at v4.2-rc2 100 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <net/flow_dissector.h> 38#include <linux/splice.h> 39#include <linux/in6.h> 40 41/* A. Checksumming of received packets by device. 42 * 43 * CHECKSUM_NONE: 44 * 45 * Device failed to checksum this packet e.g. due to lack of capabilities. 46 * The packet contains full (though not verified) checksum in packet but 47 * not in skb->csum. Thus, skb->csum is undefined in this case. 48 * 49 * CHECKSUM_UNNECESSARY: 50 * 51 * The hardware you're dealing with doesn't calculate the full checksum 52 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 53 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 54 * if their checksums are okay. skb->csum is still undefined in this case 55 * though. It is a bad option, but, unfortunately, nowadays most vendors do 56 * this. Apparently with the secret goal to sell you new devices, when you 57 * will add new protocol to your host, f.e. IPv6 8) 58 * 59 * CHECKSUM_UNNECESSARY is applicable to following protocols: 60 * TCP: IPv6 and IPv4. 61 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 62 * zero UDP checksum for either IPv4 or IPv6, the networking stack 63 * may perform further validation in this case. 64 * GRE: only if the checksum is present in the header. 65 * SCTP: indicates the CRC in SCTP header has been validated. 66 * 67 * skb->csum_level indicates the number of consecutive checksums found in 68 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 69 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 70 * and a device is able to verify the checksums for UDP (possibly zero), 71 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 72 * two. If the device were only able to verify the UDP checksum and not 73 * GRE, either because it doesn't support GRE checksum of because GRE 74 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 75 * not considered in this case). 76 * 77 * CHECKSUM_COMPLETE: 78 * 79 * This is the most generic way. The device supplied checksum of the _whole_ 80 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 81 * hardware doesn't need to parse L3/L4 headers to implement this. 82 * 83 * Note: Even if device supports only some protocols, but is able to produce 84 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 85 * 86 * CHECKSUM_PARTIAL: 87 * 88 * A checksum is set up to be offloaded to a device as described in the 89 * output description for CHECKSUM_PARTIAL. This may occur on a packet 90 * received directly from another Linux OS, e.g., a virtualized Linux kernel 91 * on the same host, or it may be set in the input path in GRO or remote 92 * checksum offload. For the purposes of checksum verification, the checksum 93 * referred to by skb->csum_start + skb->csum_offset and any preceding 94 * checksums in the packet are considered verified. Any checksums in the 95 * packet that are after the checksum being offloaded are not considered to 96 * be verified. 97 * 98 * B. Checksumming on output. 99 * 100 * CHECKSUM_NONE: 101 * 102 * The skb was already checksummed by the protocol, or a checksum is not 103 * required. 104 * 105 * CHECKSUM_PARTIAL: 106 * 107 * The device is required to checksum the packet as seen by hard_start_xmit() 108 * from skb->csum_start up to the end, and to record/write the checksum at 109 * offset skb->csum_start + skb->csum_offset. 110 * 111 * The device must show its capabilities in dev->features, set up at device 112 * setup time, e.g. netdev_features.h: 113 * 114 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 115 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 116 * IPv4. Sigh. Vendors like this way for an unknown reason. 117 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 118 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 119 * NETIF_F_... - Well, you get the picture. 120 * 121 * CHECKSUM_UNNECESSARY: 122 * 123 * Normally, the device will do per protocol specific checksumming. Protocol 124 * implementations that do not want the NIC to perform the checksum 125 * calculation should use this flag in their outgoing skbs. 126 * 127 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 128 * offload. Correspondingly, the FCoE protocol driver 129 * stack should use CHECKSUM_UNNECESSARY. 130 * 131 * Any questions? No questions, good. --ANK 132 */ 133 134/* Don't change this without changing skb_csum_unnecessary! */ 135#define CHECKSUM_NONE 0 136#define CHECKSUM_UNNECESSARY 1 137#define CHECKSUM_COMPLETE 2 138#define CHECKSUM_PARTIAL 3 139 140/* Maximum value in skb->csum_level */ 141#define SKB_MAX_CSUM_LEVEL 3 142 143#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 144#define SKB_WITH_OVERHEAD(X) \ 145 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 146#define SKB_MAX_ORDER(X, ORDER) \ 147 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 148#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 149#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 150 151/* return minimum truesize of one skb containing X bytes of data */ 152#define SKB_TRUESIZE(X) ((X) + \ 153 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 154 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 155 156struct net_device; 157struct scatterlist; 158struct pipe_inode_info; 159struct iov_iter; 160struct napi_struct; 161 162#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 163struct nf_conntrack { 164 atomic_t use; 165}; 166#endif 167 168#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 169struct nf_bridge_info { 170 atomic_t use; 171 enum { 172 BRNF_PROTO_UNCHANGED, 173 BRNF_PROTO_8021Q, 174 BRNF_PROTO_PPPOE 175 } orig_proto:8; 176 bool pkt_otherhost; 177 __u16 frag_max_size; 178 unsigned int mask; 179 struct net_device *physindev; 180 union { 181 struct net_device *physoutdev; 182 char neigh_header[8]; 183 }; 184 union { 185 __be32 ipv4_daddr; 186 struct in6_addr ipv6_daddr; 187 }; 188}; 189#endif 190 191struct sk_buff_head { 192 /* These two members must be first. */ 193 struct sk_buff *next; 194 struct sk_buff *prev; 195 196 __u32 qlen; 197 spinlock_t lock; 198}; 199 200struct sk_buff; 201 202/* To allow 64K frame to be packed as single skb without frag_list we 203 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 204 * buffers which do not start on a page boundary. 205 * 206 * Since GRO uses frags we allocate at least 16 regardless of page 207 * size. 208 */ 209#if (65536/PAGE_SIZE + 1) < 16 210#define MAX_SKB_FRAGS 16UL 211#else 212#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 213#endif 214 215typedef struct skb_frag_struct skb_frag_t; 216 217struct skb_frag_struct { 218 struct { 219 struct page *p; 220 } page; 221#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 222 __u32 page_offset; 223 __u32 size; 224#else 225 __u16 page_offset; 226 __u16 size; 227#endif 228}; 229 230static inline unsigned int skb_frag_size(const skb_frag_t *frag) 231{ 232 return frag->size; 233} 234 235static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 236{ 237 frag->size = size; 238} 239 240static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 241{ 242 frag->size += delta; 243} 244 245static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 246{ 247 frag->size -= delta; 248} 249 250#define HAVE_HW_TIME_STAMP 251 252/** 253 * struct skb_shared_hwtstamps - hardware time stamps 254 * @hwtstamp: hardware time stamp transformed into duration 255 * since arbitrary point in time 256 * 257 * Software time stamps generated by ktime_get_real() are stored in 258 * skb->tstamp. 259 * 260 * hwtstamps can only be compared against other hwtstamps from 261 * the same device. 262 * 263 * This structure is attached to packets as part of the 264 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 265 */ 266struct skb_shared_hwtstamps { 267 ktime_t hwtstamp; 268}; 269 270/* Definitions for tx_flags in struct skb_shared_info */ 271enum { 272 /* generate hardware time stamp */ 273 SKBTX_HW_TSTAMP = 1 << 0, 274 275 /* generate software time stamp when queueing packet to NIC */ 276 SKBTX_SW_TSTAMP = 1 << 1, 277 278 /* device driver is going to provide hardware time stamp */ 279 SKBTX_IN_PROGRESS = 1 << 2, 280 281 /* device driver supports TX zero-copy buffers */ 282 SKBTX_DEV_ZEROCOPY = 1 << 3, 283 284 /* generate wifi status information (where possible) */ 285 SKBTX_WIFI_STATUS = 1 << 4, 286 287 /* This indicates at least one fragment might be overwritten 288 * (as in vmsplice(), sendfile() ...) 289 * If we need to compute a TX checksum, we'll need to copy 290 * all frags to avoid possible bad checksum 291 */ 292 SKBTX_SHARED_FRAG = 1 << 5, 293 294 /* generate software time stamp when entering packet scheduling */ 295 SKBTX_SCHED_TSTAMP = 1 << 6, 296 297 /* generate software timestamp on peer data acknowledgment */ 298 SKBTX_ACK_TSTAMP = 1 << 7, 299}; 300 301#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 302 SKBTX_SCHED_TSTAMP | \ 303 SKBTX_ACK_TSTAMP) 304#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 305 306/* 307 * The callback notifies userspace to release buffers when skb DMA is done in 308 * lower device, the skb last reference should be 0 when calling this. 309 * The zerocopy_success argument is true if zero copy transmit occurred, 310 * false on data copy or out of memory error caused by data copy attempt. 311 * The ctx field is used to track device context. 312 * The desc field is used to track userspace buffer index. 313 */ 314struct ubuf_info { 315 void (*callback)(struct ubuf_info *, bool zerocopy_success); 316 void *ctx; 317 unsigned long desc; 318}; 319 320/* This data is invariant across clones and lives at 321 * the end of the header data, ie. at skb->end. 322 */ 323struct skb_shared_info { 324 unsigned char nr_frags; 325 __u8 tx_flags; 326 unsigned short gso_size; 327 /* Warning: this field is not always filled in (UFO)! */ 328 unsigned short gso_segs; 329 unsigned short gso_type; 330 struct sk_buff *frag_list; 331 struct skb_shared_hwtstamps hwtstamps; 332 u32 tskey; 333 __be32 ip6_frag_id; 334 335 /* 336 * Warning : all fields before dataref are cleared in __alloc_skb() 337 */ 338 atomic_t dataref; 339 340 /* Intermediate layers must ensure that destructor_arg 341 * remains valid until skb destructor */ 342 void * destructor_arg; 343 344 /* must be last field, see pskb_expand_head() */ 345 skb_frag_t frags[MAX_SKB_FRAGS]; 346}; 347 348/* We divide dataref into two halves. The higher 16 bits hold references 349 * to the payload part of skb->data. The lower 16 bits hold references to 350 * the entire skb->data. A clone of a headerless skb holds the length of 351 * the header in skb->hdr_len. 352 * 353 * All users must obey the rule that the skb->data reference count must be 354 * greater than or equal to the payload reference count. 355 * 356 * Holding a reference to the payload part means that the user does not 357 * care about modifications to the header part of skb->data. 358 */ 359#define SKB_DATAREF_SHIFT 16 360#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 361 362 363enum { 364 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 365 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 366 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 367}; 368 369enum { 370 SKB_GSO_TCPV4 = 1 << 0, 371 SKB_GSO_UDP = 1 << 1, 372 373 /* This indicates the skb is from an untrusted source. */ 374 SKB_GSO_DODGY = 1 << 2, 375 376 /* This indicates the tcp segment has CWR set. */ 377 SKB_GSO_TCP_ECN = 1 << 3, 378 379 SKB_GSO_TCPV6 = 1 << 4, 380 381 SKB_GSO_FCOE = 1 << 5, 382 383 SKB_GSO_GRE = 1 << 6, 384 385 SKB_GSO_GRE_CSUM = 1 << 7, 386 387 SKB_GSO_IPIP = 1 << 8, 388 389 SKB_GSO_SIT = 1 << 9, 390 391 SKB_GSO_UDP_TUNNEL = 1 << 10, 392 393 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 394 395 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 396}; 397 398#if BITS_PER_LONG > 32 399#define NET_SKBUFF_DATA_USES_OFFSET 1 400#endif 401 402#ifdef NET_SKBUFF_DATA_USES_OFFSET 403typedef unsigned int sk_buff_data_t; 404#else 405typedef unsigned char *sk_buff_data_t; 406#endif 407 408/** 409 * struct skb_mstamp - multi resolution time stamps 410 * @stamp_us: timestamp in us resolution 411 * @stamp_jiffies: timestamp in jiffies 412 */ 413struct skb_mstamp { 414 union { 415 u64 v64; 416 struct { 417 u32 stamp_us; 418 u32 stamp_jiffies; 419 }; 420 }; 421}; 422 423/** 424 * skb_mstamp_get - get current timestamp 425 * @cl: place to store timestamps 426 */ 427static inline void skb_mstamp_get(struct skb_mstamp *cl) 428{ 429 u64 val = local_clock(); 430 431 do_div(val, NSEC_PER_USEC); 432 cl->stamp_us = (u32)val; 433 cl->stamp_jiffies = (u32)jiffies; 434} 435 436/** 437 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 438 * @t1: pointer to newest sample 439 * @t0: pointer to oldest sample 440 */ 441static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 442 const struct skb_mstamp *t0) 443{ 444 s32 delta_us = t1->stamp_us - t0->stamp_us; 445 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 446 447 /* If delta_us is negative, this might be because interval is too big, 448 * or local_clock() drift is too big : fallback using jiffies. 449 */ 450 if (delta_us <= 0 || 451 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 452 453 delta_us = jiffies_to_usecs(delta_jiffies); 454 455 return delta_us; 456} 457 458 459/** 460 * struct sk_buff - socket buffer 461 * @next: Next buffer in list 462 * @prev: Previous buffer in list 463 * @tstamp: Time we arrived/left 464 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 465 * @sk: Socket we are owned by 466 * @dev: Device we arrived on/are leaving by 467 * @cb: Control buffer. Free for use by every layer. Put private vars here 468 * @_skb_refdst: destination entry (with norefcount bit) 469 * @sp: the security path, used for xfrm 470 * @len: Length of actual data 471 * @data_len: Data length 472 * @mac_len: Length of link layer header 473 * @hdr_len: writable header length of cloned skb 474 * @csum: Checksum (must include start/offset pair) 475 * @csum_start: Offset from skb->head where checksumming should start 476 * @csum_offset: Offset from csum_start where checksum should be stored 477 * @priority: Packet queueing priority 478 * @ignore_df: allow local fragmentation 479 * @cloned: Head may be cloned (check refcnt to be sure) 480 * @ip_summed: Driver fed us an IP checksum 481 * @nohdr: Payload reference only, must not modify header 482 * @nfctinfo: Relationship of this skb to the connection 483 * @pkt_type: Packet class 484 * @fclone: skbuff clone status 485 * @ipvs_property: skbuff is owned by ipvs 486 * @peeked: this packet has been seen already, so stats have been 487 * done for it, don't do them again 488 * @nf_trace: netfilter packet trace flag 489 * @protocol: Packet protocol from driver 490 * @destructor: Destruct function 491 * @nfct: Associated connection, if any 492 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 493 * @skb_iif: ifindex of device we arrived on 494 * @tc_index: Traffic control index 495 * @tc_verd: traffic control verdict 496 * @hash: the packet hash 497 * @queue_mapping: Queue mapping for multiqueue devices 498 * @xmit_more: More SKBs are pending for this queue 499 * @ndisc_nodetype: router type (from link layer) 500 * @ooo_okay: allow the mapping of a socket to a queue to be changed 501 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 502 * ports. 503 * @sw_hash: indicates hash was computed in software stack 504 * @wifi_acked_valid: wifi_acked was set 505 * @wifi_acked: whether frame was acked on wifi or not 506 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 507 * @napi_id: id of the NAPI struct this skb came from 508 * @secmark: security marking 509 * @mark: Generic packet mark 510 * @vlan_proto: vlan encapsulation protocol 511 * @vlan_tci: vlan tag control information 512 * @inner_protocol: Protocol (encapsulation) 513 * @inner_transport_header: Inner transport layer header (encapsulation) 514 * @inner_network_header: Network layer header (encapsulation) 515 * @inner_mac_header: Link layer header (encapsulation) 516 * @transport_header: Transport layer header 517 * @network_header: Network layer header 518 * @mac_header: Link layer header 519 * @tail: Tail pointer 520 * @end: End pointer 521 * @head: Head of buffer 522 * @data: Data head pointer 523 * @truesize: Buffer size 524 * @users: User count - see {datagram,tcp}.c 525 */ 526 527struct sk_buff { 528 union { 529 struct { 530 /* These two members must be first. */ 531 struct sk_buff *next; 532 struct sk_buff *prev; 533 534 union { 535 ktime_t tstamp; 536 struct skb_mstamp skb_mstamp; 537 }; 538 }; 539 struct rb_node rbnode; /* used in netem & tcp stack */ 540 }; 541 struct sock *sk; 542 struct net_device *dev; 543 544 /* 545 * This is the control buffer. It is free to use for every 546 * layer. Please put your private variables there. If you 547 * want to keep them across layers you have to do a skb_clone() 548 * first. This is owned by whoever has the skb queued ATM. 549 */ 550 char cb[48] __aligned(8); 551 552 unsigned long _skb_refdst; 553 void (*destructor)(struct sk_buff *skb); 554#ifdef CONFIG_XFRM 555 struct sec_path *sp; 556#endif 557#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 558 struct nf_conntrack *nfct; 559#endif 560#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 561 struct nf_bridge_info *nf_bridge; 562#endif 563 unsigned int len, 564 data_len; 565 __u16 mac_len, 566 hdr_len; 567 568 /* Following fields are _not_ copied in __copy_skb_header() 569 * Note that queue_mapping is here mostly to fill a hole. 570 */ 571 kmemcheck_bitfield_begin(flags1); 572 __u16 queue_mapping; 573 __u8 cloned:1, 574 nohdr:1, 575 fclone:2, 576 peeked:1, 577 head_frag:1, 578 xmit_more:1; 579 /* one bit hole */ 580 kmemcheck_bitfield_end(flags1); 581 582 /* fields enclosed in headers_start/headers_end are copied 583 * using a single memcpy() in __copy_skb_header() 584 */ 585 /* private: */ 586 __u32 headers_start[0]; 587 /* public: */ 588 589/* if you move pkt_type around you also must adapt those constants */ 590#ifdef __BIG_ENDIAN_BITFIELD 591#define PKT_TYPE_MAX (7 << 5) 592#else 593#define PKT_TYPE_MAX 7 594#endif 595#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 596 597 __u8 __pkt_type_offset[0]; 598 __u8 pkt_type:3; 599 __u8 pfmemalloc:1; 600 __u8 ignore_df:1; 601 __u8 nfctinfo:3; 602 603 __u8 nf_trace:1; 604 __u8 ip_summed:2; 605 __u8 ooo_okay:1; 606 __u8 l4_hash:1; 607 __u8 sw_hash:1; 608 __u8 wifi_acked_valid:1; 609 __u8 wifi_acked:1; 610 611 __u8 no_fcs:1; 612 /* Indicates the inner headers are valid in the skbuff. */ 613 __u8 encapsulation:1; 614 __u8 encap_hdr_csum:1; 615 __u8 csum_valid:1; 616 __u8 csum_complete_sw:1; 617 __u8 csum_level:2; 618 __u8 csum_bad:1; 619 620#ifdef CONFIG_IPV6_NDISC_NODETYPE 621 __u8 ndisc_nodetype:2; 622#endif 623 __u8 ipvs_property:1; 624 __u8 inner_protocol_type:1; 625 __u8 remcsum_offload:1; 626 /* 3 or 5 bit hole */ 627 628#ifdef CONFIG_NET_SCHED 629 __u16 tc_index; /* traffic control index */ 630#ifdef CONFIG_NET_CLS_ACT 631 __u16 tc_verd; /* traffic control verdict */ 632#endif 633#endif 634 635 union { 636 __wsum csum; 637 struct { 638 __u16 csum_start; 639 __u16 csum_offset; 640 }; 641 }; 642 __u32 priority; 643 int skb_iif; 644 __u32 hash; 645 __be16 vlan_proto; 646 __u16 vlan_tci; 647#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 648 union { 649 unsigned int napi_id; 650 unsigned int sender_cpu; 651 }; 652#endif 653#ifdef CONFIG_NETWORK_SECMARK 654 __u32 secmark; 655#endif 656 union { 657 __u32 mark; 658 __u32 reserved_tailroom; 659 }; 660 661 union { 662 __be16 inner_protocol; 663 __u8 inner_ipproto; 664 }; 665 666 __u16 inner_transport_header; 667 __u16 inner_network_header; 668 __u16 inner_mac_header; 669 670 __be16 protocol; 671 __u16 transport_header; 672 __u16 network_header; 673 __u16 mac_header; 674 675 /* private: */ 676 __u32 headers_end[0]; 677 /* public: */ 678 679 /* These elements must be at the end, see alloc_skb() for details. */ 680 sk_buff_data_t tail; 681 sk_buff_data_t end; 682 unsigned char *head, 683 *data; 684 unsigned int truesize; 685 atomic_t users; 686}; 687 688#ifdef __KERNEL__ 689/* 690 * Handling routines are only of interest to the kernel 691 */ 692#include <linux/slab.h> 693 694 695#define SKB_ALLOC_FCLONE 0x01 696#define SKB_ALLOC_RX 0x02 697#define SKB_ALLOC_NAPI 0x04 698 699/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 700static inline bool skb_pfmemalloc(const struct sk_buff *skb) 701{ 702 return unlikely(skb->pfmemalloc); 703} 704 705/* 706 * skb might have a dst pointer attached, refcounted or not. 707 * _skb_refdst low order bit is set if refcount was _not_ taken 708 */ 709#define SKB_DST_NOREF 1UL 710#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 711 712/** 713 * skb_dst - returns skb dst_entry 714 * @skb: buffer 715 * 716 * Returns skb dst_entry, regardless of reference taken or not. 717 */ 718static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 719{ 720 /* If refdst was not refcounted, check we still are in a 721 * rcu_read_lock section 722 */ 723 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 724 !rcu_read_lock_held() && 725 !rcu_read_lock_bh_held()); 726 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 727} 728 729/** 730 * skb_dst_set - sets skb dst 731 * @skb: buffer 732 * @dst: dst entry 733 * 734 * Sets skb dst, assuming a reference was taken on dst and should 735 * be released by skb_dst_drop() 736 */ 737static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 738{ 739 skb->_skb_refdst = (unsigned long)dst; 740} 741 742/** 743 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 744 * @skb: buffer 745 * @dst: dst entry 746 * 747 * Sets skb dst, assuming a reference was not taken on dst. 748 * If dst entry is cached, we do not take reference and dst_release 749 * will be avoided by refdst_drop. If dst entry is not cached, we take 750 * reference, so that last dst_release can destroy the dst immediately. 751 */ 752static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 753{ 754 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 755 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 756} 757 758/** 759 * skb_dst_is_noref - Test if skb dst isn't refcounted 760 * @skb: buffer 761 */ 762static inline bool skb_dst_is_noref(const struct sk_buff *skb) 763{ 764 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 765} 766 767static inline struct rtable *skb_rtable(const struct sk_buff *skb) 768{ 769 return (struct rtable *)skb_dst(skb); 770} 771 772void kfree_skb(struct sk_buff *skb); 773void kfree_skb_list(struct sk_buff *segs); 774void skb_tx_error(struct sk_buff *skb); 775void consume_skb(struct sk_buff *skb); 776void __kfree_skb(struct sk_buff *skb); 777extern struct kmem_cache *skbuff_head_cache; 778 779void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 780bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 781 bool *fragstolen, int *delta_truesize); 782 783struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 784 int node); 785struct sk_buff *__build_skb(void *data, unsigned int frag_size); 786struct sk_buff *build_skb(void *data, unsigned int frag_size); 787static inline struct sk_buff *alloc_skb(unsigned int size, 788 gfp_t priority) 789{ 790 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 791} 792 793struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 794 unsigned long data_len, 795 int max_page_order, 796 int *errcode, 797 gfp_t gfp_mask); 798 799/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 800struct sk_buff_fclones { 801 struct sk_buff skb1; 802 803 struct sk_buff skb2; 804 805 atomic_t fclone_ref; 806}; 807 808/** 809 * skb_fclone_busy - check if fclone is busy 810 * @skb: buffer 811 * 812 * Returns true is skb is a fast clone, and its clone is not freed. 813 * Some drivers call skb_orphan() in their ndo_start_xmit(), 814 * so we also check that this didnt happen. 815 */ 816static inline bool skb_fclone_busy(const struct sock *sk, 817 const struct sk_buff *skb) 818{ 819 const struct sk_buff_fclones *fclones; 820 821 fclones = container_of(skb, struct sk_buff_fclones, skb1); 822 823 return skb->fclone == SKB_FCLONE_ORIG && 824 atomic_read(&fclones->fclone_ref) > 1 && 825 fclones->skb2.sk == sk; 826} 827 828static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 829 gfp_t priority) 830{ 831 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 832} 833 834struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 835static inline struct sk_buff *alloc_skb_head(gfp_t priority) 836{ 837 return __alloc_skb_head(priority, -1); 838} 839 840struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 841int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 842struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 843struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 844struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 845 gfp_t gfp_mask, bool fclone); 846static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 847 gfp_t gfp_mask) 848{ 849 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 850} 851 852int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 853struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 854 unsigned int headroom); 855struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 856 int newtailroom, gfp_t priority); 857int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 858 int offset, int len); 859int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 860 int len); 861int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 862int skb_pad(struct sk_buff *skb, int pad); 863#define dev_kfree_skb(a) consume_skb(a) 864 865int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 866 int getfrag(void *from, char *to, int offset, 867 int len, int odd, struct sk_buff *skb), 868 void *from, int length); 869 870int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 871 int offset, size_t size); 872 873struct skb_seq_state { 874 __u32 lower_offset; 875 __u32 upper_offset; 876 __u32 frag_idx; 877 __u32 stepped_offset; 878 struct sk_buff *root_skb; 879 struct sk_buff *cur_skb; 880 __u8 *frag_data; 881}; 882 883void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 884 unsigned int to, struct skb_seq_state *st); 885unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 886 struct skb_seq_state *st); 887void skb_abort_seq_read(struct skb_seq_state *st); 888 889unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 890 unsigned int to, struct ts_config *config); 891 892/* 893 * Packet hash types specify the type of hash in skb_set_hash. 894 * 895 * Hash types refer to the protocol layer addresses which are used to 896 * construct a packet's hash. The hashes are used to differentiate or identify 897 * flows of the protocol layer for the hash type. Hash types are either 898 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 899 * 900 * Properties of hashes: 901 * 902 * 1) Two packets in different flows have different hash values 903 * 2) Two packets in the same flow should have the same hash value 904 * 905 * A hash at a higher layer is considered to be more specific. A driver should 906 * set the most specific hash possible. 907 * 908 * A driver cannot indicate a more specific hash than the layer at which a hash 909 * was computed. For instance an L3 hash cannot be set as an L4 hash. 910 * 911 * A driver may indicate a hash level which is less specific than the 912 * actual layer the hash was computed on. For instance, a hash computed 913 * at L4 may be considered an L3 hash. This should only be done if the 914 * driver can't unambiguously determine that the HW computed the hash at 915 * the higher layer. Note that the "should" in the second property above 916 * permits this. 917 */ 918enum pkt_hash_types { 919 PKT_HASH_TYPE_NONE, /* Undefined type */ 920 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 921 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 922 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 923}; 924 925static inline void 926skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 927{ 928 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 929 skb->sw_hash = 0; 930 skb->hash = hash; 931} 932 933static inline __u32 skb_get_hash(struct sk_buff *skb) 934{ 935 if (!skb->l4_hash && !skb->sw_hash) 936 __skb_get_hash(skb); 937 938 return skb->hash; 939} 940 941__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 942 943static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 944{ 945 return skb->hash; 946} 947 948static inline void skb_clear_hash(struct sk_buff *skb) 949{ 950 skb->hash = 0; 951 skb->sw_hash = 0; 952 skb->l4_hash = 0; 953} 954 955static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 956{ 957 if (!skb->l4_hash) 958 skb_clear_hash(skb); 959} 960 961static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 962{ 963 to->hash = from->hash; 964 to->sw_hash = from->sw_hash; 965 to->l4_hash = from->l4_hash; 966}; 967 968static inline void skb_sender_cpu_clear(struct sk_buff *skb) 969{ 970#ifdef CONFIG_XPS 971 skb->sender_cpu = 0; 972#endif 973} 974 975#ifdef NET_SKBUFF_DATA_USES_OFFSET 976static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 977{ 978 return skb->head + skb->end; 979} 980 981static inline unsigned int skb_end_offset(const struct sk_buff *skb) 982{ 983 return skb->end; 984} 985#else 986static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 987{ 988 return skb->end; 989} 990 991static inline unsigned int skb_end_offset(const struct sk_buff *skb) 992{ 993 return skb->end - skb->head; 994} 995#endif 996 997/* Internal */ 998#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 999 1000static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1001{ 1002 return &skb_shinfo(skb)->hwtstamps; 1003} 1004 1005/** 1006 * skb_queue_empty - check if a queue is empty 1007 * @list: queue head 1008 * 1009 * Returns true if the queue is empty, false otherwise. 1010 */ 1011static inline int skb_queue_empty(const struct sk_buff_head *list) 1012{ 1013 return list->next == (const struct sk_buff *) list; 1014} 1015 1016/** 1017 * skb_queue_is_last - check if skb is the last entry in the queue 1018 * @list: queue head 1019 * @skb: buffer 1020 * 1021 * Returns true if @skb is the last buffer on the list. 1022 */ 1023static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1024 const struct sk_buff *skb) 1025{ 1026 return skb->next == (const struct sk_buff *) list; 1027} 1028 1029/** 1030 * skb_queue_is_first - check if skb is the first entry in the queue 1031 * @list: queue head 1032 * @skb: buffer 1033 * 1034 * Returns true if @skb is the first buffer on the list. 1035 */ 1036static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1037 const struct sk_buff *skb) 1038{ 1039 return skb->prev == (const struct sk_buff *) list; 1040} 1041 1042/** 1043 * skb_queue_next - return the next packet in the queue 1044 * @list: queue head 1045 * @skb: current buffer 1046 * 1047 * Return the next packet in @list after @skb. It is only valid to 1048 * call this if skb_queue_is_last() evaluates to false. 1049 */ 1050static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1051 const struct sk_buff *skb) 1052{ 1053 /* This BUG_ON may seem severe, but if we just return then we 1054 * are going to dereference garbage. 1055 */ 1056 BUG_ON(skb_queue_is_last(list, skb)); 1057 return skb->next; 1058} 1059 1060/** 1061 * skb_queue_prev - return the prev packet in the queue 1062 * @list: queue head 1063 * @skb: current buffer 1064 * 1065 * Return the prev packet in @list before @skb. It is only valid to 1066 * call this if skb_queue_is_first() evaluates to false. 1067 */ 1068static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1069 const struct sk_buff *skb) 1070{ 1071 /* This BUG_ON may seem severe, but if we just return then we 1072 * are going to dereference garbage. 1073 */ 1074 BUG_ON(skb_queue_is_first(list, skb)); 1075 return skb->prev; 1076} 1077 1078/** 1079 * skb_get - reference buffer 1080 * @skb: buffer to reference 1081 * 1082 * Makes another reference to a socket buffer and returns a pointer 1083 * to the buffer. 1084 */ 1085static inline struct sk_buff *skb_get(struct sk_buff *skb) 1086{ 1087 atomic_inc(&skb->users); 1088 return skb; 1089} 1090 1091/* 1092 * If users == 1, we are the only owner and are can avoid redundant 1093 * atomic change. 1094 */ 1095 1096/** 1097 * skb_cloned - is the buffer a clone 1098 * @skb: buffer to check 1099 * 1100 * Returns true if the buffer was generated with skb_clone() and is 1101 * one of multiple shared copies of the buffer. Cloned buffers are 1102 * shared data so must not be written to under normal circumstances. 1103 */ 1104static inline int skb_cloned(const struct sk_buff *skb) 1105{ 1106 return skb->cloned && 1107 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1108} 1109 1110static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1111{ 1112 might_sleep_if(pri & __GFP_WAIT); 1113 1114 if (skb_cloned(skb)) 1115 return pskb_expand_head(skb, 0, 0, pri); 1116 1117 return 0; 1118} 1119 1120/** 1121 * skb_header_cloned - is the header a clone 1122 * @skb: buffer to check 1123 * 1124 * Returns true if modifying the header part of the buffer requires 1125 * the data to be copied. 1126 */ 1127static inline int skb_header_cloned(const struct sk_buff *skb) 1128{ 1129 int dataref; 1130 1131 if (!skb->cloned) 1132 return 0; 1133 1134 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1135 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1136 return dataref != 1; 1137} 1138 1139/** 1140 * skb_header_release - release reference to header 1141 * @skb: buffer to operate on 1142 * 1143 * Drop a reference to the header part of the buffer. This is done 1144 * by acquiring a payload reference. You must not read from the header 1145 * part of skb->data after this. 1146 * Note : Check if you can use __skb_header_release() instead. 1147 */ 1148static inline void skb_header_release(struct sk_buff *skb) 1149{ 1150 BUG_ON(skb->nohdr); 1151 skb->nohdr = 1; 1152 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1153} 1154 1155/** 1156 * __skb_header_release - release reference to header 1157 * @skb: buffer to operate on 1158 * 1159 * Variant of skb_header_release() assuming skb is private to caller. 1160 * We can avoid one atomic operation. 1161 */ 1162static inline void __skb_header_release(struct sk_buff *skb) 1163{ 1164 skb->nohdr = 1; 1165 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1166} 1167 1168 1169/** 1170 * skb_shared - is the buffer shared 1171 * @skb: buffer to check 1172 * 1173 * Returns true if more than one person has a reference to this 1174 * buffer. 1175 */ 1176static inline int skb_shared(const struct sk_buff *skb) 1177{ 1178 return atomic_read(&skb->users) != 1; 1179} 1180 1181/** 1182 * skb_share_check - check if buffer is shared and if so clone it 1183 * @skb: buffer to check 1184 * @pri: priority for memory allocation 1185 * 1186 * If the buffer is shared the buffer is cloned and the old copy 1187 * drops a reference. A new clone with a single reference is returned. 1188 * If the buffer is not shared the original buffer is returned. When 1189 * being called from interrupt status or with spinlocks held pri must 1190 * be GFP_ATOMIC. 1191 * 1192 * NULL is returned on a memory allocation failure. 1193 */ 1194static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1195{ 1196 might_sleep_if(pri & __GFP_WAIT); 1197 if (skb_shared(skb)) { 1198 struct sk_buff *nskb = skb_clone(skb, pri); 1199 1200 if (likely(nskb)) 1201 consume_skb(skb); 1202 else 1203 kfree_skb(skb); 1204 skb = nskb; 1205 } 1206 return skb; 1207} 1208 1209/* 1210 * Copy shared buffers into a new sk_buff. We effectively do COW on 1211 * packets to handle cases where we have a local reader and forward 1212 * and a couple of other messy ones. The normal one is tcpdumping 1213 * a packet thats being forwarded. 1214 */ 1215 1216/** 1217 * skb_unshare - make a copy of a shared buffer 1218 * @skb: buffer to check 1219 * @pri: priority for memory allocation 1220 * 1221 * If the socket buffer is a clone then this function creates a new 1222 * copy of the data, drops a reference count on the old copy and returns 1223 * the new copy with the reference count at 1. If the buffer is not a clone 1224 * the original buffer is returned. When called with a spinlock held or 1225 * from interrupt state @pri must be %GFP_ATOMIC 1226 * 1227 * %NULL is returned on a memory allocation failure. 1228 */ 1229static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1230 gfp_t pri) 1231{ 1232 might_sleep_if(pri & __GFP_WAIT); 1233 if (skb_cloned(skb)) { 1234 struct sk_buff *nskb = skb_copy(skb, pri); 1235 1236 /* Free our shared copy */ 1237 if (likely(nskb)) 1238 consume_skb(skb); 1239 else 1240 kfree_skb(skb); 1241 skb = nskb; 1242 } 1243 return skb; 1244} 1245 1246/** 1247 * skb_peek - peek at the head of an &sk_buff_head 1248 * @list_: list to peek at 1249 * 1250 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1251 * be careful with this one. A peek leaves the buffer on the 1252 * list and someone else may run off with it. You must hold 1253 * the appropriate locks or have a private queue to do this. 1254 * 1255 * Returns %NULL for an empty list or a pointer to the head element. 1256 * The reference count is not incremented and the reference is therefore 1257 * volatile. Use with caution. 1258 */ 1259static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1260{ 1261 struct sk_buff *skb = list_->next; 1262 1263 if (skb == (struct sk_buff *)list_) 1264 skb = NULL; 1265 return skb; 1266} 1267 1268/** 1269 * skb_peek_next - peek skb following the given one from a queue 1270 * @skb: skb to start from 1271 * @list_: list to peek at 1272 * 1273 * Returns %NULL when the end of the list is met or a pointer to the 1274 * next element. The reference count is not incremented and the 1275 * reference is therefore volatile. Use with caution. 1276 */ 1277static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1278 const struct sk_buff_head *list_) 1279{ 1280 struct sk_buff *next = skb->next; 1281 1282 if (next == (struct sk_buff *)list_) 1283 next = NULL; 1284 return next; 1285} 1286 1287/** 1288 * skb_peek_tail - peek at the tail of an &sk_buff_head 1289 * @list_: list to peek at 1290 * 1291 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1292 * be careful with this one. A peek leaves the buffer on the 1293 * list and someone else may run off with it. You must hold 1294 * the appropriate locks or have a private queue to do this. 1295 * 1296 * Returns %NULL for an empty list or a pointer to the tail element. 1297 * The reference count is not incremented and the reference is therefore 1298 * volatile. Use with caution. 1299 */ 1300static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1301{ 1302 struct sk_buff *skb = list_->prev; 1303 1304 if (skb == (struct sk_buff *)list_) 1305 skb = NULL; 1306 return skb; 1307 1308} 1309 1310/** 1311 * skb_queue_len - get queue length 1312 * @list_: list to measure 1313 * 1314 * Return the length of an &sk_buff queue. 1315 */ 1316static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1317{ 1318 return list_->qlen; 1319} 1320 1321/** 1322 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1323 * @list: queue to initialize 1324 * 1325 * This initializes only the list and queue length aspects of 1326 * an sk_buff_head object. This allows to initialize the list 1327 * aspects of an sk_buff_head without reinitializing things like 1328 * the spinlock. It can also be used for on-stack sk_buff_head 1329 * objects where the spinlock is known to not be used. 1330 */ 1331static inline void __skb_queue_head_init(struct sk_buff_head *list) 1332{ 1333 list->prev = list->next = (struct sk_buff *)list; 1334 list->qlen = 0; 1335} 1336 1337/* 1338 * This function creates a split out lock class for each invocation; 1339 * this is needed for now since a whole lot of users of the skb-queue 1340 * infrastructure in drivers have different locking usage (in hardirq) 1341 * than the networking core (in softirq only). In the long run either the 1342 * network layer or drivers should need annotation to consolidate the 1343 * main types of usage into 3 classes. 1344 */ 1345static inline void skb_queue_head_init(struct sk_buff_head *list) 1346{ 1347 spin_lock_init(&list->lock); 1348 __skb_queue_head_init(list); 1349} 1350 1351static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1352 struct lock_class_key *class) 1353{ 1354 skb_queue_head_init(list); 1355 lockdep_set_class(&list->lock, class); 1356} 1357 1358/* 1359 * Insert an sk_buff on a list. 1360 * 1361 * The "__skb_xxxx()" functions are the non-atomic ones that 1362 * can only be called with interrupts disabled. 1363 */ 1364void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1365 struct sk_buff_head *list); 1366static inline void __skb_insert(struct sk_buff *newsk, 1367 struct sk_buff *prev, struct sk_buff *next, 1368 struct sk_buff_head *list) 1369{ 1370 newsk->next = next; 1371 newsk->prev = prev; 1372 next->prev = prev->next = newsk; 1373 list->qlen++; 1374} 1375 1376static inline void __skb_queue_splice(const struct sk_buff_head *list, 1377 struct sk_buff *prev, 1378 struct sk_buff *next) 1379{ 1380 struct sk_buff *first = list->next; 1381 struct sk_buff *last = list->prev; 1382 1383 first->prev = prev; 1384 prev->next = first; 1385 1386 last->next = next; 1387 next->prev = last; 1388} 1389 1390/** 1391 * skb_queue_splice - join two skb lists, this is designed for stacks 1392 * @list: the new list to add 1393 * @head: the place to add it in the first list 1394 */ 1395static inline void skb_queue_splice(const struct sk_buff_head *list, 1396 struct sk_buff_head *head) 1397{ 1398 if (!skb_queue_empty(list)) { 1399 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1400 head->qlen += list->qlen; 1401 } 1402} 1403 1404/** 1405 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1406 * @list: the new list to add 1407 * @head: the place to add it in the first list 1408 * 1409 * The list at @list is reinitialised 1410 */ 1411static inline void skb_queue_splice_init(struct sk_buff_head *list, 1412 struct sk_buff_head *head) 1413{ 1414 if (!skb_queue_empty(list)) { 1415 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1416 head->qlen += list->qlen; 1417 __skb_queue_head_init(list); 1418 } 1419} 1420 1421/** 1422 * skb_queue_splice_tail - join two skb lists, each list being a queue 1423 * @list: the new list to add 1424 * @head: the place to add it in the first list 1425 */ 1426static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1427 struct sk_buff_head *head) 1428{ 1429 if (!skb_queue_empty(list)) { 1430 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1431 head->qlen += list->qlen; 1432 } 1433} 1434 1435/** 1436 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1437 * @list: the new list to add 1438 * @head: the place to add it in the first list 1439 * 1440 * Each of the lists is a queue. 1441 * The list at @list is reinitialised 1442 */ 1443static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1444 struct sk_buff_head *head) 1445{ 1446 if (!skb_queue_empty(list)) { 1447 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1448 head->qlen += list->qlen; 1449 __skb_queue_head_init(list); 1450 } 1451} 1452 1453/** 1454 * __skb_queue_after - queue a buffer at the list head 1455 * @list: list to use 1456 * @prev: place after this buffer 1457 * @newsk: buffer to queue 1458 * 1459 * Queue a buffer int the middle of a list. This function takes no locks 1460 * and you must therefore hold required locks before calling it. 1461 * 1462 * A buffer cannot be placed on two lists at the same time. 1463 */ 1464static inline void __skb_queue_after(struct sk_buff_head *list, 1465 struct sk_buff *prev, 1466 struct sk_buff *newsk) 1467{ 1468 __skb_insert(newsk, prev, prev->next, list); 1469} 1470 1471void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1472 struct sk_buff_head *list); 1473 1474static inline void __skb_queue_before(struct sk_buff_head *list, 1475 struct sk_buff *next, 1476 struct sk_buff *newsk) 1477{ 1478 __skb_insert(newsk, next->prev, next, list); 1479} 1480 1481/** 1482 * __skb_queue_head - queue a buffer at the list head 1483 * @list: list to use 1484 * @newsk: buffer to queue 1485 * 1486 * Queue a buffer at the start of a list. This function takes no locks 1487 * and you must therefore hold required locks before calling it. 1488 * 1489 * A buffer cannot be placed on two lists at the same time. 1490 */ 1491void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1492static inline void __skb_queue_head(struct sk_buff_head *list, 1493 struct sk_buff *newsk) 1494{ 1495 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1496} 1497 1498/** 1499 * __skb_queue_tail - queue a buffer at the list tail 1500 * @list: list to use 1501 * @newsk: buffer to queue 1502 * 1503 * Queue a buffer at the end of a list. This function takes no locks 1504 * and you must therefore hold required locks before calling it. 1505 * 1506 * A buffer cannot be placed on two lists at the same time. 1507 */ 1508void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1509static inline void __skb_queue_tail(struct sk_buff_head *list, 1510 struct sk_buff *newsk) 1511{ 1512 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1513} 1514 1515/* 1516 * remove sk_buff from list. _Must_ be called atomically, and with 1517 * the list known.. 1518 */ 1519void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1520static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1521{ 1522 struct sk_buff *next, *prev; 1523 1524 list->qlen--; 1525 next = skb->next; 1526 prev = skb->prev; 1527 skb->next = skb->prev = NULL; 1528 next->prev = prev; 1529 prev->next = next; 1530} 1531 1532/** 1533 * __skb_dequeue - remove from the head of the queue 1534 * @list: list to dequeue from 1535 * 1536 * Remove the head of the list. This function does not take any locks 1537 * so must be used with appropriate locks held only. The head item is 1538 * returned or %NULL if the list is empty. 1539 */ 1540struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1541static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1542{ 1543 struct sk_buff *skb = skb_peek(list); 1544 if (skb) 1545 __skb_unlink(skb, list); 1546 return skb; 1547} 1548 1549/** 1550 * __skb_dequeue_tail - remove from the tail of the queue 1551 * @list: list to dequeue from 1552 * 1553 * Remove the tail of the list. This function does not take any locks 1554 * so must be used with appropriate locks held only. The tail item is 1555 * returned or %NULL if the list is empty. 1556 */ 1557struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1558static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1559{ 1560 struct sk_buff *skb = skb_peek_tail(list); 1561 if (skb) 1562 __skb_unlink(skb, list); 1563 return skb; 1564} 1565 1566 1567static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1568{ 1569 return skb->data_len; 1570} 1571 1572static inline unsigned int skb_headlen(const struct sk_buff *skb) 1573{ 1574 return skb->len - skb->data_len; 1575} 1576 1577static inline int skb_pagelen(const struct sk_buff *skb) 1578{ 1579 int i, len = 0; 1580 1581 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1582 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1583 return len + skb_headlen(skb); 1584} 1585 1586/** 1587 * __skb_fill_page_desc - initialise a paged fragment in an skb 1588 * @skb: buffer containing fragment to be initialised 1589 * @i: paged fragment index to initialise 1590 * @page: the page to use for this fragment 1591 * @off: the offset to the data with @page 1592 * @size: the length of the data 1593 * 1594 * Initialises the @i'th fragment of @skb to point to &size bytes at 1595 * offset @off within @page. 1596 * 1597 * Does not take any additional reference on the fragment. 1598 */ 1599static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1600 struct page *page, int off, int size) 1601{ 1602 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1603 1604 /* 1605 * Propagate page->pfmemalloc to the skb if we can. The problem is 1606 * that not all callers have unique ownership of the page. If 1607 * pfmemalloc is set, we check the mapping as a mapping implies 1608 * page->index is set (index and pfmemalloc share space). 1609 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1610 * do not lose pfmemalloc information as the pages would not be 1611 * allocated using __GFP_MEMALLOC. 1612 */ 1613 frag->page.p = page; 1614 frag->page_offset = off; 1615 skb_frag_size_set(frag, size); 1616 1617 page = compound_head(page); 1618 if (page->pfmemalloc && !page->mapping) 1619 skb->pfmemalloc = true; 1620} 1621 1622/** 1623 * skb_fill_page_desc - initialise a paged fragment in an skb 1624 * @skb: buffer containing fragment to be initialised 1625 * @i: paged fragment index to initialise 1626 * @page: the page to use for this fragment 1627 * @off: the offset to the data with @page 1628 * @size: the length of the data 1629 * 1630 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1631 * @skb to point to @size bytes at offset @off within @page. In 1632 * addition updates @skb such that @i is the last fragment. 1633 * 1634 * Does not take any additional reference on the fragment. 1635 */ 1636static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1637 struct page *page, int off, int size) 1638{ 1639 __skb_fill_page_desc(skb, i, page, off, size); 1640 skb_shinfo(skb)->nr_frags = i + 1; 1641} 1642 1643void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1644 int size, unsigned int truesize); 1645 1646void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1647 unsigned int truesize); 1648 1649#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1650#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1651#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1652 1653#ifdef NET_SKBUFF_DATA_USES_OFFSET 1654static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1655{ 1656 return skb->head + skb->tail; 1657} 1658 1659static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1660{ 1661 skb->tail = skb->data - skb->head; 1662} 1663 1664static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1665{ 1666 skb_reset_tail_pointer(skb); 1667 skb->tail += offset; 1668} 1669 1670#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1671static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1672{ 1673 return skb->tail; 1674} 1675 1676static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1677{ 1678 skb->tail = skb->data; 1679} 1680 1681static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1682{ 1683 skb->tail = skb->data + offset; 1684} 1685 1686#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1687 1688/* 1689 * Add data to an sk_buff 1690 */ 1691unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1692unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1693static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1694{ 1695 unsigned char *tmp = skb_tail_pointer(skb); 1696 SKB_LINEAR_ASSERT(skb); 1697 skb->tail += len; 1698 skb->len += len; 1699 return tmp; 1700} 1701 1702unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1703static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1704{ 1705 skb->data -= len; 1706 skb->len += len; 1707 return skb->data; 1708} 1709 1710unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1711static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1712{ 1713 skb->len -= len; 1714 BUG_ON(skb->len < skb->data_len); 1715 return skb->data += len; 1716} 1717 1718static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1719{ 1720 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1721} 1722 1723unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1724 1725static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1726{ 1727 if (len > skb_headlen(skb) && 1728 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1729 return NULL; 1730 skb->len -= len; 1731 return skb->data += len; 1732} 1733 1734static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1735{ 1736 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1737} 1738 1739static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1740{ 1741 if (likely(len <= skb_headlen(skb))) 1742 return 1; 1743 if (unlikely(len > skb->len)) 1744 return 0; 1745 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1746} 1747 1748/** 1749 * skb_headroom - bytes at buffer head 1750 * @skb: buffer to check 1751 * 1752 * Return the number of bytes of free space at the head of an &sk_buff. 1753 */ 1754static inline unsigned int skb_headroom(const struct sk_buff *skb) 1755{ 1756 return skb->data - skb->head; 1757} 1758 1759/** 1760 * skb_tailroom - bytes at buffer end 1761 * @skb: buffer to check 1762 * 1763 * Return the number of bytes of free space at the tail of an sk_buff 1764 */ 1765static inline int skb_tailroom(const struct sk_buff *skb) 1766{ 1767 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1768} 1769 1770/** 1771 * skb_availroom - bytes at buffer end 1772 * @skb: buffer to check 1773 * 1774 * Return the number of bytes of free space at the tail of an sk_buff 1775 * allocated by sk_stream_alloc() 1776 */ 1777static inline int skb_availroom(const struct sk_buff *skb) 1778{ 1779 if (skb_is_nonlinear(skb)) 1780 return 0; 1781 1782 return skb->end - skb->tail - skb->reserved_tailroom; 1783} 1784 1785/** 1786 * skb_reserve - adjust headroom 1787 * @skb: buffer to alter 1788 * @len: bytes to move 1789 * 1790 * Increase the headroom of an empty &sk_buff by reducing the tail 1791 * room. This is only allowed for an empty buffer. 1792 */ 1793static inline void skb_reserve(struct sk_buff *skb, int len) 1794{ 1795 skb->data += len; 1796 skb->tail += len; 1797} 1798 1799#define ENCAP_TYPE_ETHER 0 1800#define ENCAP_TYPE_IPPROTO 1 1801 1802static inline void skb_set_inner_protocol(struct sk_buff *skb, 1803 __be16 protocol) 1804{ 1805 skb->inner_protocol = protocol; 1806 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1807} 1808 1809static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1810 __u8 ipproto) 1811{ 1812 skb->inner_ipproto = ipproto; 1813 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1814} 1815 1816static inline void skb_reset_inner_headers(struct sk_buff *skb) 1817{ 1818 skb->inner_mac_header = skb->mac_header; 1819 skb->inner_network_header = skb->network_header; 1820 skb->inner_transport_header = skb->transport_header; 1821} 1822 1823static inline void skb_reset_mac_len(struct sk_buff *skb) 1824{ 1825 skb->mac_len = skb->network_header - skb->mac_header; 1826} 1827 1828static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1829 *skb) 1830{ 1831 return skb->head + skb->inner_transport_header; 1832} 1833 1834static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1835{ 1836 skb->inner_transport_header = skb->data - skb->head; 1837} 1838 1839static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1840 const int offset) 1841{ 1842 skb_reset_inner_transport_header(skb); 1843 skb->inner_transport_header += offset; 1844} 1845 1846static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1847{ 1848 return skb->head + skb->inner_network_header; 1849} 1850 1851static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1852{ 1853 skb->inner_network_header = skb->data - skb->head; 1854} 1855 1856static inline void skb_set_inner_network_header(struct sk_buff *skb, 1857 const int offset) 1858{ 1859 skb_reset_inner_network_header(skb); 1860 skb->inner_network_header += offset; 1861} 1862 1863static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1864{ 1865 return skb->head + skb->inner_mac_header; 1866} 1867 1868static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1869{ 1870 skb->inner_mac_header = skb->data - skb->head; 1871} 1872 1873static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1874 const int offset) 1875{ 1876 skb_reset_inner_mac_header(skb); 1877 skb->inner_mac_header += offset; 1878} 1879static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1880{ 1881 return skb->transport_header != (typeof(skb->transport_header))~0U; 1882} 1883 1884static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1885{ 1886 return skb->head + skb->transport_header; 1887} 1888 1889static inline void skb_reset_transport_header(struct sk_buff *skb) 1890{ 1891 skb->transport_header = skb->data - skb->head; 1892} 1893 1894static inline void skb_set_transport_header(struct sk_buff *skb, 1895 const int offset) 1896{ 1897 skb_reset_transport_header(skb); 1898 skb->transport_header += offset; 1899} 1900 1901static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1902{ 1903 return skb->head + skb->network_header; 1904} 1905 1906static inline void skb_reset_network_header(struct sk_buff *skb) 1907{ 1908 skb->network_header = skb->data - skb->head; 1909} 1910 1911static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1912{ 1913 skb_reset_network_header(skb); 1914 skb->network_header += offset; 1915} 1916 1917static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1918{ 1919 return skb->head + skb->mac_header; 1920} 1921 1922static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1923{ 1924 return skb->mac_header != (typeof(skb->mac_header))~0U; 1925} 1926 1927static inline void skb_reset_mac_header(struct sk_buff *skb) 1928{ 1929 skb->mac_header = skb->data - skb->head; 1930} 1931 1932static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1933{ 1934 skb_reset_mac_header(skb); 1935 skb->mac_header += offset; 1936} 1937 1938static inline void skb_pop_mac_header(struct sk_buff *skb) 1939{ 1940 skb->mac_header = skb->network_header; 1941} 1942 1943static inline void skb_probe_transport_header(struct sk_buff *skb, 1944 const int offset_hint) 1945{ 1946 struct flow_keys keys; 1947 1948 if (skb_transport_header_was_set(skb)) 1949 return; 1950 else if (skb_flow_dissect_flow_keys(skb, &keys)) 1951 skb_set_transport_header(skb, keys.control.thoff); 1952 else 1953 skb_set_transport_header(skb, offset_hint); 1954} 1955 1956static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1957{ 1958 if (skb_mac_header_was_set(skb)) { 1959 const unsigned char *old_mac = skb_mac_header(skb); 1960 1961 skb_set_mac_header(skb, -skb->mac_len); 1962 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1963 } 1964} 1965 1966static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1967{ 1968 return skb->csum_start - skb_headroom(skb); 1969} 1970 1971static inline int skb_transport_offset(const struct sk_buff *skb) 1972{ 1973 return skb_transport_header(skb) - skb->data; 1974} 1975 1976static inline u32 skb_network_header_len(const struct sk_buff *skb) 1977{ 1978 return skb->transport_header - skb->network_header; 1979} 1980 1981static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1982{ 1983 return skb->inner_transport_header - skb->inner_network_header; 1984} 1985 1986static inline int skb_network_offset(const struct sk_buff *skb) 1987{ 1988 return skb_network_header(skb) - skb->data; 1989} 1990 1991static inline int skb_inner_network_offset(const struct sk_buff *skb) 1992{ 1993 return skb_inner_network_header(skb) - skb->data; 1994} 1995 1996static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1997{ 1998 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1999} 2000 2001/* 2002 * CPUs often take a performance hit when accessing unaligned memory 2003 * locations. The actual performance hit varies, it can be small if the 2004 * hardware handles it or large if we have to take an exception and fix it 2005 * in software. 2006 * 2007 * Since an ethernet header is 14 bytes network drivers often end up with 2008 * the IP header at an unaligned offset. The IP header can be aligned by 2009 * shifting the start of the packet by 2 bytes. Drivers should do this 2010 * with: 2011 * 2012 * skb_reserve(skb, NET_IP_ALIGN); 2013 * 2014 * The downside to this alignment of the IP header is that the DMA is now 2015 * unaligned. On some architectures the cost of an unaligned DMA is high 2016 * and this cost outweighs the gains made by aligning the IP header. 2017 * 2018 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2019 * to be overridden. 2020 */ 2021#ifndef NET_IP_ALIGN 2022#define NET_IP_ALIGN 2 2023#endif 2024 2025/* 2026 * The networking layer reserves some headroom in skb data (via 2027 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2028 * the header has to grow. In the default case, if the header has to grow 2029 * 32 bytes or less we avoid the reallocation. 2030 * 2031 * Unfortunately this headroom changes the DMA alignment of the resulting 2032 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2033 * on some architectures. An architecture can override this value, 2034 * perhaps setting it to a cacheline in size (since that will maintain 2035 * cacheline alignment of the DMA). It must be a power of 2. 2036 * 2037 * Various parts of the networking layer expect at least 32 bytes of 2038 * headroom, you should not reduce this. 2039 * 2040 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2041 * to reduce average number of cache lines per packet. 2042 * get_rps_cpus() for example only access one 64 bytes aligned block : 2043 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2044 */ 2045#ifndef NET_SKB_PAD 2046#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2047#endif 2048 2049int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2050 2051static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2052{ 2053 if (unlikely(skb_is_nonlinear(skb))) { 2054 WARN_ON(1); 2055 return; 2056 } 2057 skb->len = len; 2058 skb_set_tail_pointer(skb, len); 2059} 2060 2061void skb_trim(struct sk_buff *skb, unsigned int len); 2062 2063static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2064{ 2065 if (skb->data_len) 2066 return ___pskb_trim(skb, len); 2067 __skb_trim(skb, len); 2068 return 0; 2069} 2070 2071static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2072{ 2073 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2074} 2075 2076/** 2077 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2078 * @skb: buffer to alter 2079 * @len: new length 2080 * 2081 * This is identical to pskb_trim except that the caller knows that 2082 * the skb is not cloned so we should never get an error due to out- 2083 * of-memory. 2084 */ 2085static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2086{ 2087 int err = pskb_trim(skb, len); 2088 BUG_ON(err); 2089} 2090 2091/** 2092 * skb_orphan - orphan a buffer 2093 * @skb: buffer to orphan 2094 * 2095 * If a buffer currently has an owner then we call the owner's 2096 * destructor function and make the @skb unowned. The buffer continues 2097 * to exist but is no longer charged to its former owner. 2098 */ 2099static inline void skb_orphan(struct sk_buff *skb) 2100{ 2101 if (skb->destructor) { 2102 skb->destructor(skb); 2103 skb->destructor = NULL; 2104 skb->sk = NULL; 2105 } else { 2106 BUG_ON(skb->sk); 2107 } 2108} 2109 2110/** 2111 * skb_orphan_frags - orphan the frags contained in a buffer 2112 * @skb: buffer to orphan frags from 2113 * @gfp_mask: allocation mask for replacement pages 2114 * 2115 * For each frag in the SKB which needs a destructor (i.e. has an 2116 * owner) create a copy of that frag and release the original 2117 * page by calling the destructor. 2118 */ 2119static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2120{ 2121 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2122 return 0; 2123 return skb_copy_ubufs(skb, gfp_mask); 2124} 2125 2126/** 2127 * __skb_queue_purge - empty a list 2128 * @list: list to empty 2129 * 2130 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2131 * the list and one reference dropped. This function does not take the 2132 * list lock and the caller must hold the relevant locks to use it. 2133 */ 2134void skb_queue_purge(struct sk_buff_head *list); 2135static inline void __skb_queue_purge(struct sk_buff_head *list) 2136{ 2137 struct sk_buff *skb; 2138 while ((skb = __skb_dequeue(list)) != NULL) 2139 kfree_skb(skb); 2140} 2141 2142void *netdev_alloc_frag(unsigned int fragsz); 2143 2144struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2145 gfp_t gfp_mask); 2146 2147/** 2148 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2149 * @dev: network device to receive on 2150 * @length: length to allocate 2151 * 2152 * Allocate a new &sk_buff and assign it a usage count of one. The 2153 * buffer has unspecified headroom built in. Users should allocate 2154 * the headroom they think they need without accounting for the 2155 * built in space. The built in space is used for optimisations. 2156 * 2157 * %NULL is returned if there is no free memory. Although this function 2158 * allocates memory it can be called from an interrupt. 2159 */ 2160static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2161 unsigned int length) 2162{ 2163 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2164} 2165 2166/* legacy helper around __netdev_alloc_skb() */ 2167static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2168 gfp_t gfp_mask) 2169{ 2170 return __netdev_alloc_skb(NULL, length, gfp_mask); 2171} 2172 2173/* legacy helper around netdev_alloc_skb() */ 2174static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2175{ 2176 return netdev_alloc_skb(NULL, length); 2177} 2178 2179 2180static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2181 unsigned int length, gfp_t gfp) 2182{ 2183 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2184 2185 if (NET_IP_ALIGN && skb) 2186 skb_reserve(skb, NET_IP_ALIGN); 2187 return skb; 2188} 2189 2190static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2191 unsigned int length) 2192{ 2193 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2194} 2195 2196static inline void skb_free_frag(void *addr) 2197{ 2198 __free_page_frag(addr); 2199} 2200 2201void *napi_alloc_frag(unsigned int fragsz); 2202struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2203 unsigned int length, gfp_t gfp_mask); 2204static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2205 unsigned int length) 2206{ 2207 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2208} 2209 2210/** 2211 * __dev_alloc_pages - allocate page for network Rx 2212 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2213 * @order: size of the allocation 2214 * 2215 * Allocate a new page. 2216 * 2217 * %NULL is returned if there is no free memory. 2218*/ 2219static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2220 unsigned int order) 2221{ 2222 /* This piece of code contains several assumptions. 2223 * 1. This is for device Rx, therefor a cold page is preferred. 2224 * 2. The expectation is the user wants a compound page. 2225 * 3. If requesting a order 0 page it will not be compound 2226 * due to the check to see if order has a value in prep_new_page 2227 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2228 * code in gfp_to_alloc_flags that should be enforcing this. 2229 */ 2230 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2231 2232 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2233} 2234 2235static inline struct page *dev_alloc_pages(unsigned int order) 2236{ 2237 return __dev_alloc_pages(GFP_ATOMIC, order); 2238} 2239 2240/** 2241 * __dev_alloc_page - allocate a page for network Rx 2242 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2243 * 2244 * Allocate a new page. 2245 * 2246 * %NULL is returned if there is no free memory. 2247 */ 2248static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2249{ 2250 return __dev_alloc_pages(gfp_mask, 0); 2251} 2252 2253static inline struct page *dev_alloc_page(void) 2254{ 2255 return __dev_alloc_page(GFP_ATOMIC); 2256} 2257 2258/** 2259 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2260 * @page: The page that was allocated from skb_alloc_page 2261 * @skb: The skb that may need pfmemalloc set 2262 */ 2263static inline void skb_propagate_pfmemalloc(struct page *page, 2264 struct sk_buff *skb) 2265{ 2266 if (page && page->pfmemalloc) 2267 skb->pfmemalloc = true; 2268} 2269 2270/** 2271 * skb_frag_page - retrieve the page referred to by a paged fragment 2272 * @frag: the paged fragment 2273 * 2274 * Returns the &struct page associated with @frag. 2275 */ 2276static inline struct page *skb_frag_page(const skb_frag_t *frag) 2277{ 2278 return frag->page.p; 2279} 2280 2281/** 2282 * __skb_frag_ref - take an addition reference on a paged fragment. 2283 * @frag: the paged fragment 2284 * 2285 * Takes an additional reference on the paged fragment @frag. 2286 */ 2287static inline void __skb_frag_ref(skb_frag_t *frag) 2288{ 2289 get_page(skb_frag_page(frag)); 2290} 2291 2292/** 2293 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2294 * @skb: the buffer 2295 * @f: the fragment offset. 2296 * 2297 * Takes an additional reference on the @f'th paged fragment of @skb. 2298 */ 2299static inline void skb_frag_ref(struct sk_buff *skb, int f) 2300{ 2301 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2302} 2303 2304/** 2305 * __skb_frag_unref - release a reference on a paged fragment. 2306 * @frag: the paged fragment 2307 * 2308 * Releases a reference on the paged fragment @frag. 2309 */ 2310static inline void __skb_frag_unref(skb_frag_t *frag) 2311{ 2312 put_page(skb_frag_page(frag)); 2313} 2314 2315/** 2316 * skb_frag_unref - release a reference on a paged fragment of an skb. 2317 * @skb: the buffer 2318 * @f: the fragment offset 2319 * 2320 * Releases a reference on the @f'th paged fragment of @skb. 2321 */ 2322static inline void skb_frag_unref(struct sk_buff *skb, int f) 2323{ 2324 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2325} 2326 2327/** 2328 * skb_frag_address - gets the address of the data contained in a paged fragment 2329 * @frag: the paged fragment buffer 2330 * 2331 * Returns the address of the data within @frag. The page must already 2332 * be mapped. 2333 */ 2334static inline void *skb_frag_address(const skb_frag_t *frag) 2335{ 2336 return page_address(skb_frag_page(frag)) + frag->page_offset; 2337} 2338 2339/** 2340 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2341 * @frag: the paged fragment buffer 2342 * 2343 * Returns the address of the data within @frag. Checks that the page 2344 * is mapped and returns %NULL otherwise. 2345 */ 2346static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2347{ 2348 void *ptr = page_address(skb_frag_page(frag)); 2349 if (unlikely(!ptr)) 2350 return NULL; 2351 2352 return ptr + frag->page_offset; 2353} 2354 2355/** 2356 * __skb_frag_set_page - sets the page contained in a paged fragment 2357 * @frag: the paged fragment 2358 * @page: the page to set 2359 * 2360 * Sets the fragment @frag to contain @page. 2361 */ 2362static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2363{ 2364 frag->page.p = page; 2365} 2366 2367/** 2368 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2369 * @skb: the buffer 2370 * @f: the fragment offset 2371 * @page: the page to set 2372 * 2373 * Sets the @f'th fragment of @skb to contain @page. 2374 */ 2375static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2376 struct page *page) 2377{ 2378 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2379} 2380 2381bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2382 2383/** 2384 * skb_frag_dma_map - maps a paged fragment via the DMA API 2385 * @dev: the device to map the fragment to 2386 * @frag: the paged fragment to map 2387 * @offset: the offset within the fragment (starting at the 2388 * fragment's own offset) 2389 * @size: the number of bytes to map 2390 * @dir: the direction of the mapping (%PCI_DMA_*) 2391 * 2392 * Maps the page associated with @frag to @device. 2393 */ 2394static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2395 const skb_frag_t *frag, 2396 size_t offset, size_t size, 2397 enum dma_data_direction dir) 2398{ 2399 return dma_map_page(dev, skb_frag_page(frag), 2400 frag->page_offset + offset, size, dir); 2401} 2402 2403static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2404 gfp_t gfp_mask) 2405{ 2406 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2407} 2408 2409 2410static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2411 gfp_t gfp_mask) 2412{ 2413 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2414} 2415 2416 2417/** 2418 * skb_clone_writable - is the header of a clone writable 2419 * @skb: buffer to check 2420 * @len: length up to which to write 2421 * 2422 * Returns true if modifying the header part of the cloned buffer 2423 * does not requires the data to be copied. 2424 */ 2425static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2426{ 2427 return !skb_header_cloned(skb) && 2428 skb_headroom(skb) + len <= skb->hdr_len; 2429} 2430 2431static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2432 int cloned) 2433{ 2434 int delta = 0; 2435 2436 if (headroom > skb_headroom(skb)) 2437 delta = headroom - skb_headroom(skb); 2438 2439 if (delta || cloned) 2440 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2441 GFP_ATOMIC); 2442 return 0; 2443} 2444 2445/** 2446 * skb_cow - copy header of skb when it is required 2447 * @skb: buffer to cow 2448 * @headroom: needed headroom 2449 * 2450 * If the skb passed lacks sufficient headroom or its data part 2451 * is shared, data is reallocated. If reallocation fails, an error 2452 * is returned and original skb is not changed. 2453 * 2454 * The result is skb with writable area skb->head...skb->tail 2455 * and at least @headroom of space at head. 2456 */ 2457static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2458{ 2459 return __skb_cow(skb, headroom, skb_cloned(skb)); 2460} 2461 2462/** 2463 * skb_cow_head - skb_cow but only making the head writable 2464 * @skb: buffer to cow 2465 * @headroom: needed headroom 2466 * 2467 * This function is identical to skb_cow except that we replace the 2468 * skb_cloned check by skb_header_cloned. It should be used when 2469 * you only need to push on some header and do not need to modify 2470 * the data. 2471 */ 2472static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2473{ 2474 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2475} 2476 2477/** 2478 * skb_padto - pad an skbuff up to a minimal size 2479 * @skb: buffer to pad 2480 * @len: minimal length 2481 * 2482 * Pads up a buffer to ensure the trailing bytes exist and are 2483 * blanked. If the buffer already contains sufficient data it 2484 * is untouched. Otherwise it is extended. Returns zero on 2485 * success. The skb is freed on error. 2486 */ 2487static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2488{ 2489 unsigned int size = skb->len; 2490 if (likely(size >= len)) 2491 return 0; 2492 return skb_pad(skb, len - size); 2493} 2494 2495/** 2496 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2497 * @skb: buffer to pad 2498 * @len: minimal length 2499 * 2500 * Pads up a buffer to ensure the trailing bytes exist and are 2501 * blanked. If the buffer already contains sufficient data it 2502 * is untouched. Otherwise it is extended. Returns zero on 2503 * success. The skb is freed on error. 2504 */ 2505static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2506{ 2507 unsigned int size = skb->len; 2508 2509 if (unlikely(size < len)) { 2510 len -= size; 2511 if (skb_pad(skb, len)) 2512 return -ENOMEM; 2513 __skb_put(skb, len); 2514 } 2515 return 0; 2516} 2517 2518static inline int skb_add_data(struct sk_buff *skb, 2519 struct iov_iter *from, int copy) 2520{ 2521 const int off = skb->len; 2522 2523 if (skb->ip_summed == CHECKSUM_NONE) { 2524 __wsum csum = 0; 2525 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2526 &csum, from) == copy) { 2527 skb->csum = csum_block_add(skb->csum, csum, off); 2528 return 0; 2529 } 2530 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2531 return 0; 2532 2533 __skb_trim(skb, off); 2534 return -EFAULT; 2535} 2536 2537static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2538 const struct page *page, int off) 2539{ 2540 if (i) { 2541 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2542 2543 return page == skb_frag_page(frag) && 2544 off == frag->page_offset + skb_frag_size(frag); 2545 } 2546 return false; 2547} 2548 2549static inline int __skb_linearize(struct sk_buff *skb) 2550{ 2551 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2552} 2553 2554/** 2555 * skb_linearize - convert paged skb to linear one 2556 * @skb: buffer to linarize 2557 * 2558 * If there is no free memory -ENOMEM is returned, otherwise zero 2559 * is returned and the old skb data released. 2560 */ 2561static inline int skb_linearize(struct sk_buff *skb) 2562{ 2563 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2564} 2565 2566/** 2567 * skb_has_shared_frag - can any frag be overwritten 2568 * @skb: buffer to test 2569 * 2570 * Return true if the skb has at least one frag that might be modified 2571 * by an external entity (as in vmsplice()/sendfile()) 2572 */ 2573static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2574{ 2575 return skb_is_nonlinear(skb) && 2576 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2577} 2578 2579/** 2580 * skb_linearize_cow - make sure skb is linear and writable 2581 * @skb: buffer to process 2582 * 2583 * If there is no free memory -ENOMEM is returned, otherwise zero 2584 * is returned and the old skb data released. 2585 */ 2586static inline int skb_linearize_cow(struct sk_buff *skb) 2587{ 2588 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2589 __skb_linearize(skb) : 0; 2590} 2591 2592/** 2593 * skb_postpull_rcsum - update checksum for received skb after pull 2594 * @skb: buffer to update 2595 * @start: start of data before pull 2596 * @len: length of data pulled 2597 * 2598 * After doing a pull on a received packet, you need to call this to 2599 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2600 * CHECKSUM_NONE so that it can be recomputed from scratch. 2601 */ 2602 2603static inline void skb_postpull_rcsum(struct sk_buff *skb, 2604 const void *start, unsigned int len) 2605{ 2606 if (skb->ip_summed == CHECKSUM_COMPLETE) 2607 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2608} 2609 2610unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2611 2612/** 2613 * pskb_trim_rcsum - trim received skb and update checksum 2614 * @skb: buffer to trim 2615 * @len: new length 2616 * 2617 * This is exactly the same as pskb_trim except that it ensures the 2618 * checksum of received packets are still valid after the operation. 2619 */ 2620 2621static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2622{ 2623 if (likely(len >= skb->len)) 2624 return 0; 2625 if (skb->ip_summed == CHECKSUM_COMPLETE) 2626 skb->ip_summed = CHECKSUM_NONE; 2627 return __pskb_trim(skb, len); 2628} 2629 2630#define skb_queue_walk(queue, skb) \ 2631 for (skb = (queue)->next; \ 2632 skb != (struct sk_buff *)(queue); \ 2633 skb = skb->next) 2634 2635#define skb_queue_walk_safe(queue, skb, tmp) \ 2636 for (skb = (queue)->next, tmp = skb->next; \ 2637 skb != (struct sk_buff *)(queue); \ 2638 skb = tmp, tmp = skb->next) 2639 2640#define skb_queue_walk_from(queue, skb) \ 2641 for (; skb != (struct sk_buff *)(queue); \ 2642 skb = skb->next) 2643 2644#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2645 for (tmp = skb->next; \ 2646 skb != (struct sk_buff *)(queue); \ 2647 skb = tmp, tmp = skb->next) 2648 2649#define skb_queue_reverse_walk(queue, skb) \ 2650 for (skb = (queue)->prev; \ 2651 skb != (struct sk_buff *)(queue); \ 2652 skb = skb->prev) 2653 2654#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2655 for (skb = (queue)->prev, tmp = skb->prev; \ 2656 skb != (struct sk_buff *)(queue); \ 2657 skb = tmp, tmp = skb->prev) 2658 2659#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2660 for (tmp = skb->prev; \ 2661 skb != (struct sk_buff *)(queue); \ 2662 skb = tmp, tmp = skb->prev) 2663 2664static inline bool skb_has_frag_list(const struct sk_buff *skb) 2665{ 2666 return skb_shinfo(skb)->frag_list != NULL; 2667} 2668 2669static inline void skb_frag_list_init(struct sk_buff *skb) 2670{ 2671 skb_shinfo(skb)->frag_list = NULL; 2672} 2673 2674static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2675{ 2676 frag->next = skb_shinfo(skb)->frag_list; 2677 skb_shinfo(skb)->frag_list = frag; 2678} 2679 2680#define skb_walk_frags(skb, iter) \ 2681 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2682 2683struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2684 int *peeked, int *off, int *err); 2685struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2686 int *err); 2687unsigned int datagram_poll(struct file *file, struct socket *sock, 2688 struct poll_table_struct *wait); 2689int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2690 struct iov_iter *to, int size); 2691static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2692 struct msghdr *msg, int size) 2693{ 2694 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2695} 2696int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2697 struct msghdr *msg); 2698int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2699 struct iov_iter *from, int len); 2700int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2701void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2702void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2703int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2704int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2705int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2706__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2707 int len, __wsum csum); 2708ssize_t skb_socket_splice(struct sock *sk, 2709 struct pipe_inode_info *pipe, 2710 struct splice_pipe_desc *spd); 2711int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2712 struct pipe_inode_info *pipe, unsigned int len, 2713 unsigned int flags, 2714 ssize_t (*splice_cb)(struct sock *, 2715 struct pipe_inode_info *, 2716 struct splice_pipe_desc *)); 2717void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2718unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2719int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2720 int len, int hlen); 2721void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2722int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2723void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2724unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2725struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2726struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2727int skb_ensure_writable(struct sk_buff *skb, int write_len); 2728int skb_vlan_pop(struct sk_buff *skb); 2729int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2730 2731static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2732{ 2733 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2734} 2735 2736static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2737{ 2738 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2739} 2740 2741struct skb_checksum_ops { 2742 __wsum (*update)(const void *mem, int len, __wsum wsum); 2743 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2744}; 2745 2746__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2747 __wsum csum, const struct skb_checksum_ops *ops); 2748__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2749 __wsum csum); 2750 2751static inline void * __must_check 2752__skb_header_pointer(const struct sk_buff *skb, int offset, 2753 int len, void *data, int hlen, void *buffer) 2754{ 2755 if (hlen - offset >= len) 2756 return data + offset; 2757 2758 if (!skb || 2759 skb_copy_bits(skb, offset, buffer, len) < 0) 2760 return NULL; 2761 2762 return buffer; 2763} 2764 2765static inline void * __must_check 2766skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 2767{ 2768 return __skb_header_pointer(skb, offset, len, skb->data, 2769 skb_headlen(skb), buffer); 2770} 2771 2772/** 2773 * skb_needs_linearize - check if we need to linearize a given skb 2774 * depending on the given device features. 2775 * @skb: socket buffer to check 2776 * @features: net device features 2777 * 2778 * Returns true if either: 2779 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2780 * 2. skb is fragmented and the device does not support SG. 2781 */ 2782static inline bool skb_needs_linearize(struct sk_buff *skb, 2783 netdev_features_t features) 2784{ 2785 return skb_is_nonlinear(skb) && 2786 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2787 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2788} 2789 2790static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2791 void *to, 2792 const unsigned int len) 2793{ 2794 memcpy(to, skb->data, len); 2795} 2796 2797static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2798 const int offset, void *to, 2799 const unsigned int len) 2800{ 2801 memcpy(to, skb->data + offset, len); 2802} 2803 2804static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2805 const void *from, 2806 const unsigned int len) 2807{ 2808 memcpy(skb->data, from, len); 2809} 2810 2811static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2812 const int offset, 2813 const void *from, 2814 const unsigned int len) 2815{ 2816 memcpy(skb->data + offset, from, len); 2817} 2818 2819void skb_init(void); 2820 2821static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2822{ 2823 return skb->tstamp; 2824} 2825 2826/** 2827 * skb_get_timestamp - get timestamp from a skb 2828 * @skb: skb to get stamp from 2829 * @stamp: pointer to struct timeval to store stamp in 2830 * 2831 * Timestamps are stored in the skb as offsets to a base timestamp. 2832 * This function converts the offset back to a struct timeval and stores 2833 * it in stamp. 2834 */ 2835static inline void skb_get_timestamp(const struct sk_buff *skb, 2836 struct timeval *stamp) 2837{ 2838 *stamp = ktime_to_timeval(skb->tstamp); 2839} 2840 2841static inline void skb_get_timestampns(const struct sk_buff *skb, 2842 struct timespec *stamp) 2843{ 2844 *stamp = ktime_to_timespec(skb->tstamp); 2845} 2846 2847static inline void __net_timestamp(struct sk_buff *skb) 2848{ 2849 skb->tstamp = ktime_get_real(); 2850} 2851 2852static inline ktime_t net_timedelta(ktime_t t) 2853{ 2854 return ktime_sub(ktime_get_real(), t); 2855} 2856 2857static inline ktime_t net_invalid_timestamp(void) 2858{ 2859 return ktime_set(0, 0); 2860} 2861 2862struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2863 2864#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2865 2866void skb_clone_tx_timestamp(struct sk_buff *skb); 2867bool skb_defer_rx_timestamp(struct sk_buff *skb); 2868 2869#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2870 2871static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2872{ 2873} 2874 2875static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2876{ 2877 return false; 2878} 2879 2880#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2881 2882/** 2883 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2884 * 2885 * PHY drivers may accept clones of transmitted packets for 2886 * timestamping via their phy_driver.txtstamp method. These drivers 2887 * must call this function to return the skb back to the stack, with 2888 * or without a timestamp. 2889 * 2890 * @skb: clone of the the original outgoing packet 2891 * @hwtstamps: hardware time stamps, may be NULL if not available 2892 * 2893 */ 2894void skb_complete_tx_timestamp(struct sk_buff *skb, 2895 struct skb_shared_hwtstamps *hwtstamps); 2896 2897void __skb_tstamp_tx(struct sk_buff *orig_skb, 2898 struct skb_shared_hwtstamps *hwtstamps, 2899 struct sock *sk, int tstype); 2900 2901/** 2902 * skb_tstamp_tx - queue clone of skb with send time stamps 2903 * @orig_skb: the original outgoing packet 2904 * @hwtstamps: hardware time stamps, may be NULL if not available 2905 * 2906 * If the skb has a socket associated, then this function clones the 2907 * skb (thus sharing the actual data and optional structures), stores 2908 * the optional hardware time stamping information (if non NULL) or 2909 * generates a software time stamp (otherwise), then queues the clone 2910 * to the error queue of the socket. Errors are silently ignored. 2911 */ 2912void skb_tstamp_tx(struct sk_buff *orig_skb, 2913 struct skb_shared_hwtstamps *hwtstamps); 2914 2915static inline void sw_tx_timestamp(struct sk_buff *skb) 2916{ 2917 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2918 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2919 skb_tstamp_tx(skb, NULL); 2920} 2921 2922/** 2923 * skb_tx_timestamp() - Driver hook for transmit timestamping 2924 * 2925 * Ethernet MAC Drivers should call this function in their hard_xmit() 2926 * function immediately before giving the sk_buff to the MAC hardware. 2927 * 2928 * Specifically, one should make absolutely sure that this function is 2929 * called before TX completion of this packet can trigger. Otherwise 2930 * the packet could potentially already be freed. 2931 * 2932 * @skb: A socket buffer. 2933 */ 2934static inline void skb_tx_timestamp(struct sk_buff *skb) 2935{ 2936 skb_clone_tx_timestamp(skb); 2937 sw_tx_timestamp(skb); 2938} 2939 2940/** 2941 * skb_complete_wifi_ack - deliver skb with wifi status 2942 * 2943 * @skb: the original outgoing packet 2944 * @acked: ack status 2945 * 2946 */ 2947void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2948 2949__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2950__sum16 __skb_checksum_complete(struct sk_buff *skb); 2951 2952static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2953{ 2954 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 2955 skb->csum_valid || 2956 (skb->ip_summed == CHECKSUM_PARTIAL && 2957 skb_checksum_start_offset(skb) >= 0)); 2958} 2959 2960/** 2961 * skb_checksum_complete - Calculate checksum of an entire packet 2962 * @skb: packet to process 2963 * 2964 * This function calculates the checksum over the entire packet plus 2965 * the value of skb->csum. The latter can be used to supply the 2966 * checksum of a pseudo header as used by TCP/UDP. It returns the 2967 * checksum. 2968 * 2969 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2970 * this function can be used to verify that checksum on received 2971 * packets. In that case the function should return zero if the 2972 * checksum is correct. In particular, this function will return zero 2973 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2974 * hardware has already verified the correctness of the checksum. 2975 */ 2976static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2977{ 2978 return skb_csum_unnecessary(skb) ? 2979 0 : __skb_checksum_complete(skb); 2980} 2981 2982static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2983{ 2984 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2985 if (skb->csum_level == 0) 2986 skb->ip_summed = CHECKSUM_NONE; 2987 else 2988 skb->csum_level--; 2989 } 2990} 2991 2992static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2993{ 2994 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2995 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2996 skb->csum_level++; 2997 } else if (skb->ip_summed == CHECKSUM_NONE) { 2998 skb->ip_summed = CHECKSUM_UNNECESSARY; 2999 skb->csum_level = 0; 3000 } 3001} 3002 3003static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3004{ 3005 /* Mark current checksum as bad (typically called from GRO 3006 * path). In the case that ip_summed is CHECKSUM_NONE 3007 * this must be the first checksum encountered in the packet. 3008 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3009 * checksum after the last one validated. For UDP, a zero 3010 * checksum can not be marked as bad. 3011 */ 3012 3013 if (skb->ip_summed == CHECKSUM_NONE || 3014 skb->ip_summed == CHECKSUM_UNNECESSARY) 3015 skb->csum_bad = 1; 3016} 3017 3018/* Check if we need to perform checksum complete validation. 3019 * 3020 * Returns true if checksum complete is needed, false otherwise 3021 * (either checksum is unnecessary or zero checksum is allowed). 3022 */ 3023static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3024 bool zero_okay, 3025 __sum16 check) 3026{ 3027 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3028 skb->csum_valid = 1; 3029 __skb_decr_checksum_unnecessary(skb); 3030 return false; 3031 } 3032 3033 return true; 3034} 3035 3036/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3037 * in checksum_init. 3038 */ 3039#define CHECKSUM_BREAK 76 3040 3041/* Unset checksum-complete 3042 * 3043 * Unset checksum complete can be done when packet is being modified 3044 * (uncompressed for instance) and checksum-complete value is 3045 * invalidated. 3046 */ 3047static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3048{ 3049 if (skb->ip_summed == CHECKSUM_COMPLETE) 3050 skb->ip_summed = CHECKSUM_NONE; 3051} 3052 3053/* Validate (init) checksum based on checksum complete. 3054 * 3055 * Return values: 3056 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3057 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3058 * checksum is stored in skb->csum for use in __skb_checksum_complete 3059 * non-zero: value of invalid checksum 3060 * 3061 */ 3062static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3063 bool complete, 3064 __wsum psum) 3065{ 3066 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3067 if (!csum_fold(csum_add(psum, skb->csum))) { 3068 skb->csum_valid = 1; 3069 return 0; 3070 } 3071 } else if (skb->csum_bad) { 3072 /* ip_summed == CHECKSUM_NONE in this case */ 3073 return (__force __sum16)1; 3074 } 3075 3076 skb->csum = psum; 3077 3078 if (complete || skb->len <= CHECKSUM_BREAK) { 3079 __sum16 csum; 3080 3081 csum = __skb_checksum_complete(skb); 3082 skb->csum_valid = !csum; 3083 return csum; 3084 } 3085 3086 return 0; 3087} 3088 3089static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3090{ 3091 return 0; 3092} 3093 3094/* Perform checksum validate (init). Note that this is a macro since we only 3095 * want to calculate the pseudo header which is an input function if necessary. 3096 * First we try to validate without any computation (checksum unnecessary) and 3097 * then calculate based on checksum complete calling the function to compute 3098 * pseudo header. 3099 * 3100 * Return values: 3101 * 0: checksum is validated or try to in skb_checksum_complete 3102 * non-zero: value of invalid checksum 3103 */ 3104#define __skb_checksum_validate(skb, proto, complete, \ 3105 zero_okay, check, compute_pseudo) \ 3106({ \ 3107 __sum16 __ret = 0; \ 3108 skb->csum_valid = 0; \ 3109 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3110 __ret = __skb_checksum_validate_complete(skb, \ 3111 complete, compute_pseudo(skb, proto)); \ 3112 __ret; \ 3113}) 3114 3115#define skb_checksum_init(skb, proto, compute_pseudo) \ 3116 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3117 3118#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3119 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3120 3121#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3122 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3123 3124#define skb_checksum_validate_zero_check(skb, proto, check, \ 3125 compute_pseudo) \ 3126 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3127 3128#define skb_checksum_simple_validate(skb) \ 3129 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3130 3131static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3132{ 3133 return (skb->ip_summed == CHECKSUM_NONE && 3134 skb->csum_valid && !skb->csum_bad); 3135} 3136 3137static inline void __skb_checksum_convert(struct sk_buff *skb, 3138 __sum16 check, __wsum pseudo) 3139{ 3140 skb->csum = ~pseudo; 3141 skb->ip_summed = CHECKSUM_COMPLETE; 3142} 3143 3144#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3145do { \ 3146 if (__skb_checksum_convert_check(skb)) \ 3147 __skb_checksum_convert(skb, check, \ 3148 compute_pseudo(skb, proto)); \ 3149} while (0) 3150 3151static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3152 u16 start, u16 offset) 3153{ 3154 skb->ip_summed = CHECKSUM_PARTIAL; 3155 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3156 skb->csum_offset = offset - start; 3157} 3158 3159/* Update skbuf and packet to reflect the remote checksum offload operation. 3160 * When called, ptr indicates the starting point for skb->csum when 3161 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3162 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3163 */ 3164static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3165 int start, int offset, bool nopartial) 3166{ 3167 __wsum delta; 3168 3169 if (!nopartial) { 3170 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3171 return; 3172 } 3173 3174 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3175 __skb_checksum_complete(skb); 3176 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3177 } 3178 3179 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3180 3181 /* Adjust skb->csum since we changed the packet */ 3182 skb->csum = csum_add(skb->csum, delta); 3183} 3184 3185#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3186void nf_conntrack_destroy(struct nf_conntrack *nfct); 3187static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3188{ 3189 if (nfct && atomic_dec_and_test(&nfct->use)) 3190 nf_conntrack_destroy(nfct); 3191} 3192static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3193{ 3194 if (nfct) 3195 atomic_inc(&nfct->use); 3196} 3197#endif 3198#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3199static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3200{ 3201 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3202 kfree(nf_bridge); 3203} 3204static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3205{ 3206 if (nf_bridge) 3207 atomic_inc(&nf_bridge->use); 3208} 3209#endif /* CONFIG_BRIDGE_NETFILTER */ 3210static inline void nf_reset(struct sk_buff *skb) 3211{ 3212#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3213 nf_conntrack_put(skb->nfct); 3214 skb->nfct = NULL; 3215#endif 3216#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3217 nf_bridge_put(skb->nf_bridge); 3218 skb->nf_bridge = NULL; 3219#endif 3220} 3221 3222static inline void nf_reset_trace(struct sk_buff *skb) 3223{ 3224#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3225 skb->nf_trace = 0; 3226#endif 3227} 3228 3229/* Note: This doesn't put any conntrack and bridge info in dst. */ 3230static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3231 bool copy) 3232{ 3233#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3234 dst->nfct = src->nfct; 3235 nf_conntrack_get(src->nfct); 3236 if (copy) 3237 dst->nfctinfo = src->nfctinfo; 3238#endif 3239#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3240 dst->nf_bridge = src->nf_bridge; 3241 nf_bridge_get(src->nf_bridge); 3242#endif 3243#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3244 if (copy) 3245 dst->nf_trace = src->nf_trace; 3246#endif 3247} 3248 3249static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3250{ 3251#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3252 nf_conntrack_put(dst->nfct); 3253#endif 3254#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3255 nf_bridge_put(dst->nf_bridge); 3256#endif 3257 __nf_copy(dst, src, true); 3258} 3259 3260#ifdef CONFIG_NETWORK_SECMARK 3261static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3262{ 3263 to->secmark = from->secmark; 3264} 3265 3266static inline void skb_init_secmark(struct sk_buff *skb) 3267{ 3268 skb->secmark = 0; 3269} 3270#else 3271static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3272{ } 3273 3274static inline void skb_init_secmark(struct sk_buff *skb) 3275{ } 3276#endif 3277 3278static inline bool skb_irq_freeable(const struct sk_buff *skb) 3279{ 3280 return !skb->destructor && 3281#if IS_ENABLED(CONFIG_XFRM) 3282 !skb->sp && 3283#endif 3284#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3285 !skb->nfct && 3286#endif 3287 !skb->_skb_refdst && 3288 !skb_has_frag_list(skb); 3289} 3290 3291static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3292{ 3293 skb->queue_mapping = queue_mapping; 3294} 3295 3296static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3297{ 3298 return skb->queue_mapping; 3299} 3300 3301static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3302{ 3303 to->queue_mapping = from->queue_mapping; 3304} 3305 3306static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3307{ 3308 skb->queue_mapping = rx_queue + 1; 3309} 3310 3311static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3312{ 3313 return skb->queue_mapping - 1; 3314} 3315 3316static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3317{ 3318 return skb->queue_mapping != 0; 3319} 3320 3321static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3322{ 3323#ifdef CONFIG_XFRM 3324 return skb->sp; 3325#else 3326 return NULL; 3327#endif 3328} 3329 3330/* Keeps track of mac header offset relative to skb->head. 3331 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3332 * For non-tunnel skb it points to skb_mac_header() and for 3333 * tunnel skb it points to outer mac header. 3334 * Keeps track of level of encapsulation of network headers. 3335 */ 3336struct skb_gso_cb { 3337 int mac_offset; 3338 int encap_level; 3339 __u16 csum_start; 3340}; 3341#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3342 3343static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3344{ 3345 return (skb_mac_header(inner_skb) - inner_skb->head) - 3346 SKB_GSO_CB(inner_skb)->mac_offset; 3347} 3348 3349static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3350{ 3351 int new_headroom, headroom; 3352 int ret; 3353 3354 headroom = skb_headroom(skb); 3355 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3356 if (ret) 3357 return ret; 3358 3359 new_headroom = skb_headroom(skb); 3360 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3361 return 0; 3362} 3363 3364/* Compute the checksum for a gso segment. First compute the checksum value 3365 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3366 * then add in skb->csum (checksum from csum_start to end of packet). 3367 * skb->csum and csum_start are then updated to reflect the checksum of the 3368 * resultant packet starting from the transport header-- the resultant checksum 3369 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3370 * header. 3371 */ 3372static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3373{ 3374 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3375 skb_transport_offset(skb); 3376 __wsum partial; 3377 3378 partial = csum_partial(skb_transport_header(skb), plen, skb->csum); 3379 skb->csum = res; 3380 SKB_GSO_CB(skb)->csum_start -= plen; 3381 3382 return csum_fold(partial); 3383} 3384 3385static inline bool skb_is_gso(const struct sk_buff *skb) 3386{ 3387 return skb_shinfo(skb)->gso_size; 3388} 3389 3390/* Note: Should be called only if skb_is_gso(skb) is true */ 3391static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3392{ 3393 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3394} 3395 3396void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3397 3398static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3399{ 3400 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3401 * wanted then gso_type will be set. */ 3402 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3403 3404 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3405 unlikely(shinfo->gso_type == 0)) { 3406 __skb_warn_lro_forwarding(skb); 3407 return true; 3408 } 3409 return false; 3410} 3411 3412static inline void skb_forward_csum(struct sk_buff *skb) 3413{ 3414 /* Unfortunately we don't support this one. Any brave souls? */ 3415 if (skb->ip_summed == CHECKSUM_COMPLETE) 3416 skb->ip_summed = CHECKSUM_NONE; 3417} 3418 3419/** 3420 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3421 * @skb: skb to check 3422 * 3423 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3424 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3425 * use this helper, to document places where we make this assertion. 3426 */ 3427static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3428{ 3429#ifdef DEBUG 3430 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3431#endif 3432} 3433 3434bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3435 3436int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3437struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3438 unsigned int transport_len, 3439 __sum16(*skb_chkf)(struct sk_buff *skb)); 3440 3441/** 3442 * skb_head_is_locked - Determine if the skb->head is locked down 3443 * @skb: skb to check 3444 * 3445 * The head on skbs build around a head frag can be removed if they are 3446 * not cloned. This function returns true if the skb head is locked down 3447 * due to either being allocated via kmalloc, or by being a clone with 3448 * multiple references to the head. 3449 */ 3450static inline bool skb_head_is_locked(const struct sk_buff *skb) 3451{ 3452 return !skb->head_frag || skb_cloned(skb); 3453} 3454 3455/** 3456 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3457 * 3458 * @skb: GSO skb 3459 * 3460 * skb_gso_network_seglen is used to determine the real size of the 3461 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3462 * 3463 * The MAC/L2 header is not accounted for. 3464 */ 3465static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3466{ 3467 unsigned int hdr_len = skb_transport_header(skb) - 3468 skb_network_header(skb); 3469 return hdr_len + skb_gso_transport_seglen(skb); 3470} 3471#endif /* __KERNEL__ */ 3472#endif /* _LINUX_SKBUFF_H */