at v4.2-rc2 16 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/uprobes.h> 14#include <linux/page-flags-layout.h> 15#include <asm/page.h> 16#include <asm/mmu.h> 17 18#ifndef AT_VECTOR_SIZE_ARCH 19#define AT_VECTOR_SIZE_ARCH 0 20#endif 21#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 22 23struct address_space; 24struct mem_cgroup; 25 26#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27#define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 29#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 30 31typedef void compound_page_dtor(struct page *); 32 33/* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * The objects in struct page are organized in double word blocks in 41 * order to allows us to use atomic double word operations on portions 42 * of struct page. That is currently only used by slub but the arrangement 43 * allows the use of atomic double word operations on the flags/mapping 44 * and lru list pointers also. 45 */ 46struct page { 47 /* First double word block */ 48 unsigned long flags; /* Atomic flags, some possibly 49 * updated asynchronously */ 50 union { 51 struct address_space *mapping; /* If low bit clear, points to 52 * inode address_space, or NULL. 53 * If page mapped as anonymous 54 * memory, low bit is set, and 55 * it points to anon_vma object: 56 * see PAGE_MAPPING_ANON below. 57 */ 58 void *s_mem; /* slab first object */ 59 }; 60 61 /* Second double word */ 62 struct { 63 union { 64 pgoff_t index; /* Our offset within mapping. */ 65 void *freelist; /* sl[aou]b first free object */ 66 bool pfmemalloc; /* If set by the page allocator, 67 * ALLOC_NO_WATERMARKS was set 68 * and the low watermark was not 69 * met implying that the system 70 * is under some pressure. The 71 * caller should try ensure 72 * this page is only used to 73 * free other pages. 74 */ 75 }; 76 77 union { 78#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 79 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 80 /* Used for cmpxchg_double in slub */ 81 unsigned long counters; 82#else 83 /* 84 * Keep _count separate from slub cmpxchg_double data. 85 * As the rest of the double word is protected by 86 * slab_lock but _count is not. 87 */ 88 unsigned counters; 89#endif 90 91 struct { 92 93 union { 94 /* 95 * Count of ptes mapped in 96 * mms, to show when page is 97 * mapped & limit reverse map 98 * searches. 99 * 100 * Used also for tail pages 101 * refcounting instead of 102 * _count. Tail pages cannot 103 * be mapped and keeping the 104 * tail page _count zero at 105 * all times guarantees 106 * get_page_unless_zero() will 107 * never succeed on tail 108 * pages. 109 */ 110 atomic_t _mapcount; 111 112 struct { /* SLUB */ 113 unsigned inuse:16; 114 unsigned objects:15; 115 unsigned frozen:1; 116 }; 117 int units; /* SLOB */ 118 }; 119 atomic_t _count; /* Usage count, see below. */ 120 }; 121 unsigned int active; /* SLAB */ 122 }; 123 }; 124 125 /* Third double word block */ 126 union { 127 struct list_head lru; /* Pageout list, eg. active_list 128 * protected by zone->lru_lock ! 129 * Can be used as a generic list 130 * by the page owner. 131 */ 132 struct { /* slub per cpu partial pages */ 133 struct page *next; /* Next partial slab */ 134#ifdef CONFIG_64BIT 135 int pages; /* Nr of partial slabs left */ 136 int pobjects; /* Approximate # of objects */ 137#else 138 short int pages; 139 short int pobjects; 140#endif 141 }; 142 143 struct slab *slab_page; /* slab fields */ 144 struct rcu_head rcu_head; /* Used by SLAB 145 * when destroying via RCU 146 */ 147 /* First tail page of compound page */ 148 struct { 149 compound_page_dtor *compound_dtor; 150 unsigned long compound_order; 151 }; 152 153#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 154 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 155#endif 156 }; 157 158 /* Remainder is not double word aligned */ 159 union { 160 unsigned long private; /* Mapping-private opaque data: 161 * usually used for buffer_heads 162 * if PagePrivate set; used for 163 * swp_entry_t if PageSwapCache; 164 * indicates order in the buddy 165 * system if PG_buddy is set. 166 */ 167#if USE_SPLIT_PTE_PTLOCKS 168#if ALLOC_SPLIT_PTLOCKS 169 spinlock_t *ptl; 170#else 171 spinlock_t ptl; 172#endif 173#endif 174 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 175 struct page *first_page; /* Compound tail pages */ 176 }; 177 178#ifdef CONFIG_MEMCG 179 struct mem_cgroup *mem_cgroup; 180#endif 181 182 /* 183 * On machines where all RAM is mapped into kernel address space, 184 * we can simply calculate the virtual address. On machines with 185 * highmem some memory is mapped into kernel virtual memory 186 * dynamically, so we need a place to store that address. 187 * Note that this field could be 16 bits on x86 ... ;) 188 * 189 * Architectures with slow multiplication can define 190 * WANT_PAGE_VIRTUAL in asm/page.h 191 */ 192#if defined(WANT_PAGE_VIRTUAL) 193 void *virtual; /* Kernel virtual address (NULL if 194 not kmapped, ie. highmem) */ 195#endif /* WANT_PAGE_VIRTUAL */ 196 197#ifdef CONFIG_KMEMCHECK 198 /* 199 * kmemcheck wants to track the status of each byte in a page; this 200 * is a pointer to such a status block. NULL if not tracked. 201 */ 202 void *shadow; 203#endif 204 205#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 206 int _last_cpupid; 207#endif 208} 209/* 210 * The struct page can be forced to be double word aligned so that atomic ops 211 * on double words work. The SLUB allocator can make use of such a feature. 212 */ 213#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 214 __aligned(2 * sizeof(unsigned long)) 215#endif 216; 217 218struct page_frag { 219 struct page *page; 220#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 221 __u32 offset; 222 __u32 size; 223#else 224 __u16 offset; 225 __u16 size; 226#endif 227}; 228 229#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 230#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 231 232struct page_frag_cache { 233 void * va; 234#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 235 __u16 offset; 236 __u16 size; 237#else 238 __u32 offset; 239#endif 240 /* we maintain a pagecount bias, so that we dont dirty cache line 241 * containing page->_count every time we allocate a fragment. 242 */ 243 unsigned int pagecnt_bias; 244 bool pfmemalloc; 245}; 246 247typedef unsigned long __nocast vm_flags_t; 248 249/* 250 * A region containing a mapping of a non-memory backed file under NOMMU 251 * conditions. These are held in a global tree and are pinned by the VMAs that 252 * map parts of them. 253 */ 254struct vm_region { 255 struct rb_node vm_rb; /* link in global region tree */ 256 vm_flags_t vm_flags; /* VMA vm_flags */ 257 unsigned long vm_start; /* start address of region */ 258 unsigned long vm_end; /* region initialised to here */ 259 unsigned long vm_top; /* region allocated to here */ 260 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 261 struct file *vm_file; /* the backing file or NULL */ 262 263 int vm_usage; /* region usage count (access under nommu_region_sem) */ 264 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 265 * this region */ 266}; 267 268/* 269 * This struct defines a memory VMM memory area. There is one of these 270 * per VM-area/task. A VM area is any part of the process virtual memory 271 * space that has a special rule for the page-fault handlers (ie a shared 272 * library, the executable area etc). 273 */ 274struct vm_area_struct { 275 /* The first cache line has the info for VMA tree walking. */ 276 277 unsigned long vm_start; /* Our start address within vm_mm. */ 278 unsigned long vm_end; /* The first byte after our end address 279 within vm_mm. */ 280 281 /* linked list of VM areas per task, sorted by address */ 282 struct vm_area_struct *vm_next, *vm_prev; 283 284 struct rb_node vm_rb; 285 286 /* 287 * Largest free memory gap in bytes to the left of this VMA. 288 * Either between this VMA and vma->vm_prev, or between one of the 289 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 290 * get_unmapped_area find a free area of the right size. 291 */ 292 unsigned long rb_subtree_gap; 293 294 /* Second cache line starts here. */ 295 296 struct mm_struct *vm_mm; /* The address space we belong to. */ 297 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 298 unsigned long vm_flags; /* Flags, see mm.h. */ 299 300 /* 301 * For areas with an address space and backing store, 302 * linkage into the address_space->i_mmap interval tree. 303 */ 304 struct { 305 struct rb_node rb; 306 unsigned long rb_subtree_last; 307 } shared; 308 309 /* 310 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 311 * list, after a COW of one of the file pages. A MAP_SHARED vma 312 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 313 * or brk vma (with NULL file) can only be in an anon_vma list. 314 */ 315 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 316 * page_table_lock */ 317 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 318 319 /* Function pointers to deal with this struct. */ 320 const struct vm_operations_struct *vm_ops; 321 322 /* Information about our backing store: */ 323 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 324 units, *not* PAGE_CACHE_SIZE */ 325 struct file * vm_file; /* File we map to (can be NULL). */ 326 void * vm_private_data; /* was vm_pte (shared mem) */ 327 328#ifndef CONFIG_MMU 329 struct vm_region *vm_region; /* NOMMU mapping region */ 330#endif 331#ifdef CONFIG_NUMA 332 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 333#endif 334}; 335 336struct core_thread { 337 struct task_struct *task; 338 struct core_thread *next; 339}; 340 341struct core_state { 342 atomic_t nr_threads; 343 struct core_thread dumper; 344 struct completion startup; 345}; 346 347enum { 348 MM_FILEPAGES, 349 MM_ANONPAGES, 350 MM_SWAPENTS, 351 NR_MM_COUNTERS 352}; 353 354#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 355#define SPLIT_RSS_COUNTING 356/* per-thread cached information, */ 357struct task_rss_stat { 358 int events; /* for synchronization threshold */ 359 int count[NR_MM_COUNTERS]; 360}; 361#endif /* USE_SPLIT_PTE_PTLOCKS */ 362 363struct mm_rss_stat { 364 atomic_long_t count[NR_MM_COUNTERS]; 365}; 366 367struct kioctx_table; 368struct mm_struct { 369 struct vm_area_struct *mmap; /* list of VMAs */ 370 struct rb_root mm_rb; 371 u32 vmacache_seqnum; /* per-thread vmacache */ 372#ifdef CONFIG_MMU 373 unsigned long (*get_unmapped_area) (struct file *filp, 374 unsigned long addr, unsigned long len, 375 unsigned long pgoff, unsigned long flags); 376#endif 377 unsigned long mmap_base; /* base of mmap area */ 378 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 379 unsigned long task_size; /* size of task vm space */ 380 unsigned long highest_vm_end; /* highest vma end address */ 381 pgd_t * pgd; 382 atomic_t mm_users; /* How many users with user space? */ 383 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 384 atomic_long_t nr_ptes; /* PTE page table pages */ 385#if CONFIG_PGTABLE_LEVELS > 2 386 atomic_long_t nr_pmds; /* PMD page table pages */ 387#endif 388 int map_count; /* number of VMAs */ 389 390 spinlock_t page_table_lock; /* Protects page tables and some counters */ 391 struct rw_semaphore mmap_sem; 392 393 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 394 * together off init_mm.mmlist, and are protected 395 * by mmlist_lock 396 */ 397 398 399 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 400 unsigned long hiwater_vm; /* High-water virtual memory usage */ 401 402 unsigned long total_vm; /* Total pages mapped */ 403 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 404 unsigned long pinned_vm; /* Refcount permanently increased */ 405 unsigned long shared_vm; /* Shared pages (files) */ 406 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 407 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 408 unsigned long def_flags; 409 unsigned long start_code, end_code, start_data, end_data; 410 unsigned long start_brk, brk, start_stack; 411 unsigned long arg_start, arg_end, env_start, env_end; 412 413 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 414 415 /* 416 * Special counters, in some configurations protected by the 417 * page_table_lock, in other configurations by being atomic. 418 */ 419 struct mm_rss_stat rss_stat; 420 421 struct linux_binfmt *binfmt; 422 423 cpumask_var_t cpu_vm_mask_var; 424 425 /* Architecture-specific MM context */ 426 mm_context_t context; 427 428 unsigned long flags; /* Must use atomic bitops to access the bits */ 429 430 struct core_state *core_state; /* coredumping support */ 431#ifdef CONFIG_AIO 432 spinlock_t ioctx_lock; 433 struct kioctx_table __rcu *ioctx_table; 434#endif 435#ifdef CONFIG_MEMCG 436 /* 437 * "owner" points to a task that is regarded as the canonical 438 * user/owner of this mm. All of the following must be true in 439 * order for it to be changed: 440 * 441 * current == mm->owner 442 * current->mm != mm 443 * new_owner->mm == mm 444 * new_owner->alloc_lock is held 445 */ 446 struct task_struct __rcu *owner; 447#endif 448 449 /* store ref to file /proc/<pid>/exe symlink points to */ 450 struct file __rcu *exe_file; 451#ifdef CONFIG_MMU_NOTIFIER 452 struct mmu_notifier_mm *mmu_notifier_mm; 453#endif 454#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 455 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 456#endif 457#ifdef CONFIG_CPUMASK_OFFSTACK 458 struct cpumask cpumask_allocation; 459#endif 460#ifdef CONFIG_NUMA_BALANCING 461 /* 462 * numa_next_scan is the next time that the PTEs will be marked 463 * pte_numa. NUMA hinting faults will gather statistics and migrate 464 * pages to new nodes if necessary. 465 */ 466 unsigned long numa_next_scan; 467 468 /* Restart point for scanning and setting pte_numa */ 469 unsigned long numa_scan_offset; 470 471 /* numa_scan_seq prevents two threads setting pte_numa */ 472 int numa_scan_seq; 473#endif 474#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 475 /* 476 * An operation with batched TLB flushing is going on. Anything that 477 * can move process memory needs to flush the TLB when moving a 478 * PROT_NONE or PROT_NUMA mapped page. 479 */ 480 bool tlb_flush_pending; 481#endif 482 struct uprobes_state uprobes_state; 483#ifdef CONFIG_X86_INTEL_MPX 484 /* address of the bounds directory */ 485 void __user *bd_addr; 486#endif 487}; 488 489static inline void mm_init_cpumask(struct mm_struct *mm) 490{ 491#ifdef CONFIG_CPUMASK_OFFSTACK 492 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 493#endif 494 cpumask_clear(mm->cpu_vm_mask_var); 495} 496 497/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 498static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 499{ 500 return mm->cpu_vm_mask_var; 501} 502 503#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 504/* 505 * Memory barriers to keep this state in sync are graciously provided by 506 * the page table locks, outside of which no page table modifications happen. 507 * The barriers below prevent the compiler from re-ordering the instructions 508 * around the memory barriers that are already present in the code. 509 */ 510static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 511{ 512 barrier(); 513 return mm->tlb_flush_pending; 514} 515static inline void set_tlb_flush_pending(struct mm_struct *mm) 516{ 517 mm->tlb_flush_pending = true; 518 519 /* 520 * Guarantee that the tlb_flush_pending store does not leak into the 521 * critical section updating the page tables 522 */ 523 smp_mb__before_spinlock(); 524} 525/* Clearing is done after a TLB flush, which also provides a barrier. */ 526static inline void clear_tlb_flush_pending(struct mm_struct *mm) 527{ 528 barrier(); 529 mm->tlb_flush_pending = false; 530} 531#else 532static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 533{ 534 return false; 535} 536static inline void set_tlb_flush_pending(struct mm_struct *mm) 537{ 538} 539static inline void clear_tlb_flush_pending(struct mm_struct *mm) 540{ 541} 542#endif 543 544struct vm_special_mapping 545{ 546 const char *name; 547 struct page **pages; 548}; 549 550enum tlb_flush_reason { 551 TLB_FLUSH_ON_TASK_SWITCH, 552 TLB_REMOTE_SHOOTDOWN, 553 TLB_LOCAL_SHOOTDOWN, 554 TLB_LOCAL_MM_SHOOTDOWN, 555 NR_TLB_FLUSH_REASONS, 556}; 557 558 /* 559 * A swap entry has to fit into a "unsigned long", as the entry is hidden 560 * in the "index" field of the swapper address space. 561 */ 562typedef struct { 563 unsigned long val; 564} swp_entry_t; 565 566#endif /* _LINUX_MM_TYPES_H */