at v4.2-rc7 124 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54 55struct netpoll_info; 56struct device; 57struct phy_device; 58/* 802.11 specific */ 59struct wireless_dev; 60/* 802.15.4 specific */ 61struct wpan_dev; 62struct mpls_dev; 63 64void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67/* Backlog congestion levels */ 68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69#define NET_RX_DROP 1 /* packet dropped */ 70 71/* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88/* qdisc ->enqueue() return codes. */ 89#define NET_XMIT_SUCCESS 0x00 90#define NET_XMIT_DROP 0x01 /* skb dropped */ 91#define NET_XMIT_CN 0x02 /* congestion notification */ 92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101/* Driver transmit return codes */ 102#define NETDEV_TX_MASK 0xf0 103 104enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109}; 110typedef enum netdev_tx netdev_tx_t; 111 112/* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116static inline bool dev_xmit_complete(int rc) 117{ 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128} 129 130/* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136# if defined(CONFIG_MAC80211_MESH) 137# define LL_MAX_HEADER 128 138# else 139# define LL_MAX_HEADER 96 140# endif 141#else 142# define LL_MAX_HEADER 32 143#endif 144 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147#define MAX_HEADER LL_MAX_HEADER 148#else 149#define MAX_HEADER (LL_MAX_HEADER + 48) 150#endif 151 152/* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181}; 182 183 184#include <linux/cache.h> 185#include <linux/skbuff.h> 186 187#ifdef CONFIG_RPS 188#include <linux/static_key.h> 189extern struct static_key rps_needed; 190#endif 191 192struct neighbour; 193struct neigh_parms; 194struct sk_buff; 195 196struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200#define NETDEV_HW_ADDR_T_LAN 1 201#define NETDEV_HW_ADDR_T_SAN 2 202#define NETDEV_HW_ADDR_T_SLAVE 3 203#define NETDEV_HW_ADDR_T_UNICAST 4 204#define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210}; 211 212struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215}; 216 217#define netdev_hw_addr_list_count(l) ((l)->count) 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219#define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224#define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229#define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238#define HH_DATA_MOD 16 239#define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241#define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244}; 245 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254#define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268}; 269 270/* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281}; 282 283 284/* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291}; 292#define NETDEV_BOOT_SETUP_MAX 8 293 294int __init netdev_boot_setup(char *str); 295 296/* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312#ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315#endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323}; 324 325enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330}; 331 332enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338}; 339typedef enum gro_result gro_result_t; 340 341/* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387}; 388typedef enum rx_handler_result rx_handler_result_t; 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391void __napi_schedule(struct napi_struct *n); 392void __napi_schedule_irqoff(struct napi_struct *n); 393 394static inline bool napi_disable_pending(struct napi_struct *n) 395{ 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397} 398 399/** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408static inline bool napi_schedule_prep(struct napi_struct *n) 409{ 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412} 413 414/** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421static inline void napi_schedule(struct napi_struct *n) 422{ 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425} 426 427/** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433static inline void napi_schedule_irqoff(struct napi_struct *n) 434{ 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437} 438 439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440static inline bool napi_reschedule(struct napi_struct *napi) 441{ 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447} 448 449void __napi_complete(struct napi_struct *n); 450void napi_complete_done(struct napi_struct *n, int work_done); 451/** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458static inline void napi_complete(struct napi_struct *n) 459{ 460 return napi_complete_done(n, 0); 461} 462 463/** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470struct napi_struct *napi_by_id(unsigned int napi_id); 471 472/** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478void napi_hash_add(struct napi_struct *napi); 479 480/** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487void napi_hash_del(struct napi_struct *napi); 488 489/** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496void napi_disable(struct napi_struct *n); 497 498/** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505static inline void napi_enable(struct napi_struct *n) 506{ 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510} 511 512#ifdef CONFIG_SMP 513/** 514 * napi_synchronize - wait until NAPI is not running 515 * @n: napi context 516 * 517 * Wait until NAPI is done being scheduled on this context. 518 * Waits till any outstanding processing completes but 519 * does not disable future activations. 520 */ 521static inline void napi_synchronize(const struct napi_struct *n) 522{ 523 while (test_bit(NAPI_STATE_SCHED, &n->state)) 524 msleep(1); 525} 526#else 527# define napi_synchronize(n) barrier() 528#endif 529 530enum netdev_queue_state_t { 531 __QUEUE_STATE_DRV_XOFF, 532 __QUEUE_STATE_STACK_XOFF, 533 __QUEUE_STATE_FROZEN, 534}; 535 536#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 537#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 538#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 539 540#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 542 QUEUE_STATE_FROZEN) 543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 544 QUEUE_STATE_FROZEN) 545 546/* 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 548 * netif_tx_* functions below are used to manipulate this flag. The 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 550 * queue independently. The netif_xmit_*stopped functions below are called 551 * to check if the queue has been stopped by the driver or stack (either 552 * of the XOFF bits are set in the state). Drivers should not need to call 553 * netif_xmit*stopped functions, they should only be using netif_tx_*. 554 */ 555 556struct netdev_queue { 557/* 558 * read mostly part 559 */ 560 struct net_device *dev; 561 struct Qdisc __rcu *qdisc; 562 struct Qdisc *qdisc_sleeping; 563#ifdef CONFIG_SYSFS 564 struct kobject kobj; 565#endif 566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 567 int numa_node; 568#endif 569/* 570 * write mostly part 571 */ 572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 573 int xmit_lock_owner; 574 /* 575 * please use this field instead of dev->trans_start 576 */ 577 unsigned long trans_start; 578 579 /* 580 * Number of TX timeouts for this queue 581 * (/sys/class/net/DEV/Q/trans_timeout) 582 */ 583 unsigned long trans_timeout; 584 585 unsigned long state; 586 587#ifdef CONFIG_BQL 588 struct dql dql; 589#endif 590 unsigned long tx_maxrate; 591} ____cacheline_aligned_in_smp; 592 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 594{ 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 596 return q->numa_node; 597#else 598 return NUMA_NO_NODE; 599#endif 600} 601 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 603{ 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 605 q->numa_node = node; 606#endif 607} 608 609#ifdef CONFIG_RPS 610/* 611 * This structure holds an RPS map which can be of variable length. The 612 * map is an array of CPUs. 613 */ 614struct rps_map { 615 unsigned int len; 616 struct rcu_head rcu; 617 u16 cpus[0]; 618}; 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 620 621/* 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 623 * tail pointer for that CPU's input queue at the time of last enqueue, and 624 * a hardware filter index. 625 */ 626struct rps_dev_flow { 627 u16 cpu; 628 u16 filter; 629 unsigned int last_qtail; 630}; 631#define RPS_NO_FILTER 0xffff 632 633/* 634 * The rps_dev_flow_table structure contains a table of flow mappings. 635 */ 636struct rps_dev_flow_table { 637 unsigned int mask; 638 struct rcu_head rcu; 639 struct rps_dev_flow flows[0]; 640}; 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 642 ((_num) * sizeof(struct rps_dev_flow))) 643 644/* 645 * The rps_sock_flow_table contains mappings of flows to the last CPU 646 * on which they were processed by the application (set in recvmsg). 647 * Each entry is a 32bit value. Upper part is the high order bits 648 * of flow hash, lower part is cpu number. 649 * rps_cpu_mask is used to partition the space, depending on number of 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 652 * meaning we use 32-6=26 bits for the hash. 653 */ 654struct rps_sock_flow_table { 655 u32 mask; 656 657 u32 ents[0] ____cacheline_aligned_in_smp; 658}; 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 660 661#define RPS_NO_CPU 0xffff 662 663extern u32 rps_cpu_mask; 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 665 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 667 u32 hash) 668{ 669 if (table && hash) { 670 unsigned int index = hash & table->mask; 671 u32 val = hash & ~rps_cpu_mask; 672 673 /* We only give a hint, preemption can change cpu under us */ 674 val |= raw_smp_processor_id(); 675 676 if (table->ents[index] != val) 677 table->ents[index] = val; 678 } 679} 680 681#ifdef CONFIG_RFS_ACCEL 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 683 u16 filter_id); 684#endif 685#endif /* CONFIG_RPS */ 686 687/* This structure contains an instance of an RX queue. */ 688struct netdev_rx_queue { 689#ifdef CONFIG_RPS 690 struct rps_map __rcu *rps_map; 691 struct rps_dev_flow_table __rcu *rps_flow_table; 692#endif 693 struct kobject kobj; 694 struct net_device *dev; 695} ____cacheline_aligned_in_smp; 696 697/* 698 * RX queue sysfs structures and functions. 699 */ 700struct rx_queue_attribute { 701 struct attribute attr; 702 ssize_t (*show)(struct netdev_rx_queue *queue, 703 struct rx_queue_attribute *attr, char *buf); 704 ssize_t (*store)(struct netdev_rx_queue *queue, 705 struct rx_queue_attribute *attr, const char *buf, size_t len); 706}; 707 708#ifdef CONFIG_XPS 709/* 710 * This structure holds an XPS map which can be of variable length. The 711 * map is an array of queues. 712 */ 713struct xps_map { 714 unsigned int len; 715 unsigned int alloc_len; 716 struct rcu_head rcu; 717 u16 queues[0]; 718}; 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 721 / sizeof(u16)) 722 723/* 724 * This structure holds all XPS maps for device. Maps are indexed by CPU. 725 */ 726struct xps_dev_maps { 727 struct rcu_head rcu; 728 struct xps_map __rcu *cpu_map[0]; 729}; 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 731 (nr_cpu_ids * sizeof(struct xps_map *))) 732#endif /* CONFIG_XPS */ 733 734#define TC_MAX_QUEUE 16 735#define TC_BITMASK 15 736/* HW offloaded queuing disciplines txq count and offset maps */ 737struct netdev_tc_txq { 738 u16 count; 739 u16 offset; 740}; 741 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 743/* 744 * This structure is to hold information about the device 745 * configured to run FCoE protocol stack. 746 */ 747struct netdev_fcoe_hbainfo { 748 char manufacturer[64]; 749 char serial_number[64]; 750 char hardware_version[64]; 751 char driver_version[64]; 752 char optionrom_version[64]; 753 char firmware_version[64]; 754 char model[256]; 755 char model_description[256]; 756}; 757#endif 758 759#define MAX_PHYS_ITEM_ID_LEN 32 760 761/* This structure holds a unique identifier to identify some 762 * physical item (port for example) used by a netdevice. 763 */ 764struct netdev_phys_item_id { 765 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 766 unsigned char id_len; 767}; 768 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772/* 773 * This structure defines the management hooks for network devices. 774 * The following hooks can be defined; unless noted otherwise, they are 775 * optional and can be filled with a null pointer. 776 * 777 * int (*ndo_init)(struct net_device *dev); 778 * This function is called once when network device is registered. 779 * The network device can use this to any late stage initializaton 780 * or semantic validattion. It can fail with an error code which will 781 * be propogated back to register_netdev 782 * 783 * void (*ndo_uninit)(struct net_device *dev); 784 * This function is called when device is unregistered or when registration 785 * fails. It is not called if init fails. 786 * 787 * int (*ndo_open)(struct net_device *dev); 788 * This function is called when network device transistions to the up 789 * state. 790 * 791 * int (*ndo_stop)(struct net_device *dev); 792 * This function is called when network device transistions to the down 793 * state. 794 * 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 796 * struct net_device *dev); 797 * Called when a packet needs to be transmitted. 798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 799 * the queue before that can happen; it's for obsolete devices and weird 800 * corner cases, but the stack really does a non-trivial amount 801 * of useless work if you return NETDEV_TX_BUSY. 802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 803 * Required can not be NULL. 804 * 805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 806 * void *accel_priv, select_queue_fallback_t fallback); 807 * Called to decide which queue to when device supports multiple 808 * transmit queues. 809 * 810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 811 * This function is called to allow device receiver to make 812 * changes to configuration when multicast or promiscious is enabled. 813 * 814 * void (*ndo_set_rx_mode)(struct net_device *dev); 815 * This function is called device changes address list filtering. 816 * If driver handles unicast address filtering, it should set 817 * IFF_UNICAST_FLT to its priv_flags. 818 * 819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 820 * This function is called when the Media Access Control address 821 * needs to be changed. If this interface is not defined, the 822 * mac address can not be changed. 823 * 824 * int (*ndo_validate_addr)(struct net_device *dev); 825 * Test if Media Access Control address is valid for the device. 826 * 827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 828 * Called when a user request an ioctl which can't be handled by 829 * the generic interface code. If not defined ioctl's return 830 * not supported error code. 831 * 832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 833 * Used to set network devices bus interface parameters. This interface 834 * is retained for legacy reason, new devices should use the bus 835 * interface (PCI) for low level management. 836 * 837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 838 * Called when a user wants to change the Maximum Transfer Unit 839 * of a device. If not defined, any request to change MTU will 840 * will return an error. 841 * 842 * void (*ndo_tx_timeout)(struct net_device *dev); 843 * Callback uses when the transmitter has not made any progress 844 * for dev->watchdog ticks. 845 * 846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 847 * struct rtnl_link_stats64 *storage); 848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 849 * Called when a user wants to get the network device usage 850 * statistics. Drivers must do one of the following: 851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 852 * rtnl_link_stats64 structure passed by the caller. 853 * 2. Define @ndo_get_stats to update a net_device_stats structure 854 * (which should normally be dev->stats) and return a pointer to 855 * it. The structure may be changed asynchronously only if each 856 * field is written atomically. 857 * 3. Update dev->stats asynchronously and atomically, and define 858 * neither operation. 859 * 860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 861 * If device support VLAN filtering this function is called when a 862 * VLAN id is registered. 863 * 864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 865 * If device support VLAN filtering this function is called when a 866 * VLAN id is unregistered. 867 * 868 * void (*ndo_poll_controller)(struct net_device *dev); 869 * 870 * SR-IOV management functions. 871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 874 * int max_tx_rate); 875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 876 * int (*ndo_get_vf_config)(struct net_device *dev, 877 * int vf, struct ifla_vf_info *ivf); 878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 880 * struct nlattr *port[]); 881 * 882 * Enable or disable the VF ability to query its RSS Redirection Table and 883 * Hash Key. This is needed since on some devices VF share this information 884 * with PF and querying it may adduce a theoretical security risk. 885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 888 * Called to setup 'tc' number of traffic classes in the net device. This 889 * is always called from the stack with the rtnl lock held and netif tx 890 * queues stopped. This allows the netdevice to perform queue management 891 * safely. 892 * 893 * Fiber Channel over Ethernet (FCoE) offload functions. 894 * int (*ndo_fcoe_enable)(struct net_device *dev); 895 * Called when the FCoE protocol stack wants to start using LLD for FCoE 896 * so the underlying device can perform whatever needed configuration or 897 * initialization to support acceleration of FCoE traffic. 898 * 899 * int (*ndo_fcoe_disable)(struct net_device *dev); 900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 901 * so the underlying device can perform whatever needed clean-ups to 902 * stop supporting acceleration of FCoE traffic. 903 * 904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 905 * struct scatterlist *sgl, unsigned int sgc); 906 * Called when the FCoE Initiator wants to initialize an I/O that 907 * is a possible candidate for Direct Data Placement (DDP). The LLD can 908 * perform necessary setup and returns 1 to indicate the device is set up 909 * successfully to perform DDP on this I/O, otherwise this returns 0. 910 * 911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 913 * indicated by the FC exchange id 'xid', so the underlying device can 914 * clean up and reuse resources for later DDP requests. 915 * 916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 917 * struct scatterlist *sgl, unsigned int sgc); 918 * Called when the FCoE Target wants to initialize an I/O that 919 * is a possible candidate for Direct Data Placement (DDP). The LLD can 920 * perform necessary setup and returns 1 to indicate the device is set up 921 * successfully to perform DDP on this I/O, otherwise this returns 0. 922 * 923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 924 * struct netdev_fcoe_hbainfo *hbainfo); 925 * Called when the FCoE Protocol stack wants information on the underlying 926 * device. This information is utilized by the FCoE protocol stack to 927 * register attributes with Fiber Channel management service as per the 928 * FC-GS Fabric Device Management Information(FDMI) specification. 929 * 930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 931 * Called when the underlying device wants to override default World Wide 932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 934 * protocol stack to use. 935 * 936 * RFS acceleration. 937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 938 * u16 rxq_index, u32 flow_id); 939 * Set hardware filter for RFS. rxq_index is the target queue index; 940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 941 * Return the filter ID on success, or a negative error code. 942 * 943 * Slave management functions (for bridge, bonding, etc). 944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 945 * Called to make another netdev an underling. 946 * 947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 948 * Called to release previously enslaved netdev. 949 * 950 * Feature/offload setting functions. 951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 952 * netdev_features_t features); 953 * Adjusts the requested feature flags according to device-specific 954 * constraints, and returns the resulting flags. Must not modify 955 * the device state. 956 * 957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 958 * Called to update device configuration to new features. Passed 959 * feature set might be less than what was returned by ndo_fix_features()). 960 * Must return >0 or -errno if it changed dev->features itself. 961 * 962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 963 * struct net_device *dev, 964 * const unsigned char *addr, u16 vid, u16 flags) 965 * Adds an FDB entry to dev for addr. 966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 967 * struct net_device *dev, 968 * const unsigned char *addr, u16 vid) 969 * Deletes the FDB entry from dev coresponding to addr. 970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 971 * struct net_device *dev, struct net_device *filter_dev, 972 * int idx) 973 * Used to add FDB entries to dump requests. Implementers should add 974 * entries to skb and update idx with the number of entries. 975 * 976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 977 * u16 flags) 978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 979 * struct net_device *dev, u32 filter_mask, 980 * int nlflags) 981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 982 * u16 flags); 983 * 984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 985 * Called to change device carrier. Soft-devices (like dummy, team, etc) 986 * which do not represent real hardware may define this to allow their 987 * userspace components to manage their virtual carrier state. Devices 988 * that determine carrier state from physical hardware properties (eg 989 * network cables) or protocol-dependent mechanisms (eg 990 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 991 * 992 * int (*ndo_get_phys_port_id)(struct net_device *dev, 993 * struct netdev_phys_item_id *ppid); 994 * Called to get ID of physical port of this device. If driver does 995 * not implement this, it is assumed that the hw is not able to have 996 * multiple net devices on single physical port. 997 * 998 * void (*ndo_add_vxlan_port)(struct net_device *dev, 999 * sa_family_t sa_family, __be16 port); 1000 * Called by vxlan to notiy a driver about the UDP port and socket 1001 * address family that vxlan is listnening to. It is called only when 1002 * a new port starts listening. The operation is protected by the 1003 * vxlan_net->sock_lock. 1004 * 1005 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1006 * sa_family_t sa_family, __be16 port); 1007 * Called by vxlan to notify the driver about a UDP port and socket 1008 * address family that vxlan is not listening to anymore. The operation 1009 * is protected by the vxlan_net->sock_lock. 1010 * 1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1012 * struct net_device *dev) 1013 * Called by upper layer devices to accelerate switching or other 1014 * station functionality into hardware. 'pdev is the lowerdev 1015 * to use for the offload and 'dev' is the net device that will 1016 * back the offload. Returns a pointer to the private structure 1017 * the upper layer will maintain. 1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1019 * Called by upper layer device to delete the station created 1020 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1021 * the station and priv is the structure returned by the add 1022 * operation. 1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1024 * struct net_device *dev, 1025 * void *priv); 1026 * Callback to use for xmit over the accelerated station. This 1027 * is used in place of ndo_start_xmit on accelerated net 1028 * devices. 1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1030 * struct net_device *dev 1031 * netdev_features_t features); 1032 * Called by core transmit path to determine if device is capable of 1033 * performing offload operations on a given packet. This is to give 1034 * the device an opportunity to implement any restrictions that cannot 1035 * be otherwise expressed by feature flags. The check is called with 1036 * the set of features that the stack has calculated and it returns 1037 * those the driver believes to be appropriate. 1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1039 * int queue_index, u32 maxrate); 1040 * Called when a user wants to set a max-rate limitation of specific 1041 * TX queue. 1042 * int (*ndo_get_iflink)(const struct net_device *dev); 1043 * Called to get the iflink value of this device. 1044 */ 1045struct net_device_ops { 1046 int (*ndo_init)(struct net_device *dev); 1047 void (*ndo_uninit)(struct net_device *dev); 1048 int (*ndo_open)(struct net_device *dev); 1049 int (*ndo_stop)(struct net_device *dev); 1050 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1051 struct net_device *dev); 1052 u16 (*ndo_select_queue)(struct net_device *dev, 1053 struct sk_buff *skb, 1054 void *accel_priv, 1055 select_queue_fallback_t fallback); 1056 void (*ndo_change_rx_flags)(struct net_device *dev, 1057 int flags); 1058 void (*ndo_set_rx_mode)(struct net_device *dev); 1059 int (*ndo_set_mac_address)(struct net_device *dev, 1060 void *addr); 1061 int (*ndo_validate_addr)(struct net_device *dev); 1062 int (*ndo_do_ioctl)(struct net_device *dev, 1063 struct ifreq *ifr, int cmd); 1064 int (*ndo_set_config)(struct net_device *dev, 1065 struct ifmap *map); 1066 int (*ndo_change_mtu)(struct net_device *dev, 1067 int new_mtu); 1068 int (*ndo_neigh_setup)(struct net_device *dev, 1069 struct neigh_parms *); 1070 void (*ndo_tx_timeout) (struct net_device *dev); 1071 1072 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1073 struct rtnl_link_stats64 *storage); 1074 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1075 1076 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1077 __be16 proto, u16 vid); 1078 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1079 __be16 proto, u16 vid); 1080#ifdef CONFIG_NET_POLL_CONTROLLER 1081 void (*ndo_poll_controller)(struct net_device *dev); 1082 int (*ndo_netpoll_setup)(struct net_device *dev, 1083 struct netpoll_info *info); 1084 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1085#endif 1086#ifdef CONFIG_NET_RX_BUSY_POLL 1087 int (*ndo_busy_poll)(struct napi_struct *dev); 1088#endif 1089 int (*ndo_set_vf_mac)(struct net_device *dev, 1090 int queue, u8 *mac); 1091 int (*ndo_set_vf_vlan)(struct net_device *dev, 1092 int queue, u16 vlan, u8 qos); 1093 int (*ndo_set_vf_rate)(struct net_device *dev, 1094 int vf, int min_tx_rate, 1095 int max_tx_rate); 1096 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1097 int vf, bool setting); 1098 int (*ndo_get_vf_config)(struct net_device *dev, 1099 int vf, 1100 struct ifla_vf_info *ivf); 1101 int (*ndo_set_vf_link_state)(struct net_device *dev, 1102 int vf, int link_state); 1103 int (*ndo_get_vf_stats)(struct net_device *dev, 1104 int vf, 1105 struct ifla_vf_stats 1106 *vf_stats); 1107 int (*ndo_set_vf_port)(struct net_device *dev, 1108 int vf, 1109 struct nlattr *port[]); 1110 int (*ndo_get_vf_port)(struct net_device *dev, 1111 int vf, struct sk_buff *skb); 1112 int (*ndo_set_vf_rss_query_en)( 1113 struct net_device *dev, 1114 int vf, bool setting); 1115 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1116#if IS_ENABLED(CONFIG_FCOE) 1117 int (*ndo_fcoe_enable)(struct net_device *dev); 1118 int (*ndo_fcoe_disable)(struct net_device *dev); 1119 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1120 u16 xid, 1121 struct scatterlist *sgl, 1122 unsigned int sgc); 1123 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1124 u16 xid); 1125 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1126 u16 xid, 1127 struct scatterlist *sgl, 1128 unsigned int sgc); 1129 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1130 struct netdev_fcoe_hbainfo *hbainfo); 1131#endif 1132 1133#if IS_ENABLED(CONFIG_LIBFCOE) 1134#define NETDEV_FCOE_WWNN 0 1135#define NETDEV_FCOE_WWPN 1 1136 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1137 u64 *wwn, int type); 1138#endif 1139 1140#ifdef CONFIG_RFS_ACCEL 1141 int (*ndo_rx_flow_steer)(struct net_device *dev, 1142 const struct sk_buff *skb, 1143 u16 rxq_index, 1144 u32 flow_id); 1145#endif 1146 int (*ndo_add_slave)(struct net_device *dev, 1147 struct net_device *slave_dev); 1148 int (*ndo_del_slave)(struct net_device *dev, 1149 struct net_device *slave_dev); 1150 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1151 netdev_features_t features); 1152 int (*ndo_set_features)(struct net_device *dev, 1153 netdev_features_t features); 1154 int (*ndo_neigh_construct)(struct neighbour *n); 1155 void (*ndo_neigh_destroy)(struct neighbour *n); 1156 1157 int (*ndo_fdb_add)(struct ndmsg *ndm, 1158 struct nlattr *tb[], 1159 struct net_device *dev, 1160 const unsigned char *addr, 1161 u16 vid, 1162 u16 flags); 1163 int (*ndo_fdb_del)(struct ndmsg *ndm, 1164 struct nlattr *tb[], 1165 struct net_device *dev, 1166 const unsigned char *addr, 1167 u16 vid); 1168 int (*ndo_fdb_dump)(struct sk_buff *skb, 1169 struct netlink_callback *cb, 1170 struct net_device *dev, 1171 struct net_device *filter_dev, 1172 int idx); 1173 1174 int (*ndo_bridge_setlink)(struct net_device *dev, 1175 struct nlmsghdr *nlh, 1176 u16 flags); 1177 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1178 u32 pid, u32 seq, 1179 struct net_device *dev, 1180 u32 filter_mask, 1181 int nlflags); 1182 int (*ndo_bridge_dellink)(struct net_device *dev, 1183 struct nlmsghdr *nlh, 1184 u16 flags); 1185 int (*ndo_change_carrier)(struct net_device *dev, 1186 bool new_carrier); 1187 int (*ndo_get_phys_port_id)(struct net_device *dev, 1188 struct netdev_phys_item_id *ppid); 1189 int (*ndo_get_phys_port_name)(struct net_device *dev, 1190 char *name, size_t len); 1191 void (*ndo_add_vxlan_port)(struct net_device *dev, 1192 sa_family_t sa_family, 1193 __be16 port); 1194 void (*ndo_del_vxlan_port)(struct net_device *dev, 1195 sa_family_t sa_family, 1196 __be16 port); 1197 1198 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1199 struct net_device *dev); 1200 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1201 void *priv); 1202 1203 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1204 struct net_device *dev, 1205 void *priv); 1206 int (*ndo_get_lock_subclass)(struct net_device *dev); 1207 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1208 struct net_device *dev, 1209 netdev_features_t features); 1210 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1211 int queue_index, 1212 u32 maxrate); 1213 int (*ndo_get_iflink)(const struct net_device *dev); 1214}; 1215 1216/** 1217 * enum net_device_priv_flags - &struct net_device priv_flags 1218 * 1219 * These are the &struct net_device, they are only set internally 1220 * by drivers and used in the kernel. These flags are invisible to 1221 * userspace, this means that the order of these flags can change 1222 * during any kernel release. 1223 * 1224 * You should have a pretty good reason to be extending these flags. 1225 * 1226 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1227 * @IFF_EBRIDGE: Ethernet bridging device 1228 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1229 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1230 * @IFF_MASTER_ALB: bonding master, balance-alb 1231 * @IFF_BONDING: bonding master or slave 1232 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1233 * @IFF_ISATAP: ISATAP interface (RFC4214) 1234 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1235 * @IFF_WAN_HDLC: WAN HDLC device 1236 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1237 * release skb->dst 1238 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1239 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1240 * @IFF_MACVLAN_PORT: device used as macvlan port 1241 * @IFF_BRIDGE_PORT: device used as bridge port 1242 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1243 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1244 * @IFF_UNICAST_FLT: Supports unicast filtering 1245 * @IFF_TEAM_PORT: device used as team port 1246 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1247 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1248 * change when it's running 1249 * @IFF_MACVLAN: Macvlan device 1250 */ 1251enum netdev_priv_flags { 1252 IFF_802_1Q_VLAN = 1<<0, 1253 IFF_EBRIDGE = 1<<1, 1254 IFF_SLAVE_INACTIVE = 1<<2, 1255 IFF_MASTER_8023AD = 1<<3, 1256 IFF_MASTER_ALB = 1<<4, 1257 IFF_BONDING = 1<<5, 1258 IFF_SLAVE_NEEDARP = 1<<6, 1259 IFF_ISATAP = 1<<7, 1260 IFF_MASTER_ARPMON = 1<<8, 1261 IFF_WAN_HDLC = 1<<9, 1262 IFF_XMIT_DST_RELEASE = 1<<10, 1263 IFF_DONT_BRIDGE = 1<<11, 1264 IFF_DISABLE_NETPOLL = 1<<12, 1265 IFF_MACVLAN_PORT = 1<<13, 1266 IFF_BRIDGE_PORT = 1<<14, 1267 IFF_OVS_DATAPATH = 1<<15, 1268 IFF_TX_SKB_SHARING = 1<<16, 1269 IFF_UNICAST_FLT = 1<<17, 1270 IFF_TEAM_PORT = 1<<18, 1271 IFF_SUPP_NOFCS = 1<<19, 1272 IFF_LIVE_ADDR_CHANGE = 1<<20, 1273 IFF_MACVLAN = 1<<21, 1274 IFF_XMIT_DST_RELEASE_PERM = 1<<22, 1275 IFF_IPVLAN_MASTER = 1<<23, 1276 IFF_IPVLAN_SLAVE = 1<<24, 1277}; 1278 1279#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1280#define IFF_EBRIDGE IFF_EBRIDGE 1281#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1282#define IFF_MASTER_8023AD IFF_MASTER_8023AD 1283#define IFF_MASTER_ALB IFF_MASTER_ALB 1284#define IFF_BONDING IFF_BONDING 1285#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1286#define IFF_ISATAP IFF_ISATAP 1287#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1288#define IFF_WAN_HDLC IFF_WAN_HDLC 1289#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1290#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1291#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1292#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1293#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1294#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1295#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1296#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1297#define IFF_TEAM_PORT IFF_TEAM_PORT 1298#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1299#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1300#define IFF_MACVLAN IFF_MACVLAN 1301#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1302#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1303#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1304 1305/** 1306 * struct net_device - The DEVICE structure. 1307 * Actually, this whole structure is a big mistake. It mixes I/O 1308 * data with strictly "high-level" data, and it has to know about 1309 * almost every data structure used in the INET module. 1310 * 1311 * @name: This is the first field of the "visible" part of this structure 1312 * (i.e. as seen by users in the "Space.c" file). It is the name 1313 * of the interface. 1314 * 1315 * @name_hlist: Device name hash chain, please keep it close to name[] 1316 * @ifalias: SNMP alias 1317 * @mem_end: Shared memory end 1318 * @mem_start: Shared memory start 1319 * @base_addr: Device I/O address 1320 * @irq: Device IRQ number 1321 * 1322 * @carrier_changes: Stats to monitor carrier on<->off transitions 1323 * 1324 * @state: Generic network queuing layer state, see netdev_state_t 1325 * @dev_list: The global list of network devices 1326 * @napi_list: List entry, that is used for polling napi devices 1327 * @unreg_list: List entry, that is used, when we are unregistering the 1328 * device, see the function unregister_netdev 1329 * @close_list: List entry, that is used, when we are closing the device 1330 * 1331 * @adj_list: Directly linked devices, like slaves for bonding 1332 * @all_adj_list: All linked devices, *including* neighbours 1333 * @features: Currently active device features 1334 * @hw_features: User-changeable features 1335 * 1336 * @wanted_features: User-requested features 1337 * @vlan_features: Mask of features inheritable by VLAN devices 1338 * 1339 * @hw_enc_features: Mask of features inherited by encapsulating devices 1340 * This field indicates what encapsulation 1341 * offloads the hardware is capable of doing, 1342 * and drivers will need to set them appropriately. 1343 * 1344 * @mpls_features: Mask of features inheritable by MPLS 1345 * 1346 * @ifindex: interface index 1347 * @group: The group, that the device belongs to 1348 * 1349 * @stats: Statistics struct, which was left as a legacy, use 1350 * rtnl_link_stats64 instead 1351 * 1352 * @rx_dropped: Dropped packets by core network, 1353 * do not use this in drivers 1354 * @tx_dropped: Dropped packets by core network, 1355 * do not use this in drivers 1356 * 1357 * @wireless_handlers: List of functions to handle Wireless Extensions, 1358 * instead of ioctl, 1359 * see <net/iw_handler.h> for details. 1360 * @wireless_data: Instance data managed by the core of wireless extensions 1361 * 1362 * @netdev_ops: Includes several pointers to callbacks, 1363 * if one wants to override the ndo_*() functions 1364 * @ethtool_ops: Management operations 1365 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1366 * of Layer 2 headers. 1367 * 1368 * @flags: Interface flags (a la BSD) 1369 * @priv_flags: Like 'flags' but invisible to userspace, 1370 * see if.h for the definitions 1371 * @gflags: Global flags ( kept as legacy ) 1372 * @padded: How much padding added by alloc_netdev() 1373 * @operstate: RFC2863 operstate 1374 * @link_mode: Mapping policy to operstate 1375 * @if_port: Selectable AUI, TP, ... 1376 * @dma: DMA channel 1377 * @mtu: Interface MTU value 1378 * @type: Interface hardware type 1379 * @hard_header_len: Hardware header length 1380 * 1381 * @needed_headroom: Extra headroom the hardware may need, but not in all 1382 * cases can this be guaranteed 1383 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1384 * cases can this be guaranteed. Some cases also use 1385 * LL_MAX_HEADER instead to allocate the skb 1386 * 1387 * interface address info: 1388 * 1389 * @perm_addr: Permanent hw address 1390 * @addr_assign_type: Hw address assignment type 1391 * @addr_len: Hardware address length 1392 * @neigh_priv_len; Used in neigh_alloc(), 1393 * initialized only in atm/clip.c 1394 * @dev_id: Used to differentiate devices that share 1395 * the same link layer address 1396 * @dev_port: Used to differentiate devices that share 1397 * the same function 1398 * @addr_list_lock: XXX: need comments on this one 1399 * @uc_promisc: Counter, that indicates, that promiscuous mode 1400 * has been enabled due to the need to listen to 1401 * additional unicast addresses in a device that 1402 * does not implement ndo_set_rx_mode() 1403 * @uc: unicast mac addresses 1404 * @mc: multicast mac addresses 1405 * @dev_addrs: list of device hw addresses 1406 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1407 * @promiscuity: Number of times, the NIC is told to work in 1408 * Promiscuous mode, if it becomes 0 the NIC will 1409 * exit from working in Promiscuous mode 1410 * @allmulti: Counter, enables or disables allmulticast mode 1411 * 1412 * @vlan_info: VLAN info 1413 * @dsa_ptr: dsa specific data 1414 * @tipc_ptr: TIPC specific data 1415 * @atalk_ptr: AppleTalk link 1416 * @ip_ptr: IPv4 specific data 1417 * @dn_ptr: DECnet specific data 1418 * @ip6_ptr: IPv6 specific data 1419 * @ax25_ptr: AX.25 specific data 1420 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1421 * 1422 * @last_rx: Time of last Rx 1423 * @dev_addr: Hw address (before bcast, 1424 * because most packets are unicast) 1425 * 1426 * @_rx: Array of RX queues 1427 * @num_rx_queues: Number of RX queues 1428 * allocated at register_netdev() time 1429 * @real_num_rx_queues: Number of RX queues currently active in device 1430 * 1431 * @rx_handler: handler for received packets 1432 * @rx_handler_data: XXX: need comments on this one 1433 * @ingress_queue: XXX: need comments on this one 1434 * @broadcast: hw bcast address 1435 * 1436 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1437 * indexed by RX queue number. Assigned by driver. 1438 * This must only be set if the ndo_rx_flow_steer 1439 * operation is defined 1440 * @index_hlist: Device index hash chain 1441 * 1442 * @_tx: Array of TX queues 1443 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1444 * @real_num_tx_queues: Number of TX queues currently active in device 1445 * @qdisc: Root qdisc from userspace point of view 1446 * @tx_queue_len: Max frames per queue allowed 1447 * @tx_global_lock: XXX: need comments on this one 1448 * 1449 * @xps_maps: XXX: need comments on this one 1450 * 1451 * @trans_start: Time (in jiffies) of last Tx 1452 * @watchdog_timeo: Represents the timeout that is used by 1453 * the watchdog ( see dev_watchdog() ) 1454 * @watchdog_timer: List of timers 1455 * 1456 * @pcpu_refcnt: Number of references to this device 1457 * @todo_list: Delayed register/unregister 1458 * @link_watch_list: XXX: need comments on this one 1459 * 1460 * @reg_state: Register/unregister state machine 1461 * @dismantle: Device is going to be freed 1462 * @rtnl_link_state: This enum represents the phases of creating 1463 * a new link 1464 * 1465 * @destructor: Called from unregister, 1466 * can be used to call free_netdev 1467 * @npinfo: XXX: need comments on this one 1468 * @nd_net: Network namespace this network device is inside 1469 * 1470 * @ml_priv: Mid-layer private 1471 * @lstats: Loopback statistics 1472 * @tstats: Tunnel statistics 1473 * @dstats: Dummy statistics 1474 * @vstats: Virtual ethernet statistics 1475 * 1476 * @garp_port: GARP 1477 * @mrp_port: MRP 1478 * 1479 * @dev: Class/net/name entry 1480 * @sysfs_groups: Space for optional device, statistics and wireless 1481 * sysfs groups 1482 * 1483 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1484 * @rtnl_link_ops: Rtnl_link_ops 1485 * 1486 * @gso_max_size: Maximum size of generic segmentation offload 1487 * @gso_max_segs: Maximum number of segments that can be passed to the 1488 * NIC for GSO 1489 * @gso_min_segs: Minimum number of segments that can be passed to the 1490 * NIC for GSO 1491 * 1492 * @dcbnl_ops: Data Center Bridging netlink ops 1493 * @num_tc: Number of traffic classes in the net device 1494 * @tc_to_txq: XXX: need comments on this one 1495 * @prio_tc_map XXX: need comments on this one 1496 * 1497 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1498 * 1499 * @priomap: XXX: need comments on this one 1500 * @phydev: Physical device may attach itself 1501 * for hardware timestamping 1502 * 1503 * @qdisc_tx_busylock: XXX: need comments on this one 1504 * 1505 * FIXME: cleanup struct net_device such that network protocol info 1506 * moves out. 1507 */ 1508 1509struct net_device { 1510 char name[IFNAMSIZ]; 1511 struct hlist_node name_hlist; 1512 char *ifalias; 1513 /* 1514 * I/O specific fields 1515 * FIXME: Merge these and struct ifmap into one 1516 */ 1517 unsigned long mem_end; 1518 unsigned long mem_start; 1519 unsigned long base_addr; 1520 int irq; 1521 1522 atomic_t carrier_changes; 1523 1524 /* 1525 * Some hardware also needs these fields (state,dev_list, 1526 * napi_list,unreg_list,close_list) but they are not 1527 * part of the usual set specified in Space.c. 1528 */ 1529 1530 unsigned long state; 1531 1532 struct list_head dev_list; 1533 struct list_head napi_list; 1534 struct list_head unreg_list; 1535 struct list_head close_list; 1536 struct list_head ptype_all; 1537 struct list_head ptype_specific; 1538 1539 struct { 1540 struct list_head upper; 1541 struct list_head lower; 1542 } adj_list; 1543 1544 struct { 1545 struct list_head upper; 1546 struct list_head lower; 1547 } all_adj_list; 1548 1549 netdev_features_t features; 1550 netdev_features_t hw_features; 1551 netdev_features_t wanted_features; 1552 netdev_features_t vlan_features; 1553 netdev_features_t hw_enc_features; 1554 netdev_features_t mpls_features; 1555 1556 int ifindex; 1557 int group; 1558 1559 struct net_device_stats stats; 1560 1561 atomic_long_t rx_dropped; 1562 atomic_long_t tx_dropped; 1563 1564#ifdef CONFIG_WIRELESS_EXT 1565 const struct iw_handler_def * wireless_handlers; 1566 struct iw_public_data * wireless_data; 1567#endif 1568 const struct net_device_ops *netdev_ops; 1569 const struct ethtool_ops *ethtool_ops; 1570#ifdef CONFIG_NET_SWITCHDEV 1571 const struct switchdev_ops *switchdev_ops; 1572#endif 1573 1574 const struct header_ops *header_ops; 1575 1576 unsigned int flags; 1577 unsigned int priv_flags; 1578 1579 unsigned short gflags; 1580 unsigned short padded; 1581 1582 unsigned char operstate; 1583 unsigned char link_mode; 1584 1585 unsigned char if_port; 1586 unsigned char dma; 1587 1588 unsigned int mtu; 1589 unsigned short type; 1590 unsigned short hard_header_len; 1591 1592 unsigned short needed_headroom; 1593 unsigned short needed_tailroom; 1594 1595 /* Interface address info. */ 1596 unsigned char perm_addr[MAX_ADDR_LEN]; 1597 unsigned char addr_assign_type; 1598 unsigned char addr_len; 1599 unsigned short neigh_priv_len; 1600 unsigned short dev_id; 1601 unsigned short dev_port; 1602 spinlock_t addr_list_lock; 1603 unsigned char name_assign_type; 1604 bool uc_promisc; 1605 struct netdev_hw_addr_list uc; 1606 struct netdev_hw_addr_list mc; 1607 struct netdev_hw_addr_list dev_addrs; 1608 1609#ifdef CONFIG_SYSFS 1610 struct kset *queues_kset; 1611#endif 1612 unsigned int promiscuity; 1613 unsigned int allmulti; 1614 1615 1616 /* Protocol specific pointers */ 1617 1618#if IS_ENABLED(CONFIG_VLAN_8021Q) 1619 struct vlan_info __rcu *vlan_info; 1620#endif 1621#if IS_ENABLED(CONFIG_NET_DSA) 1622 struct dsa_switch_tree *dsa_ptr; 1623#endif 1624#if IS_ENABLED(CONFIG_TIPC) 1625 struct tipc_bearer __rcu *tipc_ptr; 1626#endif 1627 void *atalk_ptr; 1628 struct in_device __rcu *ip_ptr; 1629 struct dn_dev __rcu *dn_ptr; 1630 struct inet6_dev __rcu *ip6_ptr; 1631 void *ax25_ptr; 1632 struct wireless_dev *ieee80211_ptr; 1633 struct wpan_dev *ieee802154_ptr; 1634#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1635 struct mpls_dev __rcu *mpls_ptr; 1636#endif 1637 1638/* 1639 * Cache lines mostly used on receive path (including eth_type_trans()) 1640 */ 1641 unsigned long last_rx; 1642 1643 /* Interface address info used in eth_type_trans() */ 1644 unsigned char *dev_addr; 1645 1646 1647#ifdef CONFIG_SYSFS 1648 struct netdev_rx_queue *_rx; 1649 1650 unsigned int num_rx_queues; 1651 unsigned int real_num_rx_queues; 1652 1653#endif 1654 1655 unsigned long gro_flush_timeout; 1656 rx_handler_func_t __rcu *rx_handler; 1657 void __rcu *rx_handler_data; 1658 1659#ifdef CONFIG_NET_CLS_ACT 1660 struct tcf_proto __rcu *ingress_cl_list; 1661#endif 1662 struct netdev_queue __rcu *ingress_queue; 1663#ifdef CONFIG_NETFILTER_INGRESS 1664 struct list_head nf_hooks_ingress; 1665#endif 1666 1667 unsigned char broadcast[MAX_ADDR_LEN]; 1668#ifdef CONFIG_RFS_ACCEL 1669 struct cpu_rmap *rx_cpu_rmap; 1670#endif 1671 struct hlist_node index_hlist; 1672 1673/* 1674 * Cache lines mostly used on transmit path 1675 */ 1676 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1677 unsigned int num_tx_queues; 1678 unsigned int real_num_tx_queues; 1679 struct Qdisc *qdisc; 1680 unsigned long tx_queue_len; 1681 spinlock_t tx_global_lock; 1682 int watchdog_timeo; 1683 1684#ifdef CONFIG_XPS 1685 struct xps_dev_maps __rcu *xps_maps; 1686#endif 1687 1688 /* These may be needed for future network-power-down code. */ 1689 1690 /* 1691 * trans_start here is expensive for high speed devices on SMP, 1692 * please use netdev_queue->trans_start instead. 1693 */ 1694 unsigned long trans_start; 1695 1696 struct timer_list watchdog_timer; 1697 1698 int __percpu *pcpu_refcnt; 1699 struct list_head todo_list; 1700 1701 struct list_head link_watch_list; 1702 1703 enum { NETREG_UNINITIALIZED=0, 1704 NETREG_REGISTERED, /* completed register_netdevice */ 1705 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1706 NETREG_UNREGISTERED, /* completed unregister todo */ 1707 NETREG_RELEASED, /* called free_netdev */ 1708 NETREG_DUMMY, /* dummy device for NAPI poll */ 1709 } reg_state:8; 1710 1711 bool dismantle; 1712 1713 enum { 1714 RTNL_LINK_INITIALIZED, 1715 RTNL_LINK_INITIALIZING, 1716 } rtnl_link_state:16; 1717 1718 void (*destructor)(struct net_device *dev); 1719 1720#ifdef CONFIG_NETPOLL 1721 struct netpoll_info __rcu *npinfo; 1722#endif 1723 1724 possible_net_t nd_net; 1725 1726 /* mid-layer private */ 1727 union { 1728 void *ml_priv; 1729 struct pcpu_lstats __percpu *lstats; 1730 struct pcpu_sw_netstats __percpu *tstats; 1731 struct pcpu_dstats __percpu *dstats; 1732 struct pcpu_vstats __percpu *vstats; 1733 }; 1734 1735 struct garp_port __rcu *garp_port; 1736 struct mrp_port __rcu *mrp_port; 1737 1738 struct device dev; 1739 const struct attribute_group *sysfs_groups[4]; 1740 const struct attribute_group *sysfs_rx_queue_group; 1741 1742 const struct rtnl_link_ops *rtnl_link_ops; 1743 1744 /* for setting kernel sock attribute on TCP connection setup */ 1745#define GSO_MAX_SIZE 65536 1746 unsigned int gso_max_size; 1747#define GSO_MAX_SEGS 65535 1748 u16 gso_max_segs; 1749 u16 gso_min_segs; 1750#ifdef CONFIG_DCB 1751 const struct dcbnl_rtnl_ops *dcbnl_ops; 1752#endif 1753 u8 num_tc; 1754 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1755 u8 prio_tc_map[TC_BITMASK + 1]; 1756 1757#if IS_ENABLED(CONFIG_FCOE) 1758 unsigned int fcoe_ddp_xid; 1759#endif 1760#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1761 struct netprio_map __rcu *priomap; 1762#endif 1763 struct phy_device *phydev; 1764 struct lock_class_key *qdisc_tx_busylock; 1765}; 1766#define to_net_dev(d) container_of(d, struct net_device, dev) 1767 1768#define NETDEV_ALIGN 32 1769 1770static inline 1771int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1772{ 1773 return dev->prio_tc_map[prio & TC_BITMASK]; 1774} 1775 1776static inline 1777int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1778{ 1779 if (tc >= dev->num_tc) 1780 return -EINVAL; 1781 1782 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1783 return 0; 1784} 1785 1786static inline 1787void netdev_reset_tc(struct net_device *dev) 1788{ 1789 dev->num_tc = 0; 1790 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1791 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1792} 1793 1794static inline 1795int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1796{ 1797 if (tc >= dev->num_tc) 1798 return -EINVAL; 1799 1800 dev->tc_to_txq[tc].count = count; 1801 dev->tc_to_txq[tc].offset = offset; 1802 return 0; 1803} 1804 1805static inline 1806int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1807{ 1808 if (num_tc > TC_MAX_QUEUE) 1809 return -EINVAL; 1810 1811 dev->num_tc = num_tc; 1812 return 0; 1813} 1814 1815static inline 1816int netdev_get_num_tc(struct net_device *dev) 1817{ 1818 return dev->num_tc; 1819} 1820 1821static inline 1822struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1823 unsigned int index) 1824{ 1825 return &dev->_tx[index]; 1826} 1827 1828static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1829 const struct sk_buff *skb) 1830{ 1831 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1832} 1833 1834static inline void netdev_for_each_tx_queue(struct net_device *dev, 1835 void (*f)(struct net_device *, 1836 struct netdev_queue *, 1837 void *), 1838 void *arg) 1839{ 1840 unsigned int i; 1841 1842 for (i = 0; i < dev->num_tx_queues; i++) 1843 f(dev, &dev->_tx[i], arg); 1844} 1845 1846struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1847 struct sk_buff *skb, 1848 void *accel_priv); 1849 1850/* 1851 * Net namespace inlines 1852 */ 1853static inline 1854struct net *dev_net(const struct net_device *dev) 1855{ 1856 return read_pnet(&dev->nd_net); 1857} 1858 1859static inline 1860void dev_net_set(struct net_device *dev, struct net *net) 1861{ 1862 write_pnet(&dev->nd_net, net); 1863} 1864 1865static inline bool netdev_uses_dsa(struct net_device *dev) 1866{ 1867#if IS_ENABLED(CONFIG_NET_DSA) 1868 if (dev->dsa_ptr != NULL) 1869 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1870#endif 1871 return false; 1872} 1873 1874/** 1875 * netdev_priv - access network device private data 1876 * @dev: network device 1877 * 1878 * Get network device private data 1879 */ 1880static inline void *netdev_priv(const struct net_device *dev) 1881{ 1882 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1883} 1884 1885/* Set the sysfs physical device reference for the network logical device 1886 * if set prior to registration will cause a symlink during initialization. 1887 */ 1888#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1889 1890/* Set the sysfs device type for the network logical device to allow 1891 * fine-grained identification of different network device types. For 1892 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1893 */ 1894#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1895 1896/* Default NAPI poll() weight 1897 * Device drivers are strongly advised to not use bigger value 1898 */ 1899#define NAPI_POLL_WEIGHT 64 1900 1901/** 1902 * netif_napi_add - initialize a napi context 1903 * @dev: network device 1904 * @napi: napi context 1905 * @poll: polling function 1906 * @weight: default weight 1907 * 1908 * netif_napi_add() must be used to initialize a napi context prior to calling 1909 * *any* of the other napi related functions. 1910 */ 1911void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1912 int (*poll)(struct napi_struct *, int), int weight); 1913 1914/** 1915 * netif_napi_del - remove a napi context 1916 * @napi: napi context 1917 * 1918 * netif_napi_del() removes a napi context from the network device napi list 1919 */ 1920void netif_napi_del(struct napi_struct *napi); 1921 1922struct napi_gro_cb { 1923 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1924 void *frag0; 1925 1926 /* Length of frag0. */ 1927 unsigned int frag0_len; 1928 1929 /* This indicates where we are processing relative to skb->data. */ 1930 int data_offset; 1931 1932 /* This is non-zero if the packet cannot be merged with the new skb. */ 1933 u16 flush; 1934 1935 /* Save the IP ID here and check when we get to the transport layer */ 1936 u16 flush_id; 1937 1938 /* Number of segments aggregated. */ 1939 u16 count; 1940 1941 /* Start offset for remote checksum offload */ 1942 u16 gro_remcsum_start; 1943 1944 /* jiffies when first packet was created/queued */ 1945 unsigned long age; 1946 1947 /* Used in ipv6_gro_receive() and foo-over-udp */ 1948 u16 proto; 1949 1950 /* This is non-zero if the packet may be of the same flow. */ 1951 u8 same_flow:1; 1952 1953 /* Used in udp_gro_receive */ 1954 u8 udp_mark:1; 1955 1956 /* GRO checksum is valid */ 1957 u8 csum_valid:1; 1958 1959 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1960 u8 csum_cnt:3; 1961 1962 /* Free the skb? */ 1963 u8 free:2; 1964#define NAPI_GRO_FREE 1 1965#define NAPI_GRO_FREE_STOLEN_HEAD 2 1966 1967 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1968 u8 is_ipv6:1; 1969 1970 /* 7 bit hole */ 1971 1972 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1973 __wsum csum; 1974 1975 /* used in skb_gro_receive() slow path */ 1976 struct sk_buff *last; 1977}; 1978 1979#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1980 1981struct packet_type { 1982 __be16 type; /* This is really htons(ether_type). */ 1983 struct net_device *dev; /* NULL is wildcarded here */ 1984 int (*func) (struct sk_buff *, 1985 struct net_device *, 1986 struct packet_type *, 1987 struct net_device *); 1988 bool (*id_match)(struct packet_type *ptype, 1989 struct sock *sk); 1990 void *af_packet_priv; 1991 struct list_head list; 1992}; 1993 1994struct offload_callbacks { 1995 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1996 netdev_features_t features); 1997 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1998 struct sk_buff *skb); 1999 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2000}; 2001 2002struct packet_offload { 2003 __be16 type; /* This is really htons(ether_type). */ 2004 u16 priority; 2005 struct offload_callbacks callbacks; 2006 struct list_head list; 2007}; 2008 2009struct udp_offload; 2010 2011struct udp_offload_callbacks { 2012 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2013 struct sk_buff *skb, 2014 struct udp_offload *uoff); 2015 int (*gro_complete)(struct sk_buff *skb, 2016 int nhoff, 2017 struct udp_offload *uoff); 2018}; 2019 2020struct udp_offload { 2021 __be16 port; 2022 u8 ipproto; 2023 struct udp_offload_callbacks callbacks; 2024}; 2025 2026/* often modified stats are per cpu, other are shared (netdev->stats) */ 2027struct pcpu_sw_netstats { 2028 u64 rx_packets; 2029 u64 rx_bytes; 2030 u64 tx_packets; 2031 u64 tx_bytes; 2032 struct u64_stats_sync syncp; 2033}; 2034 2035#define netdev_alloc_pcpu_stats(type) \ 2036({ \ 2037 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2038 if (pcpu_stats) { \ 2039 int __cpu; \ 2040 for_each_possible_cpu(__cpu) { \ 2041 typeof(type) *stat; \ 2042 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2043 u64_stats_init(&stat->syncp); \ 2044 } \ 2045 } \ 2046 pcpu_stats; \ 2047}) 2048 2049#include <linux/notifier.h> 2050 2051/* netdevice notifier chain. Please remember to update the rtnetlink 2052 * notification exclusion list in rtnetlink_event() when adding new 2053 * types. 2054 */ 2055#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2056#define NETDEV_DOWN 0x0002 2057#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2058 detected a hardware crash and restarted 2059 - we can use this eg to kick tcp sessions 2060 once done */ 2061#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2062#define NETDEV_REGISTER 0x0005 2063#define NETDEV_UNREGISTER 0x0006 2064#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2065#define NETDEV_CHANGEADDR 0x0008 2066#define NETDEV_GOING_DOWN 0x0009 2067#define NETDEV_CHANGENAME 0x000A 2068#define NETDEV_FEAT_CHANGE 0x000B 2069#define NETDEV_BONDING_FAILOVER 0x000C 2070#define NETDEV_PRE_UP 0x000D 2071#define NETDEV_PRE_TYPE_CHANGE 0x000E 2072#define NETDEV_POST_TYPE_CHANGE 0x000F 2073#define NETDEV_POST_INIT 0x0010 2074#define NETDEV_UNREGISTER_FINAL 0x0011 2075#define NETDEV_RELEASE 0x0012 2076#define NETDEV_NOTIFY_PEERS 0x0013 2077#define NETDEV_JOIN 0x0014 2078#define NETDEV_CHANGEUPPER 0x0015 2079#define NETDEV_RESEND_IGMP 0x0016 2080#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2081#define NETDEV_CHANGEINFODATA 0x0018 2082#define NETDEV_BONDING_INFO 0x0019 2083 2084int register_netdevice_notifier(struct notifier_block *nb); 2085int unregister_netdevice_notifier(struct notifier_block *nb); 2086 2087struct netdev_notifier_info { 2088 struct net_device *dev; 2089}; 2090 2091struct netdev_notifier_change_info { 2092 struct netdev_notifier_info info; /* must be first */ 2093 unsigned int flags_changed; 2094}; 2095 2096static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2097 struct net_device *dev) 2098{ 2099 info->dev = dev; 2100} 2101 2102static inline struct net_device * 2103netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2104{ 2105 return info->dev; 2106} 2107 2108int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2109 2110 2111extern rwlock_t dev_base_lock; /* Device list lock */ 2112 2113#define for_each_netdev(net, d) \ 2114 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2115#define for_each_netdev_reverse(net, d) \ 2116 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2117#define for_each_netdev_rcu(net, d) \ 2118 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2119#define for_each_netdev_safe(net, d, n) \ 2120 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2121#define for_each_netdev_continue(net, d) \ 2122 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2123#define for_each_netdev_continue_rcu(net, d) \ 2124 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2125#define for_each_netdev_in_bond_rcu(bond, slave) \ 2126 for_each_netdev_rcu(&init_net, slave) \ 2127 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2128#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2129 2130static inline struct net_device *next_net_device(struct net_device *dev) 2131{ 2132 struct list_head *lh; 2133 struct net *net; 2134 2135 net = dev_net(dev); 2136 lh = dev->dev_list.next; 2137 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2138} 2139 2140static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2141{ 2142 struct list_head *lh; 2143 struct net *net; 2144 2145 net = dev_net(dev); 2146 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2147 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2148} 2149 2150static inline struct net_device *first_net_device(struct net *net) 2151{ 2152 return list_empty(&net->dev_base_head) ? NULL : 2153 net_device_entry(net->dev_base_head.next); 2154} 2155 2156static inline struct net_device *first_net_device_rcu(struct net *net) 2157{ 2158 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2159 2160 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2161} 2162 2163int netdev_boot_setup_check(struct net_device *dev); 2164unsigned long netdev_boot_base(const char *prefix, int unit); 2165struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2166 const char *hwaddr); 2167struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2168struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2169void dev_add_pack(struct packet_type *pt); 2170void dev_remove_pack(struct packet_type *pt); 2171void __dev_remove_pack(struct packet_type *pt); 2172void dev_add_offload(struct packet_offload *po); 2173void dev_remove_offload(struct packet_offload *po); 2174 2175int dev_get_iflink(const struct net_device *dev); 2176struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2177 unsigned short mask); 2178struct net_device *dev_get_by_name(struct net *net, const char *name); 2179struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2180struct net_device *__dev_get_by_name(struct net *net, const char *name); 2181int dev_alloc_name(struct net_device *dev, const char *name); 2182int dev_open(struct net_device *dev); 2183int dev_close(struct net_device *dev); 2184int dev_close_many(struct list_head *head, bool unlink); 2185void dev_disable_lro(struct net_device *dev); 2186int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb); 2187int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb); 2188static inline int dev_queue_xmit(struct sk_buff *skb) 2189{ 2190 return dev_queue_xmit_sk(skb->sk, skb); 2191} 2192int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2193int register_netdevice(struct net_device *dev); 2194void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2195void unregister_netdevice_many(struct list_head *head); 2196static inline void unregister_netdevice(struct net_device *dev) 2197{ 2198 unregister_netdevice_queue(dev, NULL); 2199} 2200 2201int netdev_refcnt_read(const struct net_device *dev); 2202void free_netdev(struct net_device *dev); 2203void netdev_freemem(struct net_device *dev); 2204void synchronize_net(void); 2205int init_dummy_netdev(struct net_device *dev); 2206 2207DECLARE_PER_CPU(int, xmit_recursion); 2208static inline int dev_recursion_level(void) 2209{ 2210 return this_cpu_read(xmit_recursion); 2211} 2212 2213struct net_device *dev_get_by_index(struct net *net, int ifindex); 2214struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2215struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2216int netdev_get_name(struct net *net, char *name, int ifindex); 2217int dev_restart(struct net_device *dev); 2218int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2219 2220static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2221{ 2222 return NAPI_GRO_CB(skb)->data_offset; 2223} 2224 2225static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2226{ 2227 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2228} 2229 2230static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2231{ 2232 NAPI_GRO_CB(skb)->data_offset += len; 2233} 2234 2235static inline void *skb_gro_header_fast(struct sk_buff *skb, 2236 unsigned int offset) 2237{ 2238 return NAPI_GRO_CB(skb)->frag0 + offset; 2239} 2240 2241static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2242{ 2243 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2244} 2245 2246static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2247 unsigned int offset) 2248{ 2249 if (!pskb_may_pull(skb, hlen)) 2250 return NULL; 2251 2252 NAPI_GRO_CB(skb)->frag0 = NULL; 2253 NAPI_GRO_CB(skb)->frag0_len = 0; 2254 return skb->data + offset; 2255} 2256 2257static inline void *skb_gro_network_header(struct sk_buff *skb) 2258{ 2259 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2260 skb_network_offset(skb); 2261} 2262 2263static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2264 const void *start, unsigned int len) 2265{ 2266 if (NAPI_GRO_CB(skb)->csum_valid) 2267 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2268 csum_partial(start, len, 0)); 2269} 2270 2271/* GRO checksum functions. These are logical equivalents of the normal 2272 * checksum functions (in skbuff.h) except that they operate on the GRO 2273 * offsets and fields in sk_buff. 2274 */ 2275 2276__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2277 2278static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2279{ 2280 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) == 2281 skb_gro_offset(skb)); 2282} 2283 2284static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2285 bool zero_okay, 2286 __sum16 check) 2287{ 2288 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2289 skb_checksum_start_offset(skb) < 2290 skb_gro_offset(skb)) && 2291 !skb_at_gro_remcsum_start(skb) && 2292 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2293 (!zero_okay || check)); 2294} 2295 2296static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2297 __wsum psum) 2298{ 2299 if (NAPI_GRO_CB(skb)->csum_valid && 2300 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2301 return 0; 2302 2303 NAPI_GRO_CB(skb)->csum = psum; 2304 2305 return __skb_gro_checksum_complete(skb); 2306} 2307 2308static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2309{ 2310 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2311 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2312 NAPI_GRO_CB(skb)->csum_cnt--; 2313 } else { 2314 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2315 * verified a new top level checksum or an encapsulated one 2316 * during GRO. This saves work if we fallback to normal path. 2317 */ 2318 __skb_incr_checksum_unnecessary(skb); 2319 } 2320} 2321 2322#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2323 compute_pseudo) \ 2324({ \ 2325 __sum16 __ret = 0; \ 2326 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2327 __ret = __skb_gro_checksum_validate_complete(skb, \ 2328 compute_pseudo(skb, proto)); \ 2329 if (__ret) \ 2330 __skb_mark_checksum_bad(skb); \ 2331 else \ 2332 skb_gro_incr_csum_unnecessary(skb); \ 2333 __ret; \ 2334}) 2335 2336#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2337 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2338 2339#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2340 compute_pseudo) \ 2341 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2342 2343#define skb_gro_checksum_simple_validate(skb) \ 2344 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2345 2346static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2347{ 2348 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2349 !NAPI_GRO_CB(skb)->csum_valid); 2350} 2351 2352static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2353 __sum16 check, __wsum pseudo) 2354{ 2355 NAPI_GRO_CB(skb)->csum = ~pseudo; 2356 NAPI_GRO_CB(skb)->csum_valid = 1; 2357} 2358 2359#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2360do { \ 2361 if (__skb_gro_checksum_convert_check(skb)) \ 2362 __skb_gro_checksum_convert(skb, check, \ 2363 compute_pseudo(skb, proto)); \ 2364} while (0) 2365 2366struct gro_remcsum { 2367 int offset; 2368 __wsum delta; 2369}; 2370 2371static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2372{ 2373 grc->offset = 0; 2374 grc->delta = 0; 2375} 2376 2377static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2378 int start, int offset, 2379 struct gro_remcsum *grc, 2380 bool nopartial) 2381{ 2382 __wsum delta; 2383 2384 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2385 2386 if (!nopartial) { 2387 NAPI_GRO_CB(skb)->gro_remcsum_start = 2388 ((unsigned char *)ptr + start) - skb->head; 2389 return; 2390 } 2391 2392 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); 2393 2394 /* Adjust skb->csum since we changed the packet */ 2395 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2396 2397 grc->offset = (ptr + offset) - (void *)skb->head; 2398 grc->delta = delta; 2399} 2400 2401static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2402 struct gro_remcsum *grc) 2403{ 2404 if (!grc->delta) 2405 return; 2406 2407 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta); 2408} 2409 2410static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2411 unsigned short type, 2412 const void *daddr, const void *saddr, 2413 unsigned int len) 2414{ 2415 if (!dev->header_ops || !dev->header_ops->create) 2416 return 0; 2417 2418 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2419} 2420 2421static inline int dev_parse_header(const struct sk_buff *skb, 2422 unsigned char *haddr) 2423{ 2424 const struct net_device *dev = skb->dev; 2425 2426 if (!dev->header_ops || !dev->header_ops->parse) 2427 return 0; 2428 return dev->header_ops->parse(skb, haddr); 2429} 2430 2431typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2432int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2433static inline int unregister_gifconf(unsigned int family) 2434{ 2435 return register_gifconf(family, NULL); 2436} 2437 2438#ifdef CONFIG_NET_FLOW_LIMIT 2439#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2440struct sd_flow_limit { 2441 u64 count; 2442 unsigned int num_buckets; 2443 unsigned int history_head; 2444 u16 history[FLOW_LIMIT_HISTORY]; 2445 u8 buckets[]; 2446}; 2447 2448extern int netdev_flow_limit_table_len; 2449#endif /* CONFIG_NET_FLOW_LIMIT */ 2450 2451/* 2452 * Incoming packets are placed on per-cpu queues 2453 */ 2454struct softnet_data { 2455 struct list_head poll_list; 2456 struct sk_buff_head process_queue; 2457 2458 /* stats */ 2459 unsigned int processed; 2460 unsigned int time_squeeze; 2461 unsigned int cpu_collision; 2462 unsigned int received_rps; 2463#ifdef CONFIG_RPS 2464 struct softnet_data *rps_ipi_list; 2465#endif 2466#ifdef CONFIG_NET_FLOW_LIMIT 2467 struct sd_flow_limit __rcu *flow_limit; 2468#endif 2469 struct Qdisc *output_queue; 2470 struct Qdisc **output_queue_tailp; 2471 struct sk_buff *completion_queue; 2472 2473#ifdef CONFIG_RPS 2474 /* Elements below can be accessed between CPUs for RPS */ 2475 struct call_single_data csd ____cacheline_aligned_in_smp; 2476 struct softnet_data *rps_ipi_next; 2477 unsigned int cpu; 2478 unsigned int input_queue_head; 2479 unsigned int input_queue_tail; 2480#endif 2481 unsigned int dropped; 2482 struct sk_buff_head input_pkt_queue; 2483 struct napi_struct backlog; 2484 2485}; 2486 2487static inline void input_queue_head_incr(struct softnet_data *sd) 2488{ 2489#ifdef CONFIG_RPS 2490 sd->input_queue_head++; 2491#endif 2492} 2493 2494static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2495 unsigned int *qtail) 2496{ 2497#ifdef CONFIG_RPS 2498 *qtail = ++sd->input_queue_tail; 2499#endif 2500} 2501 2502DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2503 2504void __netif_schedule(struct Qdisc *q); 2505void netif_schedule_queue(struct netdev_queue *txq); 2506 2507static inline void netif_tx_schedule_all(struct net_device *dev) 2508{ 2509 unsigned int i; 2510 2511 for (i = 0; i < dev->num_tx_queues; i++) 2512 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2513} 2514 2515static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2516{ 2517 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2518} 2519 2520/** 2521 * netif_start_queue - allow transmit 2522 * @dev: network device 2523 * 2524 * Allow upper layers to call the device hard_start_xmit routine. 2525 */ 2526static inline void netif_start_queue(struct net_device *dev) 2527{ 2528 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2529} 2530 2531static inline void netif_tx_start_all_queues(struct net_device *dev) 2532{ 2533 unsigned int i; 2534 2535 for (i = 0; i < dev->num_tx_queues; i++) { 2536 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2537 netif_tx_start_queue(txq); 2538 } 2539} 2540 2541void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2542 2543/** 2544 * netif_wake_queue - restart transmit 2545 * @dev: network device 2546 * 2547 * Allow upper layers to call the device hard_start_xmit routine. 2548 * Used for flow control when transmit resources are available. 2549 */ 2550static inline void netif_wake_queue(struct net_device *dev) 2551{ 2552 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2553} 2554 2555static inline void netif_tx_wake_all_queues(struct net_device *dev) 2556{ 2557 unsigned int i; 2558 2559 for (i = 0; i < dev->num_tx_queues; i++) { 2560 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2561 netif_tx_wake_queue(txq); 2562 } 2563} 2564 2565static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2566{ 2567 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2568} 2569 2570/** 2571 * netif_stop_queue - stop transmitted packets 2572 * @dev: network device 2573 * 2574 * Stop upper layers calling the device hard_start_xmit routine. 2575 * Used for flow control when transmit resources are unavailable. 2576 */ 2577static inline void netif_stop_queue(struct net_device *dev) 2578{ 2579 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2580} 2581 2582void netif_tx_stop_all_queues(struct net_device *dev); 2583 2584static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2585{ 2586 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2587} 2588 2589/** 2590 * netif_queue_stopped - test if transmit queue is flowblocked 2591 * @dev: network device 2592 * 2593 * Test if transmit queue on device is currently unable to send. 2594 */ 2595static inline bool netif_queue_stopped(const struct net_device *dev) 2596{ 2597 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2598} 2599 2600static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2601{ 2602 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2603} 2604 2605static inline bool 2606netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2607{ 2608 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2609} 2610 2611static inline bool 2612netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2613{ 2614 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2615} 2616 2617/** 2618 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2619 * @dev_queue: pointer to transmit queue 2620 * 2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2622 * to give appropriate hint to the cpu. 2623 */ 2624static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2625{ 2626#ifdef CONFIG_BQL 2627 prefetchw(&dev_queue->dql.num_queued); 2628#endif 2629} 2630 2631/** 2632 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2633 * @dev_queue: pointer to transmit queue 2634 * 2635 * BQL enabled drivers might use this helper in their TX completion path, 2636 * to give appropriate hint to the cpu. 2637 */ 2638static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2639{ 2640#ifdef CONFIG_BQL 2641 prefetchw(&dev_queue->dql.limit); 2642#endif 2643} 2644 2645static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2646 unsigned int bytes) 2647{ 2648#ifdef CONFIG_BQL 2649 dql_queued(&dev_queue->dql, bytes); 2650 2651 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2652 return; 2653 2654 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2655 2656 /* 2657 * The XOFF flag must be set before checking the dql_avail below, 2658 * because in netdev_tx_completed_queue we update the dql_completed 2659 * before checking the XOFF flag. 2660 */ 2661 smp_mb(); 2662 2663 /* check again in case another CPU has just made room avail */ 2664 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2665 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2666#endif 2667} 2668 2669/** 2670 * netdev_sent_queue - report the number of bytes queued to hardware 2671 * @dev: network device 2672 * @bytes: number of bytes queued to the hardware device queue 2673 * 2674 * Report the number of bytes queued for sending/completion to the network 2675 * device hardware queue. @bytes should be a good approximation and should 2676 * exactly match netdev_completed_queue() @bytes 2677 */ 2678static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2679{ 2680 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2681} 2682 2683static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2684 unsigned int pkts, unsigned int bytes) 2685{ 2686#ifdef CONFIG_BQL 2687 if (unlikely(!bytes)) 2688 return; 2689 2690 dql_completed(&dev_queue->dql, bytes); 2691 2692 /* 2693 * Without the memory barrier there is a small possiblity that 2694 * netdev_tx_sent_queue will miss the update and cause the queue to 2695 * be stopped forever 2696 */ 2697 smp_mb(); 2698 2699 if (dql_avail(&dev_queue->dql) < 0) 2700 return; 2701 2702 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2703 netif_schedule_queue(dev_queue); 2704#endif 2705} 2706 2707/** 2708 * netdev_completed_queue - report bytes and packets completed by device 2709 * @dev: network device 2710 * @pkts: actual number of packets sent over the medium 2711 * @bytes: actual number of bytes sent over the medium 2712 * 2713 * Report the number of bytes and packets transmitted by the network device 2714 * hardware queue over the physical medium, @bytes must exactly match the 2715 * @bytes amount passed to netdev_sent_queue() 2716 */ 2717static inline void netdev_completed_queue(struct net_device *dev, 2718 unsigned int pkts, unsigned int bytes) 2719{ 2720 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2721} 2722 2723static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2724{ 2725#ifdef CONFIG_BQL 2726 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2727 dql_reset(&q->dql); 2728#endif 2729} 2730 2731/** 2732 * netdev_reset_queue - reset the packets and bytes count of a network device 2733 * @dev_queue: network device 2734 * 2735 * Reset the bytes and packet count of a network device and clear the 2736 * software flow control OFF bit for this network device 2737 */ 2738static inline void netdev_reset_queue(struct net_device *dev_queue) 2739{ 2740 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2741} 2742 2743/** 2744 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2745 * @dev: network device 2746 * @queue_index: given tx queue index 2747 * 2748 * Returns 0 if given tx queue index >= number of device tx queues, 2749 * otherwise returns the originally passed tx queue index. 2750 */ 2751static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2752{ 2753 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2754 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2755 dev->name, queue_index, 2756 dev->real_num_tx_queues); 2757 return 0; 2758 } 2759 2760 return queue_index; 2761} 2762 2763/** 2764 * netif_running - test if up 2765 * @dev: network device 2766 * 2767 * Test if the device has been brought up. 2768 */ 2769static inline bool netif_running(const struct net_device *dev) 2770{ 2771 return test_bit(__LINK_STATE_START, &dev->state); 2772} 2773 2774/* 2775 * Routines to manage the subqueues on a device. We only need start 2776 * stop, and a check if it's stopped. All other device management is 2777 * done at the overall netdevice level. 2778 * Also test the device if we're multiqueue. 2779 */ 2780 2781/** 2782 * netif_start_subqueue - allow sending packets on subqueue 2783 * @dev: network device 2784 * @queue_index: sub queue index 2785 * 2786 * Start individual transmit queue of a device with multiple transmit queues. 2787 */ 2788static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2789{ 2790 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2791 2792 netif_tx_start_queue(txq); 2793} 2794 2795/** 2796 * netif_stop_subqueue - stop sending packets on subqueue 2797 * @dev: network device 2798 * @queue_index: sub queue index 2799 * 2800 * Stop individual transmit queue of a device with multiple transmit queues. 2801 */ 2802static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2803{ 2804 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2805 netif_tx_stop_queue(txq); 2806} 2807 2808/** 2809 * netif_subqueue_stopped - test status of subqueue 2810 * @dev: network device 2811 * @queue_index: sub queue index 2812 * 2813 * Check individual transmit queue of a device with multiple transmit queues. 2814 */ 2815static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2816 u16 queue_index) 2817{ 2818 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2819 2820 return netif_tx_queue_stopped(txq); 2821} 2822 2823static inline bool netif_subqueue_stopped(const struct net_device *dev, 2824 struct sk_buff *skb) 2825{ 2826 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2827} 2828 2829void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2830 2831#ifdef CONFIG_XPS 2832int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2833 u16 index); 2834#else 2835static inline int netif_set_xps_queue(struct net_device *dev, 2836 const struct cpumask *mask, 2837 u16 index) 2838{ 2839 return 0; 2840} 2841#endif 2842 2843u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2844 unsigned int num_tx_queues); 2845 2846/* 2847 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2848 * as a distribution range limit for the returned value. 2849 */ 2850static inline u16 skb_tx_hash(const struct net_device *dev, 2851 struct sk_buff *skb) 2852{ 2853 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2854} 2855 2856/** 2857 * netif_is_multiqueue - test if device has multiple transmit queues 2858 * @dev: network device 2859 * 2860 * Check if device has multiple transmit queues 2861 */ 2862static inline bool netif_is_multiqueue(const struct net_device *dev) 2863{ 2864 return dev->num_tx_queues > 1; 2865} 2866 2867int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2868 2869#ifdef CONFIG_SYSFS 2870int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2871#else 2872static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2873 unsigned int rxq) 2874{ 2875 return 0; 2876} 2877#endif 2878 2879#ifdef CONFIG_SYSFS 2880static inline unsigned int get_netdev_rx_queue_index( 2881 struct netdev_rx_queue *queue) 2882{ 2883 struct net_device *dev = queue->dev; 2884 int index = queue - dev->_rx; 2885 2886 BUG_ON(index >= dev->num_rx_queues); 2887 return index; 2888} 2889#endif 2890 2891#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2892int netif_get_num_default_rss_queues(void); 2893 2894enum skb_free_reason { 2895 SKB_REASON_CONSUMED, 2896 SKB_REASON_DROPPED, 2897}; 2898 2899void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2900void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2901 2902/* 2903 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2904 * interrupt context or with hardware interrupts being disabled. 2905 * (in_irq() || irqs_disabled()) 2906 * 2907 * We provide four helpers that can be used in following contexts : 2908 * 2909 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2910 * replacing kfree_skb(skb) 2911 * 2912 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2913 * Typically used in place of consume_skb(skb) in TX completion path 2914 * 2915 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2916 * replacing kfree_skb(skb) 2917 * 2918 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2919 * and consumed a packet. Used in place of consume_skb(skb) 2920 */ 2921static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2922{ 2923 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2924} 2925 2926static inline void dev_consume_skb_irq(struct sk_buff *skb) 2927{ 2928 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2929} 2930 2931static inline void dev_kfree_skb_any(struct sk_buff *skb) 2932{ 2933 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2934} 2935 2936static inline void dev_consume_skb_any(struct sk_buff *skb) 2937{ 2938 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2939} 2940 2941int netif_rx(struct sk_buff *skb); 2942int netif_rx_ni(struct sk_buff *skb); 2943int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb); 2944static inline int netif_receive_skb(struct sk_buff *skb) 2945{ 2946 return netif_receive_skb_sk(skb->sk, skb); 2947} 2948gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2949void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2950struct sk_buff *napi_get_frags(struct napi_struct *napi); 2951gro_result_t napi_gro_frags(struct napi_struct *napi); 2952struct packet_offload *gro_find_receive_by_type(__be16 type); 2953struct packet_offload *gro_find_complete_by_type(__be16 type); 2954 2955static inline void napi_free_frags(struct napi_struct *napi) 2956{ 2957 kfree_skb(napi->skb); 2958 napi->skb = NULL; 2959} 2960 2961int netdev_rx_handler_register(struct net_device *dev, 2962 rx_handler_func_t *rx_handler, 2963 void *rx_handler_data); 2964void netdev_rx_handler_unregister(struct net_device *dev); 2965 2966bool dev_valid_name(const char *name); 2967int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2968int dev_ethtool(struct net *net, struct ifreq *); 2969unsigned int dev_get_flags(const struct net_device *); 2970int __dev_change_flags(struct net_device *, unsigned int flags); 2971int dev_change_flags(struct net_device *, unsigned int); 2972void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2973 unsigned int gchanges); 2974int dev_change_name(struct net_device *, const char *); 2975int dev_set_alias(struct net_device *, const char *, size_t); 2976int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2977int dev_set_mtu(struct net_device *, int); 2978void dev_set_group(struct net_device *, int); 2979int dev_set_mac_address(struct net_device *, struct sockaddr *); 2980int dev_change_carrier(struct net_device *, bool new_carrier); 2981int dev_get_phys_port_id(struct net_device *dev, 2982 struct netdev_phys_item_id *ppid); 2983int dev_get_phys_port_name(struct net_device *dev, 2984 char *name, size_t len); 2985struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 2986struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2987 struct netdev_queue *txq, int *ret); 2988int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2989int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2990bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2991 2992extern int netdev_budget; 2993 2994/* Called by rtnetlink.c:rtnl_unlock() */ 2995void netdev_run_todo(void); 2996 2997/** 2998 * dev_put - release reference to device 2999 * @dev: network device 3000 * 3001 * Release reference to device to allow it to be freed. 3002 */ 3003static inline void dev_put(struct net_device *dev) 3004{ 3005 this_cpu_dec(*dev->pcpu_refcnt); 3006} 3007 3008/** 3009 * dev_hold - get reference to device 3010 * @dev: network device 3011 * 3012 * Hold reference to device to keep it from being freed. 3013 */ 3014static inline void dev_hold(struct net_device *dev) 3015{ 3016 this_cpu_inc(*dev->pcpu_refcnt); 3017} 3018 3019/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3020 * and _off may be called from IRQ context, but it is caller 3021 * who is responsible for serialization of these calls. 3022 * 3023 * The name carrier is inappropriate, these functions should really be 3024 * called netif_lowerlayer_*() because they represent the state of any 3025 * kind of lower layer not just hardware media. 3026 */ 3027 3028void linkwatch_init_dev(struct net_device *dev); 3029void linkwatch_fire_event(struct net_device *dev); 3030void linkwatch_forget_dev(struct net_device *dev); 3031 3032/** 3033 * netif_carrier_ok - test if carrier present 3034 * @dev: network device 3035 * 3036 * Check if carrier is present on device 3037 */ 3038static inline bool netif_carrier_ok(const struct net_device *dev) 3039{ 3040 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3041} 3042 3043unsigned long dev_trans_start(struct net_device *dev); 3044 3045void __netdev_watchdog_up(struct net_device *dev); 3046 3047void netif_carrier_on(struct net_device *dev); 3048 3049void netif_carrier_off(struct net_device *dev); 3050 3051/** 3052 * netif_dormant_on - mark device as dormant. 3053 * @dev: network device 3054 * 3055 * Mark device as dormant (as per RFC2863). 3056 * 3057 * The dormant state indicates that the relevant interface is not 3058 * actually in a condition to pass packets (i.e., it is not 'up') but is 3059 * in a "pending" state, waiting for some external event. For "on- 3060 * demand" interfaces, this new state identifies the situation where the 3061 * interface is waiting for events to place it in the up state. 3062 * 3063 */ 3064static inline void netif_dormant_on(struct net_device *dev) 3065{ 3066 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3067 linkwatch_fire_event(dev); 3068} 3069 3070/** 3071 * netif_dormant_off - set device as not dormant. 3072 * @dev: network device 3073 * 3074 * Device is not in dormant state. 3075 */ 3076static inline void netif_dormant_off(struct net_device *dev) 3077{ 3078 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3079 linkwatch_fire_event(dev); 3080} 3081 3082/** 3083 * netif_dormant - test if carrier present 3084 * @dev: network device 3085 * 3086 * Check if carrier is present on device 3087 */ 3088static inline bool netif_dormant(const struct net_device *dev) 3089{ 3090 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3091} 3092 3093 3094/** 3095 * netif_oper_up - test if device is operational 3096 * @dev: network device 3097 * 3098 * Check if carrier is operational 3099 */ 3100static inline bool netif_oper_up(const struct net_device *dev) 3101{ 3102 return (dev->operstate == IF_OPER_UP || 3103 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3104} 3105 3106/** 3107 * netif_device_present - is device available or removed 3108 * @dev: network device 3109 * 3110 * Check if device has not been removed from system. 3111 */ 3112static inline bool netif_device_present(struct net_device *dev) 3113{ 3114 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3115} 3116 3117void netif_device_detach(struct net_device *dev); 3118 3119void netif_device_attach(struct net_device *dev); 3120 3121/* 3122 * Network interface message level settings 3123 */ 3124 3125enum { 3126 NETIF_MSG_DRV = 0x0001, 3127 NETIF_MSG_PROBE = 0x0002, 3128 NETIF_MSG_LINK = 0x0004, 3129 NETIF_MSG_TIMER = 0x0008, 3130 NETIF_MSG_IFDOWN = 0x0010, 3131 NETIF_MSG_IFUP = 0x0020, 3132 NETIF_MSG_RX_ERR = 0x0040, 3133 NETIF_MSG_TX_ERR = 0x0080, 3134 NETIF_MSG_TX_QUEUED = 0x0100, 3135 NETIF_MSG_INTR = 0x0200, 3136 NETIF_MSG_TX_DONE = 0x0400, 3137 NETIF_MSG_RX_STATUS = 0x0800, 3138 NETIF_MSG_PKTDATA = 0x1000, 3139 NETIF_MSG_HW = 0x2000, 3140 NETIF_MSG_WOL = 0x4000, 3141}; 3142 3143#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3144#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3145#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3146#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3147#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3148#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3149#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3150#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3151#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3152#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3153#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3154#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3155#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3156#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3157#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3158 3159static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3160{ 3161 /* use default */ 3162 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3163 return default_msg_enable_bits; 3164 if (debug_value == 0) /* no output */ 3165 return 0; 3166 /* set low N bits */ 3167 return (1 << debug_value) - 1; 3168} 3169 3170static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3171{ 3172 spin_lock(&txq->_xmit_lock); 3173 txq->xmit_lock_owner = cpu; 3174} 3175 3176static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3177{ 3178 spin_lock_bh(&txq->_xmit_lock); 3179 txq->xmit_lock_owner = smp_processor_id(); 3180} 3181 3182static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3183{ 3184 bool ok = spin_trylock(&txq->_xmit_lock); 3185 if (likely(ok)) 3186 txq->xmit_lock_owner = smp_processor_id(); 3187 return ok; 3188} 3189 3190static inline void __netif_tx_unlock(struct netdev_queue *txq) 3191{ 3192 txq->xmit_lock_owner = -1; 3193 spin_unlock(&txq->_xmit_lock); 3194} 3195 3196static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3197{ 3198 txq->xmit_lock_owner = -1; 3199 spin_unlock_bh(&txq->_xmit_lock); 3200} 3201 3202static inline void txq_trans_update(struct netdev_queue *txq) 3203{ 3204 if (txq->xmit_lock_owner != -1) 3205 txq->trans_start = jiffies; 3206} 3207 3208/** 3209 * netif_tx_lock - grab network device transmit lock 3210 * @dev: network device 3211 * 3212 * Get network device transmit lock 3213 */ 3214static inline void netif_tx_lock(struct net_device *dev) 3215{ 3216 unsigned int i; 3217 int cpu; 3218 3219 spin_lock(&dev->tx_global_lock); 3220 cpu = smp_processor_id(); 3221 for (i = 0; i < dev->num_tx_queues; i++) { 3222 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3223 3224 /* We are the only thread of execution doing a 3225 * freeze, but we have to grab the _xmit_lock in 3226 * order to synchronize with threads which are in 3227 * the ->hard_start_xmit() handler and already 3228 * checked the frozen bit. 3229 */ 3230 __netif_tx_lock(txq, cpu); 3231 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3232 __netif_tx_unlock(txq); 3233 } 3234} 3235 3236static inline void netif_tx_lock_bh(struct net_device *dev) 3237{ 3238 local_bh_disable(); 3239 netif_tx_lock(dev); 3240} 3241 3242static inline void netif_tx_unlock(struct net_device *dev) 3243{ 3244 unsigned int i; 3245 3246 for (i = 0; i < dev->num_tx_queues; i++) { 3247 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3248 3249 /* No need to grab the _xmit_lock here. If the 3250 * queue is not stopped for another reason, we 3251 * force a schedule. 3252 */ 3253 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3254 netif_schedule_queue(txq); 3255 } 3256 spin_unlock(&dev->tx_global_lock); 3257} 3258 3259static inline void netif_tx_unlock_bh(struct net_device *dev) 3260{ 3261 netif_tx_unlock(dev); 3262 local_bh_enable(); 3263} 3264 3265#define HARD_TX_LOCK(dev, txq, cpu) { \ 3266 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3267 __netif_tx_lock(txq, cpu); \ 3268 } \ 3269} 3270 3271#define HARD_TX_TRYLOCK(dev, txq) \ 3272 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3273 __netif_tx_trylock(txq) : \ 3274 true ) 3275 3276#define HARD_TX_UNLOCK(dev, txq) { \ 3277 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3278 __netif_tx_unlock(txq); \ 3279 } \ 3280} 3281 3282static inline void netif_tx_disable(struct net_device *dev) 3283{ 3284 unsigned int i; 3285 int cpu; 3286 3287 local_bh_disable(); 3288 cpu = smp_processor_id(); 3289 for (i = 0; i < dev->num_tx_queues; i++) { 3290 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3291 3292 __netif_tx_lock(txq, cpu); 3293 netif_tx_stop_queue(txq); 3294 __netif_tx_unlock(txq); 3295 } 3296 local_bh_enable(); 3297} 3298 3299static inline void netif_addr_lock(struct net_device *dev) 3300{ 3301 spin_lock(&dev->addr_list_lock); 3302} 3303 3304static inline void netif_addr_lock_nested(struct net_device *dev) 3305{ 3306 int subclass = SINGLE_DEPTH_NESTING; 3307 3308 if (dev->netdev_ops->ndo_get_lock_subclass) 3309 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3310 3311 spin_lock_nested(&dev->addr_list_lock, subclass); 3312} 3313 3314static inline void netif_addr_lock_bh(struct net_device *dev) 3315{ 3316 spin_lock_bh(&dev->addr_list_lock); 3317} 3318 3319static inline void netif_addr_unlock(struct net_device *dev) 3320{ 3321 spin_unlock(&dev->addr_list_lock); 3322} 3323 3324static inline void netif_addr_unlock_bh(struct net_device *dev) 3325{ 3326 spin_unlock_bh(&dev->addr_list_lock); 3327} 3328 3329/* 3330 * dev_addrs walker. Should be used only for read access. Call with 3331 * rcu_read_lock held. 3332 */ 3333#define for_each_dev_addr(dev, ha) \ 3334 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3335 3336/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3337 3338void ether_setup(struct net_device *dev); 3339 3340/* Support for loadable net-drivers */ 3341struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3342 unsigned char name_assign_type, 3343 void (*setup)(struct net_device *), 3344 unsigned int txqs, unsigned int rxqs); 3345#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3346 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3347 3348#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3349 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3350 count) 3351 3352int register_netdev(struct net_device *dev); 3353void unregister_netdev(struct net_device *dev); 3354 3355/* General hardware address lists handling functions */ 3356int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3357 struct netdev_hw_addr_list *from_list, int addr_len); 3358void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3359 struct netdev_hw_addr_list *from_list, int addr_len); 3360int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3361 struct net_device *dev, 3362 int (*sync)(struct net_device *, const unsigned char *), 3363 int (*unsync)(struct net_device *, 3364 const unsigned char *)); 3365void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3366 struct net_device *dev, 3367 int (*unsync)(struct net_device *, 3368 const unsigned char *)); 3369void __hw_addr_init(struct netdev_hw_addr_list *list); 3370 3371/* Functions used for device addresses handling */ 3372int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3373 unsigned char addr_type); 3374int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3375 unsigned char addr_type); 3376void dev_addr_flush(struct net_device *dev); 3377int dev_addr_init(struct net_device *dev); 3378 3379/* Functions used for unicast addresses handling */ 3380int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3381int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3382int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3383int dev_uc_sync(struct net_device *to, struct net_device *from); 3384int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3385void dev_uc_unsync(struct net_device *to, struct net_device *from); 3386void dev_uc_flush(struct net_device *dev); 3387void dev_uc_init(struct net_device *dev); 3388 3389/** 3390 * __dev_uc_sync - Synchonize device's unicast list 3391 * @dev: device to sync 3392 * @sync: function to call if address should be added 3393 * @unsync: function to call if address should be removed 3394 * 3395 * Add newly added addresses to the interface, and release 3396 * addresses that have been deleted. 3397 **/ 3398static inline int __dev_uc_sync(struct net_device *dev, 3399 int (*sync)(struct net_device *, 3400 const unsigned char *), 3401 int (*unsync)(struct net_device *, 3402 const unsigned char *)) 3403{ 3404 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3405} 3406 3407/** 3408 * __dev_uc_unsync - Remove synchronized addresses from device 3409 * @dev: device to sync 3410 * @unsync: function to call if address should be removed 3411 * 3412 * Remove all addresses that were added to the device by dev_uc_sync(). 3413 **/ 3414static inline void __dev_uc_unsync(struct net_device *dev, 3415 int (*unsync)(struct net_device *, 3416 const unsigned char *)) 3417{ 3418 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3419} 3420 3421/* Functions used for multicast addresses handling */ 3422int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3423int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3424int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3425int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3426int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3427int dev_mc_sync(struct net_device *to, struct net_device *from); 3428int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3429void dev_mc_unsync(struct net_device *to, struct net_device *from); 3430void dev_mc_flush(struct net_device *dev); 3431void dev_mc_init(struct net_device *dev); 3432 3433/** 3434 * __dev_mc_sync - Synchonize device's multicast list 3435 * @dev: device to sync 3436 * @sync: function to call if address should be added 3437 * @unsync: function to call if address should be removed 3438 * 3439 * Add newly added addresses to the interface, and release 3440 * addresses that have been deleted. 3441 **/ 3442static inline int __dev_mc_sync(struct net_device *dev, 3443 int (*sync)(struct net_device *, 3444 const unsigned char *), 3445 int (*unsync)(struct net_device *, 3446 const unsigned char *)) 3447{ 3448 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3449} 3450 3451/** 3452 * __dev_mc_unsync - Remove synchronized addresses from device 3453 * @dev: device to sync 3454 * @unsync: function to call if address should be removed 3455 * 3456 * Remove all addresses that were added to the device by dev_mc_sync(). 3457 **/ 3458static inline void __dev_mc_unsync(struct net_device *dev, 3459 int (*unsync)(struct net_device *, 3460 const unsigned char *)) 3461{ 3462 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3463} 3464 3465/* Functions used for secondary unicast and multicast support */ 3466void dev_set_rx_mode(struct net_device *dev); 3467void __dev_set_rx_mode(struct net_device *dev); 3468int dev_set_promiscuity(struct net_device *dev, int inc); 3469int dev_set_allmulti(struct net_device *dev, int inc); 3470void netdev_state_change(struct net_device *dev); 3471void netdev_notify_peers(struct net_device *dev); 3472void netdev_features_change(struct net_device *dev); 3473/* Load a device via the kmod */ 3474void dev_load(struct net *net, const char *name); 3475struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3476 struct rtnl_link_stats64 *storage); 3477void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3478 const struct net_device_stats *netdev_stats); 3479 3480extern int netdev_max_backlog; 3481extern int netdev_tstamp_prequeue; 3482extern int weight_p; 3483extern int bpf_jit_enable; 3484 3485bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3486struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3487 struct list_head **iter); 3488struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3489 struct list_head **iter); 3490 3491/* iterate through upper list, must be called under RCU read lock */ 3492#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3493 for (iter = &(dev)->adj_list.upper, \ 3494 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3495 updev; \ 3496 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3497 3498/* iterate through upper list, must be called under RCU read lock */ 3499#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3500 for (iter = &(dev)->all_adj_list.upper, \ 3501 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3502 updev; \ 3503 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3504 3505void *netdev_lower_get_next_private(struct net_device *dev, 3506 struct list_head **iter); 3507void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3508 struct list_head **iter); 3509 3510#define netdev_for_each_lower_private(dev, priv, iter) \ 3511 for (iter = (dev)->adj_list.lower.next, \ 3512 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3513 priv; \ 3514 priv = netdev_lower_get_next_private(dev, &(iter))) 3515 3516#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3517 for (iter = &(dev)->adj_list.lower, \ 3518 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3519 priv; \ 3520 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3521 3522void *netdev_lower_get_next(struct net_device *dev, 3523 struct list_head **iter); 3524#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3525 for (iter = &(dev)->adj_list.lower, \ 3526 ldev = netdev_lower_get_next(dev, &(iter)); \ 3527 ldev; \ 3528 ldev = netdev_lower_get_next(dev, &(iter))) 3529 3530void *netdev_adjacent_get_private(struct list_head *adj_list); 3531void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3532struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3533struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3534int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3535int netdev_master_upper_dev_link(struct net_device *dev, 3536 struct net_device *upper_dev); 3537int netdev_master_upper_dev_link_private(struct net_device *dev, 3538 struct net_device *upper_dev, 3539 void *private); 3540void netdev_upper_dev_unlink(struct net_device *dev, 3541 struct net_device *upper_dev); 3542void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3543void *netdev_lower_dev_get_private(struct net_device *dev, 3544 struct net_device *lower_dev); 3545 3546/* RSS keys are 40 or 52 bytes long */ 3547#define NETDEV_RSS_KEY_LEN 52 3548extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3549void netdev_rss_key_fill(void *buffer, size_t len); 3550 3551int dev_get_nest_level(struct net_device *dev, 3552 bool (*type_check)(struct net_device *dev)); 3553int skb_checksum_help(struct sk_buff *skb); 3554struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3555 netdev_features_t features, bool tx_path); 3556struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3557 netdev_features_t features); 3558 3559struct netdev_bonding_info { 3560 ifslave slave; 3561 ifbond master; 3562}; 3563 3564struct netdev_notifier_bonding_info { 3565 struct netdev_notifier_info info; /* must be first */ 3566 struct netdev_bonding_info bonding_info; 3567}; 3568 3569void netdev_bonding_info_change(struct net_device *dev, 3570 struct netdev_bonding_info *bonding_info); 3571 3572static inline 3573struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3574{ 3575 return __skb_gso_segment(skb, features, true); 3576} 3577__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3578 3579static inline bool can_checksum_protocol(netdev_features_t features, 3580 __be16 protocol) 3581{ 3582 return ((features & NETIF_F_GEN_CSUM) || 3583 ((features & NETIF_F_V4_CSUM) && 3584 protocol == htons(ETH_P_IP)) || 3585 ((features & NETIF_F_V6_CSUM) && 3586 protocol == htons(ETH_P_IPV6)) || 3587 ((features & NETIF_F_FCOE_CRC) && 3588 protocol == htons(ETH_P_FCOE))); 3589} 3590 3591#ifdef CONFIG_BUG 3592void netdev_rx_csum_fault(struct net_device *dev); 3593#else 3594static inline void netdev_rx_csum_fault(struct net_device *dev) 3595{ 3596} 3597#endif 3598/* rx skb timestamps */ 3599void net_enable_timestamp(void); 3600void net_disable_timestamp(void); 3601 3602#ifdef CONFIG_PROC_FS 3603int __init dev_proc_init(void); 3604#else 3605#define dev_proc_init() 0 3606#endif 3607 3608static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3609 struct sk_buff *skb, struct net_device *dev, 3610 bool more) 3611{ 3612 skb->xmit_more = more ? 1 : 0; 3613 return ops->ndo_start_xmit(skb, dev); 3614} 3615 3616static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3617 struct netdev_queue *txq, bool more) 3618{ 3619 const struct net_device_ops *ops = dev->netdev_ops; 3620 int rc; 3621 3622 rc = __netdev_start_xmit(ops, skb, dev, more); 3623 if (rc == NETDEV_TX_OK) 3624 txq_trans_update(txq); 3625 3626 return rc; 3627} 3628 3629int netdev_class_create_file_ns(struct class_attribute *class_attr, 3630 const void *ns); 3631void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3632 const void *ns); 3633 3634static inline int netdev_class_create_file(struct class_attribute *class_attr) 3635{ 3636 return netdev_class_create_file_ns(class_attr, NULL); 3637} 3638 3639static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3640{ 3641 netdev_class_remove_file_ns(class_attr, NULL); 3642} 3643 3644extern struct kobj_ns_type_operations net_ns_type_operations; 3645 3646const char *netdev_drivername(const struct net_device *dev); 3647 3648void linkwatch_run_queue(void); 3649 3650static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3651 netdev_features_t f2) 3652{ 3653 if (f1 & NETIF_F_GEN_CSUM) 3654 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3655 if (f2 & NETIF_F_GEN_CSUM) 3656 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3657 f1 &= f2; 3658 if (f1 & NETIF_F_GEN_CSUM) 3659 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3660 3661 return f1; 3662} 3663 3664static inline netdev_features_t netdev_get_wanted_features( 3665 struct net_device *dev) 3666{ 3667 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3668} 3669netdev_features_t netdev_increment_features(netdev_features_t all, 3670 netdev_features_t one, netdev_features_t mask); 3671 3672/* Allow TSO being used on stacked device : 3673 * Performing the GSO segmentation before last device 3674 * is a performance improvement. 3675 */ 3676static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3677 netdev_features_t mask) 3678{ 3679 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3680} 3681 3682int __netdev_update_features(struct net_device *dev); 3683void netdev_update_features(struct net_device *dev); 3684void netdev_change_features(struct net_device *dev); 3685 3686void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3687 struct net_device *dev); 3688 3689netdev_features_t passthru_features_check(struct sk_buff *skb, 3690 struct net_device *dev, 3691 netdev_features_t features); 3692netdev_features_t netif_skb_features(struct sk_buff *skb); 3693 3694static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3695{ 3696 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3697 3698 /* check flags correspondence */ 3699 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3700 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3701 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3702 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3703 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3704 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3705 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3706 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3707 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3708 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3709 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3710 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3711 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3712 3713 return (features & feature) == feature; 3714} 3715 3716static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3717{ 3718 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3719 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3720} 3721 3722static inline bool netif_needs_gso(struct sk_buff *skb, 3723 netdev_features_t features) 3724{ 3725 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3726 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3727 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3728} 3729 3730static inline void netif_set_gso_max_size(struct net_device *dev, 3731 unsigned int size) 3732{ 3733 dev->gso_max_size = size; 3734} 3735 3736static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3737 int pulled_hlen, u16 mac_offset, 3738 int mac_len) 3739{ 3740 skb->protocol = protocol; 3741 skb->encapsulation = 1; 3742 skb_push(skb, pulled_hlen); 3743 skb_reset_transport_header(skb); 3744 skb->mac_header = mac_offset; 3745 skb->network_header = skb->mac_header + mac_len; 3746 skb->mac_len = mac_len; 3747} 3748 3749static inline bool netif_is_macvlan(struct net_device *dev) 3750{ 3751 return dev->priv_flags & IFF_MACVLAN; 3752} 3753 3754static inline bool netif_is_macvlan_port(struct net_device *dev) 3755{ 3756 return dev->priv_flags & IFF_MACVLAN_PORT; 3757} 3758 3759static inline bool netif_is_ipvlan(struct net_device *dev) 3760{ 3761 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3762} 3763 3764static inline bool netif_is_ipvlan_port(struct net_device *dev) 3765{ 3766 return dev->priv_flags & IFF_IPVLAN_MASTER; 3767} 3768 3769static inline bool netif_is_bond_master(struct net_device *dev) 3770{ 3771 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3772} 3773 3774static inline bool netif_is_bond_slave(struct net_device *dev) 3775{ 3776 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3777} 3778 3779static inline bool netif_supports_nofcs(struct net_device *dev) 3780{ 3781 return dev->priv_flags & IFF_SUPP_NOFCS; 3782} 3783 3784/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3785static inline void netif_keep_dst(struct net_device *dev) 3786{ 3787 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3788} 3789 3790extern struct pernet_operations __net_initdata loopback_net_ops; 3791 3792/* Logging, debugging and troubleshooting/diagnostic helpers. */ 3793 3794/* netdev_printk helpers, similar to dev_printk */ 3795 3796static inline const char *netdev_name(const struct net_device *dev) 3797{ 3798 if (!dev->name[0] || strchr(dev->name, '%')) 3799 return "(unnamed net_device)"; 3800 return dev->name; 3801} 3802 3803static inline const char *netdev_reg_state(const struct net_device *dev) 3804{ 3805 switch (dev->reg_state) { 3806 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3807 case NETREG_REGISTERED: return ""; 3808 case NETREG_UNREGISTERING: return " (unregistering)"; 3809 case NETREG_UNREGISTERED: return " (unregistered)"; 3810 case NETREG_RELEASED: return " (released)"; 3811 case NETREG_DUMMY: return " (dummy)"; 3812 } 3813 3814 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3815 return " (unknown)"; 3816} 3817 3818__printf(3, 4) 3819void netdev_printk(const char *level, const struct net_device *dev, 3820 const char *format, ...); 3821__printf(2, 3) 3822void netdev_emerg(const struct net_device *dev, const char *format, ...); 3823__printf(2, 3) 3824void netdev_alert(const struct net_device *dev, const char *format, ...); 3825__printf(2, 3) 3826void netdev_crit(const struct net_device *dev, const char *format, ...); 3827__printf(2, 3) 3828void netdev_err(const struct net_device *dev, const char *format, ...); 3829__printf(2, 3) 3830void netdev_warn(const struct net_device *dev, const char *format, ...); 3831__printf(2, 3) 3832void netdev_notice(const struct net_device *dev, const char *format, ...); 3833__printf(2, 3) 3834void netdev_info(const struct net_device *dev, const char *format, ...); 3835 3836#define MODULE_ALIAS_NETDEV(device) \ 3837 MODULE_ALIAS("netdev-" device) 3838 3839#if defined(CONFIG_DYNAMIC_DEBUG) 3840#define netdev_dbg(__dev, format, args...) \ 3841do { \ 3842 dynamic_netdev_dbg(__dev, format, ##args); \ 3843} while (0) 3844#elif defined(DEBUG) 3845#define netdev_dbg(__dev, format, args...) \ 3846 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3847#else 3848#define netdev_dbg(__dev, format, args...) \ 3849({ \ 3850 if (0) \ 3851 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3852}) 3853#endif 3854 3855#if defined(VERBOSE_DEBUG) 3856#define netdev_vdbg netdev_dbg 3857#else 3858 3859#define netdev_vdbg(dev, format, args...) \ 3860({ \ 3861 if (0) \ 3862 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3863 0; \ 3864}) 3865#endif 3866 3867/* 3868 * netdev_WARN() acts like dev_printk(), but with the key difference 3869 * of using a WARN/WARN_ON to get the message out, including the 3870 * file/line information and a backtrace. 3871 */ 3872#define netdev_WARN(dev, format, args...) \ 3873 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3874 netdev_reg_state(dev), ##args) 3875 3876/* netif printk helpers, similar to netdev_printk */ 3877 3878#define netif_printk(priv, type, level, dev, fmt, args...) \ 3879do { \ 3880 if (netif_msg_##type(priv)) \ 3881 netdev_printk(level, (dev), fmt, ##args); \ 3882} while (0) 3883 3884#define netif_level(level, priv, type, dev, fmt, args...) \ 3885do { \ 3886 if (netif_msg_##type(priv)) \ 3887 netdev_##level(dev, fmt, ##args); \ 3888} while (0) 3889 3890#define netif_emerg(priv, type, dev, fmt, args...) \ 3891 netif_level(emerg, priv, type, dev, fmt, ##args) 3892#define netif_alert(priv, type, dev, fmt, args...) \ 3893 netif_level(alert, priv, type, dev, fmt, ##args) 3894#define netif_crit(priv, type, dev, fmt, args...) \ 3895 netif_level(crit, priv, type, dev, fmt, ##args) 3896#define netif_err(priv, type, dev, fmt, args...) \ 3897 netif_level(err, priv, type, dev, fmt, ##args) 3898#define netif_warn(priv, type, dev, fmt, args...) \ 3899 netif_level(warn, priv, type, dev, fmt, ##args) 3900#define netif_notice(priv, type, dev, fmt, args...) \ 3901 netif_level(notice, priv, type, dev, fmt, ##args) 3902#define netif_info(priv, type, dev, fmt, args...) \ 3903 netif_level(info, priv, type, dev, fmt, ##args) 3904 3905#if defined(CONFIG_DYNAMIC_DEBUG) 3906#define netif_dbg(priv, type, netdev, format, args...) \ 3907do { \ 3908 if (netif_msg_##type(priv)) \ 3909 dynamic_netdev_dbg(netdev, format, ##args); \ 3910} while (0) 3911#elif defined(DEBUG) 3912#define netif_dbg(priv, type, dev, format, args...) \ 3913 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3914#else 3915#define netif_dbg(priv, type, dev, format, args...) \ 3916({ \ 3917 if (0) \ 3918 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3919 0; \ 3920}) 3921#endif 3922 3923#if defined(VERBOSE_DEBUG) 3924#define netif_vdbg netif_dbg 3925#else 3926#define netif_vdbg(priv, type, dev, format, args...) \ 3927({ \ 3928 if (0) \ 3929 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3930 0; \ 3931}) 3932#endif 3933 3934/* 3935 * The list of packet types we will receive (as opposed to discard) 3936 * and the routines to invoke. 3937 * 3938 * Why 16. Because with 16 the only overlap we get on a hash of the 3939 * low nibble of the protocol value is RARP/SNAP/X.25. 3940 * 3941 * NOTE: That is no longer true with the addition of VLAN tags. Not 3942 * sure which should go first, but I bet it won't make much 3943 * difference if we are running VLANs. The good news is that 3944 * this protocol won't be in the list unless compiled in, so 3945 * the average user (w/out VLANs) will not be adversely affected. 3946 * --BLG 3947 * 3948 * 0800 IP 3949 * 8100 802.1Q VLAN 3950 * 0001 802.3 3951 * 0002 AX.25 3952 * 0004 802.2 3953 * 8035 RARP 3954 * 0005 SNAP 3955 * 0805 X.25 3956 * 0806 ARP 3957 * 8137 IPX 3958 * 0009 Localtalk 3959 * 86DD IPv6 3960 */ 3961#define PTYPE_HASH_SIZE (16) 3962#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3963 3964#endif /* _LINUX_NETDEVICE_H */