Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <linux/prefetch.h>
72#include <net/dst.h>
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
77#include <linux/errqueue.h>
78
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84int sysctl_tcp_max_reordering __read_mostly = 300;
85EXPORT_SYMBOL(sysctl_tcp_reordering);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97int sysctl_tcp_frto __read_mostly = 2;
98
99int sysctl_tcp_thin_dupack __read_mostly;
100
101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102int sysctl_tcp_early_retrans __read_mostly = 3;
103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105#define FLAG_DATA 0x01 /* Incoming frame contained data. */
106#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110#define FLAG_DATA_SACKED 0x20 /* New SACK. */
111#define FLAG_ECE 0x40 /* ECE in this ACK */
112#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127/* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131{
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174}
175
176static void tcp_incr_quickack(struct sock *sk)
177{
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185}
186
187static void tcp_enter_quickack_mode(struct sock *sk)
188{
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199static inline bool tcp_in_quickack_mode(const struct sock *sk)
200{
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204}
205
206static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207{
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
212static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
223static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224{
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (tcp_ca_needs_ecn((struct sock *)tp))
236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 break;
245 default:
246 if (tcp_ca_needs_ecn((struct sock *)tp))
247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 tp->ecn_flags |= TCP_ECN_SEEN;
249 break;
250 }
251}
252
253static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254{
255 if (tp->ecn_flags & TCP_ECN_OK)
256 __tcp_ecn_check_ce(tp, skb);
257}
258
259static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260{
261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 tp->ecn_flags &= ~TCP_ECN_OK;
263}
264
265static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266{
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269}
270
271static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272{
273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 return true;
275 return false;
276}
277
278/* Buffer size and advertised window tuning.
279 *
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 */
282
283static void tcp_sndbuf_expand(struct sock *sk)
284{
285 const struct tcp_sock *tp = tcp_sk(sk);
286 int sndmem, per_mss;
287 u32 nr_segs;
288
289 /* Worst case is non GSO/TSO : each frame consumes one skb
290 * and skb->head is kmalloced using power of two area of memory
291 */
292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 MAX_TCP_HEADER +
294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295
296 per_mss = roundup_pow_of_two(per_mss) +
297 SKB_DATA_ALIGN(sizeof(struct sk_buff));
298
299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301
302 /* Fast Recovery (RFC 5681 3.2) :
303 * Cubic needs 1.7 factor, rounded to 2 to include
304 * extra cushion (application might react slowly to POLLOUT)
305 */
306 sndmem = 2 * nr_segs * per_mss;
307
308 if (sk->sk_sndbuf < sndmem)
309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310}
311
312/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 *
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
323 *
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 * requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 * of receiver window. Check #2.
331 *
332 * The scheme does not work when sender sends good segments opening
333 * window and then starts to feed us spaghetti. But it should work
334 * in common situations. Otherwise, we have to rely on queue collapsing.
335 */
336
337/* Slow part of check#2. */
338static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339{
340 struct tcp_sock *tp = tcp_sk(sk);
341 /* Optimize this! */
342 int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344
345 while (tp->rcv_ssthresh <= window) {
346 if (truesize <= skb->len)
347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348
349 truesize >>= 1;
350 window >>= 1;
351 }
352 return 0;
353}
354
355static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356{
357 struct tcp_sock *tp = tcp_sk(sk);
358
359 /* Check #1 */
360 if (tp->rcv_ssthresh < tp->window_clamp &&
361 (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 !tcp_under_memory_pressure(sk)) {
363 int incr;
364
365 /* Check #2. Increase window, if skb with such overhead
366 * will fit to rcvbuf in future.
367 */
368 if (tcp_win_from_space(skb->truesize) <= skb->len)
369 incr = 2 * tp->advmss;
370 else
371 incr = __tcp_grow_window(sk, skb);
372
373 if (incr) {
374 incr = max_t(int, incr, 2 * skb->len);
375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 tp->window_clamp);
377 inet_csk(sk)->icsk_ack.quick |= 1;
378 }
379 }
380}
381
382/* 3. Tuning rcvbuf, when connection enters established state. */
383static void tcp_fixup_rcvbuf(struct sock *sk)
384{
385 u32 mss = tcp_sk(sk)->advmss;
386 int rcvmem;
387
388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 tcp_default_init_rwnd(mss);
390
391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 * Allow enough cushion so that sender is not limited by our window
393 */
394 if (sysctl_tcp_moderate_rcvbuf)
395 rcvmem <<= 2;
396
397 if (sk->sk_rcvbuf < rcvmem)
398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399}
400
401/* 4. Try to fixup all. It is made immediately after connection enters
402 * established state.
403 */
404void tcp_init_buffer_space(struct sock *sk)
405{
406 struct tcp_sock *tp = tcp_sk(sk);
407 int maxwin;
408
409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 tcp_fixup_rcvbuf(sk);
411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 tcp_sndbuf_expand(sk);
413
414 tp->rcvq_space.space = tp->rcv_wnd;
415 tp->rcvq_space.time = tcp_time_stamp;
416 tp->rcvq_space.seq = tp->copied_seq;
417
418 maxwin = tcp_full_space(sk);
419
420 if (tp->window_clamp >= maxwin) {
421 tp->window_clamp = maxwin;
422
423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 tp->window_clamp = max(maxwin -
425 (maxwin >> sysctl_tcp_app_win),
426 4 * tp->advmss);
427 }
428
429 /* Force reservation of one segment. */
430 if (sysctl_tcp_app_win &&
431 tp->window_clamp > 2 * tp->advmss &&
432 tp->window_clamp + tp->advmss > maxwin)
433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434
435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 tp->snd_cwnd_stamp = tcp_time_stamp;
437}
438
439/* 5. Recalculate window clamp after socket hit its memory bounds. */
440static void tcp_clamp_window(struct sock *sk)
441{
442 struct tcp_sock *tp = tcp_sk(sk);
443 struct inet_connection_sock *icsk = inet_csk(sk);
444
445 icsk->icsk_ack.quick = 0;
446
447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 !tcp_under_memory_pressure(sk) &&
450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 sysctl_tcp_rmem[2]);
453 }
454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456}
457
458/* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 */
465void tcp_initialize_rcv_mss(struct sock *sk)
466{
467 const struct tcp_sock *tp = tcp_sk(sk);
468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469
470 hint = min(hint, tp->rcv_wnd / 2);
471 hint = min(hint, TCP_MSS_DEFAULT);
472 hint = max(hint, TCP_MIN_MSS);
473
474 inet_csk(sk)->icsk_ack.rcv_mss = hint;
475}
476EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477
478/* Receiver "autotuning" code.
479 *
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
483 *
484 * More detail on this code can be found at
485 * <http://staff.psc.edu/jheffner/>,
486 * though this reference is out of date. A new paper
487 * is pending.
488 */
489static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490{
491 u32 new_sample = tp->rcv_rtt_est.rtt;
492 long m = sample;
493
494 if (m == 0)
495 m = 1;
496
497 if (new_sample != 0) {
498 /* If we sample in larger samples in the non-timestamp
499 * case, we could grossly overestimate the RTT especially
500 * with chatty applications or bulk transfer apps which
501 * are stalled on filesystem I/O.
502 *
503 * Also, since we are only going for a minimum in the
504 * non-timestamp case, we do not smooth things out
505 * else with timestamps disabled convergence takes too
506 * long.
507 */
508 if (!win_dep) {
509 m -= (new_sample >> 3);
510 new_sample += m;
511 } else {
512 m <<= 3;
513 if (m < new_sample)
514 new_sample = m;
515 }
516 } else {
517 /* No previous measure. */
518 new_sample = m << 3;
519 }
520
521 if (tp->rcv_rtt_est.rtt != new_sample)
522 tp->rcv_rtt_est.rtt = new_sample;
523}
524
525static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526{
527 if (tp->rcv_rtt_est.time == 0)
528 goto new_measure;
529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 return;
531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532
533new_measure:
534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 tp->rcv_rtt_est.time = tcp_time_stamp;
536}
537
538static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 const struct sk_buff *skb)
540{
541 struct tcp_sock *tp = tcp_sk(sk);
542 if (tp->rx_opt.rcv_tsecr &&
543 (TCP_SKB_CB(skb)->end_seq -
544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546}
547
548/*
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
551 */
552void tcp_rcv_space_adjust(struct sock *sk)
553{
554 struct tcp_sock *tp = tcp_sk(sk);
555 int time;
556 int copied;
557
558 time = tcp_time_stamp - tp->rcvq_space.time;
559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 return;
561
562 /* Number of bytes copied to user in last RTT */
563 copied = tp->copied_seq - tp->rcvq_space.seq;
564 if (copied <= tp->rcvq_space.space)
565 goto new_measure;
566
567 /* A bit of theory :
568 * copied = bytes received in previous RTT, our base window
569 * To cope with packet losses, we need a 2x factor
570 * To cope with slow start, and sender growing its cwin by 100 %
571 * every RTT, we need a 4x factor, because the ACK we are sending
572 * now is for the next RTT, not the current one :
573 * <prev RTT . ><current RTT .. ><next RTT .... >
574 */
575
576 if (sysctl_tcp_moderate_rcvbuf &&
577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 int rcvwin, rcvmem, rcvbuf;
579
580 /* minimal window to cope with packet losses, assuming
581 * steady state. Add some cushion because of small variations.
582 */
583 rcvwin = (copied << 1) + 16 * tp->advmss;
584
585 /* If rate increased by 25%,
586 * assume slow start, rcvwin = 3 * copied
587 * If rate increased by 50%,
588 * assume sender can use 2x growth, rcvwin = 4 * copied
589 */
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 if (copied >=
593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin <<= 1;
595 else
596 rcvwin += (rcvwin >> 1);
597 }
598
599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvmem += 128;
602
603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 if (rcvbuf > sk->sk_rcvbuf) {
605 sk->sk_rcvbuf = rcvbuf;
606
607 /* Make the window clamp follow along. */
608 tp->window_clamp = rcvwin;
609 }
610 }
611 tp->rcvq_space.space = copied;
612
613new_measure:
614 tp->rcvq_space.seq = tp->copied_seq;
615 tp->rcvq_space.time = tcp_time_stamp;
616}
617
618/* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval. When a
620 * connection starts up, we want to ack as quickly as possible. The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission. The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time. For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue. -DaveM
627 */
628static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629{
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct inet_connection_sock *icsk = inet_csk(sk);
632 u32 now;
633
634 inet_csk_schedule_ack(sk);
635
636 tcp_measure_rcv_mss(sk, skb);
637
638 tcp_rcv_rtt_measure(tp);
639
640 now = tcp_time_stamp;
641
642 if (!icsk->icsk_ack.ato) {
643 /* The _first_ data packet received, initialize
644 * delayed ACK engine.
645 */
646 tcp_incr_quickack(sk);
647 icsk->icsk_ack.ato = TCP_ATO_MIN;
648 } else {
649 int m = now - icsk->icsk_ack.lrcvtime;
650
651 if (m <= TCP_ATO_MIN / 2) {
652 /* The fastest case is the first. */
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 } else if (m < icsk->icsk_ack.ato) {
655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 icsk->icsk_ack.ato = icsk->icsk_rto;
658 } else if (m > icsk->icsk_rto) {
659 /* Too long gap. Apparently sender failed to
660 * restart window, so that we send ACKs quickly.
661 */
662 tcp_incr_quickack(sk);
663 sk_mem_reclaim(sk);
664 }
665 }
666 icsk->icsk_ack.lrcvtime = now;
667
668 tcp_ecn_check_ce(tp, skb);
669
670 if (skb->len >= 128)
671 tcp_grow_window(sk, skb);
672}
673
674/* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
682 */
683static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684{
685 struct tcp_sock *tp = tcp_sk(sk);
686 long m = mrtt_us; /* RTT */
687 u32 srtt = tp->srtt_us;
688
689 /* The following amusing code comes from Jacobson's
690 * article in SIGCOMM '88. Note that rtt and mdev
691 * are scaled versions of rtt and mean deviation.
692 * This is designed to be as fast as possible
693 * m stands for "measurement".
694 *
695 * On a 1990 paper the rto value is changed to:
696 * RTO = rtt + 4 * mdev
697 *
698 * Funny. This algorithm seems to be very broken.
699 * These formulae increase RTO, when it should be decreased, increase
700 * too slowly, when it should be increased quickly, decrease too quickly
701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 * does not matter how to _calculate_ it. Seems, it was trap
703 * that VJ failed to avoid. 8)
704 */
705 if (srtt != 0) {
706 m -= (srtt >> 3); /* m is now error in rtt est */
707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
708 if (m < 0) {
709 m = -m; /* m is now abs(error) */
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 /* This is similar to one of Eifel findings.
712 * Eifel blocks mdev updates when rtt decreases.
713 * This solution is a bit different: we use finer gain
714 * for mdev in this case (alpha*beta).
715 * Like Eifel it also prevents growth of rto,
716 * but also it limits too fast rto decreases,
717 * happening in pure Eifel.
718 */
719 if (m > 0)
720 m >>= 3;
721 } else {
722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
723 }
724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
725 if (tp->mdev_us > tp->mdev_max_us) {
726 tp->mdev_max_us = tp->mdev_us;
727 if (tp->mdev_max_us > tp->rttvar_us)
728 tp->rttvar_us = tp->mdev_max_us;
729 }
730 if (after(tp->snd_una, tp->rtt_seq)) {
731 if (tp->mdev_max_us < tp->rttvar_us)
732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 tp->rtt_seq = tp->snd_nxt;
734 tp->mdev_max_us = tcp_rto_min_us(sk);
735 }
736 } else {
737 /* no previous measure. */
738 srtt = m << 3; /* take the measured time to be rtt */
739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 tp->mdev_max_us = tp->rttvar_us;
742 tp->rtt_seq = tp->snd_nxt;
743 }
744 tp->srtt_us = max(1U, srtt);
745}
746
747/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
752 */
753static void tcp_update_pacing_rate(struct sock *sk)
754{
755 const struct tcp_sock *tp = tcp_sk(sk);
756 u64 rate;
757
758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760
761 rate *= max(tp->snd_cwnd, tp->packets_out);
762
763 if (likely(tp->srtt_us))
764 do_div(rate, tp->srtt_us);
765
766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 * without any lock. We want to make sure compiler wont store
768 * intermediate values in this location.
769 */
770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 sk->sk_max_pacing_rate);
772}
773
774/* Calculate rto without backoff. This is the second half of Van Jacobson's
775 * routine referred to above.
776 */
777static void tcp_set_rto(struct sock *sk)
778{
779 const struct tcp_sock *tp = tcp_sk(sk);
780 /* Old crap is replaced with new one. 8)
781 *
782 * More seriously:
783 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 * It cannot be less due to utterly erratic ACK generation made
785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 * to do with delayed acks, because at cwnd>2 true delack timeout
787 * is invisible. Actually, Linux-2.4 also generates erratic
788 * ACKs in some circumstances.
789 */
790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791
792 /* 2. Fixups made earlier cannot be right.
793 * If we do not estimate RTO correctly without them,
794 * all the algo is pure shit and should be replaced
795 * with correct one. It is exactly, which we pretend to do.
796 */
797
798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 * guarantees that rto is higher.
800 */
801 tcp_bound_rto(sk);
802}
803
804__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805{
806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807
808 if (!cwnd)
809 cwnd = TCP_INIT_CWND;
810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811}
812
813/*
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
816 */
817void tcp_disable_fack(struct tcp_sock *tp)
818{
819 /* RFC3517 uses different metric in lost marker => reset on change */
820 if (tcp_is_fack(tp))
821 tp->lost_skb_hint = NULL;
822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823}
824
825/* Take a notice that peer is sending D-SACKs */
826static void tcp_dsack_seen(struct tcp_sock *tp)
827{
828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829}
830
831static void tcp_update_reordering(struct sock *sk, const int metric,
832 const int ts)
833{
834 struct tcp_sock *tp = tcp_sk(sk);
835 if (metric > tp->reordering) {
836 int mib_idx;
837
838 tp->reordering = min(sysctl_tcp_max_reordering, metric);
839
840 /* This exciting event is worth to be remembered. 8) */
841 if (ts)
842 mib_idx = LINUX_MIB_TCPTSREORDER;
843 else if (tcp_is_reno(tp))
844 mib_idx = LINUX_MIB_TCPRENOREORDER;
845 else if (tcp_is_fack(tp))
846 mib_idx = LINUX_MIB_TCPFACKREORDER;
847 else
848 mib_idx = LINUX_MIB_TCPSACKREORDER;
849
850 NET_INC_STATS_BH(sock_net(sk), mib_idx);
851#if FASTRETRANS_DEBUG > 1
852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858#endif
859 tcp_disable_fack(tp);
860 }
861
862 if (metric > 0)
863 tcp_disable_early_retrans(tp);
864}
865
866/* This must be called before lost_out is incremented */
867static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868{
869 if (!tp->retransmit_skb_hint ||
870 before(TCP_SKB_CB(skb)->seq,
871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 tp->retransmit_skb_hint = skb;
873
874 if (!tp->lost_out ||
875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877}
878
879static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880{
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tcp_verify_retransmit_hint(tp, skb);
883
884 tp->lost_out += tcp_skb_pcount(skb);
885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 }
887}
888
889static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 struct sk_buff *skb)
891{
892 tcp_verify_retransmit_hint(tp, skb);
893
894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 tp->lost_out += tcp_skb_pcount(skb);
896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 }
898}
899
900/* This procedure tags the retransmission queue when SACKs arrive.
901 *
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
905 *
906 * Valid combinations are:
907 * Tag InFlight Description
908 * 0 1 - orig segment is in flight.
909 * S 0 - nothing flies, orig reached receiver.
910 * L 0 - nothing flies, orig lost by net.
911 * R 2 - both orig and retransmit are in flight.
912 * L|R 1 - orig is lost, retransmit is in flight.
913 * S|R 1 - orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 * but it is equivalent to plain S and code short-curcuits it to S.
916 * L|S is logically invalid, it would mean -1 packet in flight 8))
917 *
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921 * 3. Loss detection event of two flavors:
922 * A. Scoreboard estimator decided the packet is lost.
923 * A'. Reno "three dupacks" marks head of queue lost.
924 * A''. Its FACK modification, head until snd.fack is lost.
925 * B. SACK arrives sacking SND.NXT at the moment, when the
926 * segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 *
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
932 *
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
937 *
938 * 1. SACK fills old hole and the corresponding segment was not
939 * ever retransmitted -> reordering. Alas, we cannot use it
940 * when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 * for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
945 *
946 * SACK block validation.
947 * ----------------------
948 *
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment. Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
961 *
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
967 *
968 * <- outs wnd -> <- wrapzone ->
969 * u e n u_w e_w s n_w
970 * | | | | | | |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->| |<--------...
973 * ...---- >2^31 ------>| |<--------...
974 *
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 *
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
983 * again, D-SACK block must not to go across snd_una (for the same reason as
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
993 */
994static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 u32 start_seq, u32 end_seq)
996{
997 /* Too far in future, or reversed (interpretation is ambiguous) */
998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 return false;
1000
1001 /* Nasty start_seq wrap-around check (see comments above) */
1002 if (!before(start_seq, tp->snd_nxt))
1003 return false;
1004
1005 /* In outstanding window? ...This is valid exit for D-SACKs too.
1006 * start_seq == snd_una is non-sensical (see comments above)
1007 */
1008 if (after(start_seq, tp->snd_una))
1009 return true;
1010
1011 if (!is_dsack || !tp->undo_marker)
1012 return false;
1013
1014 /* ...Then it's D-SACK, and must reside below snd_una completely */
1015 if (after(end_seq, tp->snd_una))
1016 return false;
1017
1018 if (!before(start_seq, tp->undo_marker))
1019 return true;
1020
1021 /* Too old */
1022 if (!after(end_seq, tp->undo_marker))
1023 return false;
1024
1025 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 * start_seq < undo_marker and end_seq >= undo_marker.
1027 */
1028 return !before(start_seq, end_seq - tp->max_window);
1029}
1030
1031/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1033 * for reordering! Ugly, but should help.
1034 *
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1039 */
1040static void tcp_mark_lost_retrans(struct sock *sk)
1041{
1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct sk_buff *skb;
1045 int cnt = 0;
1046 u32 new_low_seq = tp->snd_nxt;
1047 u32 received_upto = tcp_highest_sack_seq(tp);
1048
1049 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 !after(received_upto, tp->lost_retrans_low) ||
1051 icsk->icsk_ca_state != TCP_CA_Recovery)
1052 return;
1053
1054 tcp_for_write_queue(skb, sk) {
1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056
1057 if (skb == tcp_send_head(sk))
1058 break;
1059 if (cnt == tp->retrans_out)
1060 break;
1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 continue;
1063
1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 continue;
1066
1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 * constraint here (see above) but figuring out that at
1069 * least tp->reordering SACK blocks reside between ack_seq
1070 * and received_upto is not easy task to do cheaply with
1071 * the available datastructures.
1072 *
1073 * Whether FACK should check here for tp->reordering segs
1074 * in-between one could argue for either way (it would be
1075 * rather simple to implement as we could count fack_count
1076 * during the walk and do tp->fackets_out - fack_count).
1077 */
1078 if (after(received_upto, ack_seq)) {
1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 tp->retrans_out -= tcp_skb_pcount(skb);
1081
1082 tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 } else {
1085 if (before(ack_seq, new_low_seq))
1086 new_low_seq = ack_seq;
1087 cnt += tcp_skb_pcount(skb);
1088 }
1089 }
1090
1091 if (tp->retrans_out)
1092 tp->lost_retrans_low = new_low_seq;
1093}
1094
1095static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1098{
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS_BH(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128}
1129
1130struct tcp_sacktag_state {
1131 int reord;
1132 int fack_count;
1133 /* Timestamps for earliest and latest never-retransmitted segment
1134 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 * but congestion control should still get an accurate delay signal.
1136 */
1137 struct skb_mstamp first_sackt;
1138 struct skb_mstamp last_sackt;
1139 int flag;
1140};
1141
1142/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1146 * returns).
1147 *
1148 * FIXME: this could be merged to shift decision code
1149 */
1150static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 u32 start_seq, u32 end_seq)
1152{
1153 int err;
1154 bool in_sack;
1155 unsigned int pkt_len;
1156 unsigned int mss;
1157
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160
1161 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 mss = tcp_skb_mss(skb);
1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165
1166 if (!in_sack) {
1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 if (pkt_len < mss)
1169 pkt_len = mss;
1170 } else {
1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 if (pkt_len < mss)
1173 return -EINVAL;
1174 }
1175
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1178 */
1179 if (pkt_len > mss) {
1180 unsigned int new_len = (pkt_len / mss) * mss;
1181 if (!in_sack && new_len < pkt_len) {
1182 new_len += mss;
1183 if (new_len >= skb->len)
1184 return 0;
1185 }
1186 pkt_len = new_len;
1187 }
1188 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189 if (err < 0)
1190 return err;
1191 }
1192
1193 return in_sack;
1194}
1195
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198 struct tcp_sacktag_state *state, u8 sacked,
1199 u32 start_seq, u32 end_seq,
1200 int dup_sack, int pcount,
1201 const struct skb_mstamp *xmit_time)
1202{
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 int fack_count = state->fack_count;
1205
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 after(end_seq, tp->undo_marker))
1210 tp->undo_retrans--;
1211 if (sacked & TCPCB_SACKED_ACKED)
1212 state->reord = min(fack_count, state->reord);
1213 }
1214
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 if (!after(end_seq, tp->snd_una))
1217 return sacked;
1218
1219 if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 if (sacked & TCPCB_SACKED_RETRANS) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1224 */
1225 if (sacked & TCPCB_LOST) {
1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 tp->lost_out -= pcount;
1228 tp->retrans_out -= pcount;
1229 }
1230 } else {
1231 if (!(sacked & TCPCB_RETRANS)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1234 */
1235 if (before(start_seq,
1236 tcp_highest_sack_seq(tp)))
1237 state->reord = min(fack_count,
1238 state->reord);
1239 if (!after(end_seq, tp->high_seq))
1240 state->flag |= FLAG_ORIG_SACK_ACKED;
1241 if (state->first_sackt.v64 == 0)
1242 state->first_sackt = *xmit_time;
1243 state->last_sackt = *xmit_time;
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1249 }
1250 }
1251
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255
1256 fack_count += pcount;
1257
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 tp->lost_cnt_hint += pcount;
1262
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1274 }
1275
1276 return sacked;
1277}
1278
1279/* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
1282static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1286{
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1291
1292 BUG_ON(!pcount);
1293
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 &skb->skb_mstamp);
1303
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1306
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321
1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 if (tcp_skb_pcount(skb) <= 1)
1324 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325
1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328
1329 if (skb->len > 0) {
1330 BUG_ON(!tcp_skb_pcount(skb));
1331 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 return false;
1333 }
1334
1335 /* Whole SKB was eaten :-) */
1336
1337 if (skb == tp->retransmit_skb_hint)
1338 tp->retransmit_skb_hint = prev;
1339 if (skb == tp->lost_skb_hint) {
1340 tp->lost_skb_hint = prev;
1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 }
1343
1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1346 TCP_SKB_CB(prev)->end_seq++;
1347
1348 if (skb == tcp_highest_sack(sk))
1349 tcp_advance_highest_sack(sk, skb);
1350
1351 tcp_unlink_write_queue(skb, sk);
1352 sk_wmem_free_skb(sk, skb);
1353
1354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1355
1356 return true;
1357}
1358
1359/* I wish gso_size would have a bit more sane initialization than
1360 * something-or-zero which complicates things
1361 */
1362static int tcp_skb_seglen(const struct sk_buff *skb)
1363{
1364 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1365}
1366
1367/* Shifting pages past head area doesn't work */
1368static int skb_can_shift(const struct sk_buff *skb)
1369{
1370 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1371}
1372
1373/* Try collapsing SACK blocks spanning across multiple skbs to a single
1374 * skb.
1375 */
1376static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1377 struct tcp_sacktag_state *state,
1378 u32 start_seq, u32 end_seq,
1379 bool dup_sack)
1380{
1381 struct tcp_sock *tp = tcp_sk(sk);
1382 struct sk_buff *prev;
1383 int mss;
1384 int pcount = 0;
1385 int len;
1386 int in_sack;
1387
1388 if (!sk_can_gso(sk))
1389 goto fallback;
1390
1391 /* Normally R but no L won't result in plain S */
1392 if (!dup_sack &&
1393 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1394 goto fallback;
1395 if (!skb_can_shift(skb))
1396 goto fallback;
1397 /* This frame is about to be dropped (was ACKed). */
1398 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1399 goto fallback;
1400
1401 /* Can only happen with delayed DSACK + discard craziness */
1402 if (unlikely(skb == tcp_write_queue_head(sk)))
1403 goto fallback;
1404 prev = tcp_write_queue_prev(sk, skb);
1405
1406 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1407 goto fallback;
1408
1409 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1410 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1411
1412 if (in_sack) {
1413 len = skb->len;
1414 pcount = tcp_skb_pcount(skb);
1415 mss = tcp_skb_seglen(skb);
1416
1417 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1418 * drop this restriction as unnecessary
1419 */
1420 if (mss != tcp_skb_seglen(prev))
1421 goto fallback;
1422 } else {
1423 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1424 goto noop;
1425 /* CHECKME: This is non-MSS split case only?, this will
1426 * cause skipped skbs due to advancing loop btw, original
1427 * has that feature too
1428 */
1429 if (tcp_skb_pcount(skb) <= 1)
1430 goto noop;
1431
1432 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1433 if (!in_sack) {
1434 /* TODO: head merge to next could be attempted here
1435 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1436 * though it might not be worth of the additional hassle
1437 *
1438 * ...we can probably just fallback to what was done
1439 * previously. We could try merging non-SACKed ones
1440 * as well but it probably isn't going to buy off
1441 * because later SACKs might again split them, and
1442 * it would make skb timestamp tracking considerably
1443 * harder problem.
1444 */
1445 goto fallback;
1446 }
1447
1448 len = end_seq - TCP_SKB_CB(skb)->seq;
1449 BUG_ON(len < 0);
1450 BUG_ON(len > skb->len);
1451
1452 /* MSS boundaries should be honoured or else pcount will
1453 * severely break even though it makes things bit trickier.
1454 * Optimize common case to avoid most of the divides
1455 */
1456 mss = tcp_skb_mss(skb);
1457
1458 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1459 * drop this restriction as unnecessary
1460 */
1461 if (mss != tcp_skb_seglen(prev))
1462 goto fallback;
1463
1464 if (len == mss) {
1465 pcount = 1;
1466 } else if (len < mss) {
1467 goto noop;
1468 } else {
1469 pcount = len / mss;
1470 len = pcount * mss;
1471 }
1472 }
1473
1474 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1475 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1476 goto fallback;
1477
1478 if (!skb_shift(prev, skb, len))
1479 goto fallback;
1480 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1481 goto out;
1482
1483 /* Hole filled allows collapsing with the next as well, this is very
1484 * useful when hole on every nth skb pattern happens
1485 */
1486 if (prev == tcp_write_queue_tail(sk))
1487 goto out;
1488 skb = tcp_write_queue_next(sk, prev);
1489
1490 if (!skb_can_shift(skb) ||
1491 (skb == tcp_send_head(sk)) ||
1492 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1493 (mss != tcp_skb_seglen(skb)))
1494 goto out;
1495
1496 len = skb->len;
1497 if (skb_shift(prev, skb, len)) {
1498 pcount += tcp_skb_pcount(skb);
1499 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1500 }
1501
1502out:
1503 state->fack_count += pcount;
1504 return prev;
1505
1506noop:
1507 return skb;
1508
1509fallback:
1510 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1511 return NULL;
1512}
1513
1514static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1515 struct tcp_sack_block *next_dup,
1516 struct tcp_sacktag_state *state,
1517 u32 start_seq, u32 end_seq,
1518 bool dup_sack_in)
1519{
1520 struct tcp_sock *tp = tcp_sk(sk);
1521 struct sk_buff *tmp;
1522
1523 tcp_for_write_queue_from(skb, sk) {
1524 int in_sack = 0;
1525 bool dup_sack = dup_sack_in;
1526
1527 if (skb == tcp_send_head(sk))
1528 break;
1529
1530 /* queue is in-order => we can short-circuit the walk early */
1531 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1532 break;
1533
1534 if (next_dup &&
1535 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1536 in_sack = tcp_match_skb_to_sack(sk, skb,
1537 next_dup->start_seq,
1538 next_dup->end_seq);
1539 if (in_sack > 0)
1540 dup_sack = true;
1541 }
1542
1543 /* skb reference here is a bit tricky to get right, since
1544 * shifting can eat and free both this skb and the next,
1545 * so not even _safe variant of the loop is enough.
1546 */
1547 if (in_sack <= 0) {
1548 tmp = tcp_shift_skb_data(sk, skb, state,
1549 start_seq, end_seq, dup_sack);
1550 if (tmp) {
1551 if (tmp != skb) {
1552 skb = tmp;
1553 continue;
1554 }
1555
1556 in_sack = 0;
1557 } else {
1558 in_sack = tcp_match_skb_to_sack(sk, skb,
1559 start_seq,
1560 end_seq);
1561 }
1562 }
1563
1564 if (unlikely(in_sack < 0))
1565 break;
1566
1567 if (in_sack) {
1568 TCP_SKB_CB(skb)->sacked =
1569 tcp_sacktag_one(sk,
1570 state,
1571 TCP_SKB_CB(skb)->sacked,
1572 TCP_SKB_CB(skb)->seq,
1573 TCP_SKB_CB(skb)->end_seq,
1574 dup_sack,
1575 tcp_skb_pcount(skb),
1576 &skb->skb_mstamp);
1577
1578 if (!before(TCP_SKB_CB(skb)->seq,
1579 tcp_highest_sack_seq(tp)))
1580 tcp_advance_highest_sack(sk, skb);
1581 }
1582
1583 state->fack_count += tcp_skb_pcount(skb);
1584 }
1585 return skb;
1586}
1587
1588/* Avoid all extra work that is being done by sacktag while walking in
1589 * a normal way
1590 */
1591static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1592 struct tcp_sacktag_state *state,
1593 u32 skip_to_seq)
1594{
1595 tcp_for_write_queue_from(skb, sk) {
1596 if (skb == tcp_send_head(sk))
1597 break;
1598
1599 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1600 break;
1601
1602 state->fack_count += tcp_skb_pcount(skb);
1603 }
1604 return skb;
1605}
1606
1607static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1608 struct sock *sk,
1609 struct tcp_sack_block *next_dup,
1610 struct tcp_sacktag_state *state,
1611 u32 skip_to_seq)
1612{
1613 if (!next_dup)
1614 return skb;
1615
1616 if (before(next_dup->start_seq, skip_to_seq)) {
1617 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1618 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1619 next_dup->start_seq, next_dup->end_seq,
1620 1);
1621 }
1622
1623 return skb;
1624}
1625
1626static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1627{
1628 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1629}
1630
1631static int
1632tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1633 u32 prior_snd_una, struct tcp_sacktag_state *state)
1634{
1635 struct tcp_sock *tp = tcp_sk(sk);
1636 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1637 TCP_SKB_CB(ack_skb)->sacked);
1638 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1639 struct tcp_sack_block sp[TCP_NUM_SACKS];
1640 struct tcp_sack_block *cache;
1641 struct sk_buff *skb;
1642 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1643 int used_sacks;
1644 bool found_dup_sack = false;
1645 int i, j;
1646 int first_sack_index;
1647
1648 state->flag = 0;
1649 state->reord = tp->packets_out;
1650
1651 if (!tp->sacked_out) {
1652 if (WARN_ON(tp->fackets_out))
1653 tp->fackets_out = 0;
1654 tcp_highest_sack_reset(sk);
1655 }
1656
1657 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1658 num_sacks, prior_snd_una);
1659 if (found_dup_sack)
1660 state->flag |= FLAG_DSACKING_ACK;
1661
1662 /* Eliminate too old ACKs, but take into
1663 * account more or less fresh ones, they can
1664 * contain valid SACK info.
1665 */
1666 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 return 0;
1668
1669 if (!tp->packets_out)
1670 goto out;
1671
1672 used_sacks = 0;
1673 first_sack_index = 0;
1674 for (i = 0; i < num_sacks; i++) {
1675 bool dup_sack = !i && found_dup_sack;
1676
1677 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1678 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679
1680 if (!tcp_is_sackblock_valid(tp, dup_sack,
1681 sp[used_sacks].start_seq,
1682 sp[used_sacks].end_seq)) {
1683 int mib_idx;
1684
1685 if (dup_sack) {
1686 if (!tp->undo_marker)
1687 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1688 else
1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1690 } else {
1691 /* Don't count olds caused by ACK reordering */
1692 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1693 !after(sp[used_sacks].end_seq, tp->snd_una))
1694 continue;
1695 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1696 }
1697
1698 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1699 if (i == 0)
1700 first_sack_index = -1;
1701 continue;
1702 }
1703
1704 /* Ignore very old stuff early */
1705 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1706 continue;
1707
1708 used_sacks++;
1709 }
1710
1711 /* order SACK blocks to allow in order walk of the retrans queue */
1712 for (i = used_sacks - 1; i > 0; i--) {
1713 for (j = 0; j < i; j++) {
1714 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1715 swap(sp[j], sp[j + 1]);
1716
1717 /* Track where the first SACK block goes to */
1718 if (j == first_sack_index)
1719 first_sack_index = j + 1;
1720 }
1721 }
1722 }
1723
1724 skb = tcp_write_queue_head(sk);
1725 state->fack_count = 0;
1726 i = 0;
1727
1728 if (!tp->sacked_out) {
1729 /* It's already past, so skip checking against it */
1730 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 } else {
1732 cache = tp->recv_sack_cache;
1733 /* Skip empty blocks in at head of the cache */
1734 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1735 !cache->end_seq)
1736 cache++;
1737 }
1738
1739 while (i < used_sacks) {
1740 u32 start_seq = sp[i].start_seq;
1741 u32 end_seq = sp[i].end_seq;
1742 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1743 struct tcp_sack_block *next_dup = NULL;
1744
1745 if (found_dup_sack && ((i + 1) == first_sack_index))
1746 next_dup = &sp[i + 1];
1747
1748 /* Skip too early cached blocks */
1749 while (tcp_sack_cache_ok(tp, cache) &&
1750 !before(start_seq, cache->end_seq))
1751 cache++;
1752
1753 /* Can skip some work by looking recv_sack_cache? */
1754 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1755 after(end_seq, cache->start_seq)) {
1756
1757 /* Head todo? */
1758 if (before(start_seq, cache->start_seq)) {
1759 skb = tcp_sacktag_skip(skb, sk, state,
1760 start_seq);
1761 skb = tcp_sacktag_walk(skb, sk, next_dup,
1762 state,
1763 start_seq,
1764 cache->start_seq,
1765 dup_sack);
1766 }
1767
1768 /* Rest of the block already fully processed? */
1769 if (!after(end_seq, cache->end_seq))
1770 goto advance_sp;
1771
1772 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1773 state,
1774 cache->end_seq);
1775
1776 /* ...tail remains todo... */
1777 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1778 /* ...but better entrypoint exists! */
1779 skb = tcp_highest_sack(sk);
1780 if (!skb)
1781 break;
1782 state->fack_count = tp->fackets_out;
1783 cache++;
1784 goto walk;
1785 }
1786
1787 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1788 /* Check overlap against next cached too (past this one already) */
1789 cache++;
1790 continue;
1791 }
1792
1793 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1794 skb = tcp_highest_sack(sk);
1795 if (!skb)
1796 break;
1797 state->fack_count = tp->fackets_out;
1798 }
1799 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1800
1801walk:
1802 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1803 start_seq, end_seq, dup_sack);
1804
1805advance_sp:
1806 i++;
1807 }
1808
1809 /* Clear the head of the cache sack blocks so we can skip it next time */
1810 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1811 tp->recv_sack_cache[i].start_seq = 0;
1812 tp->recv_sack_cache[i].end_seq = 0;
1813 }
1814 for (j = 0; j < used_sacks; j++)
1815 tp->recv_sack_cache[i++] = sp[j];
1816
1817 if ((state->reord < tp->fackets_out) &&
1818 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1819 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1820
1821 tcp_mark_lost_retrans(sk);
1822 tcp_verify_left_out(tp);
1823out:
1824
1825#if FASTRETRANS_DEBUG > 0
1826 WARN_ON((int)tp->sacked_out < 0);
1827 WARN_ON((int)tp->lost_out < 0);
1828 WARN_ON((int)tp->retrans_out < 0);
1829 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1830#endif
1831 return state->flag;
1832}
1833
1834/* Limits sacked_out so that sum with lost_out isn't ever larger than
1835 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1836 */
1837static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1838{
1839 u32 holes;
1840
1841 holes = max(tp->lost_out, 1U);
1842 holes = min(holes, tp->packets_out);
1843
1844 if ((tp->sacked_out + holes) > tp->packets_out) {
1845 tp->sacked_out = tp->packets_out - holes;
1846 return true;
1847 }
1848 return false;
1849}
1850
1851/* If we receive more dupacks than we expected counting segments
1852 * in assumption of absent reordering, interpret this as reordering.
1853 * The only another reason could be bug in receiver TCP.
1854 */
1855static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1856{
1857 struct tcp_sock *tp = tcp_sk(sk);
1858 if (tcp_limit_reno_sacked(tp))
1859 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1860}
1861
1862/* Emulate SACKs for SACKless connection: account for a new dupack. */
1863
1864static void tcp_add_reno_sack(struct sock *sk)
1865{
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 tp->sacked_out++;
1868 tcp_check_reno_reordering(sk, 0);
1869 tcp_verify_left_out(tp);
1870}
1871
1872/* Account for ACK, ACKing some data in Reno Recovery phase. */
1873
1874static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1875{
1876 struct tcp_sock *tp = tcp_sk(sk);
1877
1878 if (acked > 0) {
1879 /* One ACK acked hole. The rest eat duplicate ACKs. */
1880 if (acked - 1 >= tp->sacked_out)
1881 tp->sacked_out = 0;
1882 else
1883 tp->sacked_out -= acked - 1;
1884 }
1885 tcp_check_reno_reordering(sk, acked);
1886 tcp_verify_left_out(tp);
1887}
1888
1889static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1890{
1891 tp->sacked_out = 0;
1892}
1893
1894void tcp_clear_retrans(struct tcp_sock *tp)
1895{
1896 tp->retrans_out = 0;
1897 tp->lost_out = 0;
1898 tp->undo_marker = 0;
1899 tp->undo_retrans = -1;
1900 tp->fackets_out = 0;
1901 tp->sacked_out = 0;
1902}
1903
1904static inline void tcp_init_undo(struct tcp_sock *tp)
1905{
1906 tp->undo_marker = tp->snd_una;
1907 /* Retransmission still in flight may cause DSACKs later. */
1908 tp->undo_retrans = tp->retrans_out ? : -1;
1909}
1910
1911/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1912 * and reset tags completely, otherwise preserve SACKs. If receiver
1913 * dropped its ofo queue, we will know this due to reneging detection.
1914 */
1915void tcp_enter_loss(struct sock *sk)
1916{
1917 const struct inet_connection_sock *icsk = inet_csk(sk);
1918 struct tcp_sock *tp = tcp_sk(sk);
1919 struct sk_buff *skb;
1920 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1921 bool is_reneg; /* is receiver reneging on SACKs? */
1922
1923 /* Reduce ssthresh if it has not yet been made inside this window. */
1924 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 !after(tp->high_seq, tp->snd_una) ||
1926 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1928 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 tcp_ca_event(sk, CA_EVENT_LOSS);
1930 tcp_init_undo(tp);
1931 }
1932 tp->snd_cwnd = 1;
1933 tp->snd_cwnd_cnt = 0;
1934 tp->snd_cwnd_stamp = tcp_time_stamp;
1935
1936 tp->retrans_out = 0;
1937 tp->lost_out = 0;
1938
1939 if (tcp_is_reno(tp))
1940 tcp_reset_reno_sack(tp);
1941
1942 skb = tcp_write_queue_head(sk);
1943 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 if (is_reneg) {
1945 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 tp->sacked_out = 0;
1947 tp->fackets_out = 0;
1948 }
1949 tcp_clear_all_retrans_hints(tp);
1950
1951 tcp_for_write_queue(skb, sk) {
1952 if (skb == tcp_send_head(sk))
1953 break;
1954
1955 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1956 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1957 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1959 tp->lost_out += tcp_skb_pcount(skb);
1960 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1961 }
1962 }
1963 tcp_verify_left_out(tp);
1964
1965 /* Timeout in disordered state after receiving substantial DUPACKs
1966 * suggests that the degree of reordering is over-estimated.
1967 */
1968 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1969 tp->sacked_out >= sysctl_tcp_reordering)
1970 tp->reordering = min_t(unsigned int, tp->reordering,
1971 sysctl_tcp_reordering);
1972 tcp_set_ca_state(sk, TCP_CA_Loss);
1973 tp->high_seq = tp->snd_nxt;
1974 tcp_ecn_queue_cwr(tp);
1975
1976 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1977 * loss recovery is underway except recurring timeout(s) on
1978 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1979 */
1980 tp->frto = sysctl_tcp_frto &&
1981 (new_recovery || icsk->icsk_retransmits) &&
1982 !inet_csk(sk)->icsk_mtup.probe_size;
1983}
1984
1985/* If ACK arrived pointing to a remembered SACK, it means that our
1986 * remembered SACKs do not reflect real state of receiver i.e.
1987 * receiver _host_ is heavily congested (or buggy).
1988 *
1989 * To avoid big spurious retransmission bursts due to transient SACK
1990 * scoreboard oddities that look like reneging, we give the receiver a
1991 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1992 * restore sanity to the SACK scoreboard. If the apparent reneging
1993 * persists until this RTO then we'll clear the SACK scoreboard.
1994 */
1995static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1996{
1997 if (flag & FLAG_SACK_RENEGING) {
1998 struct tcp_sock *tp = tcp_sk(sk);
1999 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2000 msecs_to_jiffies(10));
2001
2002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2003 delay, TCP_RTO_MAX);
2004 return true;
2005 }
2006 return false;
2007}
2008
2009static inline int tcp_fackets_out(const struct tcp_sock *tp)
2010{
2011 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2012}
2013
2014/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2015 * counter when SACK is enabled (without SACK, sacked_out is used for
2016 * that purpose).
2017 *
2018 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2019 * segments up to the highest received SACK block so far and holes in
2020 * between them.
2021 *
2022 * With reordering, holes may still be in flight, so RFC3517 recovery
2023 * uses pure sacked_out (total number of SACKed segments) even though
2024 * it violates the RFC that uses duplicate ACKs, often these are equal
2025 * but when e.g. out-of-window ACKs or packet duplication occurs,
2026 * they differ. Since neither occurs due to loss, TCP should really
2027 * ignore them.
2028 */
2029static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2030{
2031 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2032}
2033
2034static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2035{
2036 struct tcp_sock *tp = tcp_sk(sk);
2037 unsigned long delay;
2038
2039 /* Delay early retransmit and entering fast recovery for
2040 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2041 * available, or RTO is scheduled to fire first.
2042 */
2043 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2044 (flag & FLAG_ECE) || !tp->srtt_us)
2045 return false;
2046
2047 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2048 msecs_to_jiffies(2));
2049
2050 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2051 return false;
2052
2053 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2054 TCP_RTO_MAX);
2055 return true;
2056}
2057
2058/* Linux NewReno/SACK/FACK/ECN state machine.
2059 * --------------------------------------
2060 *
2061 * "Open" Normal state, no dubious events, fast path.
2062 * "Disorder" In all the respects it is "Open",
2063 * but requires a bit more attention. It is entered when
2064 * we see some SACKs or dupacks. It is split of "Open"
2065 * mainly to move some processing from fast path to slow one.
2066 * "CWR" CWND was reduced due to some Congestion Notification event.
2067 * It can be ECN, ICMP source quench, local device congestion.
2068 * "Recovery" CWND was reduced, we are fast-retransmitting.
2069 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2070 *
2071 * tcp_fastretrans_alert() is entered:
2072 * - each incoming ACK, if state is not "Open"
2073 * - when arrived ACK is unusual, namely:
2074 * * SACK
2075 * * Duplicate ACK.
2076 * * ECN ECE.
2077 *
2078 * Counting packets in flight is pretty simple.
2079 *
2080 * in_flight = packets_out - left_out + retrans_out
2081 *
2082 * packets_out is SND.NXT-SND.UNA counted in packets.
2083 *
2084 * retrans_out is number of retransmitted segments.
2085 *
2086 * left_out is number of segments left network, but not ACKed yet.
2087 *
2088 * left_out = sacked_out + lost_out
2089 *
2090 * sacked_out: Packets, which arrived to receiver out of order
2091 * and hence not ACKed. With SACKs this number is simply
2092 * amount of SACKed data. Even without SACKs
2093 * it is easy to give pretty reliable estimate of this number,
2094 * counting duplicate ACKs.
2095 *
2096 * lost_out: Packets lost by network. TCP has no explicit
2097 * "loss notification" feedback from network (for now).
2098 * It means that this number can be only _guessed_.
2099 * Actually, it is the heuristics to predict lossage that
2100 * distinguishes different algorithms.
2101 *
2102 * F.e. after RTO, when all the queue is considered as lost,
2103 * lost_out = packets_out and in_flight = retrans_out.
2104 *
2105 * Essentially, we have now two algorithms counting
2106 * lost packets.
2107 *
2108 * FACK: It is the simplest heuristics. As soon as we decided
2109 * that something is lost, we decide that _all_ not SACKed
2110 * packets until the most forward SACK are lost. I.e.
2111 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2112 * It is absolutely correct estimate, if network does not reorder
2113 * packets. And it loses any connection to reality when reordering
2114 * takes place. We use FACK by default until reordering
2115 * is suspected on the path to this destination.
2116 *
2117 * NewReno: when Recovery is entered, we assume that one segment
2118 * is lost (classic Reno). While we are in Recovery and
2119 * a partial ACK arrives, we assume that one more packet
2120 * is lost (NewReno). This heuristics are the same in NewReno
2121 * and SACK.
2122 *
2123 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2124 * deflation etc. CWND is real congestion window, never inflated, changes
2125 * only according to classic VJ rules.
2126 *
2127 * Really tricky (and requiring careful tuning) part of algorithm
2128 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2129 * The first determines the moment _when_ we should reduce CWND and,
2130 * hence, slow down forward transmission. In fact, it determines the moment
2131 * when we decide that hole is caused by loss, rather than by a reorder.
2132 *
2133 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2134 * holes, caused by lost packets.
2135 *
2136 * And the most logically complicated part of algorithm is undo
2137 * heuristics. We detect false retransmits due to both too early
2138 * fast retransmit (reordering) and underestimated RTO, analyzing
2139 * timestamps and D-SACKs. When we detect that some segments were
2140 * retransmitted by mistake and CWND reduction was wrong, we undo
2141 * window reduction and abort recovery phase. This logic is hidden
2142 * inside several functions named tcp_try_undo_<something>.
2143 */
2144
2145/* This function decides, when we should leave Disordered state
2146 * and enter Recovery phase, reducing congestion window.
2147 *
2148 * Main question: may we further continue forward transmission
2149 * with the same cwnd?
2150 */
2151static bool tcp_time_to_recover(struct sock *sk, int flag)
2152{
2153 struct tcp_sock *tp = tcp_sk(sk);
2154 __u32 packets_out;
2155
2156 /* Trick#1: The loss is proven. */
2157 if (tp->lost_out)
2158 return true;
2159
2160 /* Not-A-Trick#2 : Classic rule... */
2161 if (tcp_dupack_heuristics(tp) > tp->reordering)
2162 return true;
2163
2164 /* Trick#4: It is still not OK... But will it be useful to delay
2165 * recovery more?
2166 */
2167 packets_out = tp->packets_out;
2168 if (packets_out <= tp->reordering &&
2169 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2170 !tcp_may_send_now(sk)) {
2171 /* We have nothing to send. This connection is limited
2172 * either by receiver window or by application.
2173 */
2174 return true;
2175 }
2176
2177 /* If a thin stream is detected, retransmit after first
2178 * received dupack. Employ only if SACK is supported in order
2179 * to avoid possible corner-case series of spurious retransmissions
2180 * Use only if there are no unsent data.
2181 */
2182 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2183 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2184 tcp_is_sack(tp) && !tcp_send_head(sk))
2185 return true;
2186
2187 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2188 * retransmissions due to small network reorderings, we implement
2189 * Mitigation A.3 in the RFC and delay the retransmission for a short
2190 * interval if appropriate.
2191 */
2192 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2193 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2194 !tcp_may_send_now(sk))
2195 return !tcp_pause_early_retransmit(sk, flag);
2196
2197 return false;
2198}
2199
2200/* Detect loss in event "A" above by marking head of queue up as lost.
2201 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2202 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2203 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2204 * the maximum SACKed segments to pass before reaching this limit.
2205 */
2206static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2207{
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2210 int cnt, oldcnt;
2211 int err;
2212 unsigned int mss;
2213 /* Use SACK to deduce losses of new sequences sent during recovery */
2214 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2215
2216 WARN_ON(packets > tp->packets_out);
2217 if (tp->lost_skb_hint) {
2218 skb = tp->lost_skb_hint;
2219 cnt = tp->lost_cnt_hint;
2220 /* Head already handled? */
2221 if (mark_head && skb != tcp_write_queue_head(sk))
2222 return;
2223 } else {
2224 skb = tcp_write_queue_head(sk);
2225 cnt = 0;
2226 }
2227
2228 tcp_for_write_queue_from(skb, sk) {
2229 if (skb == tcp_send_head(sk))
2230 break;
2231 /* TODO: do this better */
2232 /* this is not the most efficient way to do this... */
2233 tp->lost_skb_hint = skb;
2234 tp->lost_cnt_hint = cnt;
2235
2236 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2237 break;
2238
2239 oldcnt = cnt;
2240 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2241 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2242 cnt += tcp_skb_pcount(skb);
2243
2244 if (cnt > packets) {
2245 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2247 (oldcnt >= packets))
2248 break;
2249
2250 mss = tcp_skb_mss(skb);
2251 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2252 mss, GFP_ATOMIC);
2253 if (err < 0)
2254 break;
2255 cnt = packets;
2256 }
2257
2258 tcp_skb_mark_lost(tp, skb);
2259
2260 if (mark_head)
2261 break;
2262 }
2263 tcp_verify_left_out(tp);
2264}
2265
2266/* Account newly detected lost packet(s) */
2267
2268static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2269{
2270 struct tcp_sock *tp = tcp_sk(sk);
2271
2272 if (tcp_is_reno(tp)) {
2273 tcp_mark_head_lost(sk, 1, 1);
2274 } else if (tcp_is_fack(tp)) {
2275 int lost = tp->fackets_out - tp->reordering;
2276 if (lost <= 0)
2277 lost = 1;
2278 tcp_mark_head_lost(sk, lost, 0);
2279 } else {
2280 int sacked_upto = tp->sacked_out - tp->reordering;
2281 if (sacked_upto >= 0)
2282 tcp_mark_head_lost(sk, sacked_upto, 0);
2283 else if (fast_rexmit)
2284 tcp_mark_head_lost(sk, 1, 1);
2285 }
2286}
2287
2288/* CWND moderation, preventing bursts due to too big ACKs
2289 * in dubious situations.
2290 */
2291static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2292{
2293 tp->snd_cwnd = min(tp->snd_cwnd,
2294 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2295 tp->snd_cwnd_stamp = tcp_time_stamp;
2296}
2297
2298/* Nothing was retransmitted or returned timestamp is less
2299 * than timestamp of the first retransmission.
2300 */
2301static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2302{
2303 return !tp->retrans_stamp ||
2304 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2305 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2306}
2307
2308/* Undo procedures. */
2309
2310/* We can clear retrans_stamp when there are no retransmissions in the
2311 * window. It would seem that it is trivially available for us in
2312 * tp->retrans_out, however, that kind of assumptions doesn't consider
2313 * what will happen if errors occur when sending retransmission for the
2314 * second time. ...It could the that such segment has only
2315 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2316 * the head skb is enough except for some reneging corner cases that
2317 * are not worth the effort.
2318 *
2319 * Main reason for all this complexity is the fact that connection dying
2320 * time now depends on the validity of the retrans_stamp, in particular,
2321 * that successive retransmissions of a segment must not advance
2322 * retrans_stamp under any conditions.
2323 */
2324static bool tcp_any_retrans_done(const struct sock *sk)
2325{
2326 const struct tcp_sock *tp = tcp_sk(sk);
2327 struct sk_buff *skb;
2328
2329 if (tp->retrans_out)
2330 return true;
2331
2332 skb = tcp_write_queue_head(sk);
2333 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2334 return true;
2335
2336 return false;
2337}
2338
2339#if FASTRETRANS_DEBUG > 1
2340static void DBGUNDO(struct sock *sk, const char *msg)
2341{
2342 struct tcp_sock *tp = tcp_sk(sk);
2343 struct inet_sock *inet = inet_sk(sk);
2344
2345 if (sk->sk_family == AF_INET) {
2346 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2347 msg,
2348 &inet->inet_daddr, ntohs(inet->inet_dport),
2349 tp->snd_cwnd, tcp_left_out(tp),
2350 tp->snd_ssthresh, tp->prior_ssthresh,
2351 tp->packets_out);
2352 }
2353#if IS_ENABLED(CONFIG_IPV6)
2354 else if (sk->sk_family == AF_INET6) {
2355 struct ipv6_pinfo *np = inet6_sk(sk);
2356 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2357 msg,
2358 &np->daddr, ntohs(inet->inet_dport),
2359 tp->snd_cwnd, tcp_left_out(tp),
2360 tp->snd_ssthresh, tp->prior_ssthresh,
2361 tp->packets_out);
2362 }
2363#endif
2364}
2365#else
2366#define DBGUNDO(x...) do { } while (0)
2367#endif
2368
2369static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2370{
2371 struct tcp_sock *tp = tcp_sk(sk);
2372
2373 if (unmark_loss) {
2374 struct sk_buff *skb;
2375
2376 tcp_for_write_queue(skb, sk) {
2377 if (skb == tcp_send_head(sk))
2378 break;
2379 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2380 }
2381 tp->lost_out = 0;
2382 tcp_clear_all_retrans_hints(tp);
2383 }
2384
2385 if (tp->prior_ssthresh) {
2386 const struct inet_connection_sock *icsk = inet_csk(sk);
2387
2388 if (icsk->icsk_ca_ops->undo_cwnd)
2389 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2390 else
2391 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2392
2393 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2394 tp->snd_ssthresh = tp->prior_ssthresh;
2395 tcp_ecn_withdraw_cwr(tp);
2396 }
2397 } else {
2398 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2399 }
2400 tp->snd_cwnd_stamp = tcp_time_stamp;
2401 tp->undo_marker = 0;
2402}
2403
2404static inline bool tcp_may_undo(const struct tcp_sock *tp)
2405{
2406 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2407}
2408
2409/* People celebrate: "We love our President!" */
2410static bool tcp_try_undo_recovery(struct sock *sk)
2411{
2412 struct tcp_sock *tp = tcp_sk(sk);
2413
2414 if (tcp_may_undo(tp)) {
2415 int mib_idx;
2416
2417 /* Happy end! We did not retransmit anything
2418 * or our original transmission succeeded.
2419 */
2420 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2423 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2424 else
2425 mib_idx = LINUX_MIB_TCPFULLUNDO;
2426
2427 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2428 }
2429 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2430 /* Hold old state until something *above* high_seq
2431 * is ACKed. For Reno it is MUST to prevent false
2432 * fast retransmits (RFC2582). SACK TCP is safe. */
2433 tcp_moderate_cwnd(tp);
2434 if (!tcp_any_retrans_done(sk))
2435 tp->retrans_stamp = 0;
2436 return true;
2437 }
2438 tcp_set_ca_state(sk, TCP_CA_Open);
2439 return false;
2440}
2441
2442/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2443static bool tcp_try_undo_dsack(struct sock *sk)
2444{
2445 struct tcp_sock *tp = tcp_sk(sk);
2446
2447 if (tp->undo_marker && !tp->undo_retrans) {
2448 DBGUNDO(sk, "D-SACK");
2449 tcp_undo_cwnd_reduction(sk, false);
2450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2451 return true;
2452 }
2453 return false;
2454}
2455
2456/* Undo during loss recovery after partial ACK or using F-RTO. */
2457static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2458{
2459 struct tcp_sock *tp = tcp_sk(sk);
2460
2461 if (frto_undo || tcp_may_undo(tp)) {
2462 tcp_undo_cwnd_reduction(sk, true);
2463
2464 DBGUNDO(sk, "partial loss");
2465 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2466 if (frto_undo)
2467 NET_INC_STATS_BH(sock_net(sk),
2468 LINUX_MIB_TCPSPURIOUSRTOS);
2469 inet_csk(sk)->icsk_retransmits = 0;
2470 if (frto_undo || tcp_is_sack(tp))
2471 tcp_set_ca_state(sk, TCP_CA_Open);
2472 return true;
2473 }
2474 return false;
2475}
2476
2477/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2478 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2479 * It computes the number of packets to send (sndcnt) based on packets newly
2480 * delivered:
2481 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2482 * cwnd reductions across a full RTT.
2483 * 2) If packets in flight is lower than ssthresh (such as due to excess
2484 * losses and/or application stalls), do not perform any further cwnd
2485 * reductions, but instead slow start up to ssthresh.
2486 */
2487static void tcp_init_cwnd_reduction(struct sock *sk)
2488{
2489 struct tcp_sock *tp = tcp_sk(sk);
2490
2491 tp->high_seq = tp->snd_nxt;
2492 tp->tlp_high_seq = 0;
2493 tp->snd_cwnd_cnt = 0;
2494 tp->prior_cwnd = tp->snd_cwnd;
2495 tp->prr_delivered = 0;
2496 tp->prr_out = 0;
2497 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2498 tcp_ecn_queue_cwr(tp);
2499}
2500
2501static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2502 int fast_rexmit)
2503{
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 int sndcnt = 0;
2506 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2507 int newly_acked_sacked = prior_unsacked -
2508 (tp->packets_out - tp->sacked_out);
2509
2510 tp->prr_delivered += newly_acked_sacked;
2511 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2512 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2513 tp->prior_cwnd - 1;
2514 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2515 } else {
2516 sndcnt = min_t(int, delta,
2517 max_t(int, tp->prr_delivered - tp->prr_out,
2518 newly_acked_sacked) + 1);
2519 }
2520
2521 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2522 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2523}
2524
2525static inline void tcp_end_cwnd_reduction(struct sock *sk)
2526{
2527 struct tcp_sock *tp = tcp_sk(sk);
2528
2529 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2530 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2531 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2532 tp->snd_cwnd = tp->snd_ssthresh;
2533 tp->snd_cwnd_stamp = tcp_time_stamp;
2534 }
2535 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2536}
2537
2538/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2539void tcp_enter_cwr(struct sock *sk)
2540{
2541 struct tcp_sock *tp = tcp_sk(sk);
2542
2543 tp->prior_ssthresh = 0;
2544 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2545 tp->undo_marker = 0;
2546 tcp_init_cwnd_reduction(sk);
2547 tcp_set_ca_state(sk, TCP_CA_CWR);
2548 }
2549}
2550EXPORT_SYMBOL(tcp_enter_cwr);
2551
2552static void tcp_try_keep_open(struct sock *sk)
2553{
2554 struct tcp_sock *tp = tcp_sk(sk);
2555 int state = TCP_CA_Open;
2556
2557 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2558 state = TCP_CA_Disorder;
2559
2560 if (inet_csk(sk)->icsk_ca_state != state) {
2561 tcp_set_ca_state(sk, state);
2562 tp->high_seq = tp->snd_nxt;
2563 }
2564}
2565
2566static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2567{
2568 struct tcp_sock *tp = tcp_sk(sk);
2569
2570 tcp_verify_left_out(tp);
2571
2572 if (!tcp_any_retrans_done(sk))
2573 tp->retrans_stamp = 0;
2574
2575 if (flag & FLAG_ECE)
2576 tcp_enter_cwr(sk);
2577
2578 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2579 tcp_try_keep_open(sk);
2580 } else {
2581 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2582 }
2583}
2584
2585static void tcp_mtup_probe_failed(struct sock *sk)
2586{
2587 struct inet_connection_sock *icsk = inet_csk(sk);
2588
2589 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2590 icsk->icsk_mtup.probe_size = 0;
2591}
2592
2593static void tcp_mtup_probe_success(struct sock *sk)
2594{
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 struct inet_connection_sock *icsk = inet_csk(sk);
2597
2598 /* FIXME: breaks with very large cwnd */
2599 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2600 tp->snd_cwnd = tp->snd_cwnd *
2601 tcp_mss_to_mtu(sk, tp->mss_cache) /
2602 icsk->icsk_mtup.probe_size;
2603 tp->snd_cwnd_cnt = 0;
2604 tp->snd_cwnd_stamp = tcp_time_stamp;
2605 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2606
2607 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2608 icsk->icsk_mtup.probe_size = 0;
2609 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2610}
2611
2612/* Do a simple retransmit without using the backoff mechanisms in
2613 * tcp_timer. This is used for path mtu discovery.
2614 * The socket is already locked here.
2615 */
2616void tcp_simple_retransmit(struct sock *sk)
2617{
2618 const struct inet_connection_sock *icsk = inet_csk(sk);
2619 struct tcp_sock *tp = tcp_sk(sk);
2620 struct sk_buff *skb;
2621 unsigned int mss = tcp_current_mss(sk);
2622 u32 prior_lost = tp->lost_out;
2623
2624 tcp_for_write_queue(skb, sk) {
2625 if (skb == tcp_send_head(sk))
2626 break;
2627 if (tcp_skb_seglen(skb) > mss &&
2628 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2629 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2630 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2631 tp->retrans_out -= tcp_skb_pcount(skb);
2632 }
2633 tcp_skb_mark_lost_uncond_verify(tp, skb);
2634 }
2635 }
2636
2637 tcp_clear_retrans_hints_partial(tp);
2638
2639 if (prior_lost == tp->lost_out)
2640 return;
2641
2642 if (tcp_is_reno(tp))
2643 tcp_limit_reno_sacked(tp);
2644
2645 tcp_verify_left_out(tp);
2646
2647 /* Don't muck with the congestion window here.
2648 * Reason is that we do not increase amount of _data_
2649 * in network, but units changed and effective
2650 * cwnd/ssthresh really reduced now.
2651 */
2652 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2653 tp->high_seq = tp->snd_nxt;
2654 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2655 tp->prior_ssthresh = 0;
2656 tp->undo_marker = 0;
2657 tcp_set_ca_state(sk, TCP_CA_Loss);
2658 }
2659 tcp_xmit_retransmit_queue(sk);
2660}
2661EXPORT_SYMBOL(tcp_simple_retransmit);
2662
2663static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2664{
2665 struct tcp_sock *tp = tcp_sk(sk);
2666 int mib_idx;
2667
2668 if (tcp_is_reno(tp))
2669 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2670 else
2671 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2672
2673 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2674
2675 tp->prior_ssthresh = 0;
2676 tcp_init_undo(tp);
2677
2678 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2679 if (!ece_ack)
2680 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2681 tcp_init_cwnd_reduction(sk);
2682 }
2683 tcp_set_ca_state(sk, TCP_CA_Recovery);
2684}
2685
2686/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2687 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2688 */
2689static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2690{
2691 struct tcp_sock *tp = tcp_sk(sk);
2692 bool recovered = !before(tp->snd_una, tp->high_seq);
2693
2694 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2695 tcp_try_undo_loss(sk, false))
2696 return;
2697
2698 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2699 /* Step 3.b. A timeout is spurious if not all data are
2700 * lost, i.e., never-retransmitted data are (s)acked.
2701 */
2702 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2703 tcp_try_undo_loss(sk, true))
2704 return;
2705
2706 if (after(tp->snd_nxt, tp->high_seq)) {
2707 if (flag & FLAG_DATA_SACKED || is_dupack)
2708 tp->frto = 0; /* Step 3.a. loss was real */
2709 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 tp->high_seq = tp->snd_nxt;
2711 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2712 TCP_NAGLE_OFF);
2713 if (after(tp->snd_nxt, tp->high_seq))
2714 return; /* Step 2.b */
2715 tp->frto = 0;
2716 }
2717 }
2718
2719 if (recovered) {
2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2721 tcp_try_undo_recovery(sk);
2722 return;
2723 }
2724 if (tcp_is_reno(tp)) {
2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2726 * delivered. Lower inflight to clock out (re)tranmissions.
2727 */
2728 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2729 tcp_add_reno_sack(sk);
2730 else if (flag & FLAG_SND_UNA_ADVANCED)
2731 tcp_reset_reno_sack(tp);
2732 }
2733 tcp_xmit_retransmit_queue(sk);
2734}
2735
2736/* Undo during fast recovery after partial ACK. */
2737static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2738 const int prior_unsacked)
2739{
2740 struct tcp_sock *tp = tcp_sk(sk);
2741
2742 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2743 /* Plain luck! Hole if filled with delayed
2744 * packet, rather than with a retransmit.
2745 */
2746 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747
2748 /* We are getting evidence that the reordering degree is higher
2749 * than we realized. If there are no retransmits out then we
2750 * can undo. Otherwise we clock out new packets but do not
2751 * mark more packets lost or retransmit more.
2752 */
2753 if (tp->retrans_out) {
2754 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2755 return true;
2756 }
2757
2758 if (!tcp_any_retrans_done(sk))
2759 tp->retrans_stamp = 0;
2760
2761 DBGUNDO(sk, "partial recovery");
2762 tcp_undo_cwnd_reduction(sk, true);
2763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2764 tcp_try_keep_open(sk);
2765 return true;
2766 }
2767 return false;
2768}
2769
2770/* Process an event, which can update packets-in-flight not trivially.
2771 * Main goal of this function is to calculate new estimate for left_out,
2772 * taking into account both packets sitting in receiver's buffer and
2773 * packets lost by network.
2774 *
2775 * Besides that it does CWND reduction, when packet loss is detected
2776 * and changes state of machine.
2777 *
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2780 */
2781static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782 const int prior_unsacked,
2783 bool is_dupack, int flag)
2784{
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2788 (tcp_fackets_out(tp) > tp->reordering));
2789 int fast_rexmit = 0;
2790
2791 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2792 tp->sacked_out = 0;
2793 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794 tp->fackets_out = 0;
2795
2796 /* Now state machine starts.
2797 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798 if (flag & FLAG_ECE)
2799 tp->prior_ssthresh = 0;
2800
2801 /* B. In all the states check for reneging SACKs. */
2802 if (tcp_check_sack_reneging(sk, flag))
2803 return;
2804
2805 /* C. Check consistency of the current state. */
2806 tcp_verify_left_out(tp);
2807
2808 /* D. Check state exit conditions. State can be terminated
2809 * when high_seq is ACKed. */
2810 if (icsk->icsk_ca_state == TCP_CA_Open) {
2811 WARN_ON(tp->retrans_out != 0);
2812 tp->retrans_stamp = 0;
2813 } else if (!before(tp->snd_una, tp->high_seq)) {
2814 switch (icsk->icsk_ca_state) {
2815 case TCP_CA_CWR:
2816 /* CWR is to be held something *above* high_seq
2817 * is ACKed for CWR bit to reach receiver. */
2818 if (tp->snd_una != tp->high_seq) {
2819 tcp_end_cwnd_reduction(sk);
2820 tcp_set_ca_state(sk, TCP_CA_Open);
2821 }
2822 break;
2823
2824 case TCP_CA_Recovery:
2825 if (tcp_is_reno(tp))
2826 tcp_reset_reno_sack(tp);
2827 if (tcp_try_undo_recovery(sk))
2828 return;
2829 tcp_end_cwnd_reduction(sk);
2830 break;
2831 }
2832 }
2833
2834 /* E. Process state. */
2835 switch (icsk->icsk_ca_state) {
2836 case TCP_CA_Recovery:
2837 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838 if (tcp_is_reno(tp) && is_dupack)
2839 tcp_add_reno_sack(sk);
2840 } else {
2841 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2842 return;
2843 /* Partial ACK arrived. Force fast retransmit. */
2844 do_lost = tcp_is_reno(tp) ||
2845 tcp_fackets_out(tp) > tp->reordering;
2846 }
2847 if (tcp_try_undo_dsack(sk)) {
2848 tcp_try_keep_open(sk);
2849 return;
2850 }
2851 break;
2852 case TCP_CA_Loss:
2853 tcp_process_loss(sk, flag, is_dupack);
2854 if (icsk->icsk_ca_state != TCP_CA_Open)
2855 return;
2856 /* Fall through to processing in Open state. */
2857 default:
2858 if (tcp_is_reno(tp)) {
2859 if (flag & FLAG_SND_UNA_ADVANCED)
2860 tcp_reset_reno_sack(tp);
2861 if (is_dupack)
2862 tcp_add_reno_sack(sk);
2863 }
2864
2865 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 tcp_try_undo_dsack(sk);
2867
2868 if (!tcp_time_to_recover(sk, flag)) {
2869 tcp_try_to_open(sk, flag, prior_unsacked);
2870 return;
2871 }
2872
2873 /* MTU probe failure: don't reduce cwnd */
2874 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2875 icsk->icsk_mtup.probe_size &&
2876 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2877 tcp_mtup_probe_failed(sk);
2878 /* Restores the reduction we did in tcp_mtup_probe() */
2879 tp->snd_cwnd++;
2880 tcp_simple_retransmit(sk);
2881 return;
2882 }
2883
2884 /* Otherwise enter Recovery state */
2885 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2886 fast_rexmit = 1;
2887 }
2888
2889 if (do_lost)
2890 tcp_update_scoreboard(sk, fast_rexmit);
2891 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2892 tcp_xmit_retransmit_queue(sk);
2893}
2894
2895static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2896 long seq_rtt_us, long sack_rtt_us)
2897{
2898 const struct tcp_sock *tp = tcp_sk(sk);
2899
2900 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2901 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2902 * Karn's algorithm forbids taking RTT if some retransmitted data
2903 * is acked (RFC6298).
2904 */
2905 if (flag & FLAG_RETRANS_DATA_ACKED)
2906 seq_rtt_us = -1L;
2907
2908 if (seq_rtt_us < 0)
2909 seq_rtt_us = sack_rtt_us;
2910
2911 /* RTTM Rule: A TSecr value received in a segment is used to
2912 * update the averaged RTT measurement only if the segment
2913 * acknowledges some new data, i.e., only if it advances the
2914 * left edge of the send window.
2915 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2916 */
2917 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2918 flag & FLAG_ACKED)
2919 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2920
2921 if (seq_rtt_us < 0)
2922 return false;
2923
2924 tcp_rtt_estimator(sk, seq_rtt_us);
2925 tcp_set_rto(sk);
2926
2927 /* RFC6298: only reset backoff on valid RTT measurement. */
2928 inet_csk(sk)->icsk_backoff = 0;
2929 return true;
2930}
2931
2932/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2933static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2934{
2935 struct tcp_sock *tp = tcp_sk(sk);
2936 long seq_rtt_us = -1L;
2937
2938 if (synack_stamp && !tp->total_retrans)
2939 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2940
2941 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2942 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2943 */
2944 if (!tp->srtt_us)
2945 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2946}
2947
2948static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2949{
2950 const struct inet_connection_sock *icsk = inet_csk(sk);
2951
2952 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2953 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2954}
2955
2956/* Restart timer after forward progress on connection.
2957 * RFC2988 recommends to restart timer to now+rto.
2958 */
2959void tcp_rearm_rto(struct sock *sk)
2960{
2961 const struct inet_connection_sock *icsk = inet_csk(sk);
2962 struct tcp_sock *tp = tcp_sk(sk);
2963
2964 /* If the retrans timer is currently being used by Fast Open
2965 * for SYN-ACK retrans purpose, stay put.
2966 */
2967 if (tp->fastopen_rsk)
2968 return;
2969
2970 if (!tp->packets_out) {
2971 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2972 } else {
2973 u32 rto = inet_csk(sk)->icsk_rto;
2974 /* Offset the time elapsed after installing regular RTO */
2975 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2976 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2977 struct sk_buff *skb = tcp_write_queue_head(sk);
2978 const u32 rto_time_stamp =
2979 tcp_skb_timestamp(skb) + rto;
2980 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2981 /* delta may not be positive if the socket is locked
2982 * when the retrans timer fires and is rescheduled.
2983 */
2984 if (delta > 0)
2985 rto = delta;
2986 }
2987 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2988 TCP_RTO_MAX);
2989 }
2990}
2991
2992/* This function is called when the delayed ER timer fires. TCP enters
2993 * fast recovery and performs fast-retransmit.
2994 */
2995void tcp_resume_early_retransmit(struct sock *sk)
2996{
2997 struct tcp_sock *tp = tcp_sk(sk);
2998
2999 tcp_rearm_rto(sk);
3000
3001 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3002 if (!tp->do_early_retrans)
3003 return;
3004
3005 tcp_enter_recovery(sk, false);
3006 tcp_update_scoreboard(sk, 1);
3007 tcp_xmit_retransmit_queue(sk);
3008}
3009
3010/* If we get here, the whole TSO packet has not been acked. */
3011static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3012{
3013 struct tcp_sock *tp = tcp_sk(sk);
3014 u32 packets_acked;
3015
3016 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3017
3018 packets_acked = tcp_skb_pcount(skb);
3019 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3020 return 0;
3021 packets_acked -= tcp_skb_pcount(skb);
3022
3023 if (packets_acked) {
3024 BUG_ON(tcp_skb_pcount(skb) == 0);
3025 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3026 }
3027
3028 return packets_acked;
3029}
3030
3031static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3032 u32 prior_snd_una)
3033{
3034 const struct skb_shared_info *shinfo;
3035
3036 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3037 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3038 return;
3039
3040 shinfo = skb_shinfo(skb);
3041 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3042 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3043 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3044}
3045
3046/* Remove acknowledged frames from the retransmission queue. If our packet
3047 * is before the ack sequence we can discard it as it's confirmed to have
3048 * arrived at the other end.
3049 */
3050static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3051 u32 prior_snd_una,
3052 struct tcp_sacktag_state *sack)
3053{
3054 const struct inet_connection_sock *icsk = inet_csk(sk);
3055 struct skb_mstamp first_ackt, last_ackt, now;
3056 struct tcp_sock *tp = tcp_sk(sk);
3057 u32 prior_sacked = tp->sacked_out;
3058 u32 reord = tp->packets_out;
3059 bool fully_acked = true;
3060 long sack_rtt_us = -1L;
3061 long seq_rtt_us = -1L;
3062 long ca_rtt_us = -1L;
3063 struct sk_buff *skb;
3064 u32 pkts_acked = 0;
3065 bool rtt_update;
3066 int flag = 0;
3067
3068 first_ackt.v64 = 0;
3069
3070 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3071 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3072 u8 sacked = scb->sacked;
3073 u32 acked_pcount;
3074
3075 tcp_ack_tstamp(sk, skb, prior_snd_una);
3076
3077 /* Determine how many packets and what bytes were acked, tso and else */
3078 if (after(scb->end_seq, tp->snd_una)) {
3079 if (tcp_skb_pcount(skb) == 1 ||
3080 !after(tp->snd_una, scb->seq))
3081 break;
3082
3083 acked_pcount = tcp_tso_acked(sk, skb);
3084 if (!acked_pcount)
3085 break;
3086
3087 fully_acked = false;
3088 } else {
3089 /* Speedup tcp_unlink_write_queue() and next loop */
3090 prefetchw(skb->next);
3091 acked_pcount = tcp_skb_pcount(skb);
3092 }
3093
3094 if (unlikely(sacked & TCPCB_RETRANS)) {
3095 if (sacked & TCPCB_SACKED_RETRANS)
3096 tp->retrans_out -= acked_pcount;
3097 flag |= FLAG_RETRANS_DATA_ACKED;
3098 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3099 last_ackt = skb->skb_mstamp;
3100 WARN_ON_ONCE(last_ackt.v64 == 0);
3101 if (!first_ackt.v64)
3102 first_ackt = last_ackt;
3103
3104 reord = min(pkts_acked, reord);
3105 if (!after(scb->end_seq, tp->high_seq))
3106 flag |= FLAG_ORIG_SACK_ACKED;
3107 }
3108
3109 if (sacked & TCPCB_SACKED_ACKED)
3110 tp->sacked_out -= acked_pcount;
3111 if (sacked & TCPCB_LOST)
3112 tp->lost_out -= acked_pcount;
3113
3114 tp->packets_out -= acked_pcount;
3115 pkts_acked += acked_pcount;
3116
3117 /* Initial outgoing SYN's get put onto the write_queue
3118 * just like anything else we transmit. It is not
3119 * true data, and if we misinform our callers that
3120 * this ACK acks real data, we will erroneously exit
3121 * connection startup slow start one packet too
3122 * quickly. This is severely frowned upon behavior.
3123 */
3124 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3125 flag |= FLAG_DATA_ACKED;
3126 } else {
3127 flag |= FLAG_SYN_ACKED;
3128 tp->retrans_stamp = 0;
3129 }
3130
3131 if (!fully_acked)
3132 break;
3133
3134 tcp_unlink_write_queue(skb, sk);
3135 sk_wmem_free_skb(sk, skb);
3136 if (unlikely(skb == tp->retransmit_skb_hint))
3137 tp->retransmit_skb_hint = NULL;
3138 if (unlikely(skb == tp->lost_skb_hint))
3139 tp->lost_skb_hint = NULL;
3140 }
3141
3142 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3143 tp->snd_up = tp->snd_una;
3144
3145 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3146 flag |= FLAG_SACK_RENEGING;
3147
3148 skb_mstamp_get(&now);
3149 if (likely(first_ackt.v64)) {
3150 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3151 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3152 }
3153 if (sack->first_sackt.v64) {
3154 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3155 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3156 }
3157
3158 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3159
3160 if (flag & FLAG_ACKED) {
3161 tcp_rearm_rto(sk);
3162 if (unlikely(icsk->icsk_mtup.probe_size &&
3163 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3164 tcp_mtup_probe_success(sk);
3165 }
3166
3167 if (tcp_is_reno(tp)) {
3168 tcp_remove_reno_sacks(sk, pkts_acked);
3169 } else {
3170 int delta;
3171
3172 /* Non-retransmitted hole got filled? That's reordering */
3173 if (reord < prior_fackets)
3174 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3175
3176 delta = tcp_is_fack(tp) ? pkts_acked :
3177 prior_sacked - tp->sacked_out;
3178 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3179 }
3180
3181 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3182
3183 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3184 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3185 /* Do not re-arm RTO if the sack RTT is measured from data sent
3186 * after when the head was last (re)transmitted. Otherwise the
3187 * timeout may continue to extend in loss recovery.
3188 */
3189 tcp_rearm_rto(sk);
3190 }
3191
3192 if (icsk->icsk_ca_ops->pkts_acked)
3193 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3194
3195#if FASTRETRANS_DEBUG > 0
3196 WARN_ON((int)tp->sacked_out < 0);
3197 WARN_ON((int)tp->lost_out < 0);
3198 WARN_ON((int)tp->retrans_out < 0);
3199 if (!tp->packets_out && tcp_is_sack(tp)) {
3200 icsk = inet_csk(sk);
3201 if (tp->lost_out) {
3202 pr_debug("Leak l=%u %d\n",
3203 tp->lost_out, icsk->icsk_ca_state);
3204 tp->lost_out = 0;
3205 }
3206 if (tp->sacked_out) {
3207 pr_debug("Leak s=%u %d\n",
3208 tp->sacked_out, icsk->icsk_ca_state);
3209 tp->sacked_out = 0;
3210 }
3211 if (tp->retrans_out) {
3212 pr_debug("Leak r=%u %d\n",
3213 tp->retrans_out, icsk->icsk_ca_state);
3214 tp->retrans_out = 0;
3215 }
3216 }
3217#endif
3218 return flag;
3219}
3220
3221static void tcp_ack_probe(struct sock *sk)
3222{
3223 const struct tcp_sock *tp = tcp_sk(sk);
3224 struct inet_connection_sock *icsk = inet_csk(sk);
3225
3226 /* Was it a usable window open? */
3227
3228 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3229 icsk->icsk_backoff = 0;
3230 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3231 /* Socket must be waked up by subsequent tcp_data_snd_check().
3232 * This function is not for random using!
3233 */
3234 } else {
3235 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3236
3237 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3238 when, TCP_RTO_MAX);
3239 }
3240}
3241
3242static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3243{
3244 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3245 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3246}
3247
3248/* Decide wheather to run the increase function of congestion control. */
3249static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3250{
3251 if (tcp_in_cwnd_reduction(sk))
3252 return false;
3253
3254 /* If reordering is high then always grow cwnd whenever data is
3255 * delivered regardless of its ordering. Otherwise stay conservative
3256 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3257 * new SACK or ECE mark may first advance cwnd here and later reduce
3258 * cwnd in tcp_fastretrans_alert() based on more states.
3259 */
3260 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3261 return flag & FLAG_FORWARD_PROGRESS;
3262
3263 return flag & FLAG_DATA_ACKED;
3264}
3265
3266/* Check that window update is acceptable.
3267 * The function assumes that snd_una<=ack<=snd_next.
3268 */
3269static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3270 const u32 ack, const u32 ack_seq,
3271 const u32 nwin)
3272{
3273 return after(ack, tp->snd_una) ||
3274 after(ack_seq, tp->snd_wl1) ||
3275 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3276}
3277
3278/* If we update tp->snd_una, also update tp->bytes_acked */
3279static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3280{
3281 u32 delta = ack - tp->snd_una;
3282
3283 u64_stats_update_begin(&tp->syncp);
3284 tp->bytes_acked += delta;
3285 u64_stats_update_end(&tp->syncp);
3286 tp->snd_una = ack;
3287}
3288
3289/* If we update tp->rcv_nxt, also update tp->bytes_received */
3290static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3291{
3292 u32 delta = seq - tp->rcv_nxt;
3293
3294 u64_stats_update_begin(&tp->syncp);
3295 tp->bytes_received += delta;
3296 u64_stats_update_end(&tp->syncp);
3297 tp->rcv_nxt = seq;
3298}
3299
3300/* Update our send window.
3301 *
3302 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3303 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3304 */
3305static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3306 u32 ack_seq)
3307{
3308 struct tcp_sock *tp = tcp_sk(sk);
3309 int flag = 0;
3310 u32 nwin = ntohs(tcp_hdr(skb)->window);
3311
3312 if (likely(!tcp_hdr(skb)->syn))
3313 nwin <<= tp->rx_opt.snd_wscale;
3314
3315 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3316 flag |= FLAG_WIN_UPDATE;
3317 tcp_update_wl(tp, ack_seq);
3318
3319 if (tp->snd_wnd != nwin) {
3320 tp->snd_wnd = nwin;
3321
3322 /* Note, it is the only place, where
3323 * fast path is recovered for sending TCP.
3324 */
3325 tp->pred_flags = 0;
3326 tcp_fast_path_check(sk);
3327
3328 if (nwin > tp->max_window) {
3329 tp->max_window = nwin;
3330 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3331 }
3332 }
3333 }
3334
3335 tcp_snd_una_update(tp, ack);
3336
3337 return flag;
3338}
3339
3340/* Return true if we're currently rate-limiting out-of-window ACKs and
3341 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3342 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3343 * attacks that send repeated SYNs or ACKs for the same connection. To
3344 * do this, we do not send a duplicate SYNACK or ACK if the remote
3345 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3346 */
3347bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3348 int mib_idx, u32 *last_oow_ack_time)
3349{
3350 /* Data packets without SYNs are not likely part of an ACK loop. */
3351 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3352 !tcp_hdr(skb)->syn)
3353 goto not_rate_limited;
3354
3355 if (*last_oow_ack_time) {
3356 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3357
3358 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3359 NET_INC_STATS_BH(net, mib_idx);
3360 return true; /* rate-limited: don't send yet! */
3361 }
3362 }
3363
3364 *last_oow_ack_time = tcp_time_stamp;
3365
3366not_rate_limited:
3367 return false; /* not rate-limited: go ahead, send dupack now! */
3368}
3369
3370/* RFC 5961 7 [ACK Throttling] */
3371static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3372{
3373 /* unprotected vars, we dont care of overwrites */
3374 static u32 challenge_timestamp;
3375 static unsigned int challenge_count;
3376 struct tcp_sock *tp = tcp_sk(sk);
3377 u32 now;
3378
3379 /* First check our per-socket dupack rate limit. */
3380 if (tcp_oow_rate_limited(sock_net(sk), skb,
3381 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3382 &tp->last_oow_ack_time))
3383 return;
3384
3385 /* Then check the check host-wide RFC 5961 rate limit. */
3386 now = jiffies / HZ;
3387 if (now != challenge_timestamp) {
3388 challenge_timestamp = now;
3389 challenge_count = 0;
3390 }
3391 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3392 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3393 tcp_send_ack(sk);
3394 }
3395}
3396
3397static void tcp_store_ts_recent(struct tcp_sock *tp)
3398{
3399 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3400 tp->rx_opt.ts_recent_stamp = get_seconds();
3401}
3402
3403static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3404{
3405 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3406 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3407 * extra check below makes sure this can only happen
3408 * for pure ACK frames. -DaveM
3409 *
3410 * Not only, also it occurs for expired timestamps.
3411 */
3412
3413 if (tcp_paws_check(&tp->rx_opt, 0))
3414 tcp_store_ts_recent(tp);
3415 }
3416}
3417
3418/* This routine deals with acks during a TLP episode.
3419 * We mark the end of a TLP episode on receiving TLP dupack or when
3420 * ack is after tlp_high_seq.
3421 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3422 */
3423static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3424{
3425 struct tcp_sock *tp = tcp_sk(sk);
3426
3427 if (before(ack, tp->tlp_high_seq))
3428 return;
3429
3430 if (flag & FLAG_DSACKING_ACK) {
3431 /* This DSACK means original and TLP probe arrived; no loss */
3432 tp->tlp_high_seq = 0;
3433 } else if (after(ack, tp->tlp_high_seq)) {
3434 /* ACK advances: there was a loss, so reduce cwnd. Reset
3435 * tlp_high_seq in tcp_init_cwnd_reduction()
3436 */
3437 tcp_init_cwnd_reduction(sk);
3438 tcp_set_ca_state(sk, TCP_CA_CWR);
3439 tcp_end_cwnd_reduction(sk);
3440 tcp_try_keep_open(sk);
3441 NET_INC_STATS_BH(sock_net(sk),
3442 LINUX_MIB_TCPLOSSPROBERECOVERY);
3443 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3444 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3445 /* Pure dupack: original and TLP probe arrived; no loss */
3446 tp->tlp_high_seq = 0;
3447 }
3448}
3449
3450static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3451{
3452 const struct inet_connection_sock *icsk = inet_csk(sk);
3453
3454 if (icsk->icsk_ca_ops->in_ack_event)
3455 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3456}
3457
3458/* This routine deals with incoming acks, but not outgoing ones. */
3459static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3460{
3461 struct inet_connection_sock *icsk = inet_csk(sk);
3462 struct tcp_sock *tp = tcp_sk(sk);
3463 struct tcp_sacktag_state sack_state;
3464 u32 prior_snd_una = tp->snd_una;
3465 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3466 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3467 bool is_dupack = false;
3468 u32 prior_fackets;
3469 int prior_packets = tp->packets_out;
3470 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3471 int acked = 0; /* Number of packets newly acked */
3472
3473 sack_state.first_sackt.v64 = 0;
3474
3475 /* We very likely will need to access write queue head. */
3476 prefetchw(sk->sk_write_queue.next);
3477
3478 /* If the ack is older than previous acks
3479 * then we can probably ignore it.
3480 */
3481 if (before(ack, prior_snd_una)) {
3482 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3483 if (before(ack, prior_snd_una - tp->max_window)) {
3484 tcp_send_challenge_ack(sk, skb);
3485 return -1;
3486 }
3487 goto old_ack;
3488 }
3489
3490 /* If the ack includes data we haven't sent yet, discard
3491 * this segment (RFC793 Section 3.9).
3492 */
3493 if (after(ack, tp->snd_nxt))
3494 goto invalid_ack;
3495
3496 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3497 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3498 tcp_rearm_rto(sk);
3499
3500 if (after(ack, prior_snd_una)) {
3501 flag |= FLAG_SND_UNA_ADVANCED;
3502 icsk->icsk_retransmits = 0;
3503 }
3504
3505 prior_fackets = tp->fackets_out;
3506
3507 /* ts_recent update must be made after we are sure that the packet
3508 * is in window.
3509 */
3510 if (flag & FLAG_UPDATE_TS_RECENT)
3511 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3512
3513 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3514 /* Window is constant, pure forward advance.
3515 * No more checks are required.
3516 * Note, we use the fact that SND.UNA>=SND.WL2.
3517 */
3518 tcp_update_wl(tp, ack_seq);
3519 tcp_snd_una_update(tp, ack);
3520 flag |= FLAG_WIN_UPDATE;
3521
3522 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3523
3524 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3525 } else {
3526 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3527
3528 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3529 flag |= FLAG_DATA;
3530 else
3531 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3532
3533 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3534
3535 if (TCP_SKB_CB(skb)->sacked)
3536 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3537 &sack_state);
3538
3539 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3540 flag |= FLAG_ECE;
3541 ack_ev_flags |= CA_ACK_ECE;
3542 }
3543
3544 if (flag & FLAG_WIN_UPDATE)
3545 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3546
3547 tcp_in_ack_event(sk, ack_ev_flags);
3548 }
3549
3550 /* We passed data and got it acked, remove any soft error
3551 * log. Something worked...
3552 */
3553 sk->sk_err_soft = 0;
3554 icsk->icsk_probes_out = 0;
3555 tp->rcv_tstamp = tcp_time_stamp;
3556 if (!prior_packets)
3557 goto no_queue;
3558
3559 /* See if we can take anything off of the retransmit queue. */
3560 acked = tp->packets_out;
3561 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3562 &sack_state);
3563 acked -= tp->packets_out;
3564
3565 /* Advance cwnd if state allows */
3566 if (tcp_may_raise_cwnd(sk, flag))
3567 tcp_cong_avoid(sk, ack, acked);
3568
3569 if (tcp_ack_is_dubious(sk, flag)) {
3570 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3571 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3572 is_dupack, flag);
3573 }
3574 if (tp->tlp_high_seq)
3575 tcp_process_tlp_ack(sk, ack, flag);
3576
3577 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3578 struct dst_entry *dst = __sk_dst_get(sk);
3579 if (dst)
3580 dst_confirm(dst);
3581 }
3582
3583 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3584 tcp_schedule_loss_probe(sk);
3585 tcp_update_pacing_rate(sk);
3586 return 1;
3587
3588no_queue:
3589 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3590 if (flag & FLAG_DSACKING_ACK)
3591 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3592 is_dupack, flag);
3593 /* If this ack opens up a zero window, clear backoff. It was
3594 * being used to time the probes, and is probably far higher than
3595 * it needs to be for normal retransmission.
3596 */
3597 if (tcp_send_head(sk))
3598 tcp_ack_probe(sk);
3599
3600 if (tp->tlp_high_seq)
3601 tcp_process_tlp_ack(sk, ack, flag);
3602 return 1;
3603
3604invalid_ack:
3605 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3606 return -1;
3607
3608old_ack:
3609 /* If data was SACKed, tag it and see if we should send more data.
3610 * If data was DSACKed, see if we can undo a cwnd reduction.
3611 */
3612 if (TCP_SKB_CB(skb)->sacked) {
3613 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3614 &sack_state);
3615 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3616 is_dupack, flag);
3617 }
3618
3619 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3620 return 0;
3621}
3622
3623static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3624 bool syn, struct tcp_fastopen_cookie *foc,
3625 bool exp_opt)
3626{
3627 /* Valid only in SYN or SYN-ACK with an even length. */
3628 if (!foc || !syn || len < 0 || (len & 1))
3629 return;
3630
3631 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3632 len <= TCP_FASTOPEN_COOKIE_MAX)
3633 memcpy(foc->val, cookie, len);
3634 else if (len != 0)
3635 len = -1;
3636 foc->len = len;
3637 foc->exp = exp_opt;
3638}
3639
3640/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3641 * But, this can also be called on packets in the established flow when
3642 * the fast version below fails.
3643 */
3644void tcp_parse_options(const struct sk_buff *skb,
3645 struct tcp_options_received *opt_rx, int estab,
3646 struct tcp_fastopen_cookie *foc)
3647{
3648 const unsigned char *ptr;
3649 const struct tcphdr *th = tcp_hdr(skb);
3650 int length = (th->doff * 4) - sizeof(struct tcphdr);
3651
3652 ptr = (const unsigned char *)(th + 1);
3653 opt_rx->saw_tstamp = 0;
3654
3655 while (length > 0) {
3656 int opcode = *ptr++;
3657 int opsize;
3658
3659 switch (opcode) {
3660 case TCPOPT_EOL:
3661 return;
3662 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3663 length--;
3664 continue;
3665 default:
3666 opsize = *ptr++;
3667 if (opsize < 2) /* "silly options" */
3668 return;
3669 if (opsize > length)
3670 return; /* don't parse partial options */
3671 switch (opcode) {
3672 case TCPOPT_MSS:
3673 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3674 u16 in_mss = get_unaligned_be16(ptr);
3675 if (in_mss) {
3676 if (opt_rx->user_mss &&
3677 opt_rx->user_mss < in_mss)
3678 in_mss = opt_rx->user_mss;
3679 opt_rx->mss_clamp = in_mss;
3680 }
3681 }
3682 break;
3683 case TCPOPT_WINDOW:
3684 if (opsize == TCPOLEN_WINDOW && th->syn &&
3685 !estab && sysctl_tcp_window_scaling) {
3686 __u8 snd_wscale = *(__u8 *)ptr;
3687 opt_rx->wscale_ok = 1;
3688 if (snd_wscale > 14) {
3689 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3690 __func__,
3691 snd_wscale);
3692 snd_wscale = 14;
3693 }
3694 opt_rx->snd_wscale = snd_wscale;
3695 }
3696 break;
3697 case TCPOPT_TIMESTAMP:
3698 if ((opsize == TCPOLEN_TIMESTAMP) &&
3699 ((estab && opt_rx->tstamp_ok) ||
3700 (!estab && sysctl_tcp_timestamps))) {
3701 opt_rx->saw_tstamp = 1;
3702 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3703 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3704 }
3705 break;
3706 case TCPOPT_SACK_PERM:
3707 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3708 !estab && sysctl_tcp_sack) {
3709 opt_rx->sack_ok = TCP_SACK_SEEN;
3710 tcp_sack_reset(opt_rx);
3711 }
3712 break;
3713
3714 case TCPOPT_SACK:
3715 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3716 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3717 opt_rx->sack_ok) {
3718 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3719 }
3720 break;
3721#ifdef CONFIG_TCP_MD5SIG
3722 case TCPOPT_MD5SIG:
3723 /*
3724 * The MD5 Hash has already been
3725 * checked (see tcp_v{4,6}_do_rcv()).
3726 */
3727 break;
3728#endif
3729 case TCPOPT_FASTOPEN:
3730 tcp_parse_fastopen_option(
3731 opsize - TCPOLEN_FASTOPEN_BASE,
3732 ptr, th->syn, foc, false);
3733 break;
3734
3735 case TCPOPT_EXP:
3736 /* Fast Open option shares code 254 using a
3737 * 16 bits magic number.
3738 */
3739 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3740 get_unaligned_be16(ptr) ==
3741 TCPOPT_FASTOPEN_MAGIC)
3742 tcp_parse_fastopen_option(opsize -
3743 TCPOLEN_EXP_FASTOPEN_BASE,
3744 ptr + 2, th->syn, foc, true);
3745 break;
3746
3747 }
3748 ptr += opsize-2;
3749 length -= opsize;
3750 }
3751 }
3752}
3753EXPORT_SYMBOL(tcp_parse_options);
3754
3755static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3756{
3757 const __be32 *ptr = (const __be32 *)(th + 1);
3758
3759 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3760 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3761 tp->rx_opt.saw_tstamp = 1;
3762 ++ptr;
3763 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3764 ++ptr;
3765 if (*ptr)
3766 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3767 else
3768 tp->rx_opt.rcv_tsecr = 0;
3769 return true;
3770 }
3771 return false;
3772}
3773
3774/* Fast parse options. This hopes to only see timestamps.
3775 * If it is wrong it falls back on tcp_parse_options().
3776 */
3777static bool tcp_fast_parse_options(const struct sk_buff *skb,
3778 const struct tcphdr *th, struct tcp_sock *tp)
3779{
3780 /* In the spirit of fast parsing, compare doff directly to constant
3781 * values. Because equality is used, short doff can be ignored here.
3782 */
3783 if (th->doff == (sizeof(*th) / 4)) {
3784 tp->rx_opt.saw_tstamp = 0;
3785 return false;
3786 } else if (tp->rx_opt.tstamp_ok &&
3787 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3788 if (tcp_parse_aligned_timestamp(tp, th))
3789 return true;
3790 }
3791
3792 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3793 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3794 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3795
3796 return true;
3797}
3798
3799#ifdef CONFIG_TCP_MD5SIG
3800/*
3801 * Parse MD5 Signature option
3802 */
3803const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3804{
3805 int length = (th->doff << 2) - sizeof(*th);
3806 const u8 *ptr = (const u8 *)(th + 1);
3807
3808 /* If the TCP option is too short, we can short cut */
3809 if (length < TCPOLEN_MD5SIG)
3810 return NULL;
3811
3812 while (length > 0) {
3813 int opcode = *ptr++;
3814 int opsize;
3815
3816 switch (opcode) {
3817 case TCPOPT_EOL:
3818 return NULL;
3819 case TCPOPT_NOP:
3820 length--;
3821 continue;
3822 default:
3823 opsize = *ptr++;
3824 if (opsize < 2 || opsize > length)
3825 return NULL;
3826 if (opcode == TCPOPT_MD5SIG)
3827 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3828 }
3829 ptr += opsize - 2;
3830 length -= opsize;
3831 }
3832 return NULL;
3833}
3834EXPORT_SYMBOL(tcp_parse_md5sig_option);
3835#endif
3836
3837/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3838 *
3839 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3840 * it can pass through stack. So, the following predicate verifies that
3841 * this segment is not used for anything but congestion avoidance or
3842 * fast retransmit. Moreover, we even are able to eliminate most of such
3843 * second order effects, if we apply some small "replay" window (~RTO)
3844 * to timestamp space.
3845 *
3846 * All these measures still do not guarantee that we reject wrapped ACKs
3847 * on networks with high bandwidth, when sequence space is recycled fastly,
3848 * but it guarantees that such events will be very rare and do not affect
3849 * connection seriously. This doesn't look nice, but alas, PAWS is really
3850 * buggy extension.
3851 *
3852 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3853 * states that events when retransmit arrives after original data are rare.
3854 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3855 * the biggest problem on large power networks even with minor reordering.
3856 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3857 * up to bandwidth of 18Gigabit/sec. 8) ]
3858 */
3859
3860static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3861{
3862 const struct tcp_sock *tp = tcp_sk(sk);
3863 const struct tcphdr *th = tcp_hdr(skb);
3864 u32 seq = TCP_SKB_CB(skb)->seq;
3865 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3866
3867 return (/* 1. Pure ACK with correct sequence number. */
3868 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3869
3870 /* 2. ... and duplicate ACK. */
3871 ack == tp->snd_una &&
3872
3873 /* 3. ... and does not update window. */
3874 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3875
3876 /* 4. ... and sits in replay window. */
3877 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3878}
3879
3880static inline bool tcp_paws_discard(const struct sock *sk,
3881 const struct sk_buff *skb)
3882{
3883 const struct tcp_sock *tp = tcp_sk(sk);
3884
3885 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3886 !tcp_disordered_ack(sk, skb);
3887}
3888
3889/* Check segment sequence number for validity.
3890 *
3891 * Segment controls are considered valid, if the segment
3892 * fits to the window after truncation to the window. Acceptability
3893 * of data (and SYN, FIN, of course) is checked separately.
3894 * See tcp_data_queue(), for example.
3895 *
3896 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3897 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3898 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3899 * (borrowed from freebsd)
3900 */
3901
3902static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3903{
3904 return !before(end_seq, tp->rcv_wup) &&
3905 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3906}
3907
3908/* When we get a reset we do this. */
3909void tcp_reset(struct sock *sk)
3910{
3911 /* We want the right error as BSD sees it (and indeed as we do). */
3912 switch (sk->sk_state) {
3913 case TCP_SYN_SENT:
3914 sk->sk_err = ECONNREFUSED;
3915 break;
3916 case TCP_CLOSE_WAIT:
3917 sk->sk_err = EPIPE;
3918 break;
3919 case TCP_CLOSE:
3920 return;
3921 default:
3922 sk->sk_err = ECONNRESET;
3923 }
3924 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3925 smp_wmb();
3926
3927 if (!sock_flag(sk, SOCK_DEAD))
3928 sk->sk_error_report(sk);
3929
3930 tcp_done(sk);
3931}
3932
3933/*
3934 * Process the FIN bit. This now behaves as it is supposed to work
3935 * and the FIN takes effect when it is validly part of sequence
3936 * space. Not before when we get holes.
3937 *
3938 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3939 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3940 * TIME-WAIT)
3941 *
3942 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3943 * close and we go into CLOSING (and later onto TIME-WAIT)
3944 *
3945 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3946 */
3947static void tcp_fin(struct sock *sk)
3948{
3949 struct tcp_sock *tp = tcp_sk(sk);
3950 const struct dst_entry *dst;
3951
3952 inet_csk_schedule_ack(sk);
3953
3954 sk->sk_shutdown |= RCV_SHUTDOWN;
3955 sock_set_flag(sk, SOCK_DONE);
3956
3957 switch (sk->sk_state) {
3958 case TCP_SYN_RECV:
3959 case TCP_ESTABLISHED:
3960 /* Move to CLOSE_WAIT */
3961 tcp_set_state(sk, TCP_CLOSE_WAIT);
3962 dst = __sk_dst_get(sk);
3963 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3964 inet_csk(sk)->icsk_ack.pingpong = 1;
3965 break;
3966
3967 case TCP_CLOSE_WAIT:
3968 case TCP_CLOSING:
3969 /* Received a retransmission of the FIN, do
3970 * nothing.
3971 */
3972 break;
3973 case TCP_LAST_ACK:
3974 /* RFC793: Remain in the LAST-ACK state. */
3975 break;
3976
3977 case TCP_FIN_WAIT1:
3978 /* This case occurs when a simultaneous close
3979 * happens, we must ack the received FIN and
3980 * enter the CLOSING state.
3981 */
3982 tcp_send_ack(sk);
3983 tcp_set_state(sk, TCP_CLOSING);
3984 break;
3985 case TCP_FIN_WAIT2:
3986 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3987 tcp_send_ack(sk);
3988 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3989 break;
3990 default:
3991 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3992 * cases we should never reach this piece of code.
3993 */
3994 pr_err("%s: Impossible, sk->sk_state=%d\n",
3995 __func__, sk->sk_state);
3996 break;
3997 }
3998
3999 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4000 * Probably, we should reset in this case. For now drop them.
4001 */
4002 __skb_queue_purge(&tp->out_of_order_queue);
4003 if (tcp_is_sack(tp))
4004 tcp_sack_reset(&tp->rx_opt);
4005 sk_mem_reclaim(sk);
4006
4007 if (!sock_flag(sk, SOCK_DEAD)) {
4008 sk->sk_state_change(sk);
4009
4010 /* Do not send POLL_HUP for half duplex close. */
4011 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4012 sk->sk_state == TCP_CLOSE)
4013 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4014 else
4015 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4016 }
4017}
4018
4019static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4020 u32 end_seq)
4021{
4022 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4023 if (before(seq, sp->start_seq))
4024 sp->start_seq = seq;
4025 if (after(end_seq, sp->end_seq))
4026 sp->end_seq = end_seq;
4027 return true;
4028 }
4029 return false;
4030}
4031
4032static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4033{
4034 struct tcp_sock *tp = tcp_sk(sk);
4035
4036 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4037 int mib_idx;
4038
4039 if (before(seq, tp->rcv_nxt))
4040 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4041 else
4042 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4043
4044 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4045
4046 tp->rx_opt.dsack = 1;
4047 tp->duplicate_sack[0].start_seq = seq;
4048 tp->duplicate_sack[0].end_seq = end_seq;
4049 }
4050}
4051
4052static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4053{
4054 struct tcp_sock *tp = tcp_sk(sk);
4055
4056 if (!tp->rx_opt.dsack)
4057 tcp_dsack_set(sk, seq, end_seq);
4058 else
4059 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4060}
4061
4062static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4063{
4064 struct tcp_sock *tp = tcp_sk(sk);
4065
4066 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4067 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4068 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4069 tcp_enter_quickack_mode(sk);
4070
4071 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4072 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4073
4074 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4075 end_seq = tp->rcv_nxt;
4076 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4077 }
4078 }
4079
4080 tcp_send_ack(sk);
4081}
4082
4083/* These routines update the SACK block as out-of-order packets arrive or
4084 * in-order packets close up the sequence space.
4085 */
4086static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4087{
4088 int this_sack;
4089 struct tcp_sack_block *sp = &tp->selective_acks[0];
4090 struct tcp_sack_block *swalk = sp + 1;
4091
4092 /* See if the recent change to the first SACK eats into
4093 * or hits the sequence space of other SACK blocks, if so coalesce.
4094 */
4095 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4096 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4097 int i;
4098
4099 /* Zap SWALK, by moving every further SACK up by one slot.
4100 * Decrease num_sacks.
4101 */
4102 tp->rx_opt.num_sacks--;
4103 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4104 sp[i] = sp[i + 1];
4105 continue;
4106 }
4107 this_sack++, swalk++;
4108 }
4109}
4110
4111static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4112{
4113 struct tcp_sock *tp = tcp_sk(sk);
4114 struct tcp_sack_block *sp = &tp->selective_acks[0];
4115 int cur_sacks = tp->rx_opt.num_sacks;
4116 int this_sack;
4117
4118 if (!cur_sacks)
4119 goto new_sack;
4120
4121 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4122 if (tcp_sack_extend(sp, seq, end_seq)) {
4123 /* Rotate this_sack to the first one. */
4124 for (; this_sack > 0; this_sack--, sp--)
4125 swap(*sp, *(sp - 1));
4126 if (cur_sacks > 1)
4127 tcp_sack_maybe_coalesce(tp);
4128 return;
4129 }
4130 }
4131
4132 /* Could not find an adjacent existing SACK, build a new one,
4133 * put it at the front, and shift everyone else down. We
4134 * always know there is at least one SACK present already here.
4135 *
4136 * If the sack array is full, forget about the last one.
4137 */
4138 if (this_sack >= TCP_NUM_SACKS) {
4139 this_sack--;
4140 tp->rx_opt.num_sacks--;
4141 sp--;
4142 }
4143 for (; this_sack > 0; this_sack--, sp--)
4144 *sp = *(sp - 1);
4145
4146new_sack:
4147 /* Build the new head SACK, and we're done. */
4148 sp->start_seq = seq;
4149 sp->end_seq = end_seq;
4150 tp->rx_opt.num_sacks++;
4151}
4152
4153/* RCV.NXT advances, some SACKs should be eaten. */
4154
4155static void tcp_sack_remove(struct tcp_sock *tp)
4156{
4157 struct tcp_sack_block *sp = &tp->selective_acks[0];
4158 int num_sacks = tp->rx_opt.num_sacks;
4159 int this_sack;
4160
4161 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4162 if (skb_queue_empty(&tp->out_of_order_queue)) {
4163 tp->rx_opt.num_sacks = 0;
4164 return;
4165 }
4166
4167 for (this_sack = 0; this_sack < num_sacks;) {
4168 /* Check if the start of the sack is covered by RCV.NXT. */
4169 if (!before(tp->rcv_nxt, sp->start_seq)) {
4170 int i;
4171
4172 /* RCV.NXT must cover all the block! */
4173 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4174
4175 /* Zap this SACK, by moving forward any other SACKS. */
4176 for (i = this_sack+1; i < num_sacks; i++)
4177 tp->selective_acks[i-1] = tp->selective_acks[i];
4178 num_sacks--;
4179 continue;
4180 }
4181 this_sack++;
4182 sp++;
4183 }
4184 tp->rx_opt.num_sacks = num_sacks;
4185}
4186
4187/**
4188 * tcp_try_coalesce - try to merge skb to prior one
4189 * @sk: socket
4190 * @to: prior buffer
4191 * @from: buffer to add in queue
4192 * @fragstolen: pointer to boolean
4193 *
4194 * Before queueing skb @from after @to, try to merge them
4195 * to reduce overall memory use and queue lengths, if cost is small.
4196 * Packets in ofo or receive queues can stay a long time.
4197 * Better try to coalesce them right now to avoid future collapses.
4198 * Returns true if caller should free @from instead of queueing it
4199 */
4200static bool tcp_try_coalesce(struct sock *sk,
4201 struct sk_buff *to,
4202 struct sk_buff *from,
4203 bool *fragstolen)
4204{
4205 int delta;
4206
4207 *fragstolen = false;
4208
4209 /* Its possible this segment overlaps with prior segment in queue */
4210 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4211 return false;
4212
4213 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4214 return false;
4215
4216 atomic_add(delta, &sk->sk_rmem_alloc);
4217 sk_mem_charge(sk, delta);
4218 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4219 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4220 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4221 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4222 return true;
4223}
4224
4225/* This one checks to see if we can put data from the
4226 * out_of_order queue into the receive_queue.
4227 */
4228static void tcp_ofo_queue(struct sock *sk)
4229{
4230 struct tcp_sock *tp = tcp_sk(sk);
4231 __u32 dsack_high = tp->rcv_nxt;
4232 struct sk_buff *skb, *tail;
4233 bool fragstolen, eaten;
4234
4235 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4236 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4237 break;
4238
4239 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4240 __u32 dsack = dsack_high;
4241 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4242 dsack_high = TCP_SKB_CB(skb)->end_seq;
4243 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4244 }
4245
4246 __skb_unlink(skb, &tp->out_of_order_queue);
4247 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4248 SOCK_DEBUG(sk, "ofo packet was already received\n");
4249 __kfree_skb(skb);
4250 continue;
4251 }
4252 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4253 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4254 TCP_SKB_CB(skb)->end_seq);
4255
4256 tail = skb_peek_tail(&sk->sk_receive_queue);
4257 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4258 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4259 if (!eaten)
4260 __skb_queue_tail(&sk->sk_receive_queue, skb);
4261 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4262 tcp_fin(sk);
4263 if (eaten)
4264 kfree_skb_partial(skb, fragstolen);
4265 }
4266}
4267
4268static bool tcp_prune_ofo_queue(struct sock *sk);
4269static int tcp_prune_queue(struct sock *sk);
4270
4271static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4272 unsigned int size)
4273{
4274 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4275 !sk_rmem_schedule(sk, skb, size)) {
4276
4277 if (tcp_prune_queue(sk) < 0)
4278 return -1;
4279
4280 if (!sk_rmem_schedule(sk, skb, size)) {
4281 if (!tcp_prune_ofo_queue(sk))
4282 return -1;
4283
4284 if (!sk_rmem_schedule(sk, skb, size))
4285 return -1;
4286 }
4287 }
4288 return 0;
4289}
4290
4291static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4292{
4293 struct tcp_sock *tp = tcp_sk(sk);
4294 struct sk_buff *skb1;
4295 u32 seq, end_seq;
4296
4297 tcp_ecn_check_ce(tp, skb);
4298
4299 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4301 __kfree_skb(skb);
4302 return;
4303 }
4304
4305 /* Disable header prediction. */
4306 tp->pred_flags = 0;
4307 inet_csk_schedule_ack(sk);
4308
4309 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4310 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4311 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4312
4313 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4314 if (!skb1) {
4315 /* Initial out of order segment, build 1 SACK. */
4316 if (tcp_is_sack(tp)) {
4317 tp->rx_opt.num_sacks = 1;
4318 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4319 tp->selective_acks[0].end_seq =
4320 TCP_SKB_CB(skb)->end_seq;
4321 }
4322 __skb_queue_head(&tp->out_of_order_queue, skb);
4323 goto end;
4324 }
4325
4326 seq = TCP_SKB_CB(skb)->seq;
4327 end_seq = TCP_SKB_CB(skb)->end_seq;
4328
4329 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4330 bool fragstolen;
4331
4332 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4333 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4334 } else {
4335 tcp_grow_window(sk, skb);
4336 kfree_skb_partial(skb, fragstolen);
4337 skb = NULL;
4338 }
4339
4340 if (!tp->rx_opt.num_sacks ||
4341 tp->selective_acks[0].end_seq != seq)
4342 goto add_sack;
4343
4344 /* Common case: data arrive in order after hole. */
4345 tp->selective_acks[0].end_seq = end_seq;
4346 goto end;
4347 }
4348
4349 /* Find place to insert this segment. */
4350 while (1) {
4351 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4352 break;
4353 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4354 skb1 = NULL;
4355 break;
4356 }
4357 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4358 }
4359
4360 /* Do skb overlap to previous one? */
4361 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4362 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4363 /* All the bits are present. Drop. */
4364 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4365 __kfree_skb(skb);
4366 skb = NULL;
4367 tcp_dsack_set(sk, seq, end_seq);
4368 goto add_sack;
4369 }
4370 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4371 /* Partial overlap. */
4372 tcp_dsack_set(sk, seq,
4373 TCP_SKB_CB(skb1)->end_seq);
4374 } else {
4375 if (skb_queue_is_first(&tp->out_of_order_queue,
4376 skb1))
4377 skb1 = NULL;
4378 else
4379 skb1 = skb_queue_prev(
4380 &tp->out_of_order_queue,
4381 skb1);
4382 }
4383 }
4384 if (!skb1)
4385 __skb_queue_head(&tp->out_of_order_queue, skb);
4386 else
4387 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4388
4389 /* And clean segments covered by new one as whole. */
4390 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4391 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4392
4393 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4394 break;
4395 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4396 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4397 end_seq);
4398 break;
4399 }
4400 __skb_unlink(skb1, &tp->out_of_order_queue);
4401 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4402 TCP_SKB_CB(skb1)->end_seq);
4403 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4404 __kfree_skb(skb1);
4405 }
4406
4407add_sack:
4408 if (tcp_is_sack(tp))
4409 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4410end:
4411 if (skb) {
4412 tcp_grow_window(sk, skb);
4413 skb_set_owner_r(skb, sk);
4414 }
4415}
4416
4417static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4418 bool *fragstolen)
4419{
4420 int eaten;
4421 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4422
4423 __skb_pull(skb, hdrlen);
4424 eaten = (tail &&
4425 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4426 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4427 if (!eaten) {
4428 __skb_queue_tail(&sk->sk_receive_queue, skb);
4429 skb_set_owner_r(skb, sk);
4430 }
4431 return eaten;
4432}
4433
4434int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4435{
4436 struct sk_buff *skb;
4437 bool fragstolen;
4438
4439 if (size == 0)
4440 return 0;
4441
4442 skb = alloc_skb(size, sk->sk_allocation);
4443 if (!skb)
4444 goto err;
4445
4446 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4447 goto err_free;
4448
4449 if (memcpy_from_msg(skb_put(skb, size), msg, size))
4450 goto err_free;
4451
4452 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4453 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4454 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4455
4456 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4457 WARN_ON_ONCE(fragstolen); /* should not happen */
4458 __kfree_skb(skb);
4459 }
4460 return size;
4461
4462err_free:
4463 kfree_skb(skb);
4464err:
4465 return -ENOMEM;
4466}
4467
4468static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4469{
4470 struct tcp_sock *tp = tcp_sk(sk);
4471 int eaten = -1;
4472 bool fragstolen = false;
4473
4474 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4475 goto drop;
4476
4477 skb_dst_drop(skb);
4478 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4479
4480 tcp_ecn_accept_cwr(tp, skb);
4481
4482 tp->rx_opt.dsack = 0;
4483
4484 /* Queue data for delivery to the user.
4485 * Packets in sequence go to the receive queue.
4486 * Out of sequence packets to the out_of_order_queue.
4487 */
4488 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4489 if (tcp_receive_window(tp) == 0)
4490 goto out_of_window;
4491
4492 /* Ok. In sequence. In window. */
4493 if (tp->ucopy.task == current &&
4494 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4495 sock_owned_by_user(sk) && !tp->urg_data) {
4496 int chunk = min_t(unsigned int, skb->len,
4497 tp->ucopy.len);
4498
4499 __set_current_state(TASK_RUNNING);
4500
4501 local_bh_enable();
4502 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4503 tp->ucopy.len -= chunk;
4504 tp->copied_seq += chunk;
4505 eaten = (chunk == skb->len);
4506 tcp_rcv_space_adjust(sk);
4507 }
4508 local_bh_disable();
4509 }
4510
4511 if (eaten <= 0) {
4512queue_and_out:
4513 if (eaten < 0) {
4514 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4515 sk_forced_mem_schedule(sk, skb->truesize);
4516 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4517 goto drop;
4518 }
4519 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4520 }
4521 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4522 if (skb->len)
4523 tcp_event_data_recv(sk, skb);
4524 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4525 tcp_fin(sk);
4526
4527 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4528 tcp_ofo_queue(sk);
4529
4530 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4531 * gap in queue is filled.
4532 */
4533 if (skb_queue_empty(&tp->out_of_order_queue))
4534 inet_csk(sk)->icsk_ack.pingpong = 0;
4535 }
4536
4537 if (tp->rx_opt.num_sacks)
4538 tcp_sack_remove(tp);
4539
4540 tcp_fast_path_check(sk);
4541
4542 if (eaten > 0)
4543 kfree_skb_partial(skb, fragstolen);
4544 if (!sock_flag(sk, SOCK_DEAD))
4545 sk->sk_data_ready(sk);
4546 return;
4547 }
4548
4549 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4550 /* A retransmit, 2nd most common case. Force an immediate ack. */
4551 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4552 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4553
4554out_of_window:
4555 tcp_enter_quickack_mode(sk);
4556 inet_csk_schedule_ack(sk);
4557drop:
4558 __kfree_skb(skb);
4559 return;
4560 }
4561
4562 /* Out of window. F.e. zero window probe. */
4563 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4564 goto out_of_window;
4565
4566 tcp_enter_quickack_mode(sk);
4567
4568 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4569 /* Partial packet, seq < rcv_next < end_seq */
4570 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4571 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4572 TCP_SKB_CB(skb)->end_seq);
4573
4574 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4575
4576 /* If window is closed, drop tail of packet. But after
4577 * remembering D-SACK for its head made in previous line.
4578 */
4579 if (!tcp_receive_window(tp))
4580 goto out_of_window;
4581 goto queue_and_out;
4582 }
4583
4584 tcp_data_queue_ofo(sk, skb);
4585}
4586
4587static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4588 struct sk_buff_head *list)
4589{
4590 struct sk_buff *next = NULL;
4591
4592 if (!skb_queue_is_last(list, skb))
4593 next = skb_queue_next(list, skb);
4594
4595 __skb_unlink(skb, list);
4596 __kfree_skb(skb);
4597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4598
4599 return next;
4600}
4601
4602/* Collapse contiguous sequence of skbs head..tail with
4603 * sequence numbers start..end.
4604 *
4605 * If tail is NULL, this means until the end of the list.
4606 *
4607 * Segments with FIN/SYN are not collapsed (only because this
4608 * simplifies code)
4609 */
4610static void
4611tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4612 struct sk_buff *head, struct sk_buff *tail,
4613 u32 start, u32 end)
4614{
4615 struct sk_buff *skb, *n;
4616 bool end_of_skbs;
4617
4618 /* First, check that queue is collapsible and find
4619 * the point where collapsing can be useful. */
4620 skb = head;
4621restart:
4622 end_of_skbs = true;
4623 skb_queue_walk_from_safe(list, skb, n) {
4624 if (skb == tail)
4625 break;
4626 /* No new bits? It is possible on ofo queue. */
4627 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4628 skb = tcp_collapse_one(sk, skb, list);
4629 if (!skb)
4630 break;
4631 goto restart;
4632 }
4633
4634 /* The first skb to collapse is:
4635 * - not SYN/FIN and
4636 * - bloated or contains data before "start" or
4637 * overlaps to the next one.
4638 */
4639 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4640 (tcp_win_from_space(skb->truesize) > skb->len ||
4641 before(TCP_SKB_CB(skb)->seq, start))) {
4642 end_of_skbs = false;
4643 break;
4644 }
4645
4646 if (!skb_queue_is_last(list, skb)) {
4647 struct sk_buff *next = skb_queue_next(list, skb);
4648 if (next != tail &&
4649 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4650 end_of_skbs = false;
4651 break;
4652 }
4653 }
4654
4655 /* Decided to skip this, advance start seq. */
4656 start = TCP_SKB_CB(skb)->end_seq;
4657 }
4658 if (end_of_skbs ||
4659 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4660 return;
4661
4662 while (before(start, end)) {
4663 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4664 struct sk_buff *nskb;
4665
4666 nskb = alloc_skb(copy, GFP_ATOMIC);
4667 if (!nskb)
4668 return;
4669
4670 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672 __skb_queue_before(list, skb, nskb);
4673 skb_set_owner_r(nskb, sk);
4674
4675 /* Copy data, releasing collapsed skbs. */
4676 while (copy > 0) {
4677 int offset = start - TCP_SKB_CB(skb)->seq;
4678 int size = TCP_SKB_CB(skb)->end_seq - start;
4679
4680 BUG_ON(offset < 0);
4681 if (size > 0) {
4682 size = min(copy, size);
4683 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684 BUG();
4685 TCP_SKB_CB(nskb)->end_seq += size;
4686 copy -= size;
4687 start += size;
4688 }
4689 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690 skb = tcp_collapse_one(sk, skb, list);
4691 if (!skb ||
4692 skb == tail ||
4693 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4694 return;
4695 }
4696 }
4697 }
4698}
4699
4700/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4701 * and tcp_collapse() them until all the queue is collapsed.
4702 */
4703static void tcp_collapse_ofo_queue(struct sock *sk)
4704{
4705 struct tcp_sock *tp = tcp_sk(sk);
4706 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4707 struct sk_buff *head;
4708 u32 start, end;
4709
4710 if (!skb)
4711 return;
4712
4713 start = TCP_SKB_CB(skb)->seq;
4714 end = TCP_SKB_CB(skb)->end_seq;
4715 head = skb;
4716
4717 for (;;) {
4718 struct sk_buff *next = NULL;
4719
4720 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4721 next = skb_queue_next(&tp->out_of_order_queue, skb);
4722 skb = next;
4723
4724 /* Segment is terminated when we see gap or when
4725 * we are at the end of all the queue. */
4726 if (!skb ||
4727 after(TCP_SKB_CB(skb)->seq, end) ||
4728 before(TCP_SKB_CB(skb)->end_seq, start)) {
4729 tcp_collapse(sk, &tp->out_of_order_queue,
4730 head, skb, start, end);
4731 head = skb;
4732 if (!skb)
4733 break;
4734 /* Start new segment */
4735 start = TCP_SKB_CB(skb)->seq;
4736 end = TCP_SKB_CB(skb)->end_seq;
4737 } else {
4738 if (before(TCP_SKB_CB(skb)->seq, start))
4739 start = TCP_SKB_CB(skb)->seq;
4740 if (after(TCP_SKB_CB(skb)->end_seq, end))
4741 end = TCP_SKB_CB(skb)->end_seq;
4742 }
4743 }
4744}
4745
4746/*
4747 * Purge the out-of-order queue.
4748 * Return true if queue was pruned.
4749 */
4750static bool tcp_prune_ofo_queue(struct sock *sk)
4751{
4752 struct tcp_sock *tp = tcp_sk(sk);
4753 bool res = false;
4754
4755 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4757 __skb_queue_purge(&tp->out_of_order_queue);
4758
4759 /* Reset SACK state. A conforming SACK implementation will
4760 * do the same at a timeout based retransmit. When a connection
4761 * is in a sad state like this, we care only about integrity
4762 * of the connection not performance.
4763 */
4764 if (tp->rx_opt.sack_ok)
4765 tcp_sack_reset(&tp->rx_opt);
4766 sk_mem_reclaim(sk);
4767 res = true;
4768 }
4769 return res;
4770}
4771
4772/* Reduce allocated memory if we can, trying to get
4773 * the socket within its memory limits again.
4774 *
4775 * Return less than zero if we should start dropping frames
4776 * until the socket owning process reads some of the data
4777 * to stabilize the situation.
4778 */
4779static int tcp_prune_queue(struct sock *sk)
4780{
4781 struct tcp_sock *tp = tcp_sk(sk);
4782
4783 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4784
4785 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4786
4787 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4788 tcp_clamp_window(sk);
4789 else if (tcp_under_memory_pressure(sk))
4790 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4791
4792 tcp_collapse_ofo_queue(sk);
4793 if (!skb_queue_empty(&sk->sk_receive_queue))
4794 tcp_collapse(sk, &sk->sk_receive_queue,
4795 skb_peek(&sk->sk_receive_queue),
4796 NULL,
4797 tp->copied_seq, tp->rcv_nxt);
4798 sk_mem_reclaim(sk);
4799
4800 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4801 return 0;
4802
4803 /* Collapsing did not help, destructive actions follow.
4804 * This must not ever occur. */
4805
4806 tcp_prune_ofo_queue(sk);
4807
4808 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4809 return 0;
4810
4811 /* If we are really being abused, tell the caller to silently
4812 * drop receive data on the floor. It will get retransmitted
4813 * and hopefully then we'll have sufficient space.
4814 */
4815 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4816
4817 /* Massive buffer overcommit. */
4818 tp->pred_flags = 0;
4819 return -1;
4820}
4821
4822static bool tcp_should_expand_sndbuf(const struct sock *sk)
4823{
4824 const struct tcp_sock *tp = tcp_sk(sk);
4825
4826 /* If the user specified a specific send buffer setting, do
4827 * not modify it.
4828 */
4829 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4830 return false;
4831
4832 /* If we are under global TCP memory pressure, do not expand. */
4833 if (tcp_under_memory_pressure(sk))
4834 return false;
4835
4836 /* If we are under soft global TCP memory pressure, do not expand. */
4837 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4838 return false;
4839
4840 /* If we filled the congestion window, do not expand. */
4841 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4842 return false;
4843
4844 return true;
4845}
4846
4847/* When incoming ACK allowed to free some skb from write_queue,
4848 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4849 * on the exit from tcp input handler.
4850 *
4851 * PROBLEM: sndbuf expansion does not work well with largesend.
4852 */
4853static void tcp_new_space(struct sock *sk)
4854{
4855 struct tcp_sock *tp = tcp_sk(sk);
4856
4857 if (tcp_should_expand_sndbuf(sk)) {
4858 tcp_sndbuf_expand(sk);
4859 tp->snd_cwnd_stamp = tcp_time_stamp;
4860 }
4861
4862 sk->sk_write_space(sk);
4863}
4864
4865static void tcp_check_space(struct sock *sk)
4866{
4867 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4868 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4869 /* pairs with tcp_poll() */
4870 smp_mb__after_atomic();
4871 if (sk->sk_socket &&
4872 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4873 tcp_new_space(sk);
4874 }
4875}
4876
4877static inline void tcp_data_snd_check(struct sock *sk)
4878{
4879 tcp_push_pending_frames(sk);
4880 tcp_check_space(sk);
4881}
4882
4883/*
4884 * Check if sending an ack is needed.
4885 */
4886static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4887{
4888 struct tcp_sock *tp = tcp_sk(sk);
4889
4890 /* More than one full frame received... */
4891 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4892 /* ... and right edge of window advances far enough.
4893 * (tcp_recvmsg() will send ACK otherwise). Or...
4894 */
4895 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4896 /* We ACK each frame or... */
4897 tcp_in_quickack_mode(sk) ||
4898 /* We have out of order data. */
4899 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4900 /* Then ack it now */
4901 tcp_send_ack(sk);
4902 } else {
4903 /* Else, send delayed ack. */
4904 tcp_send_delayed_ack(sk);
4905 }
4906}
4907
4908static inline void tcp_ack_snd_check(struct sock *sk)
4909{
4910 if (!inet_csk_ack_scheduled(sk)) {
4911 /* We sent a data segment already. */
4912 return;
4913 }
4914 __tcp_ack_snd_check(sk, 1);
4915}
4916
4917/*
4918 * This routine is only called when we have urgent data
4919 * signaled. Its the 'slow' part of tcp_urg. It could be
4920 * moved inline now as tcp_urg is only called from one
4921 * place. We handle URGent data wrong. We have to - as
4922 * BSD still doesn't use the correction from RFC961.
4923 * For 1003.1g we should support a new option TCP_STDURG to permit
4924 * either form (or just set the sysctl tcp_stdurg).
4925 */
4926
4927static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4928{
4929 struct tcp_sock *tp = tcp_sk(sk);
4930 u32 ptr = ntohs(th->urg_ptr);
4931
4932 if (ptr && !sysctl_tcp_stdurg)
4933 ptr--;
4934 ptr += ntohl(th->seq);
4935
4936 /* Ignore urgent data that we've already seen and read. */
4937 if (after(tp->copied_seq, ptr))
4938 return;
4939
4940 /* Do not replay urg ptr.
4941 *
4942 * NOTE: interesting situation not covered by specs.
4943 * Misbehaving sender may send urg ptr, pointing to segment,
4944 * which we already have in ofo queue. We are not able to fetch
4945 * such data and will stay in TCP_URG_NOTYET until will be eaten
4946 * by recvmsg(). Seems, we are not obliged to handle such wicked
4947 * situations. But it is worth to think about possibility of some
4948 * DoSes using some hypothetical application level deadlock.
4949 */
4950 if (before(ptr, tp->rcv_nxt))
4951 return;
4952
4953 /* Do we already have a newer (or duplicate) urgent pointer? */
4954 if (tp->urg_data && !after(ptr, tp->urg_seq))
4955 return;
4956
4957 /* Tell the world about our new urgent pointer. */
4958 sk_send_sigurg(sk);
4959
4960 /* We may be adding urgent data when the last byte read was
4961 * urgent. To do this requires some care. We cannot just ignore
4962 * tp->copied_seq since we would read the last urgent byte again
4963 * as data, nor can we alter copied_seq until this data arrives
4964 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4965 *
4966 * NOTE. Double Dutch. Rendering to plain English: author of comment
4967 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4968 * and expect that both A and B disappear from stream. This is _wrong_.
4969 * Though this happens in BSD with high probability, this is occasional.
4970 * Any application relying on this is buggy. Note also, that fix "works"
4971 * only in this artificial test. Insert some normal data between A and B and we will
4972 * decline of BSD again. Verdict: it is better to remove to trap
4973 * buggy users.
4974 */
4975 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4976 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4977 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4978 tp->copied_seq++;
4979 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4980 __skb_unlink(skb, &sk->sk_receive_queue);
4981 __kfree_skb(skb);
4982 }
4983 }
4984
4985 tp->urg_data = TCP_URG_NOTYET;
4986 tp->urg_seq = ptr;
4987
4988 /* Disable header prediction. */
4989 tp->pred_flags = 0;
4990}
4991
4992/* This is the 'fast' part of urgent handling. */
4993static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4994{
4995 struct tcp_sock *tp = tcp_sk(sk);
4996
4997 /* Check if we get a new urgent pointer - normally not. */
4998 if (th->urg)
4999 tcp_check_urg(sk, th);
5000
5001 /* Do we wait for any urgent data? - normally not... */
5002 if (tp->urg_data == TCP_URG_NOTYET) {
5003 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5004 th->syn;
5005
5006 /* Is the urgent pointer pointing into this packet? */
5007 if (ptr < skb->len) {
5008 u8 tmp;
5009 if (skb_copy_bits(skb, ptr, &tmp, 1))
5010 BUG();
5011 tp->urg_data = TCP_URG_VALID | tmp;
5012 if (!sock_flag(sk, SOCK_DEAD))
5013 sk->sk_data_ready(sk);
5014 }
5015 }
5016}
5017
5018static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5019{
5020 struct tcp_sock *tp = tcp_sk(sk);
5021 int chunk = skb->len - hlen;
5022 int err;
5023
5024 local_bh_enable();
5025 if (skb_csum_unnecessary(skb))
5026 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5027 else
5028 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5029
5030 if (!err) {
5031 tp->ucopy.len -= chunk;
5032 tp->copied_seq += chunk;
5033 tcp_rcv_space_adjust(sk);
5034 }
5035
5036 local_bh_disable();
5037 return err;
5038}
5039
5040static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5041 struct sk_buff *skb)
5042{
5043 __sum16 result;
5044
5045 if (sock_owned_by_user(sk)) {
5046 local_bh_enable();
5047 result = __tcp_checksum_complete(skb);
5048 local_bh_disable();
5049 } else {
5050 result = __tcp_checksum_complete(skb);
5051 }
5052 return result;
5053}
5054
5055static inline bool tcp_checksum_complete_user(struct sock *sk,
5056 struct sk_buff *skb)
5057{
5058 return !skb_csum_unnecessary(skb) &&
5059 __tcp_checksum_complete_user(sk, skb);
5060}
5061
5062/* Does PAWS and seqno based validation of an incoming segment, flags will
5063 * play significant role here.
5064 */
5065static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5066 const struct tcphdr *th, int syn_inerr)
5067{
5068 struct tcp_sock *tp = tcp_sk(sk);
5069
5070 /* RFC1323: H1. Apply PAWS check first. */
5071 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5072 tcp_paws_discard(sk, skb)) {
5073 if (!th->rst) {
5074 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5075 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5076 LINUX_MIB_TCPACKSKIPPEDPAWS,
5077 &tp->last_oow_ack_time))
5078 tcp_send_dupack(sk, skb);
5079 goto discard;
5080 }
5081 /* Reset is accepted even if it did not pass PAWS. */
5082 }
5083
5084 /* Step 1: check sequence number */
5085 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5086 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5087 * (RST) segments are validated by checking their SEQ-fields."
5088 * And page 69: "If an incoming segment is not acceptable,
5089 * an acknowledgment should be sent in reply (unless the RST
5090 * bit is set, if so drop the segment and return)".
5091 */
5092 if (!th->rst) {
5093 if (th->syn)
5094 goto syn_challenge;
5095 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5096 LINUX_MIB_TCPACKSKIPPEDSEQ,
5097 &tp->last_oow_ack_time))
5098 tcp_send_dupack(sk, skb);
5099 }
5100 goto discard;
5101 }
5102
5103 /* Step 2: check RST bit */
5104 if (th->rst) {
5105 /* RFC 5961 3.2 :
5106 * If sequence number exactly matches RCV.NXT, then
5107 * RESET the connection
5108 * else
5109 * Send a challenge ACK
5110 */
5111 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5112 tcp_reset(sk);
5113 else
5114 tcp_send_challenge_ack(sk, skb);
5115 goto discard;
5116 }
5117
5118 /* step 3: check security and precedence [ignored] */
5119
5120 /* step 4: Check for a SYN
5121 * RFC 5961 4.2 : Send a challenge ack
5122 */
5123 if (th->syn) {
5124syn_challenge:
5125 if (syn_inerr)
5126 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5128 tcp_send_challenge_ack(sk, skb);
5129 goto discard;
5130 }
5131
5132 return true;
5133
5134discard:
5135 __kfree_skb(skb);
5136 return false;
5137}
5138
5139/*
5140 * TCP receive function for the ESTABLISHED state.
5141 *
5142 * It is split into a fast path and a slow path. The fast path is
5143 * disabled when:
5144 * - A zero window was announced from us - zero window probing
5145 * is only handled properly in the slow path.
5146 * - Out of order segments arrived.
5147 * - Urgent data is expected.
5148 * - There is no buffer space left
5149 * - Unexpected TCP flags/window values/header lengths are received
5150 * (detected by checking the TCP header against pred_flags)
5151 * - Data is sent in both directions. Fast path only supports pure senders
5152 * or pure receivers (this means either the sequence number or the ack
5153 * value must stay constant)
5154 * - Unexpected TCP option.
5155 *
5156 * When these conditions are not satisfied it drops into a standard
5157 * receive procedure patterned after RFC793 to handle all cases.
5158 * The first three cases are guaranteed by proper pred_flags setting,
5159 * the rest is checked inline. Fast processing is turned on in
5160 * tcp_data_queue when everything is OK.
5161 */
5162void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5163 const struct tcphdr *th, unsigned int len)
5164{
5165 struct tcp_sock *tp = tcp_sk(sk);
5166
5167 if (unlikely(!sk->sk_rx_dst))
5168 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5169 /*
5170 * Header prediction.
5171 * The code loosely follows the one in the famous
5172 * "30 instruction TCP receive" Van Jacobson mail.
5173 *
5174 * Van's trick is to deposit buffers into socket queue
5175 * on a device interrupt, to call tcp_recv function
5176 * on the receive process context and checksum and copy
5177 * the buffer to user space. smart...
5178 *
5179 * Our current scheme is not silly either but we take the
5180 * extra cost of the net_bh soft interrupt processing...
5181 * We do checksum and copy also but from device to kernel.
5182 */
5183
5184 tp->rx_opt.saw_tstamp = 0;
5185
5186 /* pred_flags is 0xS?10 << 16 + snd_wnd
5187 * if header_prediction is to be made
5188 * 'S' will always be tp->tcp_header_len >> 2
5189 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5190 * turn it off (when there are holes in the receive
5191 * space for instance)
5192 * PSH flag is ignored.
5193 */
5194
5195 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5196 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5197 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5198 int tcp_header_len = tp->tcp_header_len;
5199
5200 /* Timestamp header prediction: tcp_header_len
5201 * is automatically equal to th->doff*4 due to pred_flags
5202 * match.
5203 */
5204
5205 /* Check timestamp */
5206 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5207 /* No? Slow path! */
5208 if (!tcp_parse_aligned_timestamp(tp, th))
5209 goto slow_path;
5210
5211 /* If PAWS failed, check it more carefully in slow path */
5212 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5213 goto slow_path;
5214
5215 /* DO NOT update ts_recent here, if checksum fails
5216 * and timestamp was corrupted part, it will result
5217 * in a hung connection since we will drop all
5218 * future packets due to the PAWS test.
5219 */
5220 }
5221
5222 if (len <= tcp_header_len) {
5223 /* Bulk data transfer: sender */
5224 if (len == tcp_header_len) {
5225 /* Predicted packet is in window by definition.
5226 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5227 * Hence, check seq<=rcv_wup reduces to:
5228 */
5229 if (tcp_header_len ==
5230 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5231 tp->rcv_nxt == tp->rcv_wup)
5232 tcp_store_ts_recent(tp);
5233
5234 /* We know that such packets are checksummed
5235 * on entry.
5236 */
5237 tcp_ack(sk, skb, 0);
5238 __kfree_skb(skb);
5239 tcp_data_snd_check(sk);
5240 return;
5241 } else { /* Header too small */
5242 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5243 goto discard;
5244 }
5245 } else {
5246 int eaten = 0;
5247 bool fragstolen = false;
5248
5249 if (tp->ucopy.task == current &&
5250 tp->copied_seq == tp->rcv_nxt &&
5251 len - tcp_header_len <= tp->ucopy.len &&
5252 sock_owned_by_user(sk)) {
5253 __set_current_state(TASK_RUNNING);
5254
5255 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5256 /* Predicted packet is in window by definition.
5257 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5258 * Hence, check seq<=rcv_wup reduces to:
5259 */
5260 if (tcp_header_len ==
5261 (sizeof(struct tcphdr) +
5262 TCPOLEN_TSTAMP_ALIGNED) &&
5263 tp->rcv_nxt == tp->rcv_wup)
5264 tcp_store_ts_recent(tp);
5265
5266 tcp_rcv_rtt_measure_ts(sk, skb);
5267
5268 __skb_pull(skb, tcp_header_len);
5269 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5271 eaten = 1;
5272 }
5273 }
5274 if (!eaten) {
5275 if (tcp_checksum_complete_user(sk, skb))
5276 goto csum_error;
5277
5278 if ((int)skb->truesize > sk->sk_forward_alloc)
5279 goto step5;
5280
5281 /* Predicted packet is in window by definition.
5282 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5283 * Hence, check seq<=rcv_wup reduces to:
5284 */
5285 if (tcp_header_len ==
5286 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5287 tp->rcv_nxt == tp->rcv_wup)
5288 tcp_store_ts_recent(tp);
5289
5290 tcp_rcv_rtt_measure_ts(sk, skb);
5291
5292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5293
5294 /* Bulk data transfer: receiver */
5295 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5296 &fragstolen);
5297 }
5298
5299 tcp_event_data_recv(sk, skb);
5300
5301 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5302 /* Well, only one small jumplet in fast path... */
5303 tcp_ack(sk, skb, FLAG_DATA);
5304 tcp_data_snd_check(sk);
5305 if (!inet_csk_ack_scheduled(sk))
5306 goto no_ack;
5307 }
5308
5309 __tcp_ack_snd_check(sk, 0);
5310no_ack:
5311 if (eaten)
5312 kfree_skb_partial(skb, fragstolen);
5313 sk->sk_data_ready(sk);
5314 return;
5315 }
5316 }
5317
5318slow_path:
5319 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5320 goto csum_error;
5321
5322 if (!th->ack && !th->rst && !th->syn)
5323 goto discard;
5324
5325 /*
5326 * Standard slow path.
5327 */
5328
5329 if (!tcp_validate_incoming(sk, skb, th, 1))
5330 return;
5331
5332step5:
5333 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5334 goto discard;
5335
5336 tcp_rcv_rtt_measure_ts(sk, skb);
5337
5338 /* Process urgent data. */
5339 tcp_urg(sk, skb, th);
5340
5341 /* step 7: process the segment text */
5342 tcp_data_queue(sk, skb);
5343
5344 tcp_data_snd_check(sk);
5345 tcp_ack_snd_check(sk);
5346 return;
5347
5348csum_error:
5349 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5350 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5351
5352discard:
5353 __kfree_skb(skb);
5354}
5355EXPORT_SYMBOL(tcp_rcv_established);
5356
5357void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5358{
5359 struct tcp_sock *tp = tcp_sk(sk);
5360 struct inet_connection_sock *icsk = inet_csk(sk);
5361
5362 tcp_set_state(sk, TCP_ESTABLISHED);
5363
5364 if (skb) {
5365 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5366 security_inet_conn_established(sk, skb);
5367 }
5368
5369 /* Make sure socket is routed, for correct metrics. */
5370 icsk->icsk_af_ops->rebuild_header(sk);
5371
5372 tcp_init_metrics(sk);
5373
5374 tcp_init_congestion_control(sk);
5375
5376 /* Prevent spurious tcp_cwnd_restart() on first data
5377 * packet.
5378 */
5379 tp->lsndtime = tcp_time_stamp;
5380
5381 tcp_init_buffer_space(sk);
5382
5383 if (sock_flag(sk, SOCK_KEEPOPEN))
5384 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5385
5386 if (!tp->rx_opt.snd_wscale)
5387 __tcp_fast_path_on(tp, tp->snd_wnd);
5388 else
5389 tp->pred_flags = 0;
5390
5391 if (!sock_flag(sk, SOCK_DEAD)) {
5392 sk->sk_state_change(sk);
5393 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5394 }
5395}
5396
5397static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5398 struct tcp_fastopen_cookie *cookie)
5399{
5400 struct tcp_sock *tp = tcp_sk(sk);
5401 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5402 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5403 bool syn_drop = false;
5404
5405 if (mss == tp->rx_opt.user_mss) {
5406 struct tcp_options_received opt;
5407
5408 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5409 tcp_clear_options(&opt);
5410 opt.user_mss = opt.mss_clamp = 0;
5411 tcp_parse_options(synack, &opt, 0, NULL);
5412 mss = opt.mss_clamp;
5413 }
5414
5415 if (!tp->syn_fastopen) {
5416 /* Ignore an unsolicited cookie */
5417 cookie->len = -1;
5418 } else if (tp->total_retrans) {
5419 /* SYN timed out and the SYN-ACK neither has a cookie nor
5420 * acknowledges data. Presumably the remote received only
5421 * the retransmitted (regular) SYNs: either the original
5422 * SYN-data or the corresponding SYN-ACK was dropped.
5423 */
5424 syn_drop = (cookie->len < 0 && data);
5425 } else if (cookie->len < 0 && !tp->syn_data) {
5426 /* We requested a cookie but didn't get it. If we did not use
5427 * the (old) exp opt format then try so next time (try_exp=1).
5428 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5429 */
5430 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5431 }
5432
5433 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5434
5435 if (data) { /* Retransmit unacked data in SYN */
5436 tcp_for_write_queue_from(data, sk) {
5437 if (data == tcp_send_head(sk) ||
5438 __tcp_retransmit_skb(sk, data))
5439 break;
5440 }
5441 tcp_rearm_rto(sk);
5442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5443 return true;
5444 }
5445 tp->syn_data_acked = tp->syn_data;
5446 if (tp->syn_data_acked)
5447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5448 return false;
5449}
5450
5451static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5452 const struct tcphdr *th, unsigned int len)
5453{
5454 struct inet_connection_sock *icsk = inet_csk(sk);
5455 struct tcp_sock *tp = tcp_sk(sk);
5456 struct tcp_fastopen_cookie foc = { .len = -1 };
5457 int saved_clamp = tp->rx_opt.mss_clamp;
5458
5459 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5460 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5461 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5462
5463 if (th->ack) {
5464 /* rfc793:
5465 * "If the state is SYN-SENT then
5466 * first check the ACK bit
5467 * If the ACK bit is set
5468 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5469 * a reset (unless the RST bit is set, if so drop
5470 * the segment and return)"
5471 */
5472 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5473 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5474 goto reset_and_undo;
5475
5476 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5477 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5478 tcp_time_stamp)) {
5479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5480 goto reset_and_undo;
5481 }
5482
5483 /* Now ACK is acceptable.
5484 *
5485 * "If the RST bit is set
5486 * If the ACK was acceptable then signal the user "error:
5487 * connection reset", drop the segment, enter CLOSED state,
5488 * delete TCB, and return."
5489 */
5490
5491 if (th->rst) {
5492 tcp_reset(sk);
5493 goto discard;
5494 }
5495
5496 /* rfc793:
5497 * "fifth, if neither of the SYN or RST bits is set then
5498 * drop the segment and return."
5499 *
5500 * See note below!
5501 * --ANK(990513)
5502 */
5503 if (!th->syn)
5504 goto discard_and_undo;
5505
5506 /* rfc793:
5507 * "If the SYN bit is on ...
5508 * are acceptable then ...
5509 * (our SYN has been ACKed), change the connection
5510 * state to ESTABLISHED..."
5511 */
5512
5513 tcp_ecn_rcv_synack(tp, th);
5514
5515 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5516 tcp_ack(sk, skb, FLAG_SLOWPATH);
5517
5518 /* Ok.. it's good. Set up sequence numbers and
5519 * move to established.
5520 */
5521 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5522 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5523
5524 /* RFC1323: The window in SYN & SYN/ACK segments is
5525 * never scaled.
5526 */
5527 tp->snd_wnd = ntohs(th->window);
5528
5529 if (!tp->rx_opt.wscale_ok) {
5530 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5531 tp->window_clamp = min(tp->window_clamp, 65535U);
5532 }
5533
5534 if (tp->rx_opt.saw_tstamp) {
5535 tp->rx_opt.tstamp_ok = 1;
5536 tp->tcp_header_len =
5537 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5538 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5539 tcp_store_ts_recent(tp);
5540 } else {
5541 tp->tcp_header_len = sizeof(struct tcphdr);
5542 }
5543
5544 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5545 tcp_enable_fack(tp);
5546
5547 tcp_mtup_init(sk);
5548 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5549 tcp_initialize_rcv_mss(sk);
5550
5551 /* Remember, tcp_poll() does not lock socket!
5552 * Change state from SYN-SENT only after copied_seq
5553 * is initialized. */
5554 tp->copied_seq = tp->rcv_nxt;
5555
5556 smp_mb();
5557
5558 tcp_finish_connect(sk, skb);
5559
5560 if ((tp->syn_fastopen || tp->syn_data) &&
5561 tcp_rcv_fastopen_synack(sk, skb, &foc))
5562 return -1;
5563
5564 if (sk->sk_write_pending ||
5565 icsk->icsk_accept_queue.rskq_defer_accept ||
5566 icsk->icsk_ack.pingpong) {
5567 /* Save one ACK. Data will be ready after
5568 * several ticks, if write_pending is set.
5569 *
5570 * It may be deleted, but with this feature tcpdumps
5571 * look so _wonderfully_ clever, that I was not able
5572 * to stand against the temptation 8) --ANK
5573 */
5574 inet_csk_schedule_ack(sk);
5575 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5576 tcp_enter_quickack_mode(sk);
5577 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5578 TCP_DELACK_MAX, TCP_RTO_MAX);
5579
5580discard:
5581 __kfree_skb(skb);
5582 return 0;
5583 } else {
5584 tcp_send_ack(sk);
5585 }
5586 return -1;
5587 }
5588
5589 /* No ACK in the segment */
5590
5591 if (th->rst) {
5592 /* rfc793:
5593 * "If the RST bit is set
5594 *
5595 * Otherwise (no ACK) drop the segment and return."
5596 */
5597
5598 goto discard_and_undo;
5599 }
5600
5601 /* PAWS check. */
5602 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5603 tcp_paws_reject(&tp->rx_opt, 0))
5604 goto discard_and_undo;
5605
5606 if (th->syn) {
5607 /* We see SYN without ACK. It is attempt of
5608 * simultaneous connect with crossed SYNs.
5609 * Particularly, it can be connect to self.
5610 */
5611 tcp_set_state(sk, TCP_SYN_RECV);
5612
5613 if (tp->rx_opt.saw_tstamp) {
5614 tp->rx_opt.tstamp_ok = 1;
5615 tcp_store_ts_recent(tp);
5616 tp->tcp_header_len =
5617 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5618 } else {
5619 tp->tcp_header_len = sizeof(struct tcphdr);
5620 }
5621
5622 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5623 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5624
5625 /* RFC1323: The window in SYN & SYN/ACK segments is
5626 * never scaled.
5627 */
5628 tp->snd_wnd = ntohs(th->window);
5629 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5630 tp->max_window = tp->snd_wnd;
5631
5632 tcp_ecn_rcv_syn(tp, th);
5633
5634 tcp_mtup_init(sk);
5635 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5636 tcp_initialize_rcv_mss(sk);
5637
5638 tcp_send_synack(sk);
5639#if 0
5640 /* Note, we could accept data and URG from this segment.
5641 * There are no obstacles to make this (except that we must
5642 * either change tcp_recvmsg() to prevent it from returning data
5643 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5644 *
5645 * However, if we ignore data in ACKless segments sometimes,
5646 * we have no reasons to accept it sometimes.
5647 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5648 * is not flawless. So, discard packet for sanity.
5649 * Uncomment this return to process the data.
5650 */
5651 return -1;
5652#else
5653 goto discard;
5654#endif
5655 }
5656 /* "fifth, if neither of the SYN or RST bits is set then
5657 * drop the segment and return."
5658 */
5659
5660discard_and_undo:
5661 tcp_clear_options(&tp->rx_opt);
5662 tp->rx_opt.mss_clamp = saved_clamp;
5663 goto discard;
5664
5665reset_and_undo:
5666 tcp_clear_options(&tp->rx_opt);
5667 tp->rx_opt.mss_clamp = saved_clamp;
5668 return 1;
5669}
5670
5671/*
5672 * This function implements the receiving procedure of RFC 793 for
5673 * all states except ESTABLISHED and TIME_WAIT.
5674 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5675 * address independent.
5676 */
5677
5678int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5679 const struct tcphdr *th, unsigned int len)
5680{
5681 struct tcp_sock *tp = tcp_sk(sk);
5682 struct inet_connection_sock *icsk = inet_csk(sk);
5683 struct request_sock *req;
5684 int queued = 0;
5685 bool acceptable;
5686 u32 synack_stamp;
5687
5688 tp->rx_opt.saw_tstamp = 0;
5689
5690 switch (sk->sk_state) {
5691 case TCP_CLOSE:
5692 goto discard;
5693
5694 case TCP_LISTEN:
5695 if (th->ack)
5696 return 1;
5697
5698 if (th->rst)
5699 goto discard;
5700
5701 if (th->syn) {
5702 if (th->fin)
5703 goto discard;
5704 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5705 return 1;
5706
5707 /* Now we have several options: In theory there is
5708 * nothing else in the frame. KA9Q has an option to
5709 * send data with the syn, BSD accepts data with the
5710 * syn up to the [to be] advertised window and
5711 * Solaris 2.1 gives you a protocol error. For now
5712 * we just ignore it, that fits the spec precisely
5713 * and avoids incompatibilities. It would be nice in
5714 * future to drop through and process the data.
5715 *
5716 * Now that TTCP is starting to be used we ought to
5717 * queue this data.
5718 * But, this leaves one open to an easy denial of
5719 * service attack, and SYN cookies can't defend
5720 * against this problem. So, we drop the data
5721 * in the interest of security over speed unless
5722 * it's still in use.
5723 */
5724 kfree_skb(skb);
5725 return 0;
5726 }
5727 goto discard;
5728
5729 case TCP_SYN_SENT:
5730 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5731 if (queued >= 0)
5732 return queued;
5733
5734 /* Do step6 onward by hand. */
5735 tcp_urg(sk, skb, th);
5736 __kfree_skb(skb);
5737 tcp_data_snd_check(sk);
5738 return 0;
5739 }
5740
5741 req = tp->fastopen_rsk;
5742 if (req) {
5743 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5744 sk->sk_state != TCP_FIN_WAIT1);
5745
5746 if (!tcp_check_req(sk, skb, req, true))
5747 goto discard;
5748 }
5749
5750 if (!th->ack && !th->rst && !th->syn)
5751 goto discard;
5752
5753 if (!tcp_validate_incoming(sk, skb, th, 0))
5754 return 0;
5755
5756 /* step 5: check the ACK field */
5757 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5758 FLAG_UPDATE_TS_RECENT) > 0;
5759
5760 switch (sk->sk_state) {
5761 case TCP_SYN_RECV:
5762 if (!acceptable)
5763 return 1;
5764
5765 /* Once we leave TCP_SYN_RECV, we no longer need req
5766 * so release it.
5767 */
5768 if (req) {
5769 synack_stamp = tcp_rsk(req)->snt_synack;
5770 tp->total_retrans = req->num_retrans;
5771 reqsk_fastopen_remove(sk, req, false);
5772 } else {
5773 synack_stamp = tp->lsndtime;
5774 /* Make sure socket is routed, for correct metrics. */
5775 icsk->icsk_af_ops->rebuild_header(sk);
5776 tcp_init_congestion_control(sk);
5777
5778 tcp_mtup_init(sk);
5779 tp->copied_seq = tp->rcv_nxt;
5780 tcp_init_buffer_space(sk);
5781 }
5782 smp_mb();
5783 tcp_set_state(sk, TCP_ESTABLISHED);
5784 sk->sk_state_change(sk);
5785
5786 /* Note, that this wakeup is only for marginal crossed SYN case.
5787 * Passively open sockets are not waked up, because
5788 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5789 */
5790 if (sk->sk_socket)
5791 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5792
5793 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5794 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5795 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5796 tcp_synack_rtt_meas(sk, synack_stamp);
5797
5798 if (tp->rx_opt.tstamp_ok)
5799 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5800
5801 if (req) {
5802 /* Re-arm the timer because data may have been sent out.
5803 * This is similar to the regular data transmission case
5804 * when new data has just been ack'ed.
5805 *
5806 * (TFO) - we could try to be more aggressive and
5807 * retransmitting any data sooner based on when they
5808 * are sent out.
5809 */
5810 tcp_rearm_rto(sk);
5811 } else
5812 tcp_init_metrics(sk);
5813
5814 tcp_update_pacing_rate(sk);
5815
5816 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5817 tp->lsndtime = tcp_time_stamp;
5818
5819 tcp_initialize_rcv_mss(sk);
5820 tcp_fast_path_on(tp);
5821 break;
5822
5823 case TCP_FIN_WAIT1: {
5824 struct dst_entry *dst;
5825 int tmo;
5826
5827 /* If we enter the TCP_FIN_WAIT1 state and we are a
5828 * Fast Open socket and this is the first acceptable
5829 * ACK we have received, this would have acknowledged
5830 * our SYNACK so stop the SYNACK timer.
5831 */
5832 if (req) {
5833 /* Return RST if ack_seq is invalid.
5834 * Note that RFC793 only says to generate a
5835 * DUPACK for it but for TCP Fast Open it seems
5836 * better to treat this case like TCP_SYN_RECV
5837 * above.
5838 */
5839 if (!acceptable)
5840 return 1;
5841 /* We no longer need the request sock. */
5842 reqsk_fastopen_remove(sk, req, false);
5843 tcp_rearm_rto(sk);
5844 }
5845 if (tp->snd_una != tp->write_seq)
5846 break;
5847
5848 tcp_set_state(sk, TCP_FIN_WAIT2);
5849 sk->sk_shutdown |= SEND_SHUTDOWN;
5850
5851 dst = __sk_dst_get(sk);
5852 if (dst)
5853 dst_confirm(dst);
5854
5855 if (!sock_flag(sk, SOCK_DEAD)) {
5856 /* Wake up lingering close() */
5857 sk->sk_state_change(sk);
5858 break;
5859 }
5860
5861 if (tp->linger2 < 0 ||
5862 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5863 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5864 tcp_done(sk);
5865 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5866 return 1;
5867 }
5868
5869 tmo = tcp_fin_time(sk);
5870 if (tmo > TCP_TIMEWAIT_LEN) {
5871 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5872 } else if (th->fin || sock_owned_by_user(sk)) {
5873 /* Bad case. We could lose such FIN otherwise.
5874 * It is not a big problem, but it looks confusing
5875 * and not so rare event. We still can lose it now,
5876 * if it spins in bh_lock_sock(), but it is really
5877 * marginal case.
5878 */
5879 inet_csk_reset_keepalive_timer(sk, tmo);
5880 } else {
5881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5882 goto discard;
5883 }
5884 break;
5885 }
5886
5887 case TCP_CLOSING:
5888 if (tp->snd_una == tp->write_seq) {
5889 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5890 goto discard;
5891 }
5892 break;
5893
5894 case TCP_LAST_ACK:
5895 if (tp->snd_una == tp->write_seq) {
5896 tcp_update_metrics(sk);
5897 tcp_done(sk);
5898 goto discard;
5899 }
5900 break;
5901 }
5902
5903 /* step 6: check the URG bit */
5904 tcp_urg(sk, skb, th);
5905
5906 /* step 7: process the segment text */
5907 switch (sk->sk_state) {
5908 case TCP_CLOSE_WAIT:
5909 case TCP_CLOSING:
5910 case TCP_LAST_ACK:
5911 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5912 break;
5913 case TCP_FIN_WAIT1:
5914 case TCP_FIN_WAIT2:
5915 /* RFC 793 says to queue data in these states,
5916 * RFC 1122 says we MUST send a reset.
5917 * BSD 4.4 also does reset.
5918 */
5919 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5920 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5921 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5922 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5923 tcp_reset(sk);
5924 return 1;
5925 }
5926 }
5927 /* Fall through */
5928 case TCP_ESTABLISHED:
5929 tcp_data_queue(sk, skb);
5930 queued = 1;
5931 break;
5932 }
5933
5934 /* tcp_data could move socket to TIME-WAIT */
5935 if (sk->sk_state != TCP_CLOSE) {
5936 tcp_data_snd_check(sk);
5937 tcp_ack_snd_check(sk);
5938 }
5939
5940 if (!queued) {
5941discard:
5942 __kfree_skb(skb);
5943 }
5944 return 0;
5945}
5946EXPORT_SYMBOL(tcp_rcv_state_process);
5947
5948static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5949{
5950 struct inet_request_sock *ireq = inet_rsk(req);
5951
5952 if (family == AF_INET)
5953 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5954 &ireq->ir_rmt_addr, port);
5955#if IS_ENABLED(CONFIG_IPV6)
5956 else if (family == AF_INET6)
5957 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5958 &ireq->ir_v6_rmt_addr, port);
5959#endif
5960}
5961
5962/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5963 *
5964 * If we receive a SYN packet with these bits set, it means a
5965 * network is playing bad games with TOS bits. In order to
5966 * avoid possible false congestion notifications, we disable
5967 * TCP ECN negotiation.
5968 *
5969 * Exception: tcp_ca wants ECN. This is required for DCTCP
5970 * congestion control: Linux DCTCP asserts ECT on all packets,
5971 * including SYN, which is most optimal solution; however,
5972 * others, such as FreeBSD do not.
5973 */
5974static void tcp_ecn_create_request(struct request_sock *req,
5975 const struct sk_buff *skb,
5976 const struct sock *listen_sk,
5977 const struct dst_entry *dst)
5978{
5979 const struct tcphdr *th = tcp_hdr(skb);
5980 const struct net *net = sock_net(listen_sk);
5981 bool th_ecn = th->ece && th->cwr;
5982 bool ect, ecn_ok;
5983
5984 if (!th_ecn)
5985 return;
5986
5987 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5988 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5989
5990 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5991 inet_rsk(req)->ecn_ok = 1;
5992}
5993
5994static void tcp_openreq_init(struct request_sock *req,
5995 const struct tcp_options_received *rx_opt,
5996 struct sk_buff *skb, const struct sock *sk)
5997{
5998 struct inet_request_sock *ireq = inet_rsk(req);
5999
6000 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6001 req->cookie_ts = 0;
6002 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6003 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6004 tcp_rsk(req)->snt_synack = tcp_time_stamp;
6005 tcp_rsk(req)->last_oow_ack_time = 0;
6006 req->mss = rx_opt->mss_clamp;
6007 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6008 ireq->tstamp_ok = rx_opt->tstamp_ok;
6009 ireq->sack_ok = rx_opt->sack_ok;
6010 ireq->snd_wscale = rx_opt->snd_wscale;
6011 ireq->wscale_ok = rx_opt->wscale_ok;
6012 ireq->acked = 0;
6013 ireq->ecn_ok = 0;
6014 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6015 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6016 ireq->ir_mark = inet_request_mark(sk, skb);
6017}
6018
6019struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6020 struct sock *sk_listener)
6021{
6022 struct request_sock *req = reqsk_alloc(ops, sk_listener);
6023
6024 if (req) {
6025 struct inet_request_sock *ireq = inet_rsk(req);
6026
6027 kmemcheck_annotate_bitfield(ireq, flags);
6028 ireq->opt = NULL;
6029 atomic64_set(&ireq->ir_cookie, 0);
6030 ireq->ireq_state = TCP_NEW_SYN_RECV;
6031 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6032 ireq->ireq_family = sk_listener->sk_family;
6033 }
6034
6035 return req;
6036}
6037EXPORT_SYMBOL(inet_reqsk_alloc);
6038
6039/*
6040 * Return true if a syncookie should be sent
6041 */
6042static bool tcp_syn_flood_action(struct sock *sk,
6043 const struct sk_buff *skb,
6044 const char *proto)
6045{
6046 const char *msg = "Dropping request";
6047 bool want_cookie = false;
6048 struct listen_sock *lopt;
6049
6050#ifdef CONFIG_SYN_COOKIES
6051 if (sysctl_tcp_syncookies) {
6052 msg = "Sending cookies";
6053 want_cookie = true;
6054 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6055 } else
6056#endif
6057 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6058
6059 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6060 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6061 lopt->synflood_warned = 1;
6062 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6063 proto, ntohs(tcp_hdr(skb)->dest), msg);
6064 }
6065 return want_cookie;
6066}
6067
6068static void tcp_reqsk_record_syn(const struct sock *sk,
6069 struct request_sock *req,
6070 const struct sk_buff *skb)
6071{
6072 if (tcp_sk(sk)->save_syn) {
6073 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6074 u32 *copy;
6075
6076 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6077 if (copy) {
6078 copy[0] = len;
6079 memcpy(©[1], skb_network_header(skb), len);
6080 req->saved_syn = copy;
6081 }
6082 }
6083}
6084
6085int tcp_conn_request(struct request_sock_ops *rsk_ops,
6086 const struct tcp_request_sock_ops *af_ops,
6087 struct sock *sk, struct sk_buff *skb)
6088{
6089 struct tcp_options_received tmp_opt;
6090 struct request_sock *req;
6091 struct tcp_sock *tp = tcp_sk(sk);
6092 struct dst_entry *dst = NULL;
6093 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6094 bool want_cookie = false, fastopen;
6095 struct flowi fl;
6096 struct tcp_fastopen_cookie foc = { .len = -1 };
6097 int err;
6098
6099
6100 /* TW buckets are converted to open requests without
6101 * limitations, they conserve resources and peer is
6102 * evidently real one.
6103 */
6104 if ((sysctl_tcp_syncookies == 2 ||
6105 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6106 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6107 if (!want_cookie)
6108 goto drop;
6109 }
6110
6111
6112 /* Accept backlog is full. If we have already queued enough
6113 * of warm entries in syn queue, drop request. It is better than
6114 * clogging syn queue with openreqs with exponentially increasing
6115 * timeout.
6116 */
6117 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6118 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6119 goto drop;
6120 }
6121
6122 req = inet_reqsk_alloc(rsk_ops, sk);
6123 if (!req)
6124 goto drop;
6125
6126 tcp_rsk(req)->af_specific = af_ops;
6127
6128 tcp_clear_options(&tmp_opt);
6129 tmp_opt.mss_clamp = af_ops->mss_clamp;
6130 tmp_opt.user_mss = tp->rx_opt.user_mss;
6131 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6132
6133 if (want_cookie && !tmp_opt.saw_tstamp)
6134 tcp_clear_options(&tmp_opt);
6135
6136 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6137 tcp_openreq_init(req, &tmp_opt, skb, sk);
6138
6139 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6140 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6141
6142 af_ops->init_req(req, sk, skb);
6143
6144 if (security_inet_conn_request(sk, skb, req))
6145 goto drop_and_free;
6146
6147 if (!want_cookie && !isn) {
6148 /* VJ's idea. We save last timestamp seen
6149 * from the destination in peer table, when entering
6150 * state TIME-WAIT, and check against it before
6151 * accepting new connection request.
6152 *
6153 * If "isn" is not zero, this request hit alive
6154 * timewait bucket, so that all the necessary checks
6155 * are made in the function processing timewait state.
6156 */
6157 if (tcp_death_row.sysctl_tw_recycle) {
6158 bool strict;
6159
6160 dst = af_ops->route_req(sk, &fl, req, &strict);
6161
6162 if (dst && strict &&
6163 !tcp_peer_is_proven(req, dst, true,
6164 tmp_opt.saw_tstamp)) {
6165 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6166 goto drop_and_release;
6167 }
6168 }
6169 /* Kill the following clause, if you dislike this way. */
6170 else if (!sysctl_tcp_syncookies &&
6171 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6172 (sysctl_max_syn_backlog >> 2)) &&
6173 !tcp_peer_is_proven(req, dst, false,
6174 tmp_opt.saw_tstamp)) {
6175 /* Without syncookies last quarter of
6176 * backlog is filled with destinations,
6177 * proven to be alive.
6178 * It means that we continue to communicate
6179 * to destinations, already remembered
6180 * to the moment of synflood.
6181 */
6182 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6183 rsk_ops->family);
6184 goto drop_and_release;
6185 }
6186
6187 isn = af_ops->init_seq(skb);
6188 }
6189 if (!dst) {
6190 dst = af_ops->route_req(sk, &fl, req, NULL);
6191 if (!dst)
6192 goto drop_and_free;
6193 }
6194
6195 tcp_ecn_create_request(req, skb, sk, dst);
6196
6197 if (want_cookie) {
6198 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6199 req->cookie_ts = tmp_opt.tstamp_ok;
6200 if (!tmp_opt.tstamp_ok)
6201 inet_rsk(req)->ecn_ok = 0;
6202 }
6203
6204 tcp_rsk(req)->snt_isn = isn;
6205 tcp_openreq_init_rwin(req, sk, dst);
6206 fastopen = !want_cookie &&
6207 tcp_try_fastopen(sk, skb, req, &foc, dst);
6208 err = af_ops->send_synack(sk, dst, &fl, req,
6209 skb_get_queue_mapping(skb), &foc);
6210 if (!fastopen) {
6211 if (err || want_cookie)
6212 goto drop_and_free;
6213
6214 tcp_rsk(req)->tfo_listener = false;
6215 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6216 }
6217 tcp_reqsk_record_syn(sk, req, skb);
6218
6219 return 0;
6220
6221drop_and_release:
6222 dst_release(dst);
6223drop_and_free:
6224 reqsk_free(req);
6225drop:
6226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6227 return 0;
6228}
6229EXPORT_SYMBOL(tcp_conn_request);