1055 name, bdev_size, disk_size); 1056 i_size_write(bdev->bd_inode, disk_size); 1057 flush_disk(bdev, false); 1058 } 1059} 1060EXPORT_SYMBOL(check_disk_size_change); 1061 1062/** 1063 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1064 * @disk: struct gendisk to be revalidated 1065 * 1066 * This routine is a wrapper for lower-level driver's revalidate_disk 1067 * call-backs. It is used to do common pre and post operations needed 1068 * for all revalidate_disk operations. 1069 */ 1070int revalidate_disk(struct gendisk *disk) 1071{ 1072 struct block_device *bdev; 1073 int ret = 0; 1074 1075 if (disk->fops->revalidate_disk) 1076 ret = disk->fops->revalidate_disk(disk); 1077 1078 bdev = bdget_disk(disk, 0); 1079 if (!bdev) 1080 return ret; 1081 1082 mutex_lock(&bdev->bd_mutex); 1083 check_disk_size_change(disk, bdev); 1084 bdev->bd_invalidated = 0; 1085 mutex_unlock(&bdev->bd_mutex); 1086 bdput(bdev); 1087 return ret; 1088} 1089EXPORT_SYMBOL(revalidate_disk); 1090 1091/* 1092 * This routine checks whether a removable media has been changed, 1093 * and invalidates all buffer-cache-entries in that case. This 1094 * is a relatively slow routine, so we have to try to minimize using 1095 * it. Thus it is called only upon a 'mount' or 'open'. This 1096 * is the best way of combining speed and utility, I think. 1097 * People changing diskettes in the middle of an operation deserve 1098 * to lose :-) 1099 */ 1100int check_disk_change(struct block_device *bdev) 1101{ 1102 struct gendisk *disk = bdev->bd_disk; 1103 const struct block_device_operations *bdops = disk->fops; 1104 unsigned int events; 1105 1106 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1107 DISK_EVENT_EJECT_REQUEST); 1108 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1109 return 0; 1110 1111 flush_disk(bdev, true); 1112 if (bdops->revalidate_disk) 1113 bdops->revalidate_disk(bdev->bd_disk); 1114 return 1; 1115} 1116 1117EXPORT_SYMBOL(check_disk_change); 1118 1119void bd_set_size(struct block_device *bdev, loff_t size) 1120{ 1121 unsigned bsize = bdev_logical_block_size(bdev); 1122 1123 mutex_lock(&bdev->bd_inode->i_mutex); 1124 i_size_write(bdev->bd_inode, size); 1125 mutex_unlock(&bdev->bd_inode->i_mutex); 1126 while (bsize < PAGE_CACHE_SIZE) { 1127 if (size & bsize) 1128 break; 1129 bsize <<= 1; 1130 } 1131 bdev->bd_block_size = bsize; 1132 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1133} 1134EXPORT_SYMBOL(bd_set_size); 1135 1136static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1137 1138/* 1139 * bd_mutex locking: 1140 * 1141 * mutex_lock(part->bd_mutex) 1142 * mutex_lock_nested(whole->bd_mutex, 1) 1143 */ 1144 1145static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1146{ 1147 struct gendisk *disk; 1148 struct module *owner; 1149 int ret; 1150 int partno; 1151 int perm = 0; 1152 1153 if (mode & FMODE_READ) 1154 perm |= MAY_READ; 1155 if (mode & FMODE_WRITE) 1156 perm |= MAY_WRITE; 1157 /* 1158 * hooks: /n/, see "layering violations". 1159 */ 1160 if (!for_part) { 1161 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1162 if (ret != 0) { 1163 bdput(bdev); 1164 return ret; 1165 } 1166 } 1167 1168 restart: 1169 1170 ret = -ENXIO; 1171 disk = get_gendisk(bdev->bd_dev, &partno); 1172 if (!disk) 1173 goto out; 1174 owner = disk->fops->owner; 1175 1176 disk_block_events(disk); 1177 mutex_lock_nested(&bdev->bd_mutex, for_part); 1178 if (!bdev->bd_openers) { 1179 bdev->bd_disk = disk; 1180 bdev->bd_queue = disk->queue; 1181 bdev->bd_contains = bdev; 1182 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0; 1183 if (!partno) { 1184 ret = -ENXIO; 1185 bdev->bd_part = disk_get_part(disk, partno); 1186 if (!bdev->bd_part) 1187 goto out_clear; 1188 1189 ret = 0; 1190 if (disk->fops->open) { 1191 ret = disk->fops->open(bdev, mode); 1192 if (ret == -ERESTARTSYS) { 1193 /* Lost a race with 'disk' being 1194 * deleted, try again. 1195 * See md.c 1196 */ 1197 disk_put_part(bdev->bd_part); 1198 bdev->bd_part = NULL; 1199 bdev->bd_disk = NULL; 1200 bdev->bd_queue = NULL; 1201 mutex_unlock(&bdev->bd_mutex); 1202 disk_unblock_events(disk); 1203 put_disk(disk); 1204 module_put(owner); 1205 goto restart; 1206 } 1207 } 1208 1209 if (!ret) 1210 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1211 1212 /* 1213 * If the device is invalidated, rescan partition 1214 * if open succeeded or failed with -ENOMEDIUM. 1215 * The latter is necessary to prevent ghost 1216 * partitions on a removed medium. 1217 */ 1218 if (bdev->bd_invalidated) { 1219 if (!ret) 1220 rescan_partitions(disk, bdev); 1221 else if (ret == -ENOMEDIUM) 1222 invalidate_partitions(disk, bdev); 1223 } 1224 if (ret) 1225 goto out_clear; 1226 } else { 1227 struct block_device *whole; 1228 whole = bdget_disk(disk, 0); 1229 ret = -ENOMEM; 1230 if (!whole) 1231 goto out_clear; 1232 BUG_ON(for_part); 1233 ret = __blkdev_get(whole, mode, 1); 1234 if (ret) 1235 goto out_clear; 1236 bdev->bd_contains = whole; 1237 bdev->bd_part = disk_get_part(disk, partno); 1238 if (!(disk->flags & GENHD_FL_UP) || 1239 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1240 ret = -ENXIO; 1241 goto out_clear; 1242 } 1243 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1244 } 1245 } else { 1246 if (bdev->bd_contains == bdev) { 1247 ret = 0; 1248 if (bdev->bd_disk->fops->open) 1249 ret = bdev->bd_disk->fops->open(bdev, mode); 1250 /* the same as first opener case, read comment there */ 1251 if (bdev->bd_invalidated) { 1252 if (!ret) 1253 rescan_partitions(bdev->bd_disk, bdev); 1254 else if (ret == -ENOMEDIUM) 1255 invalidate_partitions(bdev->bd_disk, bdev); 1256 } 1257 if (ret) 1258 goto out_unlock_bdev; 1259 } 1260 /* only one opener holds refs to the module and disk */ 1261 put_disk(disk); 1262 module_put(owner); 1263 } 1264 bdev->bd_openers++; 1265 if (for_part) 1266 bdev->bd_part_count++; 1267 mutex_unlock(&bdev->bd_mutex); 1268 disk_unblock_events(disk); 1269 return 0; 1270 1271 out_clear: 1272 disk_put_part(bdev->bd_part); 1273 bdev->bd_disk = NULL; 1274 bdev->bd_part = NULL; 1275 bdev->bd_queue = NULL; 1276 if (bdev != bdev->bd_contains) 1277 __blkdev_put(bdev->bd_contains, mode, 1); 1278 bdev->bd_contains = NULL; 1279 out_unlock_bdev: 1280 mutex_unlock(&bdev->bd_mutex); 1281 disk_unblock_events(disk); 1282 put_disk(disk); 1283 module_put(owner); 1284 out: 1285 bdput(bdev); 1286 1287 return ret; 1288} 1289 1290/** 1291 * blkdev_get - open a block device 1292 * @bdev: block_device to open 1293 * @mode: FMODE_* mask 1294 * @holder: exclusive holder identifier 1295 * 1296 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1297 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1298 * @holder is invalid. Exclusive opens may nest for the same @holder. 1299 * 1300 * On success, the reference count of @bdev is unchanged. On failure, 1301 * @bdev is put. 1302 * 1303 * CONTEXT: 1304 * Might sleep. 1305 * 1306 * RETURNS: 1307 * 0 on success, -errno on failure. 1308 */ 1309int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1310{ 1311 struct block_device *whole = NULL; 1312 int res; 1313 1314 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1315 1316 if ((mode & FMODE_EXCL) && holder) { 1317 whole = bd_start_claiming(bdev, holder); 1318 if (IS_ERR(whole)) { 1319 bdput(bdev); 1320 return PTR_ERR(whole); 1321 } 1322 } 1323 1324 res = __blkdev_get(bdev, mode, 0); 1325 1326 if (whole) { 1327 struct gendisk *disk = whole->bd_disk; 1328 1329 /* finish claiming */ 1330 mutex_lock(&bdev->bd_mutex); 1331 spin_lock(&bdev_lock); 1332 1333 if (!res) { 1334 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1335 /* 1336 * Note that for a whole device bd_holders 1337 * will be incremented twice, and bd_holder 1338 * will be set to bd_may_claim before being 1339 * set to holder 1340 */ 1341 whole->bd_holders++; 1342 whole->bd_holder = bd_may_claim; 1343 bdev->bd_holders++; 1344 bdev->bd_holder = holder; 1345 } 1346 1347 /* tell others that we're done */ 1348 BUG_ON(whole->bd_claiming != holder); 1349 whole->bd_claiming = NULL; 1350 wake_up_bit(&whole->bd_claiming, 0); 1351 1352 spin_unlock(&bdev_lock); 1353 1354 /* 1355 * Block event polling for write claims if requested. Any 1356 * write holder makes the write_holder state stick until 1357 * all are released. This is good enough and tracking 1358 * individual writeable reference is too fragile given the 1359 * way @mode is used in blkdev_get/put(). 1360 */ 1361 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1362 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1363 bdev->bd_write_holder = true; 1364 disk_block_events(disk); 1365 } 1366 1367 mutex_unlock(&bdev->bd_mutex); 1368 bdput(whole); 1369 } 1370 1371 return res; 1372} 1373EXPORT_SYMBOL(blkdev_get); 1374 1375/** 1376 * blkdev_get_by_path - open a block device by name 1377 * @path: path to the block device to open 1378 * @mode: FMODE_* mask 1379 * @holder: exclusive holder identifier 1380 * 1381 * Open the blockdevice described by the device file at @path. @mode 1382 * and @holder are identical to blkdev_get(). 1383 * 1384 * On success, the returned block_device has reference count of one. 1385 * 1386 * CONTEXT: 1387 * Might sleep. 1388 * 1389 * RETURNS: 1390 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1391 */ 1392struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1393 void *holder) 1394{ 1395 struct block_device *bdev; 1396 int err; 1397 1398 bdev = lookup_bdev(path); 1399 if (IS_ERR(bdev)) 1400 return bdev; 1401 1402 err = blkdev_get(bdev, mode, holder); 1403 if (err) 1404 return ERR_PTR(err); 1405 1406 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1407 blkdev_put(bdev, mode); 1408 return ERR_PTR(-EACCES); 1409 } 1410 1411 return bdev; 1412} 1413EXPORT_SYMBOL(blkdev_get_by_path); 1414 1415/** 1416 * blkdev_get_by_dev - open a block device by device number 1417 * @dev: device number of block device to open 1418 * @mode: FMODE_* mask 1419 * @holder: exclusive holder identifier 1420 * 1421 * Open the blockdevice described by device number @dev. @mode and 1422 * @holder are identical to blkdev_get(). 1423 * 1424 * Use it ONLY if you really do not have anything better - i.e. when 1425 * you are behind a truly sucky interface and all you are given is a 1426 * device number. _Never_ to be used for internal purposes. If you 1427 * ever need it - reconsider your API. 1428 * 1429 * On success, the returned block_device has reference count of one. 1430 * 1431 * CONTEXT: 1432 * Might sleep. 1433 * 1434 * RETURNS: 1435 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1436 */ 1437struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1438{ 1439 struct block_device *bdev; 1440 int err; 1441 1442 bdev = bdget(dev); 1443 if (!bdev) 1444 return ERR_PTR(-ENOMEM); 1445 1446 err = blkdev_get(bdev, mode, holder); 1447 if (err) 1448 return ERR_PTR(err); 1449 1450 return bdev; 1451} 1452EXPORT_SYMBOL(blkdev_get_by_dev); 1453 1454static int blkdev_open(struct inode * inode, struct file * filp) 1455{ 1456 struct block_device *bdev; 1457 1458 /* 1459 * Preserve backwards compatibility and allow large file access 1460 * even if userspace doesn't ask for it explicitly. Some mkfs 1461 * binary needs it. We might want to drop this workaround 1462 * during an unstable branch. 1463 */ 1464 filp->f_flags |= O_LARGEFILE; 1465 1466 if (filp->f_flags & O_NDELAY) 1467 filp->f_mode |= FMODE_NDELAY; 1468 if (filp->f_flags & O_EXCL) 1469 filp->f_mode |= FMODE_EXCL; 1470 if ((filp->f_flags & O_ACCMODE) == 3) 1471 filp->f_mode |= FMODE_WRITE_IOCTL; 1472 1473 bdev = bd_acquire(inode); 1474 if (bdev == NULL) 1475 return -ENOMEM; 1476 1477 filp->f_mapping = bdev->bd_inode->i_mapping; 1478 1479 return blkdev_get(bdev, filp->f_mode, filp); 1480} 1481 1482static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1483{ 1484 struct gendisk *disk = bdev->bd_disk; 1485 struct block_device *victim = NULL; 1486 1487 mutex_lock_nested(&bdev->bd_mutex, for_part); 1488 if (for_part) 1489 bdev->bd_part_count--; 1490 1491 if (!--bdev->bd_openers) { 1492 WARN_ON_ONCE(bdev->bd_holders); 1493 sync_blockdev(bdev); 1494 kill_bdev(bdev); 1495 /* 1496 * ->release can cause the queue to disappear, so flush all 1497 * dirty data before. 1498 */ 1499 bdev_write_inode(bdev->bd_inode); 1500 } 1501 if (bdev->bd_contains == bdev) { 1502 if (disk->fops->release) 1503 disk->fops->release(disk, mode); 1504 } 1505 if (!bdev->bd_openers) { 1506 struct module *owner = disk->fops->owner; 1507 1508 disk_put_part(bdev->bd_part); 1509 bdev->bd_part = NULL; 1510 bdev->bd_disk = NULL; 1511 if (bdev != bdev->bd_contains) 1512 victim = bdev->bd_contains; 1513 bdev->bd_contains = NULL; 1514 1515 put_disk(disk); 1516 module_put(owner); 1517 } 1518 mutex_unlock(&bdev->bd_mutex); 1519 bdput(bdev); 1520 if (victim) 1521 __blkdev_put(victim, mode, 1); 1522} 1523 1524void blkdev_put(struct block_device *bdev, fmode_t mode) 1525{ 1526 mutex_lock(&bdev->bd_mutex); 1527 1528 if (mode & FMODE_EXCL) { 1529 bool bdev_free; 1530 1531 /* 1532 * Release a claim on the device. The holder fields 1533 * are protected with bdev_lock. bd_mutex is to 1534 * synchronize disk_holder unlinking. 1535 */ 1536 spin_lock(&bdev_lock); 1537 1538 WARN_ON_ONCE(--bdev->bd_holders < 0); 1539 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1540 1541 /* bd_contains might point to self, check in a separate step */ 1542 if ((bdev_free = !bdev->bd_holders)) 1543 bdev->bd_holder = NULL; 1544 if (!bdev->bd_contains->bd_holders) 1545 bdev->bd_contains->bd_holder = NULL; 1546 1547 spin_unlock(&bdev_lock); 1548 1549 /* 1550 * If this was the last claim, remove holder link and 1551 * unblock evpoll if it was a write holder. 1552 */ 1553 if (bdev_free && bdev->bd_write_holder) { 1554 disk_unblock_events(bdev->bd_disk); 1555 bdev->bd_write_holder = false; 1556 } 1557 } 1558 1559 /* 1560 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1561 * event. This is to ensure detection of media removal commanded 1562 * from userland - e.g. eject(1). 1563 */ 1564 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1565 1566 mutex_unlock(&bdev->bd_mutex); 1567 1568 __blkdev_put(bdev, mode, 0); 1569} 1570EXPORT_SYMBOL(blkdev_put); 1571 1572static int blkdev_close(struct inode * inode, struct file * filp) 1573{ 1574 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1575 blkdev_put(bdev, filp->f_mode); 1576 return 0; 1577} 1578 1579static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1580{ 1581 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1582 fmode_t mode = file->f_mode; 1583 1584 /* 1585 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1586 * to updated it before every ioctl. 1587 */ 1588 if (file->f_flags & O_NDELAY) 1589 mode |= FMODE_NDELAY; 1590 else 1591 mode &= ~FMODE_NDELAY; 1592 1593 return blkdev_ioctl(bdev, mode, cmd, arg); 1594} 1595 1596/* 1597 * Write data to the block device. Only intended for the block device itself 1598 * and the raw driver which basically is a fake block device. 1599 * 1600 * Does not take i_mutex for the write and thus is not for general purpose 1601 * use. 1602 */ 1603ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1604{ 1605 struct file *file = iocb->ki_filp; 1606 struct inode *bd_inode = file->f_mapping->host; 1607 loff_t size = i_size_read(bd_inode); 1608 struct blk_plug plug; 1609 ssize_t ret; 1610 1611 if (bdev_read_only(I_BDEV(bd_inode))) 1612 return -EPERM; 1613 1614 if (!iov_iter_count(from)) 1615 return 0; 1616 1617 if (iocb->ki_pos >= size) 1618 return -ENOSPC; 1619 1620 iov_iter_truncate(from, size - iocb->ki_pos); 1621 1622 blk_start_plug(&plug); 1623 ret = __generic_file_write_iter(iocb, from); 1624 if (ret > 0) { 1625 ssize_t err; 1626 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1627 if (err < 0) 1628 ret = err; 1629 } 1630 blk_finish_plug(&plug); 1631 return ret; 1632} 1633EXPORT_SYMBOL_GPL(blkdev_write_iter); 1634 1635ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1636{ 1637 struct file *file = iocb->ki_filp; 1638 struct inode *bd_inode = file->f_mapping->host; 1639 loff_t size = i_size_read(bd_inode); 1640 loff_t pos = iocb->ki_pos; 1641 1642 if (pos >= size) 1643 return 0; 1644 1645 size -= pos; 1646 iov_iter_truncate(to, size); 1647 return generic_file_read_iter(iocb, to); 1648} 1649EXPORT_SYMBOL_GPL(blkdev_read_iter); 1650 1651/* 1652 * Try to release a page associated with block device when the system 1653 * is under memory pressure. 1654 */ 1655static int blkdev_releasepage(struct page *page, gfp_t wait) 1656{ 1657 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1658 1659 if (super && super->s_op->bdev_try_to_free_page) 1660 return super->s_op->bdev_try_to_free_page(super, page, wait); 1661 1662 return try_to_free_buffers(page); 1663} 1664 1665static const struct address_space_operations def_blk_aops = { 1666 .readpage = blkdev_readpage, 1667 .readpages = blkdev_readpages, 1668 .writepage = blkdev_writepage, 1669 .write_begin = blkdev_write_begin, 1670 .write_end = blkdev_write_end, 1671 .writepages = generic_writepages, 1672 .releasepage = blkdev_releasepage, 1673 .direct_IO = blkdev_direct_IO, 1674 .is_dirty_writeback = buffer_check_dirty_writeback, 1675}; 1676 1677const struct file_operations def_blk_fops = { 1678 .open = blkdev_open, 1679 .release = blkdev_close, 1680 .llseek = block_llseek, 1681 .read_iter = blkdev_read_iter, 1682 .write_iter = blkdev_write_iter, 1683 .mmap = generic_file_mmap, 1684 .fsync = blkdev_fsync, 1685 .unlocked_ioctl = block_ioctl, 1686#ifdef CONFIG_COMPAT 1687 .compat_ioctl = compat_blkdev_ioctl, 1688#endif 1689 .splice_read = generic_file_splice_read, 1690 .splice_write = iter_file_splice_write, 1691}; 1692 1693int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1694{ 1695 int res; 1696 mm_segment_t old_fs = get_fs(); 1697 set_fs(KERNEL_DS); 1698 res = blkdev_ioctl(bdev, 0, cmd, arg); 1699 set_fs(old_fs); 1700 return res; 1701} 1702 1703EXPORT_SYMBOL(ioctl_by_bdev); 1704 1705/** 1706 * lookup_bdev - lookup a struct block_device by name 1707 * @pathname: special file representing the block device 1708 * 1709 * Get a reference to the blockdevice at @pathname in the current 1710 * namespace if possible and return it. Return ERR_PTR(error) 1711 * otherwise. 1712 */ 1713struct block_device *lookup_bdev(const char *pathname) 1714{ 1715 struct block_device *bdev; 1716 struct inode *inode; 1717 struct path path; 1718 int error; 1719 1720 if (!pathname || !*pathname) 1721 return ERR_PTR(-EINVAL); 1722 1723 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1724 if (error) 1725 return ERR_PTR(error); 1726 1727 inode = d_backing_inode(path.dentry); 1728 error = -ENOTBLK; 1729 if (!S_ISBLK(inode->i_mode)) 1730 goto fail; 1731 error = -EACCES; 1732 if (path.mnt->mnt_flags & MNT_NODEV) 1733 goto fail; 1734 error = -ENOMEM; 1735 bdev = bd_acquire(inode); 1736 if (!bdev) 1737 goto fail; 1738out: 1739 path_put(&path); 1740 return bdev; 1741fail: 1742 bdev = ERR_PTR(error); 1743 goto out; 1744} 1745EXPORT_SYMBOL(lookup_bdev); 1746 1747int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1748{ 1749 struct super_block *sb = get_super(bdev); 1750 int res = 0; 1751 1752 if (sb) { 1753 /* 1754 * no need to lock the super, get_super holds the 1755 * read mutex so the filesystem cannot go away 1756 * under us (->put_super runs with the write lock 1757 * hold). 1758 */ 1759 shrink_dcache_sb(sb); 1760 res = invalidate_inodes(sb, kill_dirty); 1761 drop_super(sb); 1762 } 1763 invalidate_bdev(bdev); 1764 return res; 1765} 1766EXPORT_SYMBOL(__invalidate_device); 1767 1768void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1769{ 1770 struct inode *inode, *old_inode = NULL; 1771 1772 spin_lock(&inode_sb_list_lock); 1773 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1774 struct address_space *mapping = inode->i_mapping; 1775 1776 spin_lock(&inode->i_lock); 1777 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1778 mapping->nrpages == 0) { 1779 spin_unlock(&inode->i_lock); 1780 continue; 1781 } 1782 __iget(inode); 1783 spin_unlock(&inode->i_lock); 1784 spin_unlock(&inode_sb_list_lock); 1785 /* 1786 * We hold a reference to 'inode' so it couldn't have been 1787 * removed from s_inodes list while we dropped the 1788 * inode_sb_list_lock. We cannot iput the inode now as we can 1789 * be holding the last reference and we cannot iput it under 1790 * inode_sb_list_lock. So we keep the reference and iput it 1791 * later. 1792 */ 1793 iput(old_inode); 1794 old_inode = inode; 1795 1796 func(I_BDEV(inode), arg); 1797 1798 spin_lock(&inode_sb_list_lock); 1799 } 1800 spin_unlock(&inode_sb_list_lock); 1801 iput(old_inode); 1802}