Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
28#include <linux/acpi.h>
29#include <linux/vmalloc.h>
30#include <trace/events/power.h>
31
32#include <asm/div64.h>
33#include <asm/msr.h>
34#include <asm/cpu_device_id.h>
35#include <asm/cpufeature.h>
36
37#define BYT_RATIOS 0x66a
38#define BYT_VIDS 0x66b
39#define BYT_TURBO_RATIOS 0x66c
40#define BYT_TURBO_VIDS 0x66d
41
42#define FRAC_BITS 8
43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44#define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47static inline int32_t mul_fp(int32_t x, int32_t y)
48{
49 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50}
51
52static inline int32_t div_fp(s64 x, s64 y)
53{
54 return div64_s64((int64_t)x << FRAC_BITS, y);
55}
56
57static inline int ceiling_fp(int32_t x)
58{
59 int mask, ret;
60
61 ret = fp_toint(x);
62 mask = (1 << FRAC_BITS) - 1;
63 if (x & mask)
64 ret += 1;
65 return ret;
66}
67
68struct sample {
69 int32_t core_pct_busy;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 ktime_t time;
75};
76
77struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int scaling;
82 int turbo_pstate;
83};
84
85struct vid_data {
86 int min;
87 int max;
88 int turbo;
89 int32_t ratio;
90};
91
92struct _pid {
93 int setpoint;
94 int32_t integral;
95 int32_t p_gain;
96 int32_t i_gain;
97 int32_t d_gain;
98 int deadband;
99 int32_t last_err;
100};
101
102struct cpudata {
103 int cpu;
104
105 struct timer_list timer;
106
107 struct pstate_data pstate;
108 struct vid_data vid;
109 struct _pid pid;
110
111 ktime_t last_sample_time;
112 u64 prev_aperf;
113 u64 prev_mperf;
114 u64 prev_tsc;
115 struct sample sample;
116};
117
118static struct cpudata **all_cpu_data;
119struct pstate_adjust_policy {
120 int sample_rate_ms;
121 int deadband;
122 int setpoint;
123 int p_gain_pct;
124 int d_gain_pct;
125 int i_gain_pct;
126};
127
128struct pstate_funcs {
129 int (*get_max)(void);
130 int (*get_min)(void);
131 int (*get_turbo)(void);
132 int (*get_scaling)(void);
133 void (*set)(struct cpudata*, int pstate);
134 void (*get_vid)(struct cpudata *);
135};
136
137struct cpu_defaults {
138 struct pstate_adjust_policy pid_policy;
139 struct pstate_funcs funcs;
140};
141
142static struct pstate_adjust_policy pid_params;
143static struct pstate_funcs pstate_funcs;
144static int hwp_active;
145
146struct perf_limits {
147 int no_turbo;
148 int turbo_disabled;
149 int max_perf_pct;
150 int min_perf_pct;
151 int32_t max_perf;
152 int32_t min_perf;
153 int max_policy_pct;
154 int max_sysfs_pct;
155 int min_policy_pct;
156 int min_sysfs_pct;
157};
158
159static struct perf_limits limits = {
160 .no_turbo = 0,
161 .turbo_disabled = 0,
162 .max_perf_pct = 100,
163 .max_perf = int_tofp(1),
164 .min_perf_pct = 0,
165 .min_perf = 0,
166 .max_policy_pct = 100,
167 .max_sysfs_pct = 100,
168 .min_policy_pct = 0,
169 .min_sysfs_pct = 0,
170};
171
172static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 int deadband, int integral) {
174 pid->setpoint = setpoint;
175 pid->deadband = deadband;
176 pid->integral = int_tofp(integral);
177 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
178}
179
180static inline void pid_p_gain_set(struct _pid *pid, int percent)
181{
182 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183}
184
185static inline void pid_i_gain_set(struct _pid *pid, int percent)
186{
187 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188}
189
190static inline void pid_d_gain_set(struct _pid *pid, int percent)
191{
192 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193}
194
195static signed int pid_calc(struct _pid *pid, int32_t busy)
196{
197 signed int result;
198 int32_t pterm, dterm, fp_error;
199 int32_t integral_limit;
200
201 fp_error = int_tofp(pid->setpoint) - busy;
202
203 if (abs(fp_error) <= int_tofp(pid->deadband))
204 return 0;
205
206 pterm = mul_fp(pid->p_gain, fp_error);
207
208 pid->integral += fp_error;
209
210 /*
211 * We limit the integral here so that it will never
212 * get higher than 30. This prevents it from becoming
213 * too large an input over long periods of time and allows
214 * it to get factored out sooner.
215 *
216 * The value of 30 was chosen through experimentation.
217 */
218 integral_limit = int_tofp(30);
219 if (pid->integral > integral_limit)
220 pid->integral = integral_limit;
221 if (pid->integral < -integral_limit)
222 pid->integral = -integral_limit;
223
224 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 pid->last_err = fp_error;
226
227 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 result = result + (1 << (FRAC_BITS-1));
229 return (signed int)fp_toint(result);
230}
231
232static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233{
234 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239}
240
241static inline void intel_pstate_reset_all_pid(void)
242{
243 unsigned int cpu;
244
245 for_each_online_cpu(cpu) {
246 if (all_cpu_data[cpu])
247 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 }
249}
250
251static inline void update_turbo_state(void)
252{
253 u64 misc_en;
254 struct cpudata *cpu;
255
256 cpu = all_cpu_data[0];
257 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 limits.turbo_disabled =
259 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261}
262
263#define PCT_TO_HWP(x) (x * 255 / 100)
264static void intel_pstate_hwp_set(void)
265{
266 int min, max, cpu;
267 u64 value, freq;
268
269 get_online_cpus();
270
271 for_each_online_cpu(cpu) {
272 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273 min = PCT_TO_HWP(limits.min_perf_pct);
274 value &= ~HWP_MIN_PERF(~0L);
275 value |= HWP_MIN_PERF(min);
276
277 max = PCT_TO_HWP(limits.max_perf_pct);
278 if (limits.no_turbo) {
279 rdmsrl( MSR_HWP_CAPABILITIES, freq);
280 max = HWP_GUARANTEED_PERF(freq);
281 }
282
283 value &= ~HWP_MAX_PERF(~0L);
284 value |= HWP_MAX_PERF(max);
285 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286 }
287
288 put_online_cpus();
289}
290
291/************************** debugfs begin ************************/
292static int pid_param_set(void *data, u64 val)
293{
294 *(u32 *)data = val;
295 intel_pstate_reset_all_pid();
296 return 0;
297}
298
299static int pid_param_get(void *data, u64 *val)
300{
301 *val = *(u32 *)data;
302 return 0;
303}
304DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305
306struct pid_param {
307 char *name;
308 void *value;
309};
310
311static struct pid_param pid_files[] = {
312 {"sample_rate_ms", &pid_params.sample_rate_ms},
313 {"d_gain_pct", &pid_params.d_gain_pct},
314 {"i_gain_pct", &pid_params.i_gain_pct},
315 {"deadband", &pid_params.deadband},
316 {"setpoint", &pid_params.setpoint},
317 {"p_gain_pct", &pid_params.p_gain_pct},
318 {NULL, NULL}
319};
320
321static void __init intel_pstate_debug_expose_params(void)
322{
323 struct dentry *debugfs_parent;
324 int i = 0;
325
326 if (hwp_active)
327 return;
328 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329 if (IS_ERR_OR_NULL(debugfs_parent))
330 return;
331 while (pid_files[i].name) {
332 debugfs_create_file(pid_files[i].name, 0660,
333 debugfs_parent, pid_files[i].value,
334 &fops_pid_param);
335 i++;
336 }
337}
338
339/************************** debugfs end ************************/
340
341/************************** sysfs begin ************************/
342#define show_one(file_name, object) \
343 static ssize_t show_##file_name \
344 (struct kobject *kobj, struct attribute *attr, char *buf) \
345 { \
346 return sprintf(buf, "%u\n", limits.object); \
347 }
348
349static ssize_t show_turbo_pct(struct kobject *kobj,
350 struct attribute *attr, char *buf)
351{
352 struct cpudata *cpu;
353 int total, no_turbo, turbo_pct;
354 uint32_t turbo_fp;
355
356 cpu = all_cpu_data[0];
357
358 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362 return sprintf(buf, "%u\n", turbo_pct);
363}
364
365static ssize_t show_num_pstates(struct kobject *kobj,
366 struct attribute *attr, char *buf)
367{
368 struct cpudata *cpu;
369 int total;
370
371 cpu = all_cpu_data[0];
372 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373 return sprintf(buf, "%u\n", total);
374}
375
376static ssize_t show_no_turbo(struct kobject *kobj,
377 struct attribute *attr, char *buf)
378{
379 ssize_t ret;
380
381 update_turbo_state();
382 if (limits.turbo_disabled)
383 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384 else
385 ret = sprintf(buf, "%u\n", limits.no_turbo);
386
387 return ret;
388}
389
390static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391 const char *buf, size_t count)
392{
393 unsigned int input;
394 int ret;
395
396 ret = sscanf(buf, "%u", &input);
397 if (ret != 1)
398 return -EINVAL;
399
400 update_turbo_state();
401 if (limits.turbo_disabled) {
402 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403 return -EPERM;
404 }
405
406 limits.no_turbo = clamp_t(int, input, 0, 1);
407
408 if (hwp_active)
409 intel_pstate_hwp_set();
410
411 return count;
412}
413
414static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415 const char *buf, size_t count)
416{
417 unsigned int input;
418 int ret;
419
420 ret = sscanf(buf, "%u", &input);
421 if (ret != 1)
422 return -EINVAL;
423
424 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427
428 if (hwp_active)
429 intel_pstate_hwp_set();
430 return count;
431}
432
433static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434 const char *buf, size_t count)
435{
436 unsigned int input;
437 int ret;
438
439 ret = sscanf(buf, "%u", &input);
440 if (ret != 1)
441 return -EINVAL;
442
443 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446
447 if (hwp_active)
448 intel_pstate_hwp_set();
449 return count;
450}
451
452show_one(max_perf_pct, max_perf_pct);
453show_one(min_perf_pct, min_perf_pct);
454
455define_one_global_rw(no_turbo);
456define_one_global_rw(max_perf_pct);
457define_one_global_rw(min_perf_pct);
458define_one_global_ro(turbo_pct);
459define_one_global_ro(num_pstates);
460
461static struct attribute *intel_pstate_attributes[] = {
462 &no_turbo.attr,
463 &max_perf_pct.attr,
464 &min_perf_pct.attr,
465 &turbo_pct.attr,
466 &num_pstates.attr,
467 NULL
468};
469
470static struct attribute_group intel_pstate_attr_group = {
471 .attrs = intel_pstate_attributes,
472};
473
474static void __init intel_pstate_sysfs_expose_params(void)
475{
476 struct kobject *intel_pstate_kobject;
477 int rc;
478
479 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480 &cpu_subsys.dev_root->kobj);
481 BUG_ON(!intel_pstate_kobject);
482 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483 BUG_ON(rc);
484}
485/************************** sysfs end ************************/
486
487static void intel_pstate_hwp_enable(void)
488{
489 hwp_active++;
490 pr_info("intel_pstate: HWP enabled\n");
491
492 wrmsrl( MSR_PM_ENABLE, 0x1);
493}
494
495static int byt_get_min_pstate(void)
496{
497 u64 value;
498
499 rdmsrl(BYT_RATIOS, value);
500 return (value >> 8) & 0x7F;
501}
502
503static int byt_get_max_pstate(void)
504{
505 u64 value;
506
507 rdmsrl(BYT_RATIOS, value);
508 return (value >> 16) & 0x7F;
509}
510
511static int byt_get_turbo_pstate(void)
512{
513 u64 value;
514
515 rdmsrl(BYT_TURBO_RATIOS, value);
516 return value & 0x7F;
517}
518
519static void byt_set_pstate(struct cpudata *cpudata, int pstate)
520{
521 u64 val;
522 int32_t vid_fp;
523 u32 vid;
524
525 val = pstate << 8;
526 if (limits.no_turbo && !limits.turbo_disabled)
527 val |= (u64)1 << 32;
528
529 vid_fp = cpudata->vid.min + mul_fp(
530 int_tofp(pstate - cpudata->pstate.min_pstate),
531 cpudata->vid.ratio);
532
533 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
534 vid = ceiling_fp(vid_fp);
535
536 if (pstate > cpudata->pstate.max_pstate)
537 vid = cpudata->vid.turbo;
538
539 val |= vid;
540
541 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
542}
543
544#define BYT_BCLK_FREQS 5
545static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
546
547static int byt_get_scaling(void)
548{
549 u64 value;
550 int i;
551
552 rdmsrl(MSR_FSB_FREQ, value);
553 i = value & 0x3;
554
555 BUG_ON(i > BYT_BCLK_FREQS);
556
557 return byt_freq_table[i] * 100;
558}
559
560static void byt_get_vid(struct cpudata *cpudata)
561{
562 u64 value;
563
564 rdmsrl(BYT_VIDS, value);
565 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
566 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
567 cpudata->vid.ratio = div_fp(
568 cpudata->vid.max - cpudata->vid.min,
569 int_tofp(cpudata->pstate.max_pstate -
570 cpudata->pstate.min_pstate));
571
572 rdmsrl(BYT_TURBO_VIDS, value);
573 cpudata->vid.turbo = value & 0x7f;
574}
575
576static int core_get_min_pstate(void)
577{
578 u64 value;
579
580 rdmsrl(MSR_PLATFORM_INFO, value);
581 return (value >> 40) & 0xFF;
582}
583
584static int core_get_max_pstate(void)
585{
586 u64 value;
587
588 rdmsrl(MSR_PLATFORM_INFO, value);
589 return (value >> 8) & 0xFF;
590}
591
592static int core_get_turbo_pstate(void)
593{
594 u64 value;
595 int nont, ret;
596
597 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
598 nont = core_get_max_pstate();
599 ret = (value) & 255;
600 if (ret <= nont)
601 ret = nont;
602 return ret;
603}
604
605static inline int core_get_scaling(void)
606{
607 return 100000;
608}
609
610static void core_set_pstate(struct cpudata *cpudata, int pstate)
611{
612 u64 val;
613
614 val = pstate << 8;
615 if (limits.no_turbo && !limits.turbo_disabled)
616 val |= (u64)1 << 32;
617
618 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
619}
620
621static int knl_get_turbo_pstate(void)
622{
623 u64 value;
624 int nont, ret;
625
626 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
627 nont = core_get_max_pstate();
628 ret = (((value) >> 8) & 0xFF);
629 if (ret <= nont)
630 ret = nont;
631 return ret;
632}
633
634static struct cpu_defaults core_params = {
635 .pid_policy = {
636 .sample_rate_ms = 10,
637 .deadband = 0,
638 .setpoint = 97,
639 .p_gain_pct = 20,
640 .d_gain_pct = 0,
641 .i_gain_pct = 0,
642 },
643 .funcs = {
644 .get_max = core_get_max_pstate,
645 .get_min = core_get_min_pstate,
646 .get_turbo = core_get_turbo_pstate,
647 .get_scaling = core_get_scaling,
648 .set = core_set_pstate,
649 },
650};
651
652static struct cpu_defaults byt_params = {
653 .pid_policy = {
654 .sample_rate_ms = 10,
655 .deadband = 0,
656 .setpoint = 60,
657 .p_gain_pct = 14,
658 .d_gain_pct = 0,
659 .i_gain_pct = 4,
660 },
661 .funcs = {
662 .get_max = byt_get_max_pstate,
663 .get_min = byt_get_min_pstate,
664 .get_turbo = byt_get_turbo_pstate,
665 .set = byt_set_pstate,
666 .get_scaling = byt_get_scaling,
667 .get_vid = byt_get_vid,
668 },
669};
670
671static struct cpu_defaults knl_params = {
672 .pid_policy = {
673 .sample_rate_ms = 10,
674 .deadband = 0,
675 .setpoint = 97,
676 .p_gain_pct = 20,
677 .d_gain_pct = 0,
678 .i_gain_pct = 0,
679 },
680 .funcs = {
681 .get_max = core_get_max_pstate,
682 .get_min = core_get_min_pstate,
683 .get_turbo = knl_get_turbo_pstate,
684 .set = core_set_pstate,
685 },
686};
687
688static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
689{
690 int max_perf = cpu->pstate.turbo_pstate;
691 int max_perf_adj;
692 int min_perf;
693
694 if (limits.no_turbo || limits.turbo_disabled)
695 max_perf = cpu->pstate.max_pstate;
696
697 /*
698 * performance can be limited by user through sysfs, by cpufreq
699 * policy, or by cpu specific default values determined through
700 * experimentation.
701 */
702 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
703 *max = clamp_t(int, max_perf_adj,
704 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
705
706 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
707 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
708}
709
710static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
711{
712 int max_perf, min_perf;
713
714 if (force) {
715 update_turbo_state();
716
717 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
718
719 pstate = clamp_t(int, pstate, min_perf, max_perf);
720
721 if (pstate == cpu->pstate.current_pstate)
722 return;
723 }
724 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
725
726 cpu->pstate.current_pstate = pstate;
727
728 pstate_funcs.set(cpu, pstate);
729}
730
731static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
732{
733 cpu->pstate.min_pstate = pstate_funcs.get_min();
734 cpu->pstate.max_pstate = pstate_funcs.get_max();
735 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
736 cpu->pstate.scaling = pstate_funcs.get_scaling();
737
738 if (pstate_funcs.get_vid)
739 pstate_funcs.get_vid(cpu);
740 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
741}
742
743static inline void intel_pstate_calc_busy(struct cpudata *cpu)
744{
745 struct sample *sample = &cpu->sample;
746 int64_t core_pct;
747
748 core_pct = int_tofp(sample->aperf) * int_tofp(100);
749 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
750
751 sample->freq = fp_toint(
752 mul_fp(int_tofp(
753 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
754 core_pct));
755
756 sample->core_pct_busy = (int32_t)core_pct;
757}
758
759static inline void intel_pstate_sample(struct cpudata *cpu)
760{
761 u64 aperf, mperf;
762 unsigned long flags;
763 u64 tsc;
764
765 local_irq_save(flags);
766 rdmsrl(MSR_IA32_APERF, aperf);
767 rdmsrl(MSR_IA32_MPERF, mperf);
768 tsc = native_read_tsc();
769 local_irq_restore(flags);
770
771 cpu->last_sample_time = cpu->sample.time;
772 cpu->sample.time = ktime_get();
773 cpu->sample.aperf = aperf;
774 cpu->sample.mperf = mperf;
775 cpu->sample.tsc = tsc;
776 cpu->sample.aperf -= cpu->prev_aperf;
777 cpu->sample.mperf -= cpu->prev_mperf;
778 cpu->sample.tsc -= cpu->prev_tsc;
779
780 intel_pstate_calc_busy(cpu);
781
782 cpu->prev_aperf = aperf;
783 cpu->prev_mperf = mperf;
784 cpu->prev_tsc = tsc;
785}
786
787static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
788{
789 int delay;
790
791 delay = msecs_to_jiffies(50);
792 mod_timer_pinned(&cpu->timer, jiffies + delay);
793}
794
795static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
796{
797 int delay;
798
799 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
800 mod_timer_pinned(&cpu->timer, jiffies + delay);
801}
802
803static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
804{
805 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
806 s64 duration_us;
807 u32 sample_time;
808
809 /*
810 * core_busy is the ratio of actual performance to max
811 * max_pstate is the max non turbo pstate available
812 * current_pstate was the pstate that was requested during
813 * the last sample period.
814 *
815 * We normalize core_busy, which was our actual percent
816 * performance to what we requested during the last sample
817 * period. The result will be a percentage of busy at a
818 * specified pstate.
819 */
820 core_busy = cpu->sample.core_pct_busy;
821 max_pstate = int_tofp(cpu->pstate.max_pstate);
822 current_pstate = int_tofp(cpu->pstate.current_pstate);
823 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
824
825 /*
826 * Since we have a deferred timer, it will not fire unless
827 * we are in C0. So, determine if the actual elapsed time
828 * is significantly greater (3x) than our sample interval. If it
829 * is, then we were idle for a long enough period of time
830 * to adjust our busyness.
831 */
832 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
833 duration_us = ktime_us_delta(cpu->sample.time,
834 cpu->last_sample_time);
835 if (duration_us > sample_time * 3) {
836 sample_ratio = div_fp(int_tofp(sample_time),
837 int_tofp(duration_us));
838 core_busy = mul_fp(core_busy, sample_ratio);
839 }
840
841 return core_busy;
842}
843
844static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
845{
846 int32_t busy_scaled;
847 struct _pid *pid;
848 signed int ctl;
849 int from;
850 struct sample *sample;
851
852 from = cpu->pstate.current_pstate;
853
854 pid = &cpu->pid;
855 busy_scaled = intel_pstate_get_scaled_busy(cpu);
856
857 ctl = pid_calc(pid, busy_scaled);
858
859 /* Negative values of ctl increase the pstate and vice versa */
860 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
861
862 sample = &cpu->sample;
863 trace_pstate_sample(fp_toint(sample->core_pct_busy),
864 fp_toint(busy_scaled),
865 from,
866 cpu->pstate.current_pstate,
867 sample->mperf,
868 sample->aperf,
869 sample->tsc,
870 sample->freq);
871}
872
873static void intel_hwp_timer_func(unsigned long __data)
874{
875 struct cpudata *cpu = (struct cpudata *) __data;
876
877 intel_pstate_sample(cpu);
878 intel_hwp_set_sample_time(cpu);
879}
880
881static void intel_pstate_timer_func(unsigned long __data)
882{
883 struct cpudata *cpu = (struct cpudata *) __data;
884
885 intel_pstate_sample(cpu);
886
887 intel_pstate_adjust_busy_pstate(cpu);
888
889 intel_pstate_set_sample_time(cpu);
890}
891
892#define ICPU(model, policy) \
893 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
894 (unsigned long)&policy }
895
896static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
897 ICPU(0x2a, core_params),
898 ICPU(0x2d, core_params),
899 ICPU(0x37, byt_params),
900 ICPU(0x3a, core_params),
901 ICPU(0x3c, core_params),
902 ICPU(0x3d, core_params),
903 ICPU(0x3e, core_params),
904 ICPU(0x3f, core_params),
905 ICPU(0x45, core_params),
906 ICPU(0x46, core_params),
907 ICPU(0x47, core_params),
908 ICPU(0x4c, byt_params),
909 ICPU(0x4e, core_params),
910 ICPU(0x4f, core_params),
911 ICPU(0x56, core_params),
912 ICPU(0x57, knl_params),
913 {}
914};
915MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
916
917static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
918 ICPU(0x56, core_params),
919 {}
920};
921
922static int intel_pstate_init_cpu(unsigned int cpunum)
923{
924 struct cpudata *cpu;
925
926 if (!all_cpu_data[cpunum])
927 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
928 GFP_KERNEL);
929 if (!all_cpu_data[cpunum])
930 return -ENOMEM;
931
932 cpu = all_cpu_data[cpunum];
933
934 cpu->cpu = cpunum;
935 intel_pstate_get_cpu_pstates(cpu);
936
937 init_timer_deferrable(&cpu->timer);
938 cpu->timer.data = (unsigned long)cpu;
939 cpu->timer.expires = jiffies + HZ/100;
940
941 if (!hwp_active)
942 cpu->timer.function = intel_pstate_timer_func;
943 else
944 cpu->timer.function = intel_hwp_timer_func;
945
946 intel_pstate_busy_pid_reset(cpu);
947 intel_pstate_sample(cpu);
948
949 add_timer_on(&cpu->timer, cpunum);
950
951 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
952
953 return 0;
954}
955
956static unsigned int intel_pstate_get(unsigned int cpu_num)
957{
958 struct sample *sample;
959 struct cpudata *cpu;
960
961 cpu = all_cpu_data[cpu_num];
962 if (!cpu)
963 return 0;
964 sample = &cpu->sample;
965 return sample->freq;
966}
967
968static int intel_pstate_set_policy(struct cpufreq_policy *policy)
969{
970 if (!policy->cpuinfo.max_freq)
971 return -ENODEV;
972
973 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
974 policy->max >= policy->cpuinfo.max_freq) {
975 limits.min_policy_pct = 100;
976 limits.min_perf_pct = 100;
977 limits.min_perf = int_tofp(1);
978 limits.max_policy_pct = 100;
979 limits.max_perf_pct = 100;
980 limits.max_perf = int_tofp(1);
981 limits.no_turbo = 0;
982 return 0;
983 }
984
985 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
986 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
987 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
988 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
989
990 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
991 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
992 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
993 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
994
995 if (hwp_active)
996 intel_pstate_hwp_set();
997
998 return 0;
999}
1000
1001static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1002{
1003 cpufreq_verify_within_cpu_limits(policy);
1004
1005 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1006 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1007 return -EINVAL;
1008
1009 return 0;
1010}
1011
1012static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1013{
1014 int cpu_num = policy->cpu;
1015 struct cpudata *cpu = all_cpu_data[cpu_num];
1016
1017 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1018
1019 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1020 if (hwp_active)
1021 return;
1022
1023 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1024}
1025
1026static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1027{
1028 struct cpudata *cpu;
1029 int rc;
1030
1031 rc = intel_pstate_init_cpu(policy->cpu);
1032 if (rc)
1033 return rc;
1034
1035 cpu = all_cpu_data[policy->cpu];
1036
1037 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1038 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1039 else
1040 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1041
1042 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1043 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1044
1045 /* cpuinfo and default policy values */
1046 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1047 policy->cpuinfo.max_freq =
1048 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1049 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1050 cpumask_set_cpu(policy->cpu, policy->cpus);
1051
1052 return 0;
1053}
1054
1055static struct cpufreq_driver intel_pstate_driver = {
1056 .flags = CPUFREQ_CONST_LOOPS,
1057 .verify = intel_pstate_verify_policy,
1058 .setpolicy = intel_pstate_set_policy,
1059 .get = intel_pstate_get,
1060 .init = intel_pstate_cpu_init,
1061 .stop_cpu = intel_pstate_stop_cpu,
1062 .name = "intel_pstate",
1063};
1064
1065static int __initdata no_load;
1066static int __initdata no_hwp;
1067static int __initdata hwp_only;
1068static unsigned int force_load;
1069
1070static int intel_pstate_msrs_not_valid(void)
1071{
1072 if (!pstate_funcs.get_max() ||
1073 !pstate_funcs.get_min() ||
1074 !pstate_funcs.get_turbo())
1075 return -ENODEV;
1076
1077 return 0;
1078}
1079
1080static void copy_pid_params(struct pstate_adjust_policy *policy)
1081{
1082 pid_params.sample_rate_ms = policy->sample_rate_ms;
1083 pid_params.p_gain_pct = policy->p_gain_pct;
1084 pid_params.i_gain_pct = policy->i_gain_pct;
1085 pid_params.d_gain_pct = policy->d_gain_pct;
1086 pid_params.deadband = policy->deadband;
1087 pid_params.setpoint = policy->setpoint;
1088}
1089
1090static void copy_cpu_funcs(struct pstate_funcs *funcs)
1091{
1092 pstate_funcs.get_max = funcs->get_max;
1093 pstate_funcs.get_min = funcs->get_min;
1094 pstate_funcs.get_turbo = funcs->get_turbo;
1095 pstate_funcs.get_scaling = funcs->get_scaling;
1096 pstate_funcs.set = funcs->set;
1097 pstate_funcs.get_vid = funcs->get_vid;
1098}
1099
1100#if IS_ENABLED(CONFIG_ACPI)
1101#include <acpi/processor.h>
1102
1103static bool intel_pstate_no_acpi_pss(void)
1104{
1105 int i;
1106
1107 for_each_possible_cpu(i) {
1108 acpi_status status;
1109 union acpi_object *pss;
1110 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1111 struct acpi_processor *pr = per_cpu(processors, i);
1112
1113 if (!pr)
1114 continue;
1115
1116 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1117 if (ACPI_FAILURE(status))
1118 continue;
1119
1120 pss = buffer.pointer;
1121 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1122 kfree(pss);
1123 return false;
1124 }
1125
1126 kfree(pss);
1127 }
1128
1129 return true;
1130}
1131
1132static bool intel_pstate_has_acpi_ppc(void)
1133{
1134 int i;
1135
1136 for_each_possible_cpu(i) {
1137 struct acpi_processor *pr = per_cpu(processors, i);
1138
1139 if (!pr)
1140 continue;
1141 if (acpi_has_method(pr->handle, "_PPC"))
1142 return true;
1143 }
1144 return false;
1145}
1146
1147enum {
1148 PSS,
1149 PPC,
1150};
1151
1152struct hw_vendor_info {
1153 u16 valid;
1154 char oem_id[ACPI_OEM_ID_SIZE];
1155 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1156 int oem_pwr_table;
1157};
1158
1159/* Hardware vendor-specific info that has its own power management modes */
1160static struct hw_vendor_info vendor_info[] = {
1161 {1, "HP ", "ProLiant", PSS},
1162 {1, "ORACLE", "X4-2 ", PPC},
1163 {1, "ORACLE", "X4-2L ", PPC},
1164 {1, "ORACLE", "X4-2B ", PPC},
1165 {1, "ORACLE", "X3-2 ", PPC},
1166 {1, "ORACLE", "X3-2L ", PPC},
1167 {1, "ORACLE", "X3-2B ", PPC},
1168 {1, "ORACLE", "X4470M2 ", PPC},
1169 {1, "ORACLE", "X4270M3 ", PPC},
1170 {1, "ORACLE", "X4270M2 ", PPC},
1171 {1, "ORACLE", "X4170M2 ", PPC},
1172 {0, "", ""},
1173};
1174
1175static bool intel_pstate_platform_pwr_mgmt_exists(void)
1176{
1177 struct acpi_table_header hdr;
1178 struct hw_vendor_info *v_info;
1179 const struct x86_cpu_id *id;
1180 u64 misc_pwr;
1181
1182 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1183 if (id) {
1184 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1185 if ( misc_pwr & (1 << 8))
1186 return true;
1187 }
1188
1189 if (acpi_disabled ||
1190 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1191 return false;
1192
1193 for (v_info = vendor_info; v_info->valid; v_info++) {
1194 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1195 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1196 ACPI_OEM_TABLE_ID_SIZE))
1197 switch (v_info->oem_pwr_table) {
1198 case PSS:
1199 return intel_pstate_no_acpi_pss();
1200 case PPC:
1201 return intel_pstate_has_acpi_ppc() &&
1202 (!force_load);
1203 }
1204 }
1205
1206 return false;
1207}
1208#else /* CONFIG_ACPI not enabled */
1209static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1210static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1211#endif /* CONFIG_ACPI */
1212
1213static int __init intel_pstate_init(void)
1214{
1215 int cpu, rc = 0;
1216 const struct x86_cpu_id *id;
1217 struct cpu_defaults *cpu_def;
1218
1219 if (no_load)
1220 return -ENODEV;
1221
1222 id = x86_match_cpu(intel_pstate_cpu_ids);
1223 if (!id)
1224 return -ENODEV;
1225
1226 /*
1227 * The Intel pstate driver will be ignored if the platform
1228 * firmware has its own power management modes.
1229 */
1230 if (intel_pstate_platform_pwr_mgmt_exists())
1231 return -ENODEV;
1232
1233 cpu_def = (struct cpu_defaults *)id->driver_data;
1234
1235 copy_pid_params(&cpu_def->pid_policy);
1236 copy_cpu_funcs(&cpu_def->funcs);
1237
1238 if (intel_pstate_msrs_not_valid())
1239 return -ENODEV;
1240
1241 pr_info("Intel P-state driver initializing.\n");
1242
1243 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1244 if (!all_cpu_data)
1245 return -ENOMEM;
1246
1247 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1248 intel_pstate_hwp_enable();
1249
1250 if (!hwp_active && hwp_only)
1251 goto out;
1252
1253 rc = cpufreq_register_driver(&intel_pstate_driver);
1254 if (rc)
1255 goto out;
1256
1257 intel_pstate_debug_expose_params();
1258 intel_pstate_sysfs_expose_params();
1259
1260 return rc;
1261out:
1262 get_online_cpus();
1263 for_each_online_cpu(cpu) {
1264 if (all_cpu_data[cpu]) {
1265 del_timer_sync(&all_cpu_data[cpu]->timer);
1266 kfree(all_cpu_data[cpu]);
1267 }
1268 }
1269
1270 put_online_cpus();
1271 vfree(all_cpu_data);
1272 return -ENODEV;
1273}
1274device_initcall(intel_pstate_init);
1275
1276static int __init intel_pstate_setup(char *str)
1277{
1278 if (!str)
1279 return -EINVAL;
1280
1281 if (!strcmp(str, "disable"))
1282 no_load = 1;
1283 if (!strcmp(str, "no_hwp"))
1284 no_hwp = 1;
1285 if (!strcmp(str, "force"))
1286 force_load = 1;
1287 if (!strcmp(str, "hwp_only"))
1288 hwp_only = 1;
1289 return 0;
1290}
1291early_param("intel_pstate", intel_pstate_setup);
1292
1293MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1294MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1295MODULE_LICENSE("GPL");