at v4.2-rc5 5620 lines 155 kB view raw
1/* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31#include <linux/cgroup.h> 32#include <linux/cred.h> 33#include <linux/ctype.h> 34#include <linux/errno.h> 35#include <linux/init_task.h> 36#include <linux/kernel.h> 37#include <linux/list.h> 38#include <linux/magic.h> 39#include <linux/mm.h> 40#include <linux/mutex.h> 41#include <linux/mount.h> 42#include <linux/pagemap.h> 43#include <linux/proc_fs.h> 44#include <linux/rcupdate.h> 45#include <linux/sched.h> 46#include <linux/slab.h> 47#include <linux/spinlock.h> 48#include <linux/rwsem.h> 49#include <linux/percpu-rwsem.h> 50#include <linux/string.h> 51#include <linux/sort.h> 52#include <linux/kmod.h> 53#include <linux/delayacct.h> 54#include <linux/cgroupstats.h> 55#include <linux/hashtable.h> 56#include <linux/pid_namespace.h> 57#include <linux/idr.h> 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ 59#include <linux/kthread.h> 60#include <linux/delay.h> 61 62#include <linux/atomic.h> 63 64/* 65 * pidlists linger the following amount before being destroyed. The goal 66 * is avoiding frequent destruction in the middle of consecutive read calls 67 * Expiring in the middle is a performance problem not a correctness one. 68 * 1 sec should be enough. 69 */ 70#define CGROUP_PIDLIST_DESTROY_DELAY HZ 71 72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 73 MAX_CFTYPE_NAME + 2) 74 75/* 76 * cgroup_mutex is the master lock. Any modification to cgroup or its 77 * hierarchy must be performed while holding it. 78 * 79 * css_set_rwsem protects task->cgroups pointer, the list of css_set 80 * objects, and the chain of tasks off each css_set. 81 * 82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 83 * cgroup.h can use them for lockdep annotations. 84 */ 85#ifdef CONFIG_PROVE_RCU 86DEFINE_MUTEX(cgroup_mutex); 87DECLARE_RWSEM(css_set_rwsem); 88EXPORT_SYMBOL_GPL(cgroup_mutex); 89EXPORT_SYMBOL_GPL(css_set_rwsem); 90#else 91static DEFINE_MUTEX(cgroup_mutex); 92static DECLARE_RWSEM(css_set_rwsem); 93#endif 94 95/* 96 * Protects cgroup_idr and css_idr so that IDs can be released without 97 * grabbing cgroup_mutex. 98 */ 99static DEFINE_SPINLOCK(cgroup_idr_lock); 100 101/* 102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 104 */ 105static DEFINE_SPINLOCK(release_agent_path_lock); 106 107struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 108 109#define cgroup_assert_mutex_or_rcu_locked() \ 110 rcu_lockdep_assert(rcu_read_lock_held() || \ 111 lockdep_is_held(&cgroup_mutex), \ 112 "cgroup_mutex or RCU read lock required"); 113 114/* 115 * cgroup destruction makes heavy use of work items and there can be a lot 116 * of concurrent destructions. Use a separate workqueue so that cgroup 117 * destruction work items don't end up filling up max_active of system_wq 118 * which may lead to deadlock. 119 */ 120static struct workqueue_struct *cgroup_destroy_wq; 121 122/* 123 * pidlist destructions need to be flushed on cgroup destruction. Use a 124 * separate workqueue as flush domain. 125 */ 126static struct workqueue_struct *cgroup_pidlist_destroy_wq; 127 128/* generate an array of cgroup subsystem pointers */ 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130static struct cgroup_subsys *cgroup_subsys[] = { 131#include <linux/cgroup_subsys.h> 132}; 133#undef SUBSYS 134 135/* array of cgroup subsystem names */ 136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137static const char *cgroup_subsys_name[] = { 138#include <linux/cgroup_subsys.h> 139}; 140#undef SUBSYS 141 142/* 143 * The default hierarchy, reserved for the subsystems that are otherwise 144 * unattached - it never has more than a single cgroup, and all tasks are 145 * part of that cgroup. 146 */ 147struct cgroup_root cgrp_dfl_root; 148 149/* 150 * The default hierarchy always exists but is hidden until mounted for the 151 * first time. This is for backward compatibility. 152 */ 153static bool cgrp_dfl_root_visible; 154 155/* 156 * Set by the boot param of the same name and makes subsystems with NULL 157 * ->dfl_files to use ->legacy_files on the default hierarchy. 158 */ 159static bool cgroup_legacy_files_on_dfl; 160 161/* some controllers are not supported in the default hierarchy */ 162static unsigned long cgrp_dfl_root_inhibit_ss_mask; 163 164/* The list of hierarchy roots */ 165 166static LIST_HEAD(cgroup_roots); 167static int cgroup_root_count; 168 169/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 170static DEFINE_IDR(cgroup_hierarchy_idr); 171 172/* 173 * Assign a monotonically increasing serial number to csses. It guarantees 174 * cgroups with bigger numbers are newer than those with smaller numbers. 175 * Also, as csses are always appended to the parent's ->children list, it 176 * guarantees that sibling csses are always sorted in the ascending serial 177 * number order on the list. Protected by cgroup_mutex. 178 */ 179static u64 css_serial_nr_next = 1; 180 181/* 182 * These bitmask flags indicate whether tasks in the fork and exit paths have 183 * fork/exit handlers to call. This avoids us having to do extra work in the 184 * fork/exit path to check which subsystems have fork/exit callbacks. 185 */ 186static unsigned long have_fork_callback __read_mostly; 187static unsigned long have_exit_callback __read_mostly; 188 189static struct cftype cgroup_dfl_base_files[]; 190static struct cftype cgroup_legacy_base_files[]; 191 192static int rebind_subsystems(struct cgroup_root *dst_root, 193 unsigned long ss_mask); 194static int cgroup_destroy_locked(struct cgroup *cgrp); 195static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, 196 bool visible); 197static void css_release(struct percpu_ref *ref); 198static void kill_css(struct cgroup_subsys_state *css); 199static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], 200 bool is_add); 201 202/* IDR wrappers which synchronize using cgroup_idr_lock */ 203static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 204 gfp_t gfp_mask) 205{ 206 int ret; 207 208 idr_preload(gfp_mask); 209 spin_lock_bh(&cgroup_idr_lock); 210 ret = idr_alloc(idr, ptr, start, end, gfp_mask); 211 spin_unlock_bh(&cgroup_idr_lock); 212 idr_preload_end(); 213 return ret; 214} 215 216static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 217{ 218 void *ret; 219 220 spin_lock_bh(&cgroup_idr_lock); 221 ret = idr_replace(idr, ptr, id); 222 spin_unlock_bh(&cgroup_idr_lock); 223 return ret; 224} 225 226static void cgroup_idr_remove(struct idr *idr, int id) 227{ 228 spin_lock_bh(&cgroup_idr_lock); 229 idr_remove(idr, id); 230 spin_unlock_bh(&cgroup_idr_lock); 231} 232 233static struct cgroup *cgroup_parent(struct cgroup *cgrp) 234{ 235 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 236 237 if (parent_css) 238 return container_of(parent_css, struct cgroup, self); 239 return NULL; 240} 241 242/** 243 * cgroup_css - obtain a cgroup's css for the specified subsystem 244 * @cgrp: the cgroup of interest 245 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 246 * 247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 248 * function must be called either under cgroup_mutex or rcu_read_lock() and 249 * the caller is responsible for pinning the returned css if it wants to 250 * keep accessing it outside the said locks. This function may return 251 * %NULL if @cgrp doesn't have @subsys_id enabled. 252 */ 253static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 254 struct cgroup_subsys *ss) 255{ 256 if (ss) 257 return rcu_dereference_check(cgrp->subsys[ss->id], 258 lockdep_is_held(&cgroup_mutex)); 259 else 260 return &cgrp->self; 261} 262 263/** 264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 265 * @cgrp: the cgroup of interest 266 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 267 * 268 * Similar to cgroup_css() but returns the effective css, which is defined 269 * as the matching css of the nearest ancestor including self which has @ss 270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 271 * function is guaranteed to return non-NULL css. 272 */ 273static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 274 struct cgroup_subsys *ss) 275{ 276 lockdep_assert_held(&cgroup_mutex); 277 278 if (!ss) 279 return &cgrp->self; 280 281 if (!(cgrp->root->subsys_mask & (1 << ss->id))) 282 return NULL; 283 284 /* 285 * This function is used while updating css associations and thus 286 * can't test the csses directly. Use ->child_subsys_mask. 287 */ 288 while (cgroup_parent(cgrp) && 289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id))) 290 cgrp = cgroup_parent(cgrp); 291 292 return cgroup_css(cgrp, ss); 293} 294 295/** 296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 297 * @cgrp: the cgroup of interest 298 * @ss: the subsystem of interest 299 * 300 * Find and get the effective css of @cgrp for @ss. The effective css is 301 * defined as the matching css of the nearest ancestor including self which 302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 303 * the root css is returned, so this function always returns a valid css. 304 * The returned css must be put using css_put(). 305 */ 306struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 307 struct cgroup_subsys *ss) 308{ 309 struct cgroup_subsys_state *css; 310 311 rcu_read_lock(); 312 313 do { 314 css = cgroup_css(cgrp, ss); 315 316 if (css && css_tryget_online(css)) 317 goto out_unlock; 318 cgrp = cgroup_parent(cgrp); 319 } while (cgrp); 320 321 css = init_css_set.subsys[ss->id]; 322 css_get(css); 323out_unlock: 324 rcu_read_unlock(); 325 return css; 326} 327 328/* convenient tests for these bits */ 329static inline bool cgroup_is_dead(const struct cgroup *cgrp) 330{ 331 return !(cgrp->self.flags & CSS_ONLINE); 332} 333 334struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 335{ 336 struct cgroup *cgrp = of->kn->parent->priv; 337 struct cftype *cft = of_cft(of); 338 339 /* 340 * This is open and unprotected implementation of cgroup_css(). 341 * seq_css() is only called from a kernfs file operation which has 342 * an active reference on the file. Because all the subsystem 343 * files are drained before a css is disassociated with a cgroup, 344 * the matching css from the cgroup's subsys table is guaranteed to 345 * be and stay valid until the enclosing operation is complete. 346 */ 347 if (cft->ss) 348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 349 else 350 return &cgrp->self; 351} 352EXPORT_SYMBOL_GPL(of_css); 353 354/** 355 * cgroup_is_descendant - test ancestry 356 * @cgrp: the cgroup to be tested 357 * @ancestor: possible ancestor of @cgrp 358 * 359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true 360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp 361 * and @ancestor are accessible. 362 */ 363bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) 364{ 365 while (cgrp) { 366 if (cgrp == ancestor) 367 return true; 368 cgrp = cgroup_parent(cgrp); 369 } 370 return false; 371} 372 373static int notify_on_release(const struct cgroup *cgrp) 374{ 375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 376} 377 378/** 379 * for_each_css - iterate all css's of a cgroup 380 * @css: the iteration cursor 381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 382 * @cgrp: the target cgroup to iterate css's of 383 * 384 * Should be called under cgroup_[tree_]mutex. 385 */ 386#define for_each_css(css, ssid, cgrp) \ 387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 388 if (!((css) = rcu_dereference_check( \ 389 (cgrp)->subsys[(ssid)], \ 390 lockdep_is_held(&cgroup_mutex)))) { } \ 391 else 392 393/** 394 * for_each_e_css - iterate all effective css's of a cgroup 395 * @css: the iteration cursor 396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 397 * @cgrp: the target cgroup to iterate css's of 398 * 399 * Should be called under cgroup_[tree_]mutex. 400 */ 401#define for_each_e_css(css, ssid, cgrp) \ 402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 404 ; \ 405 else 406 407/** 408 * for_each_subsys - iterate all enabled cgroup subsystems 409 * @ss: the iteration cursor 410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 411 */ 412#define for_each_subsys(ss, ssid) \ 413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ 414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) 415 416/** 417 * for_each_subsys_which - filter for_each_subsys with a bitmask 418 * @ss: the iteration cursor 419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 420 * @ss_maskp: a pointer to the bitmask 421 * 422 * The block will only run for cases where the ssid-th bit (1 << ssid) of 423 * mask is set to 1. 424 */ 425#define for_each_subsys_which(ss, ssid, ss_maskp) \ 426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \ 427 (ssid) = 0; \ 428 else \ 429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \ 430 if (((ss) = cgroup_subsys[ssid]) && false) \ 431 break; \ 432 else 433 434/* iterate across the hierarchies */ 435#define for_each_root(root) \ 436 list_for_each_entry((root), &cgroup_roots, root_list) 437 438/* iterate over child cgrps, lock should be held throughout iteration */ 439#define cgroup_for_each_live_child(child, cgrp) \ 440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 441 if (({ lockdep_assert_held(&cgroup_mutex); \ 442 cgroup_is_dead(child); })) \ 443 ; \ 444 else 445 446static void cgroup_release_agent(struct work_struct *work); 447static void check_for_release(struct cgroup *cgrp); 448 449/* 450 * A cgroup can be associated with multiple css_sets as different tasks may 451 * belong to different cgroups on different hierarchies. In the other 452 * direction, a css_set is naturally associated with multiple cgroups. 453 * This M:N relationship is represented by the following link structure 454 * which exists for each association and allows traversing the associations 455 * from both sides. 456 */ 457struct cgrp_cset_link { 458 /* the cgroup and css_set this link associates */ 459 struct cgroup *cgrp; 460 struct css_set *cset; 461 462 /* list of cgrp_cset_links anchored at cgrp->cset_links */ 463 struct list_head cset_link; 464 465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */ 466 struct list_head cgrp_link; 467}; 468 469/* 470 * The default css_set - used by init and its children prior to any 471 * hierarchies being mounted. It contains a pointer to the root state 472 * for each subsystem. Also used to anchor the list of css_sets. Not 473 * reference-counted, to improve performance when child cgroups 474 * haven't been created. 475 */ 476struct css_set init_css_set = { 477 .refcount = ATOMIC_INIT(1), 478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 479 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 483}; 484 485static int css_set_count = 1; /* 1 for init_css_set */ 486 487/** 488 * cgroup_update_populated - updated populated count of a cgroup 489 * @cgrp: the target cgroup 490 * @populated: inc or dec populated count 491 * 492 * @cgrp is either getting the first task (css_set) or losing the last. 493 * Update @cgrp->populated_cnt accordingly. The count is propagated 494 * towards root so that a given cgroup's populated_cnt is zero iff the 495 * cgroup and all its descendants are empty. 496 * 497 * @cgrp's interface file "cgroup.populated" is zero if 498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 499 * changes from or to zero, userland is notified that the content of the 500 * interface file has changed. This can be used to detect when @cgrp and 501 * its descendants become populated or empty. 502 */ 503static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 504{ 505 lockdep_assert_held(&css_set_rwsem); 506 507 do { 508 bool trigger; 509 510 if (populated) 511 trigger = !cgrp->populated_cnt++; 512 else 513 trigger = !--cgrp->populated_cnt; 514 515 if (!trigger) 516 break; 517 518 if (cgrp->populated_kn) 519 kernfs_notify(cgrp->populated_kn); 520 cgrp = cgroup_parent(cgrp); 521 } while (cgrp); 522} 523 524/* 525 * hash table for cgroup groups. This improves the performance to find 526 * an existing css_set. This hash doesn't (currently) take into 527 * account cgroups in empty hierarchies. 528 */ 529#define CSS_SET_HASH_BITS 7 530static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 531 532static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 533{ 534 unsigned long key = 0UL; 535 struct cgroup_subsys *ss; 536 int i; 537 538 for_each_subsys(ss, i) 539 key += (unsigned long)css[i]; 540 key = (key >> 16) ^ key; 541 542 return key; 543} 544 545static void put_css_set_locked(struct css_set *cset) 546{ 547 struct cgrp_cset_link *link, *tmp_link; 548 struct cgroup_subsys *ss; 549 int ssid; 550 551 lockdep_assert_held(&css_set_rwsem); 552 553 if (!atomic_dec_and_test(&cset->refcount)) 554 return; 555 556 /* This css_set is dead. unlink it and release cgroup refcounts */ 557 for_each_subsys(ss, ssid) 558 list_del(&cset->e_cset_node[ssid]); 559 hash_del(&cset->hlist); 560 css_set_count--; 561 562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 563 struct cgroup *cgrp = link->cgrp; 564 565 list_del(&link->cset_link); 566 list_del(&link->cgrp_link); 567 568 /* @cgrp can't go away while we're holding css_set_rwsem */ 569 if (list_empty(&cgrp->cset_links)) { 570 cgroup_update_populated(cgrp, false); 571 check_for_release(cgrp); 572 } 573 574 kfree(link); 575 } 576 577 kfree_rcu(cset, rcu_head); 578} 579 580static void put_css_set(struct css_set *cset) 581{ 582 /* 583 * Ensure that the refcount doesn't hit zero while any readers 584 * can see it. Similar to atomic_dec_and_lock(), but for an 585 * rwlock 586 */ 587 if (atomic_add_unless(&cset->refcount, -1, 1)) 588 return; 589 590 down_write(&css_set_rwsem); 591 put_css_set_locked(cset); 592 up_write(&css_set_rwsem); 593} 594 595/* 596 * refcounted get/put for css_set objects 597 */ 598static inline void get_css_set(struct css_set *cset) 599{ 600 atomic_inc(&cset->refcount); 601} 602 603/** 604 * compare_css_sets - helper function for find_existing_css_set(). 605 * @cset: candidate css_set being tested 606 * @old_cset: existing css_set for a task 607 * @new_cgrp: cgroup that's being entered by the task 608 * @template: desired set of css pointers in css_set (pre-calculated) 609 * 610 * Returns true if "cset" matches "old_cset" except for the hierarchy 611 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 612 */ 613static bool compare_css_sets(struct css_set *cset, 614 struct css_set *old_cset, 615 struct cgroup *new_cgrp, 616 struct cgroup_subsys_state *template[]) 617{ 618 struct list_head *l1, *l2; 619 620 /* 621 * On the default hierarchy, there can be csets which are 622 * associated with the same set of cgroups but different csses. 623 * Let's first ensure that csses match. 624 */ 625 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 626 return false; 627 628 /* 629 * Compare cgroup pointers in order to distinguish between 630 * different cgroups in hierarchies. As different cgroups may 631 * share the same effective css, this comparison is always 632 * necessary. 633 */ 634 l1 = &cset->cgrp_links; 635 l2 = &old_cset->cgrp_links; 636 while (1) { 637 struct cgrp_cset_link *link1, *link2; 638 struct cgroup *cgrp1, *cgrp2; 639 640 l1 = l1->next; 641 l2 = l2->next; 642 /* See if we reached the end - both lists are equal length. */ 643 if (l1 == &cset->cgrp_links) { 644 BUG_ON(l2 != &old_cset->cgrp_links); 645 break; 646 } else { 647 BUG_ON(l2 == &old_cset->cgrp_links); 648 } 649 /* Locate the cgroups associated with these links. */ 650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 652 cgrp1 = link1->cgrp; 653 cgrp2 = link2->cgrp; 654 /* Hierarchies should be linked in the same order. */ 655 BUG_ON(cgrp1->root != cgrp2->root); 656 657 /* 658 * If this hierarchy is the hierarchy of the cgroup 659 * that's changing, then we need to check that this 660 * css_set points to the new cgroup; if it's any other 661 * hierarchy, then this css_set should point to the 662 * same cgroup as the old css_set. 663 */ 664 if (cgrp1->root == new_cgrp->root) { 665 if (cgrp1 != new_cgrp) 666 return false; 667 } else { 668 if (cgrp1 != cgrp2) 669 return false; 670 } 671 } 672 return true; 673} 674 675/** 676 * find_existing_css_set - init css array and find the matching css_set 677 * @old_cset: the css_set that we're using before the cgroup transition 678 * @cgrp: the cgroup that we're moving into 679 * @template: out param for the new set of csses, should be clear on entry 680 */ 681static struct css_set *find_existing_css_set(struct css_set *old_cset, 682 struct cgroup *cgrp, 683 struct cgroup_subsys_state *template[]) 684{ 685 struct cgroup_root *root = cgrp->root; 686 struct cgroup_subsys *ss; 687 struct css_set *cset; 688 unsigned long key; 689 int i; 690 691 /* 692 * Build the set of subsystem state objects that we want to see in the 693 * new css_set. while subsystems can change globally, the entries here 694 * won't change, so no need for locking. 695 */ 696 for_each_subsys(ss, i) { 697 if (root->subsys_mask & (1UL << i)) { 698 /* 699 * @ss is in this hierarchy, so we want the 700 * effective css from @cgrp. 701 */ 702 template[i] = cgroup_e_css(cgrp, ss); 703 } else { 704 /* 705 * @ss is not in this hierarchy, so we don't want 706 * to change the css. 707 */ 708 template[i] = old_cset->subsys[i]; 709 } 710 } 711 712 key = css_set_hash(template); 713 hash_for_each_possible(css_set_table, cset, hlist, key) { 714 if (!compare_css_sets(cset, old_cset, cgrp, template)) 715 continue; 716 717 /* This css_set matches what we need */ 718 return cset; 719 } 720 721 /* No existing cgroup group matched */ 722 return NULL; 723} 724 725static void free_cgrp_cset_links(struct list_head *links_to_free) 726{ 727 struct cgrp_cset_link *link, *tmp_link; 728 729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 730 list_del(&link->cset_link); 731 kfree(link); 732 } 733} 734 735/** 736 * allocate_cgrp_cset_links - allocate cgrp_cset_links 737 * @count: the number of links to allocate 738 * @tmp_links: list_head the allocated links are put on 739 * 740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 741 * through ->cset_link. Returns 0 on success or -errno. 742 */ 743static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 744{ 745 struct cgrp_cset_link *link; 746 int i; 747 748 INIT_LIST_HEAD(tmp_links); 749 750 for (i = 0; i < count; i++) { 751 link = kzalloc(sizeof(*link), GFP_KERNEL); 752 if (!link) { 753 free_cgrp_cset_links(tmp_links); 754 return -ENOMEM; 755 } 756 list_add(&link->cset_link, tmp_links); 757 } 758 return 0; 759} 760 761/** 762 * link_css_set - a helper function to link a css_set to a cgroup 763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 764 * @cset: the css_set to be linked 765 * @cgrp: the destination cgroup 766 */ 767static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 768 struct cgroup *cgrp) 769{ 770 struct cgrp_cset_link *link; 771 772 BUG_ON(list_empty(tmp_links)); 773 774 if (cgroup_on_dfl(cgrp)) 775 cset->dfl_cgrp = cgrp; 776 777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 778 link->cset = cset; 779 link->cgrp = cgrp; 780 781 if (list_empty(&cgrp->cset_links)) 782 cgroup_update_populated(cgrp, true); 783 list_move(&link->cset_link, &cgrp->cset_links); 784 785 /* 786 * Always add links to the tail of the list so that the list 787 * is sorted by order of hierarchy creation 788 */ 789 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 790} 791 792/** 793 * find_css_set - return a new css_set with one cgroup updated 794 * @old_cset: the baseline css_set 795 * @cgrp: the cgroup to be updated 796 * 797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 798 * substituted into the appropriate hierarchy. 799 */ 800static struct css_set *find_css_set(struct css_set *old_cset, 801 struct cgroup *cgrp) 802{ 803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 804 struct css_set *cset; 805 struct list_head tmp_links; 806 struct cgrp_cset_link *link; 807 struct cgroup_subsys *ss; 808 unsigned long key; 809 int ssid; 810 811 lockdep_assert_held(&cgroup_mutex); 812 813 /* First see if we already have a cgroup group that matches 814 * the desired set */ 815 down_read(&css_set_rwsem); 816 cset = find_existing_css_set(old_cset, cgrp, template); 817 if (cset) 818 get_css_set(cset); 819 up_read(&css_set_rwsem); 820 821 if (cset) 822 return cset; 823 824 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 825 if (!cset) 826 return NULL; 827 828 /* Allocate all the cgrp_cset_link objects that we'll need */ 829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 830 kfree(cset); 831 return NULL; 832 } 833 834 atomic_set(&cset->refcount, 1); 835 INIT_LIST_HEAD(&cset->cgrp_links); 836 INIT_LIST_HEAD(&cset->tasks); 837 INIT_LIST_HEAD(&cset->mg_tasks); 838 INIT_LIST_HEAD(&cset->mg_preload_node); 839 INIT_LIST_HEAD(&cset->mg_node); 840 INIT_HLIST_NODE(&cset->hlist); 841 842 /* Copy the set of subsystem state objects generated in 843 * find_existing_css_set() */ 844 memcpy(cset->subsys, template, sizeof(cset->subsys)); 845 846 down_write(&css_set_rwsem); 847 /* Add reference counts and links from the new css_set. */ 848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 849 struct cgroup *c = link->cgrp; 850 851 if (c->root == cgrp->root) 852 c = cgrp; 853 link_css_set(&tmp_links, cset, c); 854 } 855 856 BUG_ON(!list_empty(&tmp_links)); 857 858 css_set_count++; 859 860 /* Add @cset to the hash table */ 861 key = css_set_hash(cset->subsys); 862 hash_add(css_set_table, &cset->hlist, key); 863 864 for_each_subsys(ss, ssid) 865 list_add_tail(&cset->e_cset_node[ssid], 866 &cset->subsys[ssid]->cgroup->e_csets[ssid]); 867 868 up_write(&css_set_rwsem); 869 870 return cset; 871} 872 873static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 874{ 875 struct cgroup *root_cgrp = kf_root->kn->priv; 876 877 return root_cgrp->root; 878} 879 880static int cgroup_init_root_id(struct cgroup_root *root) 881{ 882 int id; 883 884 lockdep_assert_held(&cgroup_mutex); 885 886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 887 if (id < 0) 888 return id; 889 890 root->hierarchy_id = id; 891 return 0; 892} 893 894static void cgroup_exit_root_id(struct cgroup_root *root) 895{ 896 lockdep_assert_held(&cgroup_mutex); 897 898 if (root->hierarchy_id) { 899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 900 root->hierarchy_id = 0; 901 } 902} 903 904static void cgroup_free_root(struct cgroup_root *root) 905{ 906 if (root) { 907 /* hierarchy ID should already have been released */ 908 WARN_ON_ONCE(root->hierarchy_id); 909 910 idr_destroy(&root->cgroup_idr); 911 kfree(root); 912 } 913} 914 915static void cgroup_destroy_root(struct cgroup_root *root) 916{ 917 struct cgroup *cgrp = &root->cgrp; 918 struct cgrp_cset_link *link, *tmp_link; 919 920 mutex_lock(&cgroup_mutex); 921 922 BUG_ON(atomic_read(&root->nr_cgrps)); 923 BUG_ON(!list_empty(&cgrp->self.children)); 924 925 /* Rebind all subsystems back to the default hierarchy */ 926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask); 927 928 /* 929 * Release all the links from cset_links to this hierarchy's 930 * root cgroup 931 */ 932 down_write(&css_set_rwsem); 933 934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 935 list_del(&link->cset_link); 936 list_del(&link->cgrp_link); 937 kfree(link); 938 } 939 up_write(&css_set_rwsem); 940 941 if (!list_empty(&root->root_list)) { 942 list_del(&root->root_list); 943 cgroup_root_count--; 944 } 945 946 cgroup_exit_root_id(root); 947 948 mutex_unlock(&cgroup_mutex); 949 950 kernfs_destroy_root(root->kf_root); 951 cgroup_free_root(root); 952} 953 954/* look up cgroup associated with given css_set on the specified hierarchy */ 955static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 956 struct cgroup_root *root) 957{ 958 struct cgroup *res = NULL; 959 960 lockdep_assert_held(&cgroup_mutex); 961 lockdep_assert_held(&css_set_rwsem); 962 963 if (cset == &init_css_set) { 964 res = &root->cgrp; 965 } else { 966 struct cgrp_cset_link *link; 967 968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 969 struct cgroup *c = link->cgrp; 970 971 if (c->root == root) { 972 res = c; 973 break; 974 } 975 } 976 } 977 978 BUG_ON(!res); 979 return res; 980} 981 982/* 983 * Return the cgroup for "task" from the given hierarchy. Must be 984 * called with cgroup_mutex and css_set_rwsem held. 985 */ 986static struct cgroup *task_cgroup_from_root(struct task_struct *task, 987 struct cgroup_root *root) 988{ 989 /* 990 * No need to lock the task - since we hold cgroup_mutex the 991 * task can't change groups, so the only thing that can happen 992 * is that it exits and its css is set back to init_css_set. 993 */ 994 return cset_cgroup_from_root(task_css_set(task), root); 995} 996 997/* 998 * A task must hold cgroup_mutex to modify cgroups. 999 * 1000 * Any task can increment and decrement the count field without lock. 1001 * So in general, code holding cgroup_mutex can't rely on the count 1002 * field not changing. However, if the count goes to zero, then only 1003 * cgroup_attach_task() can increment it again. Because a count of zero 1004 * means that no tasks are currently attached, therefore there is no 1005 * way a task attached to that cgroup can fork (the other way to 1006 * increment the count). So code holding cgroup_mutex can safely 1007 * assume that if the count is zero, it will stay zero. Similarly, if 1008 * a task holds cgroup_mutex on a cgroup with zero count, it 1009 * knows that the cgroup won't be removed, as cgroup_rmdir() 1010 * needs that mutex. 1011 * 1012 * A cgroup can only be deleted if both its 'count' of using tasks 1013 * is zero, and its list of 'children' cgroups is empty. Since all 1014 * tasks in the system use _some_ cgroup, and since there is always at 1015 * least one task in the system (init, pid == 1), therefore, root cgroup 1016 * always has either children cgroups and/or using tasks. So we don't 1017 * need a special hack to ensure that root cgroup cannot be deleted. 1018 * 1019 * P.S. One more locking exception. RCU is used to guard the 1020 * update of a tasks cgroup pointer by cgroup_attach_task() 1021 */ 1022 1023static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask); 1024static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1025static const struct file_operations proc_cgroupstats_operations; 1026 1027static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1028 char *buf) 1029{ 1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1033 cft->ss->name, cft->name); 1034 else 1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1036 return buf; 1037} 1038 1039/** 1040 * cgroup_file_mode - deduce file mode of a control file 1041 * @cft: the control file in question 1042 * 1043 * returns cft->mode if ->mode is not 0 1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler 1045 * returns S_IRUGO if it has only a read handler 1046 * returns S_IWUSR if it has only a write hander 1047 */ 1048static umode_t cgroup_file_mode(const struct cftype *cft) 1049{ 1050 umode_t mode = 0; 1051 1052 if (cft->mode) 1053 return cft->mode; 1054 1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1056 mode |= S_IRUGO; 1057 1058 if (cft->write_u64 || cft->write_s64 || cft->write) 1059 mode |= S_IWUSR; 1060 1061 return mode; 1062} 1063 1064static void cgroup_get(struct cgroup *cgrp) 1065{ 1066 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 1067 css_get(&cgrp->self); 1068} 1069 1070static bool cgroup_tryget(struct cgroup *cgrp) 1071{ 1072 return css_tryget(&cgrp->self); 1073} 1074 1075static void cgroup_put(struct cgroup *cgrp) 1076{ 1077 css_put(&cgrp->self); 1078} 1079 1080/** 1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask 1082 * @cgrp: the target cgroup 1083 * @subtree_control: the new subtree_control mask to consider 1084 * 1085 * On the default hierarchy, a subsystem may request other subsystems to be 1086 * enabled together through its ->depends_on mask. In such cases, more 1087 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1088 * 1089 * This function calculates which subsystems need to be enabled if 1090 * @subtree_control is to be applied to @cgrp. The returned mask is always 1091 * a superset of @subtree_control and follows the usual hierarchy rules. 1092 */ 1093static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp, 1094 unsigned long subtree_control) 1095{ 1096 struct cgroup *parent = cgroup_parent(cgrp); 1097 unsigned long cur_ss_mask = subtree_control; 1098 struct cgroup_subsys *ss; 1099 int ssid; 1100 1101 lockdep_assert_held(&cgroup_mutex); 1102 1103 if (!cgroup_on_dfl(cgrp)) 1104 return cur_ss_mask; 1105 1106 while (true) { 1107 unsigned long new_ss_mask = cur_ss_mask; 1108 1109 for_each_subsys_which(ss, ssid, &cur_ss_mask) 1110 new_ss_mask |= ss->depends_on; 1111 1112 /* 1113 * Mask out subsystems which aren't available. This can 1114 * happen only if some depended-upon subsystems were bound 1115 * to non-default hierarchies. 1116 */ 1117 if (parent) 1118 new_ss_mask &= parent->child_subsys_mask; 1119 else 1120 new_ss_mask &= cgrp->root->subsys_mask; 1121 1122 if (new_ss_mask == cur_ss_mask) 1123 break; 1124 cur_ss_mask = new_ss_mask; 1125 } 1126 1127 return cur_ss_mask; 1128} 1129 1130/** 1131 * cgroup_refresh_child_subsys_mask - update child_subsys_mask 1132 * @cgrp: the target cgroup 1133 * 1134 * Update @cgrp->child_subsys_mask according to the current 1135 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask(). 1136 */ 1137static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp) 1138{ 1139 cgrp->child_subsys_mask = 1140 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control); 1141} 1142 1143/** 1144 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1145 * @kn: the kernfs_node being serviced 1146 * 1147 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1148 * the method finishes if locking succeeded. Note that once this function 1149 * returns the cgroup returned by cgroup_kn_lock_live() may become 1150 * inaccessible any time. If the caller intends to continue to access the 1151 * cgroup, it should pin it before invoking this function. 1152 */ 1153static void cgroup_kn_unlock(struct kernfs_node *kn) 1154{ 1155 struct cgroup *cgrp; 1156 1157 if (kernfs_type(kn) == KERNFS_DIR) 1158 cgrp = kn->priv; 1159 else 1160 cgrp = kn->parent->priv; 1161 1162 mutex_unlock(&cgroup_mutex); 1163 1164 kernfs_unbreak_active_protection(kn); 1165 cgroup_put(cgrp); 1166} 1167 1168/** 1169 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1170 * @kn: the kernfs_node being serviced 1171 * 1172 * This helper is to be used by a cgroup kernfs method currently servicing 1173 * @kn. It breaks the active protection, performs cgroup locking and 1174 * verifies that the associated cgroup is alive. Returns the cgroup if 1175 * alive; otherwise, %NULL. A successful return should be undone by a 1176 * matching cgroup_kn_unlock() invocation. 1177 * 1178 * Any cgroup kernfs method implementation which requires locking the 1179 * associated cgroup should use this helper. It avoids nesting cgroup 1180 * locking under kernfs active protection and allows all kernfs operations 1181 * including self-removal. 1182 */ 1183static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn) 1184{ 1185 struct cgroup *cgrp; 1186 1187 if (kernfs_type(kn) == KERNFS_DIR) 1188 cgrp = kn->priv; 1189 else 1190 cgrp = kn->parent->priv; 1191 1192 /* 1193 * We're gonna grab cgroup_mutex which nests outside kernfs 1194 * active_ref. cgroup liveliness check alone provides enough 1195 * protection against removal. Ensure @cgrp stays accessible and 1196 * break the active_ref protection. 1197 */ 1198 if (!cgroup_tryget(cgrp)) 1199 return NULL; 1200 kernfs_break_active_protection(kn); 1201 1202 mutex_lock(&cgroup_mutex); 1203 1204 if (!cgroup_is_dead(cgrp)) 1205 return cgrp; 1206 1207 cgroup_kn_unlock(kn); 1208 return NULL; 1209} 1210 1211static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1212{ 1213 char name[CGROUP_FILE_NAME_MAX]; 1214 1215 lockdep_assert_held(&cgroup_mutex); 1216 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1217} 1218 1219/** 1220 * cgroup_clear_dir - remove subsys files in a cgroup directory 1221 * @cgrp: target cgroup 1222 * @subsys_mask: mask of the subsystem ids whose files should be removed 1223 */ 1224static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask) 1225{ 1226 struct cgroup_subsys *ss; 1227 int i; 1228 1229 for_each_subsys(ss, i) { 1230 struct cftype *cfts; 1231 1232 if (!(subsys_mask & (1 << i))) 1233 continue; 1234 list_for_each_entry(cfts, &ss->cfts, node) 1235 cgroup_addrm_files(cgrp, cfts, false); 1236 } 1237} 1238 1239static int rebind_subsystems(struct cgroup_root *dst_root, 1240 unsigned long ss_mask) 1241{ 1242 struct cgroup_subsys *ss; 1243 unsigned long tmp_ss_mask; 1244 int ssid, i, ret; 1245 1246 lockdep_assert_held(&cgroup_mutex); 1247 1248 for_each_subsys_which(ss, ssid, &ss_mask) { 1249 /* if @ss has non-root csses attached to it, can't move */ 1250 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss))) 1251 return -EBUSY; 1252 1253 /* can't move between two non-dummy roots either */ 1254 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1255 return -EBUSY; 1256 } 1257 1258 /* skip creating root files on dfl_root for inhibited subsystems */ 1259 tmp_ss_mask = ss_mask; 1260 if (dst_root == &cgrp_dfl_root) 1261 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask; 1262 1263 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask); 1264 if (ret) { 1265 if (dst_root != &cgrp_dfl_root) 1266 return ret; 1267 1268 /* 1269 * Rebinding back to the default root is not allowed to 1270 * fail. Using both default and non-default roots should 1271 * be rare. Moving subsystems back and forth even more so. 1272 * Just warn about it and continue. 1273 */ 1274 if (cgrp_dfl_root_visible) { 1275 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n", 1276 ret, ss_mask); 1277 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n"); 1278 } 1279 } 1280 1281 /* 1282 * Nothing can fail from this point on. Remove files for the 1283 * removed subsystems and rebind each subsystem. 1284 */ 1285 for_each_subsys_which(ss, ssid, &ss_mask) 1286 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid); 1287 1288 for_each_subsys_which(ss, ssid, &ss_mask) { 1289 struct cgroup_root *src_root; 1290 struct cgroup_subsys_state *css; 1291 struct css_set *cset; 1292 1293 src_root = ss->root; 1294 css = cgroup_css(&src_root->cgrp, ss); 1295 1296 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss)); 1297 1298 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL); 1299 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css); 1300 ss->root = dst_root; 1301 css->cgroup = &dst_root->cgrp; 1302 1303 down_write(&css_set_rwsem); 1304 hash_for_each(css_set_table, i, cset, hlist) 1305 list_move_tail(&cset->e_cset_node[ss->id], 1306 &dst_root->cgrp.e_csets[ss->id]); 1307 up_write(&css_set_rwsem); 1308 1309 src_root->subsys_mask &= ~(1 << ssid); 1310 src_root->cgrp.subtree_control &= ~(1 << ssid); 1311 cgroup_refresh_child_subsys_mask(&src_root->cgrp); 1312 1313 /* default hierarchy doesn't enable controllers by default */ 1314 dst_root->subsys_mask |= 1 << ssid; 1315 if (dst_root != &cgrp_dfl_root) { 1316 dst_root->cgrp.subtree_control |= 1 << ssid; 1317 cgroup_refresh_child_subsys_mask(&dst_root->cgrp); 1318 } 1319 1320 if (ss->bind) 1321 ss->bind(css); 1322 } 1323 1324 kernfs_activate(dst_root->cgrp.kn); 1325 return 0; 1326} 1327 1328static int cgroup_show_options(struct seq_file *seq, 1329 struct kernfs_root *kf_root) 1330{ 1331 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1332 struct cgroup_subsys *ss; 1333 int ssid; 1334 1335 for_each_subsys(ss, ssid) 1336 if (root->subsys_mask & (1 << ssid)) 1337 seq_printf(seq, ",%s", ss->name); 1338 if (root->flags & CGRP_ROOT_NOPREFIX) 1339 seq_puts(seq, ",noprefix"); 1340 if (root->flags & CGRP_ROOT_XATTR) 1341 seq_puts(seq, ",xattr"); 1342 1343 spin_lock(&release_agent_path_lock); 1344 if (strlen(root->release_agent_path)) 1345 seq_printf(seq, ",release_agent=%s", root->release_agent_path); 1346 spin_unlock(&release_agent_path_lock); 1347 1348 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 1349 seq_puts(seq, ",clone_children"); 1350 if (strlen(root->name)) 1351 seq_printf(seq, ",name=%s", root->name); 1352 return 0; 1353} 1354 1355struct cgroup_sb_opts { 1356 unsigned long subsys_mask; 1357 unsigned int flags; 1358 char *release_agent; 1359 bool cpuset_clone_children; 1360 char *name; 1361 /* User explicitly requested empty subsystem */ 1362 bool none; 1363}; 1364 1365static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 1366{ 1367 char *token, *o = data; 1368 bool all_ss = false, one_ss = false; 1369 unsigned long mask = -1UL; 1370 struct cgroup_subsys *ss; 1371 int nr_opts = 0; 1372 int i; 1373 1374#ifdef CONFIG_CPUSETS 1375 mask = ~(1U << cpuset_cgrp_id); 1376#endif 1377 1378 memset(opts, 0, sizeof(*opts)); 1379 1380 while ((token = strsep(&o, ",")) != NULL) { 1381 nr_opts++; 1382 1383 if (!*token) 1384 return -EINVAL; 1385 if (!strcmp(token, "none")) { 1386 /* Explicitly have no subsystems */ 1387 opts->none = true; 1388 continue; 1389 } 1390 if (!strcmp(token, "all")) { 1391 /* Mutually exclusive option 'all' + subsystem name */ 1392 if (one_ss) 1393 return -EINVAL; 1394 all_ss = true; 1395 continue; 1396 } 1397 if (!strcmp(token, "__DEVEL__sane_behavior")) { 1398 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; 1399 continue; 1400 } 1401 if (!strcmp(token, "noprefix")) { 1402 opts->flags |= CGRP_ROOT_NOPREFIX; 1403 continue; 1404 } 1405 if (!strcmp(token, "clone_children")) { 1406 opts->cpuset_clone_children = true; 1407 continue; 1408 } 1409 if (!strcmp(token, "xattr")) { 1410 opts->flags |= CGRP_ROOT_XATTR; 1411 continue; 1412 } 1413 if (!strncmp(token, "release_agent=", 14)) { 1414 /* Specifying two release agents is forbidden */ 1415 if (opts->release_agent) 1416 return -EINVAL; 1417 opts->release_agent = 1418 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 1419 if (!opts->release_agent) 1420 return -ENOMEM; 1421 continue; 1422 } 1423 if (!strncmp(token, "name=", 5)) { 1424 const char *name = token + 5; 1425 /* Can't specify an empty name */ 1426 if (!strlen(name)) 1427 return -EINVAL; 1428 /* Must match [\w.-]+ */ 1429 for (i = 0; i < strlen(name); i++) { 1430 char c = name[i]; 1431 if (isalnum(c)) 1432 continue; 1433 if ((c == '.') || (c == '-') || (c == '_')) 1434 continue; 1435 return -EINVAL; 1436 } 1437 /* Specifying two names is forbidden */ 1438 if (opts->name) 1439 return -EINVAL; 1440 opts->name = kstrndup(name, 1441 MAX_CGROUP_ROOT_NAMELEN - 1, 1442 GFP_KERNEL); 1443 if (!opts->name) 1444 return -ENOMEM; 1445 1446 continue; 1447 } 1448 1449 for_each_subsys(ss, i) { 1450 if (strcmp(token, ss->name)) 1451 continue; 1452 if (ss->disabled) 1453 continue; 1454 1455 /* Mutually exclusive option 'all' + subsystem name */ 1456 if (all_ss) 1457 return -EINVAL; 1458 opts->subsys_mask |= (1 << i); 1459 one_ss = true; 1460 1461 break; 1462 } 1463 if (i == CGROUP_SUBSYS_COUNT) 1464 return -ENOENT; 1465 } 1466 1467 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { 1468 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); 1469 if (nr_opts != 1) { 1470 pr_err("sane_behavior: no other mount options allowed\n"); 1471 return -EINVAL; 1472 } 1473 return 0; 1474 } 1475 1476 /* 1477 * If the 'all' option was specified select all the subsystems, 1478 * otherwise if 'none', 'name=' and a subsystem name options were 1479 * not specified, let's default to 'all' 1480 */ 1481 if (all_ss || (!one_ss && !opts->none && !opts->name)) 1482 for_each_subsys(ss, i) 1483 if (!ss->disabled) 1484 opts->subsys_mask |= (1 << i); 1485 1486 /* 1487 * We either have to specify by name or by subsystems. (So all 1488 * empty hierarchies must have a name). 1489 */ 1490 if (!opts->subsys_mask && !opts->name) 1491 return -EINVAL; 1492 1493 /* 1494 * Option noprefix was introduced just for backward compatibility 1495 * with the old cpuset, so we allow noprefix only if mounting just 1496 * the cpuset subsystem. 1497 */ 1498 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 1499 return -EINVAL; 1500 1501 /* Can't specify "none" and some subsystems */ 1502 if (opts->subsys_mask && opts->none) 1503 return -EINVAL; 1504 1505 return 0; 1506} 1507 1508static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1509{ 1510 int ret = 0; 1511 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1512 struct cgroup_sb_opts opts; 1513 unsigned long added_mask, removed_mask; 1514 1515 if (root == &cgrp_dfl_root) { 1516 pr_err("remount is not allowed\n"); 1517 return -EINVAL; 1518 } 1519 1520 mutex_lock(&cgroup_mutex); 1521 1522 /* See what subsystems are wanted */ 1523 ret = parse_cgroupfs_options(data, &opts); 1524 if (ret) 1525 goto out_unlock; 1526 1527 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1528 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1529 task_tgid_nr(current), current->comm); 1530 1531 added_mask = opts.subsys_mask & ~root->subsys_mask; 1532 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1533 1534 /* Don't allow flags or name to change at remount */ 1535 if ((opts.flags ^ root->flags) || 1536 (opts.name && strcmp(opts.name, root->name))) { 1537 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1538 opts.flags, opts.name ?: "", root->flags, root->name); 1539 ret = -EINVAL; 1540 goto out_unlock; 1541 } 1542 1543 /* remounting is not allowed for populated hierarchies */ 1544 if (!list_empty(&root->cgrp.self.children)) { 1545 ret = -EBUSY; 1546 goto out_unlock; 1547 } 1548 1549 ret = rebind_subsystems(root, added_mask); 1550 if (ret) 1551 goto out_unlock; 1552 1553 rebind_subsystems(&cgrp_dfl_root, removed_mask); 1554 1555 if (opts.release_agent) { 1556 spin_lock(&release_agent_path_lock); 1557 strcpy(root->release_agent_path, opts.release_agent); 1558 spin_unlock(&release_agent_path_lock); 1559 } 1560 out_unlock: 1561 kfree(opts.release_agent); 1562 kfree(opts.name); 1563 mutex_unlock(&cgroup_mutex); 1564 return ret; 1565} 1566 1567/* 1568 * To reduce the fork() overhead for systems that are not actually using 1569 * their cgroups capability, we don't maintain the lists running through 1570 * each css_set to its tasks until we see the list actually used - in other 1571 * words after the first mount. 1572 */ 1573static bool use_task_css_set_links __read_mostly; 1574 1575static void cgroup_enable_task_cg_lists(void) 1576{ 1577 struct task_struct *p, *g; 1578 1579 down_write(&css_set_rwsem); 1580 1581 if (use_task_css_set_links) 1582 goto out_unlock; 1583 1584 use_task_css_set_links = true; 1585 1586 /* 1587 * We need tasklist_lock because RCU is not safe against 1588 * while_each_thread(). Besides, a forking task that has passed 1589 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1590 * is not guaranteed to have its child immediately visible in the 1591 * tasklist if we walk through it with RCU. 1592 */ 1593 read_lock(&tasklist_lock); 1594 do_each_thread(g, p) { 1595 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1596 task_css_set(p) != &init_css_set); 1597 1598 /* 1599 * We should check if the process is exiting, otherwise 1600 * it will race with cgroup_exit() in that the list 1601 * entry won't be deleted though the process has exited. 1602 * Do it while holding siglock so that we don't end up 1603 * racing against cgroup_exit(). 1604 */ 1605 spin_lock_irq(&p->sighand->siglock); 1606 if (!(p->flags & PF_EXITING)) { 1607 struct css_set *cset = task_css_set(p); 1608 1609 list_add(&p->cg_list, &cset->tasks); 1610 get_css_set(cset); 1611 } 1612 spin_unlock_irq(&p->sighand->siglock); 1613 } while_each_thread(g, p); 1614 read_unlock(&tasklist_lock); 1615out_unlock: 1616 up_write(&css_set_rwsem); 1617} 1618 1619static void init_cgroup_housekeeping(struct cgroup *cgrp) 1620{ 1621 struct cgroup_subsys *ss; 1622 int ssid; 1623 1624 INIT_LIST_HEAD(&cgrp->self.sibling); 1625 INIT_LIST_HEAD(&cgrp->self.children); 1626 INIT_LIST_HEAD(&cgrp->cset_links); 1627 INIT_LIST_HEAD(&cgrp->pidlists); 1628 mutex_init(&cgrp->pidlist_mutex); 1629 cgrp->self.cgroup = cgrp; 1630 cgrp->self.flags |= CSS_ONLINE; 1631 1632 for_each_subsys(ss, ssid) 1633 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1634 1635 init_waitqueue_head(&cgrp->offline_waitq); 1636 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent); 1637} 1638 1639static void init_cgroup_root(struct cgroup_root *root, 1640 struct cgroup_sb_opts *opts) 1641{ 1642 struct cgroup *cgrp = &root->cgrp; 1643 1644 INIT_LIST_HEAD(&root->root_list); 1645 atomic_set(&root->nr_cgrps, 1); 1646 cgrp->root = root; 1647 init_cgroup_housekeeping(cgrp); 1648 idr_init(&root->cgroup_idr); 1649 1650 root->flags = opts->flags; 1651 if (opts->release_agent) 1652 strcpy(root->release_agent_path, opts->release_agent); 1653 if (opts->name) 1654 strcpy(root->name, opts->name); 1655 if (opts->cpuset_clone_children) 1656 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1657} 1658 1659static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask) 1660{ 1661 LIST_HEAD(tmp_links); 1662 struct cgroup *root_cgrp = &root->cgrp; 1663 struct cftype *base_files; 1664 struct css_set *cset; 1665 int i, ret; 1666 1667 lockdep_assert_held(&cgroup_mutex); 1668 1669 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT); 1670 if (ret < 0) 1671 goto out; 1672 root_cgrp->id = ret; 1673 1674 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, 1675 GFP_KERNEL); 1676 if (ret) 1677 goto out; 1678 1679 /* 1680 * We're accessing css_set_count without locking css_set_rwsem here, 1681 * but that's OK - it can only be increased by someone holding 1682 * cgroup_lock, and that's us. The worst that can happen is that we 1683 * have some link structures left over 1684 */ 1685 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); 1686 if (ret) 1687 goto cancel_ref; 1688 1689 ret = cgroup_init_root_id(root); 1690 if (ret) 1691 goto cancel_ref; 1692 1693 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, 1694 KERNFS_ROOT_CREATE_DEACTIVATED, 1695 root_cgrp); 1696 if (IS_ERR(root->kf_root)) { 1697 ret = PTR_ERR(root->kf_root); 1698 goto exit_root_id; 1699 } 1700 root_cgrp->kn = root->kf_root->kn; 1701 1702 if (root == &cgrp_dfl_root) 1703 base_files = cgroup_dfl_base_files; 1704 else 1705 base_files = cgroup_legacy_base_files; 1706 1707 ret = cgroup_addrm_files(root_cgrp, base_files, true); 1708 if (ret) 1709 goto destroy_root; 1710 1711 ret = rebind_subsystems(root, ss_mask); 1712 if (ret) 1713 goto destroy_root; 1714 1715 /* 1716 * There must be no failure case after here, since rebinding takes 1717 * care of subsystems' refcounts, which are explicitly dropped in 1718 * the failure exit path. 1719 */ 1720 list_add(&root->root_list, &cgroup_roots); 1721 cgroup_root_count++; 1722 1723 /* 1724 * Link the root cgroup in this hierarchy into all the css_set 1725 * objects. 1726 */ 1727 down_write(&css_set_rwsem); 1728 hash_for_each(css_set_table, i, cset, hlist) 1729 link_css_set(&tmp_links, cset, root_cgrp); 1730 up_write(&css_set_rwsem); 1731 1732 BUG_ON(!list_empty(&root_cgrp->self.children)); 1733 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1734 1735 kernfs_activate(root_cgrp->kn); 1736 ret = 0; 1737 goto out; 1738 1739destroy_root: 1740 kernfs_destroy_root(root->kf_root); 1741 root->kf_root = NULL; 1742exit_root_id: 1743 cgroup_exit_root_id(root); 1744cancel_ref: 1745 percpu_ref_exit(&root_cgrp->self.refcnt); 1746out: 1747 free_cgrp_cset_links(&tmp_links); 1748 return ret; 1749} 1750 1751static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1752 int flags, const char *unused_dev_name, 1753 void *data) 1754{ 1755 struct super_block *pinned_sb = NULL; 1756 struct cgroup_subsys *ss; 1757 struct cgroup_root *root; 1758 struct cgroup_sb_opts opts; 1759 struct dentry *dentry; 1760 int ret; 1761 int i; 1762 bool new_sb; 1763 1764 /* 1765 * The first time anyone tries to mount a cgroup, enable the list 1766 * linking each css_set to its tasks and fix up all existing tasks. 1767 */ 1768 if (!use_task_css_set_links) 1769 cgroup_enable_task_cg_lists(); 1770 1771 mutex_lock(&cgroup_mutex); 1772 1773 /* First find the desired set of subsystems */ 1774 ret = parse_cgroupfs_options(data, &opts); 1775 if (ret) 1776 goto out_unlock; 1777 1778 /* look for a matching existing root */ 1779 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) { 1780 cgrp_dfl_root_visible = true; 1781 root = &cgrp_dfl_root; 1782 cgroup_get(&root->cgrp); 1783 ret = 0; 1784 goto out_unlock; 1785 } 1786 1787 /* 1788 * Destruction of cgroup root is asynchronous, so subsystems may 1789 * still be dying after the previous unmount. Let's drain the 1790 * dying subsystems. We just need to ensure that the ones 1791 * unmounted previously finish dying and don't care about new ones 1792 * starting. Testing ref liveliness is good enough. 1793 */ 1794 for_each_subsys(ss, i) { 1795 if (!(opts.subsys_mask & (1 << i)) || 1796 ss->root == &cgrp_dfl_root) 1797 continue; 1798 1799 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1800 mutex_unlock(&cgroup_mutex); 1801 msleep(10); 1802 ret = restart_syscall(); 1803 goto out_free; 1804 } 1805 cgroup_put(&ss->root->cgrp); 1806 } 1807 1808 for_each_root(root) { 1809 bool name_match = false; 1810 1811 if (root == &cgrp_dfl_root) 1812 continue; 1813 1814 /* 1815 * If we asked for a name then it must match. Also, if 1816 * name matches but sybsys_mask doesn't, we should fail. 1817 * Remember whether name matched. 1818 */ 1819 if (opts.name) { 1820 if (strcmp(opts.name, root->name)) 1821 continue; 1822 name_match = true; 1823 } 1824 1825 /* 1826 * If we asked for subsystems (or explicitly for no 1827 * subsystems) then they must match. 1828 */ 1829 if ((opts.subsys_mask || opts.none) && 1830 (opts.subsys_mask != root->subsys_mask)) { 1831 if (!name_match) 1832 continue; 1833 ret = -EBUSY; 1834 goto out_unlock; 1835 } 1836 1837 if (root->flags ^ opts.flags) 1838 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1839 1840 /* 1841 * We want to reuse @root whose lifetime is governed by its 1842 * ->cgrp. Let's check whether @root is alive and keep it 1843 * that way. As cgroup_kill_sb() can happen anytime, we 1844 * want to block it by pinning the sb so that @root doesn't 1845 * get killed before mount is complete. 1846 * 1847 * With the sb pinned, tryget_live can reliably indicate 1848 * whether @root can be reused. If it's being killed, 1849 * drain it. We can use wait_queue for the wait but this 1850 * path is super cold. Let's just sleep a bit and retry. 1851 */ 1852 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 1853 if (IS_ERR(pinned_sb) || 1854 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 1855 mutex_unlock(&cgroup_mutex); 1856 if (!IS_ERR_OR_NULL(pinned_sb)) 1857 deactivate_super(pinned_sb); 1858 msleep(10); 1859 ret = restart_syscall(); 1860 goto out_free; 1861 } 1862 1863 ret = 0; 1864 goto out_unlock; 1865 } 1866 1867 /* 1868 * No such thing, create a new one. name= matching without subsys 1869 * specification is allowed for already existing hierarchies but we 1870 * can't create new one without subsys specification. 1871 */ 1872 if (!opts.subsys_mask && !opts.none) { 1873 ret = -EINVAL; 1874 goto out_unlock; 1875 } 1876 1877 root = kzalloc(sizeof(*root), GFP_KERNEL); 1878 if (!root) { 1879 ret = -ENOMEM; 1880 goto out_unlock; 1881 } 1882 1883 init_cgroup_root(root, &opts); 1884 1885 ret = cgroup_setup_root(root, opts.subsys_mask); 1886 if (ret) 1887 cgroup_free_root(root); 1888 1889out_unlock: 1890 mutex_unlock(&cgroup_mutex); 1891out_free: 1892 kfree(opts.release_agent); 1893 kfree(opts.name); 1894 1895 if (ret) 1896 return ERR_PTR(ret); 1897 1898 dentry = kernfs_mount(fs_type, flags, root->kf_root, 1899 CGROUP_SUPER_MAGIC, &new_sb); 1900 if (IS_ERR(dentry) || !new_sb) 1901 cgroup_put(&root->cgrp); 1902 1903 /* 1904 * If @pinned_sb, we're reusing an existing root and holding an 1905 * extra ref on its sb. Mount is complete. Put the extra ref. 1906 */ 1907 if (pinned_sb) { 1908 WARN_ON(new_sb); 1909 deactivate_super(pinned_sb); 1910 } 1911 1912 return dentry; 1913} 1914 1915static void cgroup_kill_sb(struct super_block *sb) 1916{ 1917 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 1918 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1919 1920 /* 1921 * If @root doesn't have any mounts or children, start killing it. 1922 * This prevents new mounts by disabling percpu_ref_tryget_live(). 1923 * cgroup_mount() may wait for @root's release. 1924 * 1925 * And don't kill the default root. 1926 */ 1927 if (!list_empty(&root->cgrp.self.children) || 1928 root == &cgrp_dfl_root) 1929 cgroup_put(&root->cgrp); 1930 else 1931 percpu_ref_kill(&root->cgrp.self.refcnt); 1932 1933 kernfs_kill_sb(sb); 1934} 1935 1936static struct file_system_type cgroup_fs_type = { 1937 .name = "cgroup", 1938 .mount = cgroup_mount, 1939 .kill_sb = cgroup_kill_sb, 1940}; 1941 1942/** 1943 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 1944 * @task: target task 1945 * @buf: the buffer to write the path into 1946 * @buflen: the length of the buffer 1947 * 1948 * Determine @task's cgroup on the first (the one with the lowest non-zero 1949 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 1950 * function grabs cgroup_mutex and shouldn't be used inside locks used by 1951 * cgroup controller callbacks. 1952 * 1953 * Return value is the same as kernfs_path(). 1954 */ 1955char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 1956{ 1957 struct cgroup_root *root; 1958 struct cgroup *cgrp; 1959 int hierarchy_id = 1; 1960 char *path = NULL; 1961 1962 mutex_lock(&cgroup_mutex); 1963 down_read(&css_set_rwsem); 1964 1965 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 1966 1967 if (root) { 1968 cgrp = task_cgroup_from_root(task, root); 1969 path = cgroup_path(cgrp, buf, buflen); 1970 } else { 1971 /* if no hierarchy exists, everyone is in "/" */ 1972 if (strlcpy(buf, "/", buflen) < buflen) 1973 path = buf; 1974 } 1975 1976 up_read(&css_set_rwsem); 1977 mutex_unlock(&cgroup_mutex); 1978 return path; 1979} 1980EXPORT_SYMBOL_GPL(task_cgroup_path); 1981 1982/* used to track tasks and other necessary states during migration */ 1983struct cgroup_taskset { 1984 /* the src and dst cset list running through cset->mg_node */ 1985 struct list_head src_csets; 1986 struct list_head dst_csets; 1987 1988 /* 1989 * Fields for cgroup_taskset_*() iteration. 1990 * 1991 * Before migration is committed, the target migration tasks are on 1992 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of 1993 * the csets on ->dst_csets. ->csets point to either ->src_csets 1994 * or ->dst_csets depending on whether migration is committed. 1995 * 1996 * ->cur_csets and ->cur_task point to the current task position 1997 * during iteration. 1998 */ 1999 struct list_head *csets; 2000 struct css_set *cur_cset; 2001 struct task_struct *cur_task; 2002}; 2003 2004/** 2005 * cgroup_taskset_first - reset taskset and return the first task 2006 * @tset: taskset of interest 2007 * 2008 * @tset iteration is initialized and the first task is returned. 2009 */ 2010struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) 2011{ 2012 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2013 tset->cur_task = NULL; 2014 2015 return cgroup_taskset_next(tset); 2016} 2017 2018/** 2019 * cgroup_taskset_next - iterate to the next task in taskset 2020 * @tset: taskset of interest 2021 * 2022 * Return the next task in @tset. Iteration must have been initialized 2023 * with cgroup_taskset_first(). 2024 */ 2025struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) 2026{ 2027 struct css_set *cset = tset->cur_cset; 2028 struct task_struct *task = tset->cur_task; 2029 2030 while (&cset->mg_node != tset->csets) { 2031 if (!task) 2032 task = list_first_entry(&cset->mg_tasks, 2033 struct task_struct, cg_list); 2034 else 2035 task = list_next_entry(task, cg_list); 2036 2037 if (&task->cg_list != &cset->mg_tasks) { 2038 tset->cur_cset = cset; 2039 tset->cur_task = task; 2040 return task; 2041 } 2042 2043 cset = list_next_entry(cset, mg_node); 2044 task = NULL; 2045 } 2046 2047 return NULL; 2048} 2049 2050/** 2051 * cgroup_task_migrate - move a task from one cgroup to another. 2052 * @old_cgrp: the cgroup @tsk is being migrated from 2053 * @tsk: the task being migrated 2054 * @new_cset: the new css_set @tsk is being attached to 2055 * 2056 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked. 2057 */ 2058static void cgroup_task_migrate(struct cgroup *old_cgrp, 2059 struct task_struct *tsk, 2060 struct css_set *new_cset) 2061{ 2062 struct css_set *old_cset; 2063 2064 lockdep_assert_held(&cgroup_mutex); 2065 lockdep_assert_held(&css_set_rwsem); 2066 2067 /* 2068 * We are synchronized through cgroup_threadgroup_rwsem against 2069 * PF_EXITING setting such that we can't race against cgroup_exit() 2070 * changing the css_set to init_css_set and dropping the old one. 2071 */ 2072 WARN_ON_ONCE(tsk->flags & PF_EXITING); 2073 old_cset = task_css_set(tsk); 2074 2075 get_css_set(new_cset); 2076 rcu_assign_pointer(tsk->cgroups, new_cset); 2077 2078 /* 2079 * Use move_tail so that cgroup_taskset_first() still returns the 2080 * leader after migration. This works because cgroup_migrate() 2081 * ensures that the dst_cset of the leader is the first on the 2082 * tset's dst_csets list. 2083 */ 2084 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks); 2085 2086 /* 2087 * We just gained a reference on old_cset by taking it from the 2088 * task. As trading it for new_cset is protected by cgroup_mutex, 2089 * we're safe to drop it here; it will be freed under RCU. 2090 */ 2091 put_css_set_locked(old_cset); 2092} 2093 2094/** 2095 * cgroup_migrate_finish - cleanup after attach 2096 * @preloaded_csets: list of preloaded css_sets 2097 * 2098 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2099 * those functions for details. 2100 */ 2101static void cgroup_migrate_finish(struct list_head *preloaded_csets) 2102{ 2103 struct css_set *cset, *tmp_cset; 2104 2105 lockdep_assert_held(&cgroup_mutex); 2106 2107 down_write(&css_set_rwsem); 2108 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { 2109 cset->mg_src_cgrp = NULL; 2110 cset->mg_dst_cset = NULL; 2111 list_del_init(&cset->mg_preload_node); 2112 put_css_set_locked(cset); 2113 } 2114 up_write(&css_set_rwsem); 2115} 2116 2117/** 2118 * cgroup_migrate_add_src - add a migration source css_set 2119 * @src_cset: the source css_set to add 2120 * @dst_cgrp: the destination cgroup 2121 * @preloaded_csets: list of preloaded css_sets 2122 * 2123 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2124 * @src_cset and add it to @preloaded_csets, which should later be cleaned 2125 * up by cgroup_migrate_finish(). 2126 * 2127 * This function may be called without holding cgroup_threadgroup_rwsem 2128 * even if the target is a process. Threads may be created and destroyed 2129 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2130 * into play and the preloaded css_sets are guaranteed to cover all 2131 * migrations. 2132 */ 2133static void cgroup_migrate_add_src(struct css_set *src_cset, 2134 struct cgroup *dst_cgrp, 2135 struct list_head *preloaded_csets) 2136{ 2137 struct cgroup *src_cgrp; 2138 2139 lockdep_assert_held(&cgroup_mutex); 2140 lockdep_assert_held(&css_set_rwsem); 2141 2142 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2143 2144 if (!list_empty(&src_cset->mg_preload_node)) 2145 return; 2146 2147 WARN_ON(src_cset->mg_src_cgrp); 2148 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2149 WARN_ON(!list_empty(&src_cset->mg_node)); 2150 2151 src_cset->mg_src_cgrp = src_cgrp; 2152 get_css_set(src_cset); 2153 list_add(&src_cset->mg_preload_node, preloaded_csets); 2154} 2155 2156/** 2157 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2158 * @dst_cgrp: the destination cgroup (may be %NULL) 2159 * @preloaded_csets: list of preloaded source css_sets 2160 * 2161 * Tasks are about to be moved to @dst_cgrp and all the source css_sets 2162 * have been preloaded to @preloaded_csets. This function looks up and 2163 * pins all destination css_sets, links each to its source, and append them 2164 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each 2165 * source css_set is assumed to be its cgroup on the default hierarchy. 2166 * 2167 * This function must be called after cgroup_migrate_add_src() has been 2168 * called on each migration source css_set. After migration is performed 2169 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2170 * @preloaded_csets. 2171 */ 2172static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp, 2173 struct list_head *preloaded_csets) 2174{ 2175 LIST_HEAD(csets); 2176 struct css_set *src_cset, *tmp_cset; 2177 2178 lockdep_assert_held(&cgroup_mutex); 2179 2180 /* 2181 * Except for the root, child_subsys_mask must be zero for a cgroup 2182 * with tasks so that child cgroups don't compete against tasks. 2183 */ 2184 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) && 2185 dst_cgrp->child_subsys_mask) 2186 return -EBUSY; 2187 2188 /* look up the dst cset for each src cset and link it to src */ 2189 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { 2190 struct css_set *dst_cset; 2191 2192 dst_cset = find_css_set(src_cset, 2193 dst_cgrp ?: src_cset->dfl_cgrp); 2194 if (!dst_cset) 2195 goto err; 2196 2197 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2198 2199 /* 2200 * If src cset equals dst, it's noop. Drop the src. 2201 * cgroup_migrate() will skip the cset too. Note that we 2202 * can't handle src == dst as some nodes are used by both. 2203 */ 2204 if (src_cset == dst_cset) { 2205 src_cset->mg_src_cgrp = NULL; 2206 list_del_init(&src_cset->mg_preload_node); 2207 put_css_set(src_cset); 2208 put_css_set(dst_cset); 2209 continue; 2210 } 2211 2212 src_cset->mg_dst_cset = dst_cset; 2213 2214 if (list_empty(&dst_cset->mg_preload_node)) 2215 list_add(&dst_cset->mg_preload_node, &csets); 2216 else 2217 put_css_set(dst_cset); 2218 } 2219 2220 list_splice_tail(&csets, preloaded_csets); 2221 return 0; 2222err: 2223 cgroup_migrate_finish(&csets); 2224 return -ENOMEM; 2225} 2226 2227/** 2228 * cgroup_migrate - migrate a process or task to a cgroup 2229 * @cgrp: the destination cgroup 2230 * @leader: the leader of the process or the task to migrate 2231 * @threadgroup: whether @leader points to the whole process or a single task 2232 * 2233 * Migrate a process or task denoted by @leader to @cgrp. If migrating a 2234 * process, the caller must be holding cgroup_threadgroup_rwsem. The 2235 * caller is also responsible for invoking cgroup_migrate_add_src() and 2236 * cgroup_migrate_prepare_dst() on the targets before invoking this 2237 * function and following up with cgroup_migrate_finish(). 2238 * 2239 * As long as a controller's ->can_attach() doesn't fail, this function is 2240 * guaranteed to succeed. This means that, excluding ->can_attach() 2241 * failure, when migrating multiple targets, the success or failure can be 2242 * decided for all targets by invoking group_migrate_prepare_dst() before 2243 * actually starting migrating. 2244 */ 2245static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader, 2246 bool threadgroup) 2247{ 2248 struct cgroup_taskset tset = { 2249 .src_csets = LIST_HEAD_INIT(tset.src_csets), 2250 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), 2251 .csets = &tset.src_csets, 2252 }; 2253 struct cgroup_subsys_state *css, *failed_css = NULL; 2254 struct css_set *cset, *tmp_cset; 2255 struct task_struct *task, *tmp_task; 2256 int i, ret; 2257 2258 /* 2259 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2260 * already PF_EXITING could be freed from underneath us unless we 2261 * take an rcu_read_lock. 2262 */ 2263 down_write(&css_set_rwsem); 2264 rcu_read_lock(); 2265 task = leader; 2266 do { 2267 /* @task either already exited or can't exit until the end */ 2268 if (task->flags & PF_EXITING) 2269 goto next; 2270 2271 /* leave @task alone if post_fork() hasn't linked it yet */ 2272 if (list_empty(&task->cg_list)) 2273 goto next; 2274 2275 cset = task_css_set(task); 2276 if (!cset->mg_src_cgrp) 2277 goto next; 2278 2279 /* 2280 * cgroup_taskset_first() must always return the leader. 2281 * Take care to avoid disturbing the ordering. 2282 */ 2283 list_move_tail(&task->cg_list, &cset->mg_tasks); 2284 if (list_empty(&cset->mg_node)) 2285 list_add_tail(&cset->mg_node, &tset.src_csets); 2286 if (list_empty(&cset->mg_dst_cset->mg_node)) 2287 list_move_tail(&cset->mg_dst_cset->mg_node, 2288 &tset.dst_csets); 2289 next: 2290 if (!threadgroup) 2291 break; 2292 } while_each_thread(leader, task); 2293 rcu_read_unlock(); 2294 up_write(&css_set_rwsem); 2295 2296 /* methods shouldn't be called if no task is actually migrating */ 2297 if (list_empty(&tset.src_csets)) 2298 return 0; 2299 2300 /* check that we can legitimately attach to the cgroup */ 2301 for_each_e_css(css, i, cgrp) { 2302 if (css->ss->can_attach) { 2303 ret = css->ss->can_attach(css, &tset); 2304 if (ret) { 2305 failed_css = css; 2306 goto out_cancel_attach; 2307 } 2308 } 2309 } 2310 2311 /* 2312 * Now that we're guaranteed success, proceed to move all tasks to 2313 * the new cgroup. There are no failure cases after here, so this 2314 * is the commit point. 2315 */ 2316 down_write(&css_set_rwsem); 2317 list_for_each_entry(cset, &tset.src_csets, mg_node) { 2318 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) 2319 cgroup_task_migrate(cset->mg_src_cgrp, task, 2320 cset->mg_dst_cset); 2321 } 2322 up_write(&css_set_rwsem); 2323 2324 /* 2325 * Migration is committed, all target tasks are now on dst_csets. 2326 * Nothing is sensitive to fork() after this point. Notify 2327 * controllers that migration is complete. 2328 */ 2329 tset.csets = &tset.dst_csets; 2330 2331 for_each_e_css(css, i, cgrp) 2332 if (css->ss->attach) 2333 css->ss->attach(css, &tset); 2334 2335 ret = 0; 2336 goto out_release_tset; 2337 2338out_cancel_attach: 2339 for_each_e_css(css, i, cgrp) { 2340 if (css == failed_css) 2341 break; 2342 if (css->ss->cancel_attach) 2343 css->ss->cancel_attach(css, &tset); 2344 } 2345out_release_tset: 2346 down_write(&css_set_rwsem); 2347 list_splice_init(&tset.dst_csets, &tset.src_csets); 2348 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) { 2349 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2350 list_del_init(&cset->mg_node); 2351 } 2352 up_write(&css_set_rwsem); 2353 return ret; 2354} 2355 2356/** 2357 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2358 * @dst_cgrp: the cgroup to attach to 2359 * @leader: the task or the leader of the threadgroup to be attached 2360 * @threadgroup: attach the whole threadgroup? 2361 * 2362 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2363 */ 2364static int cgroup_attach_task(struct cgroup *dst_cgrp, 2365 struct task_struct *leader, bool threadgroup) 2366{ 2367 LIST_HEAD(preloaded_csets); 2368 struct task_struct *task; 2369 int ret; 2370 2371 /* look up all src csets */ 2372 down_read(&css_set_rwsem); 2373 rcu_read_lock(); 2374 task = leader; 2375 do { 2376 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, 2377 &preloaded_csets); 2378 if (!threadgroup) 2379 break; 2380 } while_each_thread(leader, task); 2381 rcu_read_unlock(); 2382 up_read(&css_set_rwsem); 2383 2384 /* prepare dst csets and commit */ 2385 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets); 2386 if (!ret) 2387 ret = cgroup_migrate(dst_cgrp, leader, threadgroup); 2388 2389 cgroup_migrate_finish(&preloaded_csets); 2390 return ret; 2391} 2392 2393static int cgroup_procs_write_permission(struct task_struct *task, 2394 struct cgroup *dst_cgrp, 2395 struct kernfs_open_file *of) 2396{ 2397 const struct cred *cred = current_cred(); 2398 const struct cred *tcred = get_task_cred(task); 2399 int ret = 0; 2400 2401 /* 2402 * even if we're attaching all tasks in the thread group, we only 2403 * need to check permissions on one of them. 2404 */ 2405 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 2406 !uid_eq(cred->euid, tcred->uid) && 2407 !uid_eq(cred->euid, tcred->suid)) 2408 ret = -EACCES; 2409 2410 if (!ret && cgroup_on_dfl(dst_cgrp)) { 2411 struct super_block *sb = of->file->f_path.dentry->d_sb; 2412 struct cgroup *cgrp; 2413 struct inode *inode; 2414 2415 down_read(&css_set_rwsem); 2416 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2417 up_read(&css_set_rwsem); 2418 2419 while (!cgroup_is_descendant(dst_cgrp, cgrp)) 2420 cgrp = cgroup_parent(cgrp); 2421 2422 ret = -ENOMEM; 2423 inode = kernfs_get_inode(sb, cgrp->procs_kn); 2424 if (inode) { 2425 ret = inode_permission(inode, MAY_WRITE); 2426 iput(inode); 2427 } 2428 } 2429 2430 put_cred(tcred); 2431 return ret; 2432} 2433 2434/* 2435 * Find the task_struct of the task to attach by vpid and pass it along to the 2436 * function to attach either it or all tasks in its threadgroup. Will lock 2437 * cgroup_mutex and threadgroup. 2438 */ 2439static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2440 size_t nbytes, loff_t off, bool threadgroup) 2441{ 2442 struct task_struct *tsk; 2443 struct cgroup *cgrp; 2444 pid_t pid; 2445 int ret; 2446 2447 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2448 return -EINVAL; 2449 2450 cgrp = cgroup_kn_lock_live(of->kn); 2451 if (!cgrp) 2452 return -ENODEV; 2453 2454 percpu_down_write(&cgroup_threadgroup_rwsem); 2455 rcu_read_lock(); 2456 if (pid) { 2457 tsk = find_task_by_vpid(pid); 2458 if (!tsk) { 2459 ret = -ESRCH; 2460 goto out_unlock_rcu; 2461 } 2462 } else { 2463 tsk = current; 2464 } 2465 2466 if (threadgroup) 2467 tsk = tsk->group_leader; 2468 2469 /* 2470 * Workqueue threads may acquire PF_NO_SETAFFINITY and become 2471 * trapped in a cpuset, or RT worker may be born in a cgroup 2472 * with no rt_runtime allocated. Just say no. 2473 */ 2474 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { 2475 ret = -EINVAL; 2476 goto out_unlock_rcu; 2477 } 2478 2479 get_task_struct(tsk); 2480 rcu_read_unlock(); 2481 2482 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2483 if (!ret) 2484 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2485 2486 put_task_struct(tsk); 2487 goto out_unlock_threadgroup; 2488 2489out_unlock_rcu: 2490 rcu_read_unlock(); 2491out_unlock_threadgroup: 2492 percpu_up_write(&cgroup_threadgroup_rwsem); 2493 cgroup_kn_unlock(of->kn); 2494 return ret ?: nbytes; 2495} 2496 2497/** 2498 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 2499 * @from: attach to all cgroups of a given task 2500 * @tsk: the task to be attached 2501 */ 2502int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 2503{ 2504 struct cgroup_root *root; 2505 int retval = 0; 2506 2507 mutex_lock(&cgroup_mutex); 2508 for_each_root(root) { 2509 struct cgroup *from_cgrp; 2510 2511 if (root == &cgrp_dfl_root) 2512 continue; 2513 2514 down_read(&css_set_rwsem); 2515 from_cgrp = task_cgroup_from_root(from, root); 2516 up_read(&css_set_rwsem); 2517 2518 retval = cgroup_attach_task(from_cgrp, tsk, false); 2519 if (retval) 2520 break; 2521 } 2522 mutex_unlock(&cgroup_mutex); 2523 2524 return retval; 2525} 2526EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 2527 2528static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, 2529 char *buf, size_t nbytes, loff_t off) 2530{ 2531 return __cgroup_procs_write(of, buf, nbytes, off, false); 2532} 2533 2534static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 2535 char *buf, size_t nbytes, loff_t off) 2536{ 2537 return __cgroup_procs_write(of, buf, nbytes, off, true); 2538} 2539 2540static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 2541 char *buf, size_t nbytes, loff_t off) 2542{ 2543 struct cgroup *cgrp; 2544 2545 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 2546 2547 cgrp = cgroup_kn_lock_live(of->kn); 2548 if (!cgrp) 2549 return -ENODEV; 2550 spin_lock(&release_agent_path_lock); 2551 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 2552 sizeof(cgrp->root->release_agent_path)); 2553 spin_unlock(&release_agent_path_lock); 2554 cgroup_kn_unlock(of->kn); 2555 return nbytes; 2556} 2557 2558static int cgroup_release_agent_show(struct seq_file *seq, void *v) 2559{ 2560 struct cgroup *cgrp = seq_css(seq)->cgroup; 2561 2562 spin_lock(&release_agent_path_lock); 2563 seq_puts(seq, cgrp->root->release_agent_path); 2564 spin_unlock(&release_agent_path_lock); 2565 seq_putc(seq, '\n'); 2566 return 0; 2567} 2568 2569static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 2570{ 2571 seq_puts(seq, "0\n"); 2572 return 0; 2573} 2574 2575static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask) 2576{ 2577 struct cgroup_subsys *ss; 2578 bool printed = false; 2579 int ssid; 2580 2581 for_each_subsys_which(ss, ssid, &ss_mask) { 2582 if (printed) 2583 seq_putc(seq, ' '); 2584 seq_printf(seq, "%s", ss->name); 2585 printed = true; 2586 } 2587 if (printed) 2588 seq_putc(seq, '\n'); 2589} 2590 2591/* show controllers which are currently attached to the default hierarchy */ 2592static int cgroup_root_controllers_show(struct seq_file *seq, void *v) 2593{ 2594 struct cgroup *cgrp = seq_css(seq)->cgroup; 2595 2596 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask & 2597 ~cgrp_dfl_root_inhibit_ss_mask); 2598 return 0; 2599} 2600 2601/* show controllers which are enabled from the parent */ 2602static int cgroup_controllers_show(struct seq_file *seq, void *v) 2603{ 2604 struct cgroup *cgrp = seq_css(seq)->cgroup; 2605 2606 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control); 2607 return 0; 2608} 2609 2610/* show controllers which are enabled for a given cgroup's children */ 2611static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2612{ 2613 struct cgroup *cgrp = seq_css(seq)->cgroup; 2614 2615 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2616 return 0; 2617} 2618 2619/** 2620 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2621 * @cgrp: root of the subtree to update csses for 2622 * 2623 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded) 2624 * css associations need to be updated accordingly. This function looks up 2625 * all css_sets which are attached to the subtree, creates the matching 2626 * updated css_sets and migrates the tasks to the new ones. 2627 */ 2628static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2629{ 2630 LIST_HEAD(preloaded_csets); 2631 struct cgroup_subsys_state *css; 2632 struct css_set *src_cset; 2633 int ret; 2634 2635 lockdep_assert_held(&cgroup_mutex); 2636 2637 percpu_down_write(&cgroup_threadgroup_rwsem); 2638 2639 /* look up all csses currently attached to @cgrp's subtree */ 2640 down_read(&css_set_rwsem); 2641 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) { 2642 struct cgrp_cset_link *link; 2643 2644 /* self is not affected by child_subsys_mask change */ 2645 if (css->cgroup == cgrp) 2646 continue; 2647 2648 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) 2649 cgroup_migrate_add_src(link->cset, cgrp, 2650 &preloaded_csets); 2651 } 2652 up_read(&css_set_rwsem); 2653 2654 /* NULL dst indicates self on default hierarchy */ 2655 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets); 2656 if (ret) 2657 goto out_finish; 2658 2659 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { 2660 struct task_struct *last_task = NULL, *task; 2661 2662 /* src_csets precede dst_csets, break on the first dst_cset */ 2663 if (!src_cset->mg_src_cgrp) 2664 break; 2665 2666 /* 2667 * All tasks in src_cset need to be migrated to the 2668 * matching dst_cset. Empty it process by process. We 2669 * walk tasks but migrate processes. The leader might even 2670 * belong to a different cset but such src_cset would also 2671 * be among the target src_csets because the default 2672 * hierarchy enforces per-process membership. 2673 */ 2674 while (true) { 2675 down_read(&css_set_rwsem); 2676 task = list_first_entry_or_null(&src_cset->tasks, 2677 struct task_struct, cg_list); 2678 if (task) { 2679 task = task->group_leader; 2680 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp); 2681 get_task_struct(task); 2682 } 2683 up_read(&css_set_rwsem); 2684 2685 if (!task) 2686 break; 2687 2688 /* guard against possible infinite loop */ 2689 if (WARN(last_task == task, 2690 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n")) 2691 goto out_finish; 2692 last_task = task; 2693 2694 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true); 2695 2696 put_task_struct(task); 2697 2698 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret)) 2699 goto out_finish; 2700 } 2701 } 2702 2703out_finish: 2704 cgroup_migrate_finish(&preloaded_csets); 2705 percpu_up_write(&cgroup_threadgroup_rwsem); 2706 return ret; 2707} 2708 2709/* change the enabled child controllers for a cgroup in the default hierarchy */ 2710static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2711 char *buf, size_t nbytes, 2712 loff_t off) 2713{ 2714 unsigned long enable = 0, disable = 0; 2715 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss; 2716 struct cgroup *cgrp, *child; 2717 struct cgroup_subsys *ss; 2718 char *tok; 2719 int ssid, ret; 2720 2721 /* 2722 * Parse input - space separated list of subsystem names prefixed 2723 * with either + or -. 2724 */ 2725 buf = strstrip(buf); 2726 while ((tok = strsep(&buf, " "))) { 2727 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask; 2728 2729 if (tok[0] == '\0') 2730 continue; 2731 for_each_subsys_which(ss, ssid, &tmp_ss_mask) { 2732 if (ss->disabled || strcmp(tok + 1, ss->name)) 2733 continue; 2734 2735 if (*tok == '+') { 2736 enable |= 1 << ssid; 2737 disable &= ~(1 << ssid); 2738 } else if (*tok == '-') { 2739 disable |= 1 << ssid; 2740 enable &= ~(1 << ssid); 2741 } else { 2742 return -EINVAL; 2743 } 2744 break; 2745 } 2746 if (ssid == CGROUP_SUBSYS_COUNT) 2747 return -EINVAL; 2748 } 2749 2750 cgrp = cgroup_kn_lock_live(of->kn); 2751 if (!cgrp) 2752 return -ENODEV; 2753 2754 for_each_subsys(ss, ssid) { 2755 if (enable & (1 << ssid)) { 2756 if (cgrp->subtree_control & (1 << ssid)) { 2757 enable &= ~(1 << ssid); 2758 continue; 2759 } 2760 2761 /* unavailable or not enabled on the parent? */ 2762 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) || 2763 (cgroup_parent(cgrp) && 2764 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) { 2765 ret = -ENOENT; 2766 goto out_unlock; 2767 } 2768 } else if (disable & (1 << ssid)) { 2769 if (!(cgrp->subtree_control & (1 << ssid))) { 2770 disable &= ~(1 << ssid); 2771 continue; 2772 } 2773 2774 /* a child has it enabled? */ 2775 cgroup_for_each_live_child(child, cgrp) { 2776 if (child->subtree_control & (1 << ssid)) { 2777 ret = -EBUSY; 2778 goto out_unlock; 2779 } 2780 } 2781 } 2782 } 2783 2784 if (!enable && !disable) { 2785 ret = 0; 2786 goto out_unlock; 2787 } 2788 2789 /* 2790 * Except for the root, subtree_control must be zero for a cgroup 2791 * with tasks so that child cgroups don't compete against tasks. 2792 */ 2793 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) { 2794 ret = -EBUSY; 2795 goto out_unlock; 2796 } 2797 2798 /* 2799 * Update subsys masks and calculate what needs to be done. More 2800 * subsystems than specified may need to be enabled or disabled 2801 * depending on subsystem dependencies. 2802 */ 2803 old_sc = cgrp->subtree_control; 2804 old_ss = cgrp->child_subsys_mask; 2805 new_sc = (old_sc | enable) & ~disable; 2806 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc); 2807 2808 css_enable = ~old_ss & new_ss; 2809 css_disable = old_ss & ~new_ss; 2810 enable |= css_enable; 2811 disable |= css_disable; 2812 2813 /* 2814 * Because css offlining is asynchronous, userland might try to 2815 * re-enable the same controller while the previous instance is 2816 * still around. In such cases, wait till it's gone using 2817 * offline_waitq. 2818 */ 2819 for_each_subsys_which(ss, ssid, &css_enable) { 2820 cgroup_for_each_live_child(child, cgrp) { 2821 DEFINE_WAIT(wait); 2822 2823 if (!cgroup_css(child, ss)) 2824 continue; 2825 2826 cgroup_get(child); 2827 prepare_to_wait(&child->offline_waitq, &wait, 2828 TASK_UNINTERRUPTIBLE); 2829 cgroup_kn_unlock(of->kn); 2830 schedule(); 2831 finish_wait(&child->offline_waitq, &wait); 2832 cgroup_put(child); 2833 2834 return restart_syscall(); 2835 } 2836 } 2837 2838 cgrp->subtree_control = new_sc; 2839 cgrp->child_subsys_mask = new_ss; 2840 2841 /* 2842 * Create new csses or make the existing ones visible. A css is 2843 * created invisible if it's being implicitly enabled through 2844 * dependency. An invisible css is made visible when the userland 2845 * explicitly enables it. 2846 */ 2847 for_each_subsys(ss, ssid) { 2848 if (!(enable & (1 << ssid))) 2849 continue; 2850 2851 cgroup_for_each_live_child(child, cgrp) { 2852 if (css_enable & (1 << ssid)) 2853 ret = create_css(child, ss, 2854 cgrp->subtree_control & (1 << ssid)); 2855 else 2856 ret = cgroup_populate_dir(child, 1 << ssid); 2857 if (ret) 2858 goto err_undo_css; 2859 } 2860 } 2861 2862 /* 2863 * At this point, cgroup_e_css() results reflect the new csses 2864 * making the following cgroup_update_dfl_csses() properly update 2865 * css associations of all tasks in the subtree. 2866 */ 2867 ret = cgroup_update_dfl_csses(cgrp); 2868 if (ret) 2869 goto err_undo_css; 2870 2871 /* 2872 * All tasks are migrated out of disabled csses. Kill or hide 2873 * them. A css is hidden when the userland requests it to be 2874 * disabled while other subsystems are still depending on it. The 2875 * css must not actively control resources and be in the vanilla 2876 * state if it's made visible again later. Controllers which may 2877 * be depended upon should provide ->css_reset() for this purpose. 2878 */ 2879 for_each_subsys(ss, ssid) { 2880 if (!(disable & (1 << ssid))) 2881 continue; 2882 2883 cgroup_for_each_live_child(child, cgrp) { 2884 struct cgroup_subsys_state *css = cgroup_css(child, ss); 2885 2886 if (css_disable & (1 << ssid)) { 2887 kill_css(css); 2888 } else { 2889 cgroup_clear_dir(child, 1 << ssid); 2890 if (ss->css_reset) 2891 ss->css_reset(css); 2892 } 2893 } 2894 } 2895 2896 /* 2897 * The effective csses of all the descendants (excluding @cgrp) may 2898 * have changed. Subsystems can optionally subscribe to this event 2899 * by implementing ->css_e_css_changed() which is invoked if any of 2900 * the effective csses seen from the css's cgroup may have changed. 2901 */ 2902 for_each_subsys(ss, ssid) { 2903 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss); 2904 struct cgroup_subsys_state *css; 2905 2906 if (!ss->css_e_css_changed || !this_css) 2907 continue; 2908 2909 css_for_each_descendant_pre(css, this_css) 2910 if (css != this_css) 2911 ss->css_e_css_changed(css); 2912 } 2913 2914 kernfs_activate(cgrp->kn); 2915 ret = 0; 2916out_unlock: 2917 cgroup_kn_unlock(of->kn); 2918 return ret ?: nbytes; 2919 2920err_undo_css: 2921 cgrp->subtree_control = old_sc; 2922 cgrp->child_subsys_mask = old_ss; 2923 2924 for_each_subsys(ss, ssid) { 2925 if (!(enable & (1 << ssid))) 2926 continue; 2927 2928 cgroup_for_each_live_child(child, cgrp) { 2929 struct cgroup_subsys_state *css = cgroup_css(child, ss); 2930 2931 if (!css) 2932 continue; 2933 2934 if (css_enable & (1 << ssid)) 2935 kill_css(css); 2936 else 2937 cgroup_clear_dir(child, 1 << ssid); 2938 } 2939 } 2940 goto out_unlock; 2941} 2942 2943static int cgroup_populated_show(struct seq_file *seq, void *v) 2944{ 2945 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt); 2946 return 0; 2947} 2948 2949static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 2950 size_t nbytes, loff_t off) 2951{ 2952 struct cgroup *cgrp = of->kn->parent->priv; 2953 struct cftype *cft = of->kn->priv; 2954 struct cgroup_subsys_state *css; 2955 int ret; 2956 2957 if (cft->write) 2958 return cft->write(of, buf, nbytes, off); 2959 2960 /* 2961 * kernfs guarantees that a file isn't deleted with operations in 2962 * flight, which means that the matching css is and stays alive and 2963 * doesn't need to be pinned. The RCU locking is not necessary 2964 * either. It's just for the convenience of using cgroup_css(). 2965 */ 2966 rcu_read_lock(); 2967 css = cgroup_css(cgrp, cft->ss); 2968 rcu_read_unlock(); 2969 2970 if (cft->write_u64) { 2971 unsigned long long v; 2972 ret = kstrtoull(buf, 0, &v); 2973 if (!ret) 2974 ret = cft->write_u64(css, cft, v); 2975 } else if (cft->write_s64) { 2976 long long v; 2977 ret = kstrtoll(buf, 0, &v); 2978 if (!ret) 2979 ret = cft->write_s64(css, cft, v); 2980 } else { 2981 ret = -EINVAL; 2982 } 2983 2984 return ret ?: nbytes; 2985} 2986 2987static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 2988{ 2989 return seq_cft(seq)->seq_start(seq, ppos); 2990} 2991 2992static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 2993{ 2994 return seq_cft(seq)->seq_next(seq, v, ppos); 2995} 2996 2997static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 2998{ 2999 seq_cft(seq)->seq_stop(seq, v); 3000} 3001 3002static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3003{ 3004 struct cftype *cft = seq_cft(m); 3005 struct cgroup_subsys_state *css = seq_css(m); 3006 3007 if (cft->seq_show) 3008 return cft->seq_show(m, arg); 3009 3010 if (cft->read_u64) 3011 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3012 else if (cft->read_s64) 3013 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3014 else 3015 return -EINVAL; 3016 return 0; 3017} 3018 3019static struct kernfs_ops cgroup_kf_single_ops = { 3020 .atomic_write_len = PAGE_SIZE, 3021 .write = cgroup_file_write, 3022 .seq_show = cgroup_seqfile_show, 3023}; 3024 3025static struct kernfs_ops cgroup_kf_ops = { 3026 .atomic_write_len = PAGE_SIZE, 3027 .write = cgroup_file_write, 3028 .seq_start = cgroup_seqfile_start, 3029 .seq_next = cgroup_seqfile_next, 3030 .seq_stop = cgroup_seqfile_stop, 3031 .seq_show = cgroup_seqfile_show, 3032}; 3033 3034/* 3035 * cgroup_rename - Only allow simple rename of directories in place. 3036 */ 3037static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 3038 const char *new_name_str) 3039{ 3040 struct cgroup *cgrp = kn->priv; 3041 int ret; 3042 3043 if (kernfs_type(kn) != KERNFS_DIR) 3044 return -ENOTDIR; 3045 if (kn->parent != new_parent) 3046 return -EIO; 3047 3048 /* 3049 * This isn't a proper migration and its usefulness is very 3050 * limited. Disallow on the default hierarchy. 3051 */ 3052 if (cgroup_on_dfl(cgrp)) 3053 return -EPERM; 3054 3055 /* 3056 * We're gonna grab cgroup_mutex which nests outside kernfs 3057 * active_ref. kernfs_rename() doesn't require active_ref 3058 * protection. Break them before grabbing cgroup_mutex. 3059 */ 3060 kernfs_break_active_protection(new_parent); 3061 kernfs_break_active_protection(kn); 3062 3063 mutex_lock(&cgroup_mutex); 3064 3065 ret = kernfs_rename(kn, new_parent, new_name_str); 3066 3067 mutex_unlock(&cgroup_mutex); 3068 3069 kernfs_unbreak_active_protection(kn); 3070 kernfs_unbreak_active_protection(new_parent); 3071 return ret; 3072} 3073 3074/* set uid and gid of cgroup dirs and files to that of the creator */ 3075static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3076{ 3077 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3078 .ia_uid = current_fsuid(), 3079 .ia_gid = current_fsgid(), }; 3080 3081 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3082 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3083 return 0; 3084 3085 return kernfs_setattr(kn, &iattr); 3086} 3087 3088static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft) 3089{ 3090 char name[CGROUP_FILE_NAME_MAX]; 3091 struct kernfs_node *kn; 3092 struct lock_class_key *key = NULL; 3093 int ret; 3094 3095#ifdef CONFIG_DEBUG_LOCK_ALLOC 3096 key = &cft->lockdep_key; 3097#endif 3098 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3099 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3100 NULL, key); 3101 if (IS_ERR(kn)) 3102 return PTR_ERR(kn); 3103 3104 ret = cgroup_kn_set_ugid(kn); 3105 if (ret) { 3106 kernfs_remove(kn); 3107 return ret; 3108 } 3109 3110 if (cft->write == cgroup_procs_write) 3111 cgrp->procs_kn = kn; 3112 else if (cft->seq_show == cgroup_populated_show) 3113 cgrp->populated_kn = kn; 3114 return 0; 3115} 3116 3117/** 3118 * cgroup_addrm_files - add or remove files to a cgroup directory 3119 * @cgrp: the target cgroup 3120 * @cfts: array of cftypes to be added 3121 * @is_add: whether to add or remove 3122 * 3123 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3124 * For removals, this function never fails. If addition fails, this 3125 * function doesn't remove files already added. The caller is responsible 3126 * for cleaning up. 3127 */ 3128static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], 3129 bool is_add) 3130{ 3131 struct cftype *cft; 3132 int ret; 3133 3134 lockdep_assert_held(&cgroup_mutex); 3135 3136 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3137 /* does cft->flags tell us to skip this file on @cgrp? */ 3138 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3139 continue; 3140 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3141 continue; 3142 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3143 continue; 3144 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3145 continue; 3146 3147 if (is_add) { 3148 ret = cgroup_add_file(cgrp, cft); 3149 if (ret) { 3150 pr_warn("%s: failed to add %s, err=%d\n", 3151 __func__, cft->name, ret); 3152 return ret; 3153 } 3154 } else { 3155 cgroup_rm_file(cgrp, cft); 3156 } 3157 } 3158 return 0; 3159} 3160 3161static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3162{ 3163 LIST_HEAD(pending); 3164 struct cgroup_subsys *ss = cfts[0].ss; 3165 struct cgroup *root = &ss->root->cgrp; 3166 struct cgroup_subsys_state *css; 3167 int ret = 0; 3168 3169 lockdep_assert_held(&cgroup_mutex); 3170 3171 /* add/rm files for all cgroups created before */ 3172 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3173 struct cgroup *cgrp = css->cgroup; 3174 3175 if (cgroup_is_dead(cgrp)) 3176 continue; 3177 3178 ret = cgroup_addrm_files(cgrp, cfts, is_add); 3179 if (ret) 3180 break; 3181 } 3182 3183 if (is_add && !ret) 3184 kernfs_activate(root->kn); 3185 return ret; 3186} 3187 3188static void cgroup_exit_cftypes(struct cftype *cfts) 3189{ 3190 struct cftype *cft; 3191 3192 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3193 /* free copy for custom atomic_write_len, see init_cftypes() */ 3194 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3195 kfree(cft->kf_ops); 3196 cft->kf_ops = NULL; 3197 cft->ss = NULL; 3198 3199 /* revert flags set by cgroup core while adding @cfts */ 3200 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3201 } 3202} 3203 3204static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3205{ 3206 struct cftype *cft; 3207 3208 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3209 struct kernfs_ops *kf_ops; 3210 3211 WARN_ON(cft->ss || cft->kf_ops); 3212 3213 if (cft->seq_start) 3214 kf_ops = &cgroup_kf_ops; 3215 else 3216 kf_ops = &cgroup_kf_single_ops; 3217 3218 /* 3219 * Ugh... if @cft wants a custom max_write_len, we need to 3220 * make a copy of kf_ops to set its atomic_write_len. 3221 */ 3222 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3223 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3224 if (!kf_ops) { 3225 cgroup_exit_cftypes(cfts); 3226 return -ENOMEM; 3227 } 3228 kf_ops->atomic_write_len = cft->max_write_len; 3229 } 3230 3231 cft->kf_ops = kf_ops; 3232 cft->ss = ss; 3233 } 3234 3235 return 0; 3236} 3237 3238static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3239{ 3240 lockdep_assert_held(&cgroup_mutex); 3241 3242 if (!cfts || !cfts[0].ss) 3243 return -ENOENT; 3244 3245 list_del(&cfts->node); 3246 cgroup_apply_cftypes(cfts, false); 3247 cgroup_exit_cftypes(cfts); 3248 return 0; 3249} 3250 3251/** 3252 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3253 * @cfts: zero-length name terminated array of cftypes 3254 * 3255 * Unregister @cfts. Files described by @cfts are removed from all 3256 * existing cgroups and all future cgroups won't have them either. This 3257 * function can be called anytime whether @cfts' subsys is attached or not. 3258 * 3259 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3260 * registered. 3261 */ 3262int cgroup_rm_cftypes(struct cftype *cfts) 3263{ 3264 int ret; 3265 3266 mutex_lock(&cgroup_mutex); 3267 ret = cgroup_rm_cftypes_locked(cfts); 3268 mutex_unlock(&cgroup_mutex); 3269 return ret; 3270} 3271 3272/** 3273 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3274 * @ss: target cgroup subsystem 3275 * @cfts: zero-length name terminated array of cftypes 3276 * 3277 * Register @cfts to @ss. Files described by @cfts are created for all 3278 * existing cgroups to which @ss is attached and all future cgroups will 3279 * have them too. This function can be called anytime whether @ss is 3280 * attached or not. 3281 * 3282 * Returns 0 on successful registration, -errno on failure. Note that this 3283 * function currently returns 0 as long as @cfts registration is successful 3284 * even if some file creation attempts on existing cgroups fail. 3285 */ 3286static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3287{ 3288 int ret; 3289 3290 if (ss->disabled) 3291 return 0; 3292 3293 if (!cfts || cfts[0].name[0] == '\0') 3294 return 0; 3295 3296 ret = cgroup_init_cftypes(ss, cfts); 3297 if (ret) 3298 return ret; 3299 3300 mutex_lock(&cgroup_mutex); 3301 3302 list_add_tail(&cfts->node, &ss->cfts); 3303 ret = cgroup_apply_cftypes(cfts, true); 3304 if (ret) 3305 cgroup_rm_cftypes_locked(cfts); 3306 3307 mutex_unlock(&cgroup_mutex); 3308 return ret; 3309} 3310 3311/** 3312 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3313 * @ss: target cgroup subsystem 3314 * @cfts: zero-length name terminated array of cftypes 3315 * 3316 * Similar to cgroup_add_cftypes() but the added files are only used for 3317 * the default hierarchy. 3318 */ 3319int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3320{ 3321 struct cftype *cft; 3322 3323 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3324 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3325 return cgroup_add_cftypes(ss, cfts); 3326} 3327 3328/** 3329 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3330 * @ss: target cgroup subsystem 3331 * @cfts: zero-length name terminated array of cftypes 3332 * 3333 * Similar to cgroup_add_cftypes() but the added files are only used for 3334 * the legacy hierarchies. 3335 */ 3336int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3337{ 3338 struct cftype *cft; 3339 3340 /* 3341 * If legacy_flies_on_dfl, we want to show the legacy files on the 3342 * dfl hierarchy but iff the target subsystem hasn't been updated 3343 * for the dfl hierarchy yet. 3344 */ 3345 if (!cgroup_legacy_files_on_dfl || 3346 ss->dfl_cftypes != ss->legacy_cftypes) { 3347 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3348 cft->flags |= __CFTYPE_NOT_ON_DFL; 3349 } 3350 3351 return cgroup_add_cftypes(ss, cfts); 3352} 3353 3354/** 3355 * cgroup_task_count - count the number of tasks in a cgroup. 3356 * @cgrp: the cgroup in question 3357 * 3358 * Return the number of tasks in the cgroup. 3359 */ 3360static int cgroup_task_count(const struct cgroup *cgrp) 3361{ 3362 int count = 0; 3363 struct cgrp_cset_link *link; 3364 3365 down_read(&css_set_rwsem); 3366 list_for_each_entry(link, &cgrp->cset_links, cset_link) 3367 count += atomic_read(&link->cset->refcount); 3368 up_read(&css_set_rwsem); 3369 return count; 3370} 3371 3372/** 3373 * css_next_child - find the next child of a given css 3374 * @pos: the current position (%NULL to initiate traversal) 3375 * @parent: css whose children to walk 3376 * 3377 * This function returns the next child of @parent and should be called 3378 * under either cgroup_mutex or RCU read lock. The only requirement is 3379 * that @parent and @pos are accessible. The next sibling is guaranteed to 3380 * be returned regardless of their states. 3381 * 3382 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3383 * css which finished ->css_online() is guaranteed to be visible in the 3384 * future iterations and will stay visible until the last reference is put. 3385 * A css which hasn't finished ->css_online() or already finished 3386 * ->css_offline() may show up during traversal. It's each subsystem's 3387 * responsibility to synchronize against on/offlining. 3388 */ 3389struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3390 struct cgroup_subsys_state *parent) 3391{ 3392 struct cgroup_subsys_state *next; 3393 3394 cgroup_assert_mutex_or_rcu_locked(); 3395 3396 /* 3397 * @pos could already have been unlinked from the sibling list. 3398 * Once a cgroup is removed, its ->sibling.next is no longer 3399 * updated when its next sibling changes. CSS_RELEASED is set when 3400 * @pos is taken off list, at which time its next pointer is valid, 3401 * and, as releases are serialized, the one pointed to by the next 3402 * pointer is guaranteed to not have started release yet. This 3403 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3404 * critical section, the one pointed to by its next pointer is 3405 * guaranteed to not have finished its RCU grace period even if we 3406 * have dropped rcu_read_lock() inbetween iterations. 3407 * 3408 * If @pos has CSS_RELEASED set, its next pointer can't be 3409 * dereferenced; however, as each css is given a monotonically 3410 * increasing unique serial number and always appended to the 3411 * sibling list, the next one can be found by walking the parent's 3412 * children until the first css with higher serial number than 3413 * @pos's. While this path can be slower, it happens iff iteration 3414 * races against release and the race window is very small. 3415 */ 3416 if (!pos) { 3417 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3418 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3419 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3420 } else { 3421 list_for_each_entry_rcu(next, &parent->children, sibling) 3422 if (next->serial_nr > pos->serial_nr) 3423 break; 3424 } 3425 3426 /* 3427 * @next, if not pointing to the head, can be dereferenced and is 3428 * the next sibling. 3429 */ 3430 if (&next->sibling != &parent->children) 3431 return next; 3432 return NULL; 3433} 3434 3435/** 3436 * css_next_descendant_pre - find the next descendant for pre-order walk 3437 * @pos: the current position (%NULL to initiate traversal) 3438 * @root: css whose descendants to walk 3439 * 3440 * To be used by css_for_each_descendant_pre(). Find the next descendant 3441 * to visit for pre-order traversal of @root's descendants. @root is 3442 * included in the iteration and the first node to be visited. 3443 * 3444 * While this function requires cgroup_mutex or RCU read locking, it 3445 * doesn't require the whole traversal to be contained in a single critical 3446 * section. This function will return the correct next descendant as long 3447 * as both @pos and @root are accessible and @pos is a descendant of @root. 3448 * 3449 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3450 * css which finished ->css_online() is guaranteed to be visible in the 3451 * future iterations and will stay visible until the last reference is put. 3452 * A css which hasn't finished ->css_online() or already finished 3453 * ->css_offline() may show up during traversal. It's each subsystem's 3454 * responsibility to synchronize against on/offlining. 3455 */ 3456struct cgroup_subsys_state * 3457css_next_descendant_pre(struct cgroup_subsys_state *pos, 3458 struct cgroup_subsys_state *root) 3459{ 3460 struct cgroup_subsys_state *next; 3461 3462 cgroup_assert_mutex_or_rcu_locked(); 3463 3464 /* if first iteration, visit @root */ 3465 if (!pos) 3466 return root; 3467 3468 /* visit the first child if exists */ 3469 next = css_next_child(NULL, pos); 3470 if (next) 3471 return next; 3472 3473 /* no child, visit my or the closest ancestor's next sibling */ 3474 while (pos != root) { 3475 next = css_next_child(pos, pos->parent); 3476 if (next) 3477 return next; 3478 pos = pos->parent; 3479 } 3480 3481 return NULL; 3482} 3483 3484/** 3485 * css_rightmost_descendant - return the rightmost descendant of a css 3486 * @pos: css of interest 3487 * 3488 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3489 * is returned. This can be used during pre-order traversal to skip 3490 * subtree of @pos. 3491 * 3492 * While this function requires cgroup_mutex or RCU read locking, it 3493 * doesn't require the whole traversal to be contained in a single critical 3494 * section. This function will return the correct rightmost descendant as 3495 * long as @pos is accessible. 3496 */ 3497struct cgroup_subsys_state * 3498css_rightmost_descendant(struct cgroup_subsys_state *pos) 3499{ 3500 struct cgroup_subsys_state *last, *tmp; 3501 3502 cgroup_assert_mutex_or_rcu_locked(); 3503 3504 do { 3505 last = pos; 3506 /* ->prev isn't RCU safe, walk ->next till the end */ 3507 pos = NULL; 3508 css_for_each_child(tmp, last) 3509 pos = tmp; 3510 } while (pos); 3511 3512 return last; 3513} 3514 3515static struct cgroup_subsys_state * 3516css_leftmost_descendant(struct cgroup_subsys_state *pos) 3517{ 3518 struct cgroup_subsys_state *last; 3519 3520 do { 3521 last = pos; 3522 pos = css_next_child(NULL, pos); 3523 } while (pos); 3524 3525 return last; 3526} 3527 3528/** 3529 * css_next_descendant_post - find the next descendant for post-order walk 3530 * @pos: the current position (%NULL to initiate traversal) 3531 * @root: css whose descendants to walk 3532 * 3533 * To be used by css_for_each_descendant_post(). Find the next descendant 3534 * to visit for post-order traversal of @root's descendants. @root is 3535 * included in the iteration and the last node to be visited. 3536 * 3537 * While this function requires cgroup_mutex or RCU read locking, it 3538 * doesn't require the whole traversal to be contained in a single critical 3539 * section. This function will return the correct next descendant as long 3540 * as both @pos and @cgroup are accessible and @pos is a descendant of 3541 * @cgroup. 3542 * 3543 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3544 * css which finished ->css_online() is guaranteed to be visible in the 3545 * future iterations and will stay visible until the last reference is put. 3546 * A css which hasn't finished ->css_online() or already finished 3547 * ->css_offline() may show up during traversal. It's each subsystem's 3548 * responsibility to synchronize against on/offlining. 3549 */ 3550struct cgroup_subsys_state * 3551css_next_descendant_post(struct cgroup_subsys_state *pos, 3552 struct cgroup_subsys_state *root) 3553{ 3554 struct cgroup_subsys_state *next; 3555 3556 cgroup_assert_mutex_or_rcu_locked(); 3557 3558 /* if first iteration, visit leftmost descendant which may be @root */ 3559 if (!pos) 3560 return css_leftmost_descendant(root); 3561 3562 /* if we visited @root, we're done */ 3563 if (pos == root) 3564 return NULL; 3565 3566 /* if there's an unvisited sibling, visit its leftmost descendant */ 3567 next = css_next_child(pos, pos->parent); 3568 if (next) 3569 return css_leftmost_descendant(next); 3570 3571 /* no sibling left, visit parent */ 3572 return pos->parent; 3573} 3574 3575/** 3576 * css_has_online_children - does a css have online children 3577 * @css: the target css 3578 * 3579 * Returns %true if @css has any online children; otherwise, %false. This 3580 * function can be called from any context but the caller is responsible 3581 * for synchronizing against on/offlining as necessary. 3582 */ 3583bool css_has_online_children(struct cgroup_subsys_state *css) 3584{ 3585 struct cgroup_subsys_state *child; 3586 bool ret = false; 3587 3588 rcu_read_lock(); 3589 css_for_each_child(child, css) { 3590 if (child->flags & CSS_ONLINE) { 3591 ret = true; 3592 break; 3593 } 3594 } 3595 rcu_read_unlock(); 3596 return ret; 3597} 3598 3599/** 3600 * css_advance_task_iter - advance a task itererator to the next css_set 3601 * @it: the iterator to advance 3602 * 3603 * Advance @it to the next css_set to walk. 3604 */ 3605static void css_advance_task_iter(struct css_task_iter *it) 3606{ 3607 struct list_head *l = it->cset_pos; 3608 struct cgrp_cset_link *link; 3609 struct css_set *cset; 3610 3611 /* Advance to the next non-empty css_set */ 3612 do { 3613 l = l->next; 3614 if (l == it->cset_head) { 3615 it->cset_pos = NULL; 3616 return; 3617 } 3618 3619 if (it->ss) { 3620 cset = container_of(l, struct css_set, 3621 e_cset_node[it->ss->id]); 3622 } else { 3623 link = list_entry(l, struct cgrp_cset_link, cset_link); 3624 cset = link->cset; 3625 } 3626 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks)); 3627 3628 it->cset_pos = l; 3629 3630 if (!list_empty(&cset->tasks)) 3631 it->task_pos = cset->tasks.next; 3632 else 3633 it->task_pos = cset->mg_tasks.next; 3634 3635 it->tasks_head = &cset->tasks; 3636 it->mg_tasks_head = &cset->mg_tasks; 3637} 3638 3639/** 3640 * css_task_iter_start - initiate task iteration 3641 * @css: the css to walk tasks of 3642 * @it: the task iterator to use 3643 * 3644 * Initiate iteration through the tasks of @css. The caller can call 3645 * css_task_iter_next() to walk through the tasks until the function 3646 * returns NULL. On completion of iteration, css_task_iter_end() must be 3647 * called. 3648 * 3649 * Note that this function acquires a lock which is released when the 3650 * iteration finishes. The caller can't sleep while iteration is in 3651 * progress. 3652 */ 3653void css_task_iter_start(struct cgroup_subsys_state *css, 3654 struct css_task_iter *it) 3655 __acquires(css_set_rwsem) 3656{ 3657 /* no one should try to iterate before mounting cgroups */ 3658 WARN_ON_ONCE(!use_task_css_set_links); 3659 3660 down_read(&css_set_rwsem); 3661 3662 it->ss = css->ss; 3663 3664 if (it->ss) 3665 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3666 else 3667 it->cset_pos = &css->cgroup->cset_links; 3668 3669 it->cset_head = it->cset_pos; 3670 3671 css_advance_task_iter(it); 3672} 3673 3674/** 3675 * css_task_iter_next - return the next task for the iterator 3676 * @it: the task iterator being iterated 3677 * 3678 * The "next" function for task iteration. @it should have been 3679 * initialized via css_task_iter_start(). Returns NULL when the iteration 3680 * reaches the end. 3681 */ 3682struct task_struct *css_task_iter_next(struct css_task_iter *it) 3683{ 3684 struct task_struct *res; 3685 struct list_head *l = it->task_pos; 3686 3687 /* If the iterator cg is NULL, we have no tasks */ 3688 if (!it->cset_pos) 3689 return NULL; 3690 res = list_entry(l, struct task_struct, cg_list); 3691 3692 /* 3693 * Advance iterator to find next entry. cset->tasks is consumed 3694 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3695 * next cset. 3696 */ 3697 l = l->next; 3698 3699 if (l == it->tasks_head) 3700 l = it->mg_tasks_head->next; 3701 3702 if (l == it->mg_tasks_head) 3703 css_advance_task_iter(it); 3704 else 3705 it->task_pos = l; 3706 3707 return res; 3708} 3709 3710/** 3711 * css_task_iter_end - finish task iteration 3712 * @it: the task iterator to finish 3713 * 3714 * Finish task iteration started by css_task_iter_start(). 3715 */ 3716void css_task_iter_end(struct css_task_iter *it) 3717 __releases(css_set_rwsem) 3718{ 3719 up_read(&css_set_rwsem); 3720} 3721 3722/** 3723 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 3724 * @to: cgroup to which the tasks will be moved 3725 * @from: cgroup in which the tasks currently reside 3726 * 3727 * Locking rules between cgroup_post_fork() and the migration path 3728 * guarantee that, if a task is forking while being migrated, the new child 3729 * is guaranteed to be either visible in the source cgroup after the 3730 * parent's migration is complete or put into the target cgroup. No task 3731 * can slip out of migration through forking. 3732 */ 3733int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 3734{ 3735 LIST_HEAD(preloaded_csets); 3736 struct cgrp_cset_link *link; 3737 struct css_task_iter it; 3738 struct task_struct *task; 3739 int ret; 3740 3741 mutex_lock(&cgroup_mutex); 3742 3743 /* all tasks in @from are being moved, all csets are source */ 3744 down_read(&css_set_rwsem); 3745 list_for_each_entry(link, &from->cset_links, cset_link) 3746 cgroup_migrate_add_src(link->cset, to, &preloaded_csets); 3747 up_read(&css_set_rwsem); 3748 3749 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets); 3750 if (ret) 3751 goto out_err; 3752 3753 /* 3754 * Migrate tasks one-by-one until @form is empty. This fails iff 3755 * ->can_attach() fails. 3756 */ 3757 do { 3758 css_task_iter_start(&from->self, &it); 3759 task = css_task_iter_next(&it); 3760 if (task) 3761 get_task_struct(task); 3762 css_task_iter_end(&it); 3763 3764 if (task) { 3765 ret = cgroup_migrate(to, task, false); 3766 put_task_struct(task); 3767 } 3768 } while (task && !ret); 3769out_err: 3770 cgroup_migrate_finish(&preloaded_csets); 3771 mutex_unlock(&cgroup_mutex); 3772 return ret; 3773} 3774 3775/* 3776 * Stuff for reading the 'tasks'/'procs' files. 3777 * 3778 * Reading this file can return large amounts of data if a cgroup has 3779 * *lots* of attached tasks. So it may need several calls to read(), 3780 * but we cannot guarantee that the information we produce is correct 3781 * unless we produce it entirely atomically. 3782 * 3783 */ 3784 3785/* which pidlist file are we talking about? */ 3786enum cgroup_filetype { 3787 CGROUP_FILE_PROCS, 3788 CGROUP_FILE_TASKS, 3789}; 3790 3791/* 3792 * A pidlist is a list of pids that virtually represents the contents of one 3793 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 3794 * a pair (one each for procs, tasks) for each pid namespace that's relevant 3795 * to the cgroup. 3796 */ 3797struct cgroup_pidlist { 3798 /* 3799 * used to find which pidlist is wanted. doesn't change as long as 3800 * this particular list stays in the list. 3801 */ 3802 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 3803 /* array of xids */ 3804 pid_t *list; 3805 /* how many elements the above list has */ 3806 int length; 3807 /* each of these stored in a list by its cgroup */ 3808 struct list_head links; 3809 /* pointer to the cgroup we belong to, for list removal purposes */ 3810 struct cgroup *owner; 3811 /* for delayed destruction */ 3812 struct delayed_work destroy_dwork; 3813}; 3814 3815/* 3816 * The following two functions "fix" the issue where there are more pids 3817 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 3818 * TODO: replace with a kernel-wide solution to this problem 3819 */ 3820#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 3821static void *pidlist_allocate(int count) 3822{ 3823 if (PIDLIST_TOO_LARGE(count)) 3824 return vmalloc(count * sizeof(pid_t)); 3825 else 3826 return kmalloc(count * sizeof(pid_t), GFP_KERNEL); 3827} 3828 3829static void pidlist_free(void *p) 3830{ 3831 kvfree(p); 3832} 3833 3834/* 3835 * Used to destroy all pidlists lingering waiting for destroy timer. None 3836 * should be left afterwards. 3837 */ 3838static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) 3839{ 3840 struct cgroup_pidlist *l, *tmp_l; 3841 3842 mutex_lock(&cgrp->pidlist_mutex); 3843 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 3844 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 3845 mutex_unlock(&cgrp->pidlist_mutex); 3846 3847 flush_workqueue(cgroup_pidlist_destroy_wq); 3848 BUG_ON(!list_empty(&cgrp->pidlists)); 3849} 3850 3851static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 3852{ 3853 struct delayed_work *dwork = to_delayed_work(work); 3854 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 3855 destroy_dwork); 3856 struct cgroup_pidlist *tofree = NULL; 3857 3858 mutex_lock(&l->owner->pidlist_mutex); 3859 3860 /* 3861 * Destroy iff we didn't get queued again. The state won't change 3862 * as destroy_dwork can only be queued while locked. 3863 */ 3864 if (!delayed_work_pending(dwork)) { 3865 list_del(&l->links); 3866 pidlist_free(l->list); 3867 put_pid_ns(l->key.ns); 3868 tofree = l; 3869 } 3870 3871 mutex_unlock(&l->owner->pidlist_mutex); 3872 kfree(tofree); 3873} 3874 3875/* 3876 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 3877 * Returns the number of unique elements. 3878 */ 3879static int pidlist_uniq(pid_t *list, int length) 3880{ 3881 int src, dest = 1; 3882 3883 /* 3884 * we presume the 0th element is unique, so i starts at 1. trivial 3885 * edge cases first; no work needs to be done for either 3886 */ 3887 if (length == 0 || length == 1) 3888 return length; 3889 /* src and dest walk down the list; dest counts unique elements */ 3890 for (src = 1; src < length; src++) { 3891 /* find next unique element */ 3892 while (list[src] == list[src-1]) { 3893 src++; 3894 if (src == length) 3895 goto after; 3896 } 3897 /* dest always points to where the next unique element goes */ 3898 list[dest] = list[src]; 3899 dest++; 3900 } 3901after: 3902 return dest; 3903} 3904 3905/* 3906 * The two pid files - task and cgroup.procs - guaranteed that the result 3907 * is sorted, which forced this whole pidlist fiasco. As pid order is 3908 * different per namespace, each namespace needs differently sorted list, 3909 * making it impossible to use, for example, single rbtree of member tasks 3910 * sorted by task pointer. As pidlists can be fairly large, allocating one 3911 * per open file is dangerous, so cgroup had to implement shared pool of 3912 * pidlists keyed by cgroup and namespace. 3913 * 3914 * All this extra complexity was caused by the original implementation 3915 * committing to an entirely unnecessary property. In the long term, we 3916 * want to do away with it. Explicitly scramble sort order if on the 3917 * default hierarchy so that no such expectation exists in the new 3918 * interface. 3919 * 3920 * Scrambling is done by swapping every two consecutive bits, which is 3921 * non-identity one-to-one mapping which disturbs sort order sufficiently. 3922 */ 3923static pid_t pid_fry(pid_t pid) 3924{ 3925 unsigned a = pid & 0x55555555; 3926 unsigned b = pid & 0xAAAAAAAA; 3927 3928 return (a << 1) | (b >> 1); 3929} 3930 3931static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) 3932{ 3933 if (cgroup_on_dfl(cgrp)) 3934 return pid_fry(pid); 3935 else 3936 return pid; 3937} 3938 3939static int cmppid(const void *a, const void *b) 3940{ 3941 return *(pid_t *)a - *(pid_t *)b; 3942} 3943 3944static int fried_cmppid(const void *a, const void *b) 3945{ 3946 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); 3947} 3948 3949static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 3950 enum cgroup_filetype type) 3951{ 3952 struct cgroup_pidlist *l; 3953 /* don't need task_nsproxy() if we're looking at ourself */ 3954 struct pid_namespace *ns = task_active_pid_ns(current); 3955 3956 lockdep_assert_held(&cgrp->pidlist_mutex); 3957 3958 list_for_each_entry(l, &cgrp->pidlists, links) 3959 if (l->key.type == type && l->key.ns == ns) 3960 return l; 3961 return NULL; 3962} 3963 3964/* 3965 * find the appropriate pidlist for our purpose (given procs vs tasks) 3966 * returns with the lock on that pidlist already held, and takes care 3967 * of the use count, or returns NULL with no locks held if we're out of 3968 * memory. 3969 */ 3970static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 3971 enum cgroup_filetype type) 3972{ 3973 struct cgroup_pidlist *l; 3974 3975 lockdep_assert_held(&cgrp->pidlist_mutex); 3976 3977 l = cgroup_pidlist_find(cgrp, type); 3978 if (l) 3979 return l; 3980 3981 /* entry not found; create a new one */ 3982 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 3983 if (!l) 3984 return l; 3985 3986 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 3987 l->key.type = type; 3988 /* don't need task_nsproxy() if we're looking at ourself */ 3989 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 3990 l->owner = cgrp; 3991 list_add(&l->links, &cgrp->pidlists); 3992 return l; 3993} 3994 3995/* 3996 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 3997 */ 3998static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 3999 struct cgroup_pidlist **lp) 4000{ 4001 pid_t *array; 4002 int length; 4003 int pid, n = 0; /* used for populating the array */ 4004 struct css_task_iter it; 4005 struct task_struct *tsk; 4006 struct cgroup_pidlist *l; 4007 4008 lockdep_assert_held(&cgrp->pidlist_mutex); 4009 4010 /* 4011 * If cgroup gets more users after we read count, we won't have 4012 * enough space - tough. This race is indistinguishable to the 4013 * caller from the case that the additional cgroup users didn't 4014 * show up until sometime later on. 4015 */ 4016 length = cgroup_task_count(cgrp); 4017 array = pidlist_allocate(length); 4018 if (!array) 4019 return -ENOMEM; 4020 /* now, populate the array */ 4021 css_task_iter_start(&cgrp->self, &it); 4022 while ((tsk = css_task_iter_next(&it))) { 4023 if (unlikely(n == length)) 4024 break; 4025 /* get tgid or pid for procs or tasks file respectively */ 4026 if (type == CGROUP_FILE_PROCS) 4027 pid = task_tgid_vnr(tsk); 4028 else 4029 pid = task_pid_vnr(tsk); 4030 if (pid > 0) /* make sure to only use valid results */ 4031 array[n++] = pid; 4032 } 4033 css_task_iter_end(&it); 4034 length = n; 4035 /* now sort & (if procs) strip out duplicates */ 4036 if (cgroup_on_dfl(cgrp)) 4037 sort(array, length, sizeof(pid_t), fried_cmppid, NULL); 4038 else 4039 sort(array, length, sizeof(pid_t), cmppid, NULL); 4040 if (type == CGROUP_FILE_PROCS) 4041 length = pidlist_uniq(array, length); 4042 4043 l = cgroup_pidlist_find_create(cgrp, type); 4044 if (!l) { 4045 pidlist_free(array); 4046 return -ENOMEM; 4047 } 4048 4049 /* store array, freeing old if necessary */ 4050 pidlist_free(l->list); 4051 l->list = array; 4052 l->length = length; 4053 *lp = l; 4054 return 0; 4055} 4056 4057/** 4058 * cgroupstats_build - build and fill cgroupstats 4059 * @stats: cgroupstats to fill information into 4060 * @dentry: A dentry entry belonging to the cgroup for which stats have 4061 * been requested. 4062 * 4063 * Build and fill cgroupstats so that taskstats can export it to user 4064 * space. 4065 */ 4066int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 4067{ 4068 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 4069 struct cgroup *cgrp; 4070 struct css_task_iter it; 4071 struct task_struct *tsk; 4072 4073 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 4074 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 4075 kernfs_type(kn) != KERNFS_DIR) 4076 return -EINVAL; 4077 4078 mutex_lock(&cgroup_mutex); 4079 4080 /* 4081 * We aren't being called from kernfs and there's no guarantee on 4082 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 4083 * @kn->priv is RCU safe. Let's do the RCU dancing. 4084 */ 4085 rcu_read_lock(); 4086 cgrp = rcu_dereference(kn->priv); 4087 if (!cgrp || cgroup_is_dead(cgrp)) { 4088 rcu_read_unlock(); 4089 mutex_unlock(&cgroup_mutex); 4090 return -ENOENT; 4091 } 4092 rcu_read_unlock(); 4093 4094 css_task_iter_start(&cgrp->self, &it); 4095 while ((tsk = css_task_iter_next(&it))) { 4096 switch (tsk->state) { 4097 case TASK_RUNNING: 4098 stats->nr_running++; 4099 break; 4100 case TASK_INTERRUPTIBLE: 4101 stats->nr_sleeping++; 4102 break; 4103 case TASK_UNINTERRUPTIBLE: 4104 stats->nr_uninterruptible++; 4105 break; 4106 case TASK_STOPPED: 4107 stats->nr_stopped++; 4108 break; 4109 default: 4110 if (delayacct_is_task_waiting_on_io(tsk)) 4111 stats->nr_io_wait++; 4112 break; 4113 } 4114 } 4115 css_task_iter_end(&it); 4116 4117 mutex_unlock(&cgroup_mutex); 4118 return 0; 4119} 4120 4121 4122/* 4123 * seq_file methods for the tasks/procs files. The seq_file position is the 4124 * next pid to display; the seq_file iterator is a pointer to the pid 4125 * in the cgroup->l->list array. 4126 */ 4127 4128static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 4129{ 4130 /* 4131 * Initially we receive a position value that corresponds to 4132 * one more than the last pid shown (or 0 on the first call or 4133 * after a seek to the start). Use a binary-search to find the 4134 * next pid to display, if any 4135 */ 4136 struct kernfs_open_file *of = s->private; 4137 struct cgroup *cgrp = seq_css(s)->cgroup; 4138 struct cgroup_pidlist *l; 4139 enum cgroup_filetype type = seq_cft(s)->private; 4140 int index = 0, pid = *pos; 4141 int *iter, ret; 4142 4143 mutex_lock(&cgrp->pidlist_mutex); 4144 4145 /* 4146 * !NULL @of->priv indicates that this isn't the first start() 4147 * after open. If the matching pidlist is around, we can use that. 4148 * Look for it. Note that @of->priv can't be used directly. It 4149 * could already have been destroyed. 4150 */ 4151 if (of->priv) 4152 of->priv = cgroup_pidlist_find(cgrp, type); 4153 4154 /* 4155 * Either this is the first start() after open or the matching 4156 * pidlist has been destroyed inbetween. Create a new one. 4157 */ 4158 if (!of->priv) { 4159 ret = pidlist_array_load(cgrp, type, 4160 (struct cgroup_pidlist **)&of->priv); 4161 if (ret) 4162 return ERR_PTR(ret); 4163 } 4164 l = of->priv; 4165 4166 if (pid) { 4167 int end = l->length; 4168 4169 while (index < end) { 4170 int mid = (index + end) / 2; 4171 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { 4172 index = mid; 4173 break; 4174 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) 4175 index = mid + 1; 4176 else 4177 end = mid; 4178 } 4179 } 4180 /* If we're off the end of the array, we're done */ 4181 if (index >= l->length) 4182 return NULL; 4183 /* Update the abstract position to be the actual pid that we found */ 4184 iter = l->list + index; 4185 *pos = cgroup_pid_fry(cgrp, *iter); 4186 return iter; 4187} 4188 4189static void cgroup_pidlist_stop(struct seq_file *s, void *v) 4190{ 4191 struct kernfs_open_file *of = s->private; 4192 struct cgroup_pidlist *l = of->priv; 4193 4194 if (l) 4195 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 4196 CGROUP_PIDLIST_DESTROY_DELAY); 4197 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 4198} 4199 4200static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 4201{ 4202 struct kernfs_open_file *of = s->private; 4203 struct cgroup_pidlist *l = of->priv; 4204 pid_t *p = v; 4205 pid_t *end = l->list + l->length; 4206 /* 4207 * Advance to the next pid in the array. If this goes off the 4208 * end, we're done 4209 */ 4210 p++; 4211 if (p >= end) { 4212 return NULL; 4213 } else { 4214 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); 4215 return p; 4216 } 4217} 4218 4219static int cgroup_pidlist_show(struct seq_file *s, void *v) 4220{ 4221 seq_printf(s, "%d\n", *(int *)v); 4222 4223 return 0; 4224} 4225 4226static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 4227 struct cftype *cft) 4228{ 4229 return notify_on_release(css->cgroup); 4230} 4231 4232static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 4233 struct cftype *cft, u64 val) 4234{ 4235 if (val) 4236 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 4237 else 4238 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 4239 return 0; 4240} 4241 4242static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 4243 struct cftype *cft) 4244{ 4245 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4246} 4247 4248static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 4249 struct cftype *cft, u64 val) 4250{ 4251 if (val) 4252 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4253 else 4254 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4255 return 0; 4256} 4257 4258/* cgroup core interface files for the default hierarchy */ 4259static struct cftype cgroup_dfl_base_files[] = { 4260 { 4261 .name = "cgroup.procs", 4262 .seq_start = cgroup_pidlist_start, 4263 .seq_next = cgroup_pidlist_next, 4264 .seq_stop = cgroup_pidlist_stop, 4265 .seq_show = cgroup_pidlist_show, 4266 .private = CGROUP_FILE_PROCS, 4267 .write = cgroup_procs_write, 4268 .mode = S_IRUGO | S_IWUSR, 4269 }, 4270 { 4271 .name = "cgroup.controllers", 4272 .flags = CFTYPE_ONLY_ON_ROOT, 4273 .seq_show = cgroup_root_controllers_show, 4274 }, 4275 { 4276 .name = "cgroup.controllers", 4277 .flags = CFTYPE_NOT_ON_ROOT, 4278 .seq_show = cgroup_controllers_show, 4279 }, 4280 { 4281 .name = "cgroup.subtree_control", 4282 .seq_show = cgroup_subtree_control_show, 4283 .write = cgroup_subtree_control_write, 4284 }, 4285 { 4286 .name = "cgroup.populated", 4287 .flags = CFTYPE_NOT_ON_ROOT, 4288 .seq_show = cgroup_populated_show, 4289 }, 4290 { } /* terminate */ 4291}; 4292 4293/* cgroup core interface files for the legacy hierarchies */ 4294static struct cftype cgroup_legacy_base_files[] = { 4295 { 4296 .name = "cgroup.procs", 4297 .seq_start = cgroup_pidlist_start, 4298 .seq_next = cgroup_pidlist_next, 4299 .seq_stop = cgroup_pidlist_stop, 4300 .seq_show = cgroup_pidlist_show, 4301 .private = CGROUP_FILE_PROCS, 4302 .write = cgroup_procs_write, 4303 .mode = S_IRUGO | S_IWUSR, 4304 }, 4305 { 4306 .name = "cgroup.clone_children", 4307 .read_u64 = cgroup_clone_children_read, 4308 .write_u64 = cgroup_clone_children_write, 4309 }, 4310 { 4311 .name = "cgroup.sane_behavior", 4312 .flags = CFTYPE_ONLY_ON_ROOT, 4313 .seq_show = cgroup_sane_behavior_show, 4314 }, 4315 { 4316 .name = "tasks", 4317 .seq_start = cgroup_pidlist_start, 4318 .seq_next = cgroup_pidlist_next, 4319 .seq_stop = cgroup_pidlist_stop, 4320 .seq_show = cgroup_pidlist_show, 4321 .private = CGROUP_FILE_TASKS, 4322 .write = cgroup_tasks_write, 4323 .mode = S_IRUGO | S_IWUSR, 4324 }, 4325 { 4326 .name = "notify_on_release", 4327 .read_u64 = cgroup_read_notify_on_release, 4328 .write_u64 = cgroup_write_notify_on_release, 4329 }, 4330 { 4331 .name = "release_agent", 4332 .flags = CFTYPE_ONLY_ON_ROOT, 4333 .seq_show = cgroup_release_agent_show, 4334 .write = cgroup_release_agent_write, 4335 .max_write_len = PATH_MAX - 1, 4336 }, 4337 { } /* terminate */ 4338}; 4339 4340/** 4341 * cgroup_populate_dir - create subsys files in a cgroup directory 4342 * @cgrp: target cgroup 4343 * @subsys_mask: mask of the subsystem ids whose files should be added 4344 * 4345 * On failure, no file is added. 4346 */ 4347static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask) 4348{ 4349 struct cgroup_subsys *ss; 4350 int i, ret = 0; 4351 4352 /* process cftsets of each subsystem */ 4353 for_each_subsys(ss, i) { 4354 struct cftype *cfts; 4355 4356 if (!(subsys_mask & (1 << i))) 4357 continue; 4358 4359 list_for_each_entry(cfts, &ss->cfts, node) { 4360 ret = cgroup_addrm_files(cgrp, cfts, true); 4361 if (ret < 0) 4362 goto err; 4363 } 4364 } 4365 return 0; 4366err: 4367 cgroup_clear_dir(cgrp, subsys_mask); 4368 return ret; 4369} 4370 4371/* 4372 * css destruction is four-stage process. 4373 * 4374 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4375 * Implemented in kill_css(). 4376 * 4377 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4378 * and thus css_tryget_online() is guaranteed to fail, the css can be 4379 * offlined by invoking offline_css(). After offlining, the base ref is 4380 * put. Implemented in css_killed_work_fn(). 4381 * 4382 * 3. When the percpu_ref reaches zero, the only possible remaining 4383 * accessors are inside RCU read sections. css_release() schedules the 4384 * RCU callback. 4385 * 4386 * 4. After the grace period, the css can be freed. Implemented in 4387 * css_free_work_fn(). 4388 * 4389 * It is actually hairier because both step 2 and 4 require process context 4390 * and thus involve punting to css->destroy_work adding two additional 4391 * steps to the already complex sequence. 4392 */ 4393static void css_free_work_fn(struct work_struct *work) 4394{ 4395 struct cgroup_subsys_state *css = 4396 container_of(work, struct cgroup_subsys_state, destroy_work); 4397 struct cgroup_subsys *ss = css->ss; 4398 struct cgroup *cgrp = css->cgroup; 4399 4400 percpu_ref_exit(&css->refcnt); 4401 4402 if (ss) { 4403 /* css free path */ 4404 int id = css->id; 4405 4406 if (css->parent) 4407 css_put(css->parent); 4408 4409 ss->css_free(css); 4410 cgroup_idr_remove(&ss->css_idr, id); 4411 cgroup_put(cgrp); 4412 } else { 4413 /* cgroup free path */ 4414 atomic_dec(&cgrp->root->nr_cgrps); 4415 cgroup_pidlist_destroy_all(cgrp); 4416 cancel_work_sync(&cgrp->release_agent_work); 4417 4418 if (cgroup_parent(cgrp)) { 4419 /* 4420 * We get a ref to the parent, and put the ref when 4421 * this cgroup is being freed, so it's guaranteed 4422 * that the parent won't be destroyed before its 4423 * children. 4424 */ 4425 cgroup_put(cgroup_parent(cgrp)); 4426 kernfs_put(cgrp->kn); 4427 kfree(cgrp); 4428 } else { 4429 /* 4430 * This is root cgroup's refcnt reaching zero, 4431 * which indicates that the root should be 4432 * released. 4433 */ 4434 cgroup_destroy_root(cgrp->root); 4435 } 4436 } 4437} 4438 4439static void css_free_rcu_fn(struct rcu_head *rcu_head) 4440{ 4441 struct cgroup_subsys_state *css = 4442 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4443 4444 INIT_WORK(&css->destroy_work, css_free_work_fn); 4445 queue_work(cgroup_destroy_wq, &css->destroy_work); 4446} 4447 4448static void css_release_work_fn(struct work_struct *work) 4449{ 4450 struct cgroup_subsys_state *css = 4451 container_of(work, struct cgroup_subsys_state, destroy_work); 4452 struct cgroup_subsys *ss = css->ss; 4453 struct cgroup *cgrp = css->cgroup; 4454 4455 mutex_lock(&cgroup_mutex); 4456 4457 css->flags |= CSS_RELEASED; 4458 list_del_rcu(&css->sibling); 4459 4460 if (ss) { 4461 /* css release path */ 4462 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4463 if (ss->css_released) 4464 ss->css_released(css); 4465 } else { 4466 /* cgroup release path */ 4467 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4468 cgrp->id = -1; 4469 4470 /* 4471 * There are two control paths which try to determine 4472 * cgroup from dentry without going through kernfs - 4473 * cgroupstats_build() and css_tryget_online_from_dir(). 4474 * Those are supported by RCU protecting clearing of 4475 * cgrp->kn->priv backpointer. 4476 */ 4477 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); 4478 } 4479 4480 mutex_unlock(&cgroup_mutex); 4481 4482 call_rcu(&css->rcu_head, css_free_rcu_fn); 4483} 4484 4485static void css_release(struct percpu_ref *ref) 4486{ 4487 struct cgroup_subsys_state *css = 4488 container_of(ref, struct cgroup_subsys_state, refcnt); 4489 4490 INIT_WORK(&css->destroy_work, css_release_work_fn); 4491 queue_work(cgroup_destroy_wq, &css->destroy_work); 4492} 4493 4494static void init_and_link_css(struct cgroup_subsys_state *css, 4495 struct cgroup_subsys *ss, struct cgroup *cgrp) 4496{ 4497 lockdep_assert_held(&cgroup_mutex); 4498 4499 cgroup_get(cgrp); 4500 4501 memset(css, 0, sizeof(*css)); 4502 css->cgroup = cgrp; 4503 css->ss = ss; 4504 INIT_LIST_HEAD(&css->sibling); 4505 INIT_LIST_HEAD(&css->children); 4506 css->serial_nr = css_serial_nr_next++; 4507 4508 if (cgroup_parent(cgrp)) { 4509 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4510 css_get(css->parent); 4511 } 4512 4513 BUG_ON(cgroup_css(cgrp, ss)); 4514} 4515 4516/* invoke ->css_online() on a new CSS and mark it online if successful */ 4517static int online_css(struct cgroup_subsys_state *css) 4518{ 4519 struct cgroup_subsys *ss = css->ss; 4520 int ret = 0; 4521 4522 lockdep_assert_held(&cgroup_mutex); 4523 4524 if (ss->css_online) 4525 ret = ss->css_online(css); 4526 if (!ret) { 4527 css->flags |= CSS_ONLINE; 4528 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4529 } 4530 return ret; 4531} 4532 4533/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4534static void offline_css(struct cgroup_subsys_state *css) 4535{ 4536 struct cgroup_subsys *ss = css->ss; 4537 4538 lockdep_assert_held(&cgroup_mutex); 4539 4540 if (!(css->flags & CSS_ONLINE)) 4541 return; 4542 4543 if (ss->css_offline) 4544 ss->css_offline(css); 4545 4546 css->flags &= ~CSS_ONLINE; 4547 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4548 4549 wake_up_all(&css->cgroup->offline_waitq); 4550} 4551 4552/** 4553 * create_css - create a cgroup_subsys_state 4554 * @cgrp: the cgroup new css will be associated with 4555 * @ss: the subsys of new css 4556 * @visible: whether to create control knobs for the new css or not 4557 * 4558 * Create a new css associated with @cgrp - @ss pair. On success, the new 4559 * css is online and installed in @cgrp with all interface files created if 4560 * @visible. Returns 0 on success, -errno on failure. 4561 */ 4562static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, 4563 bool visible) 4564{ 4565 struct cgroup *parent = cgroup_parent(cgrp); 4566 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4567 struct cgroup_subsys_state *css; 4568 int err; 4569 4570 lockdep_assert_held(&cgroup_mutex); 4571 4572 css = ss->css_alloc(parent_css); 4573 if (IS_ERR(css)) 4574 return PTR_ERR(css); 4575 4576 init_and_link_css(css, ss, cgrp); 4577 4578 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4579 if (err) 4580 goto err_free_css; 4581 4582 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT); 4583 if (err < 0) 4584 goto err_free_percpu_ref; 4585 css->id = err; 4586 4587 if (visible) { 4588 err = cgroup_populate_dir(cgrp, 1 << ss->id); 4589 if (err) 4590 goto err_free_id; 4591 } 4592 4593 /* @css is ready to be brought online now, make it visible */ 4594 list_add_tail_rcu(&css->sibling, &parent_css->children); 4595 cgroup_idr_replace(&ss->css_idr, css, css->id); 4596 4597 err = online_css(css); 4598 if (err) 4599 goto err_list_del; 4600 4601 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4602 cgroup_parent(parent)) { 4603 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4604 current->comm, current->pid, ss->name); 4605 if (!strcmp(ss->name, "memory")) 4606 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4607 ss->warned_broken_hierarchy = true; 4608 } 4609 4610 return 0; 4611 4612err_list_del: 4613 list_del_rcu(&css->sibling); 4614 cgroup_clear_dir(css->cgroup, 1 << css->ss->id); 4615err_free_id: 4616 cgroup_idr_remove(&ss->css_idr, css->id); 4617err_free_percpu_ref: 4618 percpu_ref_exit(&css->refcnt); 4619err_free_css: 4620 call_rcu(&css->rcu_head, css_free_rcu_fn); 4621 return err; 4622} 4623 4624static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 4625 umode_t mode) 4626{ 4627 struct cgroup *parent, *cgrp; 4628 struct cgroup_root *root; 4629 struct cgroup_subsys *ss; 4630 struct kernfs_node *kn; 4631 struct cftype *base_files; 4632 int ssid, ret; 4633 4634 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable. 4635 */ 4636 if (strchr(name, '\n')) 4637 return -EINVAL; 4638 4639 parent = cgroup_kn_lock_live(parent_kn); 4640 if (!parent) 4641 return -ENODEV; 4642 root = parent->root; 4643 4644 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4645 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); 4646 if (!cgrp) { 4647 ret = -ENOMEM; 4648 goto out_unlock; 4649 } 4650 4651 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4652 if (ret) 4653 goto out_free_cgrp; 4654 4655 /* 4656 * Temporarily set the pointer to NULL, so idr_find() won't return 4657 * a half-baked cgroup. 4658 */ 4659 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT); 4660 if (cgrp->id < 0) { 4661 ret = -ENOMEM; 4662 goto out_cancel_ref; 4663 } 4664 4665 init_cgroup_housekeeping(cgrp); 4666 4667 cgrp->self.parent = &parent->self; 4668 cgrp->root = root; 4669 4670 if (notify_on_release(parent)) 4671 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4672 4673 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4674 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4675 4676 /* create the directory */ 4677 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4678 if (IS_ERR(kn)) { 4679 ret = PTR_ERR(kn); 4680 goto out_free_id; 4681 } 4682 cgrp->kn = kn; 4683 4684 /* 4685 * This extra ref will be put in cgroup_free_fn() and guarantees 4686 * that @cgrp->kn is always accessible. 4687 */ 4688 kernfs_get(kn); 4689 4690 cgrp->self.serial_nr = css_serial_nr_next++; 4691 4692 /* allocation complete, commit to creation */ 4693 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4694 atomic_inc(&root->nr_cgrps); 4695 cgroup_get(parent); 4696 4697 /* 4698 * @cgrp is now fully operational. If something fails after this 4699 * point, it'll be released via the normal destruction path. 4700 */ 4701 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4702 4703 ret = cgroup_kn_set_ugid(kn); 4704 if (ret) 4705 goto out_destroy; 4706 4707 if (cgroup_on_dfl(cgrp)) 4708 base_files = cgroup_dfl_base_files; 4709 else 4710 base_files = cgroup_legacy_base_files; 4711 4712 ret = cgroup_addrm_files(cgrp, base_files, true); 4713 if (ret) 4714 goto out_destroy; 4715 4716 /* let's create and online css's */ 4717 for_each_subsys(ss, ssid) { 4718 if (parent->child_subsys_mask & (1 << ssid)) { 4719 ret = create_css(cgrp, ss, 4720 parent->subtree_control & (1 << ssid)); 4721 if (ret) 4722 goto out_destroy; 4723 } 4724 } 4725 4726 /* 4727 * On the default hierarchy, a child doesn't automatically inherit 4728 * subtree_control from the parent. Each is configured manually. 4729 */ 4730 if (!cgroup_on_dfl(cgrp)) { 4731 cgrp->subtree_control = parent->subtree_control; 4732 cgroup_refresh_child_subsys_mask(cgrp); 4733 } 4734 4735 kernfs_activate(kn); 4736 4737 ret = 0; 4738 goto out_unlock; 4739 4740out_free_id: 4741 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4742out_cancel_ref: 4743 percpu_ref_exit(&cgrp->self.refcnt); 4744out_free_cgrp: 4745 kfree(cgrp); 4746out_unlock: 4747 cgroup_kn_unlock(parent_kn); 4748 return ret; 4749 4750out_destroy: 4751 cgroup_destroy_locked(cgrp); 4752 goto out_unlock; 4753} 4754 4755/* 4756 * This is called when the refcnt of a css is confirmed to be killed. 4757 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4758 * initate destruction and put the css ref from kill_css(). 4759 */ 4760static void css_killed_work_fn(struct work_struct *work) 4761{ 4762 struct cgroup_subsys_state *css = 4763 container_of(work, struct cgroup_subsys_state, destroy_work); 4764 4765 mutex_lock(&cgroup_mutex); 4766 offline_css(css); 4767 mutex_unlock(&cgroup_mutex); 4768 4769 css_put(css); 4770} 4771 4772/* css kill confirmation processing requires process context, bounce */ 4773static void css_killed_ref_fn(struct percpu_ref *ref) 4774{ 4775 struct cgroup_subsys_state *css = 4776 container_of(ref, struct cgroup_subsys_state, refcnt); 4777 4778 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4779 queue_work(cgroup_destroy_wq, &css->destroy_work); 4780} 4781 4782/** 4783 * kill_css - destroy a css 4784 * @css: css to destroy 4785 * 4786 * This function initiates destruction of @css by removing cgroup interface 4787 * files and putting its base reference. ->css_offline() will be invoked 4788 * asynchronously once css_tryget_online() is guaranteed to fail and when 4789 * the reference count reaches zero, @css will be released. 4790 */ 4791static void kill_css(struct cgroup_subsys_state *css) 4792{ 4793 lockdep_assert_held(&cgroup_mutex); 4794 4795 /* 4796 * This must happen before css is disassociated with its cgroup. 4797 * See seq_css() for details. 4798 */ 4799 cgroup_clear_dir(css->cgroup, 1 << css->ss->id); 4800 4801 /* 4802 * Killing would put the base ref, but we need to keep it alive 4803 * until after ->css_offline(). 4804 */ 4805 css_get(css); 4806 4807 /* 4808 * cgroup core guarantees that, by the time ->css_offline() is 4809 * invoked, no new css reference will be given out via 4810 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4811 * proceed to offlining css's because percpu_ref_kill() doesn't 4812 * guarantee that the ref is seen as killed on all CPUs on return. 4813 * 4814 * Use percpu_ref_kill_and_confirm() to get notifications as each 4815 * css is confirmed to be seen as killed on all CPUs. 4816 */ 4817 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4818} 4819 4820/** 4821 * cgroup_destroy_locked - the first stage of cgroup destruction 4822 * @cgrp: cgroup to be destroyed 4823 * 4824 * css's make use of percpu refcnts whose killing latency shouldn't be 4825 * exposed to userland and are RCU protected. Also, cgroup core needs to 4826 * guarantee that css_tryget_online() won't succeed by the time 4827 * ->css_offline() is invoked. To satisfy all the requirements, 4828 * destruction is implemented in the following two steps. 4829 * 4830 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4831 * userland visible parts and start killing the percpu refcnts of 4832 * css's. Set up so that the next stage will be kicked off once all 4833 * the percpu refcnts are confirmed to be killed. 4834 * 4835 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4836 * rest of destruction. Once all cgroup references are gone, the 4837 * cgroup is RCU-freed. 4838 * 4839 * This function implements s1. After this step, @cgrp is gone as far as 4840 * the userland is concerned and a new cgroup with the same name may be 4841 * created. As cgroup doesn't care about the names internally, this 4842 * doesn't cause any problem. 4843 */ 4844static int cgroup_destroy_locked(struct cgroup *cgrp) 4845 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4846{ 4847 struct cgroup_subsys_state *css; 4848 bool empty; 4849 int ssid; 4850 4851 lockdep_assert_held(&cgroup_mutex); 4852 4853 /* 4854 * css_set_rwsem synchronizes access to ->cset_links and prevents 4855 * @cgrp from being removed while put_css_set() is in progress. 4856 */ 4857 down_read(&css_set_rwsem); 4858 empty = list_empty(&cgrp->cset_links); 4859 up_read(&css_set_rwsem); 4860 if (!empty) 4861 return -EBUSY; 4862 4863 /* 4864 * Make sure there's no live children. We can't test emptiness of 4865 * ->self.children as dead children linger on it while being 4866 * drained; otherwise, "rmdir parent/child parent" may fail. 4867 */ 4868 if (css_has_online_children(&cgrp->self)) 4869 return -EBUSY; 4870 4871 /* 4872 * Mark @cgrp dead. This prevents further task migration and child 4873 * creation by disabling cgroup_lock_live_group(). 4874 */ 4875 cgrp->self.flags &= ~CSS_ONLINE; 4876 4877 /* initiate massacre of all css's */ 4878 for_each_css(css, ssid, cgrp) 4879 kill_css(css); 4880 4881 /* 4882 * Remove @cgrp directory along with the base files. @cgrp has an 4883 * extra ref on its kn. 4884 */ 4885 kernfs_remove(cgrp->kn); 4886 4887 check_for_release(cgroup_parent(cgrp)); 4888 4889 /* put the base reference */ 4890 percpu_ref_kill(&cgrp->self.refcnt); 4891 4892 return 0; 4893}; 4894 4895static int cgroup_rmdir(struct kernfs_node *kn) 4896{ 4897 struct cgroup *cgrp; 4898 int ret = 0; 4899 4900 cgrp = cgroup_kn_lock_live(kn); 4901 if (!cgrp) 4902 return 0; 4903 4904 ret = cgroup_destroy_locked(cgrp); 4905 4906 cgroup_kn_unlock(kn); 4907 return ret; 4908} 4909 4910static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 4911 .remount_fs = cgroup_remount, 4912 .show_options = cgroup_show_options, 4913 .mkdir = cgroup_mkdir, 4914 .rmdir = cgroup_rmdir, 4915 .rename = cgroup_rename, 4916}; 4917 4918static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 4919{ 4920 struct cgroup_subsys_state *css; 4921 4922 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); 4923 4924 mutex_lock(&cgroup_mutex); 4925 4926 idr_init(&ss->css_idr); 4927 INIT_LIST_HEAD(&ss->cfts); 4928 4929 /* Create the root cgroup state for this subsystem */ 4930 ss->root = &cgrp_dfl_root; 4931 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 4932 /* We don't handle early failures gracefully */ 4933 BUG_ON(IS_ERR(css)); 4934 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 4935 4936 /* 4937 * Root csses are never destroyed and we can't initialize 4938 * percpu_ref during early init. Disable refcnting. 4939 */ 4940 css->flags |= CSS_NO_REF; 4941 4942 if (early) { 4943 /* allocation can't be done safely during early init */ 4944 css->id = 1; 4945 } else { 4946 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 4947 BUG_ON(css->id < 0); 4948 } 4949 4950 /* Update the init_css_set to contain a subsys 4951 * pointer to this state - since the subsystem is 4952 * newly registered, all tasks and hence the 4953 * init_css_set is in the subsystem's root cgroup. */ 4954 init_css_set.subsys[ss->id] = css; 4955 4956 have_fork_callback |= (bool)ss->fork << ss->id; 4957 have_exit_callback |= (bool)ss->exit << ss->id; 4958 4959 /* At system boot, before all subsystems have been 4960 * registered, no tasks have been forked, so we don't 4961 * need to invoke fork callbacks here. */ 4962 BUG_ON(!list_empty(&init_task.tasks)); 4963 4964 BUG_ON(online_css(css)); 4965 4966 mutex_unlock(&cgroup_mutex); 4967} 4968 4969/** 4970 * cgroup_init_early - cgroup initialization at system boot 4971 * 4972 * Initialize cgroups at system boot, and initialize any 4973 * subsystems that request early init. 4974 */ 4975int __init cgroup_init_early(void) 4976{ 4977 static struct cgroup_sb_opts __initdata opts; 4978 struct cgroup_subsys *ss; 4979 int i; 4980 4981 init_cgroup_root(&cgrp_dfl_root, &opts); 4982 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 4983 4984 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 4985 4986 for_each_subsys(ss, i) { 4987 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 4988 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", 4989 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 4990 ss->id, ss->name); 4991 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 4992 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 4993 4994 ss->id = i; 4995 ss->name = cgroup_subsys_name[i]; 4996 4997 if (ss->early_init) 4998 cgroup_init_subsys(ss, true); 4999 } 5000 return 0; 5001} 5002 5003/** 5004 * cgroup_init - cgroup initialization 5005 * 5006 * Register cgroup filesystem and /proc file, and initialize 5007 * any subsystems that didn't request early init. 5008 */ 5009int __init cgroup_init(void) 5010{ 5011 struct cgroup_subsys *ss; 5012 unsigned long key; 5013 int ssid, err; 5014 5015 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5016 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files)); 5017 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files)); 5018 5019 mutex_lock(&cgroup_mutex); 5020 5021 /* Add init_css_set to the hash table */ 5022 key = css_set_hash(init_css_set.subsys); 5023 hash_add(css_set_table, &init_css_set.hlist, key); 5024 5025 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5026 5027 mutex_unlock(&cgroup_mutex); 5028 5029 for_each_subsys(ss, ssid) { 5030 if (ss->early_init) { 5031 struct cgroup_subsys_state *css = 5032 init_css_set.subsys[ss->id]; 5033 5034 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5035 GFP_KERNEL); 5036 BUG_ON(css->id < 0); 5037 } else { 5038 cgroup_init_subsys(ss, false); 5039 } 5040 5041 list_add_tail(&init_css_set.e_cset_node[ssid], 5042 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5043 5044 /* 5045 * Setting dfl_root subsys_mask needs to consider the 5046 * disabled flag and cftype registration needs kmalloc, 5047 * both of which aren't available during early_init. 5048 */ 5049 if (ss->disabled) 5050 continue; 5051 5052 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5053 5054 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes) 5055 ss->dfl_cftypes = ss->legacy_cftypes; 5056 5057 if (!ss->dfl_cftypes) 5058 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id; 5059 5060 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5061 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5062 } else { 5063 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5064 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5065 } 5066 5067 if (ss->bind) 5068 ss->bind(init_css_set.subsys[ssid]); 5069 } 5070 5071 err = sysfs_create_mount_point(fs_kobj, "cgroup"); 5072 if (err) 5073 return err; 5074 5075 err = register_filesystem(&cgroup_fs_type); 5076 if (err < 0) { 5077 sysfs_remove_mount_point(fs_kobj, "cgroup"); 5078 return err; 5079 } 5080 5081 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); 5082 return 0; 5083} 5084 5085static int __init cgroup_wq_init(void) 5086{ 5087 /* 5088 * There isn't much point in executing destruction path in 5089 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5090 * Use 1 for @max_active. 5091 * 5092 * We would prefer to do this in cgroup_init() above, but that 5093 * is called before init_workqueues(): so leave this until after. 5094 */ 5095 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5096 BUG_ON(!cgroup_destroy_wq); 5097 5098 /* 5099 * Used to destroy pidlists and separate to serve as flush domain. 5100 * Cap @max_active to 1 too. 5101 */ 5102 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 5103 0, 1); 5104 BUG_ON(!cgroup_pidlist_destroy_wq); 5105 5106 return 0; 5107} 5108core_initcall(cgroup_wq_init); 5109 5110/* 5111 * proc_cgroup_show() 5112 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5113 * - Used for /proc/<pid>/cgroup. 5114 */ 5115int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5116 struct pid *pid, struct task_struct *tsk) 5117{ 5118 char *buf, *path; 5119 int retval; 5120 struct cgroup_root *root; 5121 5122 retval = -ENOMEM; 5123 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5124 if (!buf) 5125 goto out; 5126 5127 mutex_lock(&cgroup_mutex); 5128 down_read(&css_set_rwsem); 5129 5130 for_each_root(root) { 5131 struct cgroup_subsys *ss; 5132 struct cgroup *cgrp; 5133 int ssid, count = 0; 5134 5135 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible) 5136 continue; 5137 5138 seq_printf(m, "%d:", root->hierarchy_id); 5139 for_each_subsys(ss, ssid) 5140 if (root->subsys_mask & (1 << ssid)) 5141 seq_printf(m, "%s%s", count++ ? "," : "", ss->name); 5142 if (strlen(root->name)) 5143 seq_printf(m, "%sname=%s", count ? "," : "", 5144 root->name); 5145 seq_putc(m, ':'); 5146 cgrp = task_cgroup_from_root(tsk, root); 5147 path = cgroup_path(cgrp, buf, PATH_MAX); 5148 if (!path) { 5149 retval = -ENAMETOOLONG; 5150 goto out_unlock; 5151 } 5152 seq_puts(m, path); 5153 seq_putc(m, '\n'); 5154 } 5155 5156 retval = 0; 5157out_unlock: 5158 up_read(&css_set_rwsem); 5159 mutex_unlock(&cgroup_mutex); 5160 kfree(buf); 5161out: 5162 return retval; 5163} 5164 5165/* Display information about each subsystem and each hierarchy */ 5166static int proc_cgroupstats_show(struct seq_file *m, void *v) 5167{ 5168 struct cgroup_subsys *ss; 5169 int i; 5170 5171 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 5172 /* 5173 * ideally we don't want subsystems moving around while we do this. 5174 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 5175 * subsys/hierarchy state. 5176 */ 5177 mutex_lock(&cgroup_mutex); 5178 5179 for_each_subsys(ss, i) 5180 seq_printf(m, "%s\t%d\t%d\t%d\n", 5181 ss->name, ss->root->hierarchy_id, 5182 atomic_read(&ss->root->nr_cgrps), !ss->disabled); 5183 5184 mutex_unlock(&cgroup_mutex); 5185 return 0; 5186} 5187 5188static int cgroupstats_open(struct inode *inode, struct file *file) 5189{ 5190 return single_open(file, proc_cgroupstats_show, NULL); 5191} 5192 5193static const struct file_operations proc_cgroupstats_operations = { 5194 .open = cgroupstats_open, 5195 .read = seq_read, 5196 .llseek = seq_lseek, 5197 .release = single_release, 5198}; 5199 5200/** 5201 * cgroup_fork - initialize cgroup related fields during copy_process() 5202 * @child: pointer to task_struct of forking parent process. 5203 * 5204 * A task is associated with the init_css_set until cgroup_post_fork() 5205 * attaches it to the parent's css_set. Empty cg_list indicates that 5206 * @child isn't holding reference to its css_set. 5207 */ 5208void cgroup_fork(struct task_struct *child) 5209{ 5210 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5211 INIT_LIST_HEAD(&child->cg_list); 5212} 5213 5214/** 5215 * cgroup_post_fork - called on a new task after adding it to the task list 5216 * @child: the task in question 5217 * 5218 * Adds the task to the list running through its css_set if necessary and 5219 * call the subsystem fork() callbacks. Has to be after the task is 5220 * visible on the task list in case we race with the first call to 5221 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5222 * list. 5223 */ 5224void cgroup_post_fork(struct task_struct *child) 5225{ 5226 struct cgroup_subsys *ss; 5227 int i; 5228 5229 /* 5230 * This may race against cgroup_enable_task_cg_lists(). As that 5231 * function sets use_task_css_set_links before grabbing 5232 * tasklist_lock and we just went through tasklist_lock to add 5233 * @child, it's guaranteed that either we see the set 5234 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5235 * @child during its iteration. 5236 * 5237 * If we won the race, @child is associated with %current's 5238 * css_set. Grabbing css_set_rwsem guarantees both that the 5239 * association is stable, and, on completion of the parent's 5240 * migration, @child is visible in the source of migration or 5241 * already in the destination cgroup. This guarantee is necessary 5242 * when implementing operations which need to migrate all tasks of 5243 * a cgroup to another. 5244 * 5245 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5246 * will remain in init_css_set. This is safe because all tasks are 5247 * in the init_css_set before cg_links is enabled and there's no 5248 * operation which transfers all tasks out of init_css_set. 5249 */ 5250 if (use_task_css_set_links) { 5251 struct css_set *cset; 5252 5253 down_write(&css_set_rwsem); 5254 cset = task_css_set(current); 5255 if (list_empty(&child->cg_list)) { 5256 rcu_assign_pointer(child->cgroups, cset); 5257 list_add(&child->cg_list, &cset->tasks); 5258 get_css_set(cset); 5259 } 5260 up_write(&css_set_rwsem); 5261 } 5262 5263 /* 5264 * Call ss->fork(). This must happen after @child is linked on 5265 * css_set; otherwise, @child might change state between ->fork() 5266 * and addition to css_set. 5267 */ 5268 for_each_subsys_which(ss, i, &have_fork_callback) 5269 ss->fork(child); 5270} 5271 5272/** 5273 * cgroup_exit - detach cgroup from exiting task 5274 * @tsk: pointer to task_struct of exiting process 5275 * 5276 * Description: Detach cgroup from @tsk and release it. 5277 * 5278 * Note that cgroups marked notify_on_release force every task in 5279 * them to take the global cgroup_mutex mutex when exiting. 5280 * This could impact scaling on very large systems. Be reluctant to 5281 * use notify_on_release cgroups where very high task exit scaling 5282 * is required on large systems. 5283 * 5284 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5285 * call cgroup_exit() while the task is still competent to handle 5286 * notify_on_release(), then leave the task attached to the root cgroup in 5287 * each hierarchy for the remainder of its exit. No need to bother with 5288 * init_css_set refcnting. init_css_set never goes away and we can't race 5289 * with migration path - PF_EXITING is visible to migration path. 5290 */ 5291void cgroup_exit(struct task_struct *tsk) 5292{ 5293 struct cgroup_subsys *ss; 5294 struct css_set *cset; 5295 bool put_cset = false; 5296 int i; 5297 5298 /* 5299 * Unlink from @tsk from its css_set. As migration path can't race 5300 * with us, we can check cg_list without grabbing css_set_rwsem. 5301 */ 5302 if (!list_empty(&tsk->cg_list)) { 5303 down_write(&css_set_rwsem); 5304 list_del_init(&tsk->cg_list); 5305 up_write(&css_set_rwsem); 5306 put_cset = true; 5307 } 5308 5309 /* Reassign the task to the init_css_set. */ 5310 cset = task_css_set(tsk); 5311 RCU_INIT_POINTER(tsk->cgroups, &init_css_set); 5312 5313 /* see cgroup_post_fork() for details */ 5314 for_each_subsys_which(ss, i, &have_exit_callback) { 5315 struct cgroup_subsys_state *old_css = cset->subsys[i]; 5316 struct cgroup_subsys_state *css = task_css(tsk, i); 5317 5318 ss->exit(css, old_css, tsk); 5319 } 5320 5321 if (put_cset) 5322 put_css_set(cset); 5323} 5324 5325static void check_for_release(struct cgroup *cgrp) 5326{ 5327 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) && 5328 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 5329 schedule_work(&cgrp->release_agent_work); 5330} 5331 5332/* 5333 * Notify userspace when a cgroup is released, by running the 5334 * configured release agent with the name of the cgroup (path 5335 * relative to the root of cgroup file system) as the argument. 5336 * 5337 * Most likely, this user command will try to rmdir this cgroup. 5338 * 5339 * This races with the possibility that some other task will be 5340 * attached to this cgroup before it is removed, or that some other 5341 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 5342 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 5343 * unused, and this cgroup will be reprieved from its death sentence, 5344 * to continue to serve a useful existence. Next time it's released, 5345 * we will get notified again, if it still has 'notify_on_release' set. 5346 * 5347 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 5348 * means only wait until the task is successfully execve()'d. The 5349 * separate release agent task is forked by call_usermodehelper(), 5350 * then control in this thread returns here, without waiting for the 5351 * release agent task. We don't bother to wait because the caller of 5352 * this routine has no use for the exit status of the release agent 5353 * task, so no sense holding our caller up for that. 5354 */ 5355static void cgroup_release_agent(struct work_struct *work) 5356{ 5357 struct cgroup *cgrp = 5358 container_of(work, struct cgroup, release_agent_work); 5359 char *pathbuf = NULL, *agentbuf = NULL, *path; 5360 char *argv[3], *envp[3]; 5361 5362 mutex_lock(&cgroup_mutex); 5363 5364 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 5365 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 5366 if (!pathbuf || !agentbuf) 5367 goto out; 5368 5369 path = cgroup_path(cgrp, pathbuf, PATH_MAX); 5370 if (!path) 5371 goto out; 5372 5373 argv[0] = agentbuf; 5374 argv[1] = path; 5375 argv[2] = NULL; 5376 5377 /* minimal command environment */ 5378 envp[0] = "HOME=/"; 5379 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 5380 envp[2] = NULL; 5381 5382 mutex_unlock(&cgroup_mutex); 5383 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 5384 goto out_free; 5385out: 5386 mutex_unlock(&cgroup_mutex); 5387out_free: 5388 kfree(agentbuf); 5389 kfree(pathbuf); 5390} 5391 5392static int __init cgroup_disable(char *str) 5393{ 5394 struct cgroup_subsys *ss; 5395 char *token; 5396 int i; 5397 5398 while ((token = strsep(&str, ",")) != NULL) { 5399 if (!*token) 5400 continue; 5401 5402 for_each_subsys(ss, i) { 5403 if (!strcmp(token, ss->name)) { 5404 ss->disabled = 1; 5405 printk(KERN_INFO "Disabling %s control group" 5406 " subsystem\n", ss->name); 5407 break; 5408 } 5409 } 5410 } 5411 return 1; 5412} 5413__setup("cgroup_disable=", cgroup_disable); 5414 5415static int __init cgroup_set_legacy_files_on_dfl(char *str) 5416{ 5417 printk("cgroup: using legacy files on the default hierarchy\n"); 5418 cgroup_legacy_files_on_dfl = true; 5419 return 0; 5420} 5421__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl); 5422 5423/** 5424 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5425 * @dentry: directory dentry of interest 5426 * @ss: subsystem of interest 5427 * 5428 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5429 * to get the corresponding css and return it. If such css doesn't exist 5430 * or can't be pinned, an ERR_PTR value is returned. 5431 */ 5432struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5433 struct cgroup_subsys *ss) 5434{ 5435 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5436 struct cgroup_subsys_state *css = NULL; 5437 struct cgroup *cgrp; 5438 5439 /* is @dentry a cgroup dir? */ 5440 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 5441 kernfs_type(kn) != KERNFS_DIR) 5442 return ERR_PTR(-EBADF); 5443 5444 rcu_read_lock(); 5445 5446 /* 5447 * This path doesn't originate from kernfs and @kn could already 5448 * have been or be removed at any point. @kn->priv is RCU 5449 * protected for this access. See css_release_work_fn() for details. 5450 */ 5451 cgrp = rcu_dereference(kn->priv); 5452 if (cgrp) 5453 css = cgroup_css(cgrp, ss); 5454 5455 if (!css || !css_tryget_online(css)) 5456 css = ERR_PTR(-ENOENT); 5457 5458 rcu_read_unlock(); 5459 return css; 5460} 5461 5462/** 5463 * css_from_id - lookup css by id 5464 * @id: the cgroup id 5465 * @ss: cgroup subsys to be looked into 5466 * 5467 * Returns the css if there's valid one with @id, otherwise returns NULL. 5468 * Should be called under rcu_read_lock(). 5469 */ 5470struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5471{ 5472 WARN_ON_ONCE(!rcu_read_lock_held()); 5473 return id > 0 ? idr_find(&ss->css_idr, id) : NULL; 5474} 5475 5476#ifdef CONFIG_CGROUP_DEBUG 5477static struct cgroup_subsys_state * 5478debug_css_alloc(struct cgroup_subsys_state *parent_css) 5479{ 5480 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); 5481 5482 if (!css) 5483 return ERR_PTR(-ENOMEM); 5484 5485 return css; 5486} 5487 5488static void debug_css_free(struct cgroup_subsys_state *css) 5489{ 5490 kfree(css); 5491} 5492 5493static u64 debug_taskcount_read(struct cgroup_subsys_state *css, 5494 struct cftype *cft) 5495{ 5496 return cgroup_task_count(css->cgroup); 5497} 5498 5499static u64 current_css_set_read(struct cgroup_subsys_state *css, 5500 struct cftype *cft) 5501{ 5502 return (u64)(unsigned long)current->cgroups; 5503} 5504 5505static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, 5506 struct cftype *cft) 5507{ 5508 u64 count; 5509 5510 rcu_read_lock(); 5511 count = atomic_read(&task_css_set(current)->refcount); 5512 rcu_read_unlock(); 5513 return count; 5514} 5515 5516static int current_css_set_cg_links_read(struct seq_file *seq, void *v) 5517{ 5518 struct cgrp_cset_link *link; 5519 struct css_set *cset; 5520 char *name_buf; 5521 5522 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); 5523 if (!name_buf) 5524 return -ENOMEM; 5525 5526 down_read(&css_set_rwsem); 5527 rcu_read_lock(); 5528 cset = rcu_dereference(current->cgroups); 5529 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 5530 struct cgroup *c = link->cgrp; 5531 5532 cgroup_name(c, name_buf, NAME_MAX + 1); 5533 seq_printf(seq, "Root %d group %s\n", 5534 c->root->hierarchy_id, name_buf); 5535 } 5536 rcu_read_unlock(); 5537 up_read(&css_set_rwsem); 5538 kfree(name_buf); 5539 return 0; 5540} 5541 5542#define MAX_TASKS_SHOWN_PER_CSS 25 5543static int cgroup_css_links_read(struct seq_file *seq, void *v) 5544{ 5545 struct cgroup_subsys_state *css = seq_css(seq); 5546 struct cgrp_cset_link *link; 5547 5548 down_read(&css_set_rwsem); 5549 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { 5550 struct css_set *cset = link->cset; 5551 struct task_struct *task; 5552 int count = 0; 5553 5554 seq_printf(seq, "css_set %p\n", cset); 5555 5556 list_for_each_entry(task, &cset->tasks, cg_list) { 5557 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 5558 goto overflow; 5559 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 5560 } 5561 5562 list_for_each_entry(task, &cset->mg_tasks, cg_list) { 5563 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 5564 goto overflow; 5565 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 5566 } 5567 continue; 5568 overflow: 5569 seq_puts(seq, " ...\n"); 5570 } 5571 up_read(&css_set_rwsem); 5572 return 0; 5573} 5574 5575static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) 5576{ 5577 return (!cgroup_has_tasks(css->cgroup) && 5578 !css_has_online_children(&css->cgroup->self)); 5579} 5580 5581static struct cftype debug_files[] = { 5582 { 5583 .name = "taskcount", 5584 .read_u64 = debug_taskcount_read, 5585 }, 5586 5587 { 5588 .name = "current_css_set", 5589 .read_u64 = current_css_set_read, 5590 }, 5591 5592 { 5593 .name = "current_css_set_refcount", 5594 .read_u64 = current_css_set_refcount_read, 5595 }, 5596 5597 { 5598 .name = "current_css_set_cg_links", 5599 .seq_show = current_css_set_cg_links_read, 5600 }, 5601 5602 { 5603 .name = "cgroup_css_links", 5604 .seq_show = cgroup_css_links_read, 5605 }, 5606 5607 { 5608 .name = "releasable", 5609 .read_u64 = releasable_read, 5610 }, 5611 5612 { } /* terminate */ 5613}; 5614 5615struct cgroup_subsys debug_cgrp_subsys = { 5616 .css_alloc = debug_css_alloc, 5617 .css_free = debug_css_free, 5618 .legacy_cftypes = debug_files, 5619}; 5620#endif /* CONFIG_CGROUP_DEBUG */