at v4.19 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/kcov.h> 18#include <linux/mutex.h> 19#include <linux/plist.h> 20#include <linux/hrtimer.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/resource.h> 25#include <linux/latencytop.h> 26#include <linux/sched/prio.h> 27#include <linux/signal_types.h> 28#include <linux/mm_types_task.h> 29#include <linux/task_io_accounting.h> 30#include <linux/rseq.h> 31 32/* task_struct member predeclarations (sorted alphabetically): */ 33struct audit_context; 34struct backing_dev_info; 35struct bio_list; 36struct blk_plug; 37struct cfs_rq; 38struct fs_struct; 39struct futex_pi_state; 40struct io_context; 41struct mempolicy; 42struct nameidata; 43struct nsproxy; 44struct perf_event_context; 45struct pid_namespace; 46struct pipe_inode_info; 47struct rcu_node; 48struct reclaim_state; 49struct robust_list_head; 50struct sched_attr; 51struct sched_param; 52struct seq_file; 53struct sighand_struct; 54struct signal_struct; 55struct task_delay_info; 56struct task_group; 57 58/* 59 * Task state bitmask. NOTE! These bits are also 60 * encoded in fs/proc/array.c: get_task_state(). 61 * 62 * We have two separate sets of flags: task->state 63 * is about runnability, while task->exit_state are 64 * about the task exiting. Confusing, but this way 65 * modifying one set can't modify the other one by 66 * mistake. 67 */ 68 69/* Used in tsk->state: */ 70#define TASK_RUNNING 0x0000 71#define TASK_INTERRUPTIBLE 0x0001 72#define TASK_UNINTERRUPTIBLE 0x0002 73#define __TASK_STOPPED 0x0004 74#define __TASK_TRACED 0x0008 75/* Used in tsk->exit_state: */ 76#define EXIT_DEAD 0x0010 77#define EXIT_ZOMBIE 0x0020 78#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 79/* Used in tsk->state again: */ 80#define TASK_PARKED 0x0040 81#define TASK_DEAD 0x0080 82#define TASK_WAKEKILL 0x0100 83#define TASK_WAKING 0x0200 84#define TASK_NOLOAD 0x0400 85#define TASK_NEW 0x0800 86#define TASK_STATE_MAX 0x1000 87 88/* Convenience macros for the sake of set_current_state: */ 89#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 90#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 91#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 92 93#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 94 95/* Convenience macros for the sake of wake_up(): */ 96#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 97 98/* get_task_state(): */ 99#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 102 TASK_PARKED) 103 104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 105 106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 107 108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 109 110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 111 (task->flags & PF_FROZEN) == 0 && \ 112 (task->state & TASK_NOLOAD) == 0) 113 114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 115 116/* 117 * Special states are those that do not use the normal wait-loop pattern. See 118 * the comment with set_special_state(). 119 */ 120#define is_special_task_state(state) \ 121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 122 123#define __set_current_state(state_value) \ 124 do { \ 125 WARN_ON_ONCE(is_special_task_state(state_value));\ 126 current->task_state_change = _THIS_IP_; \ 127 current->state = (state_value); \ 128 } while (0) 129 130#define set_current_state(state_value) \ 131 do { \ 132 WARN_ON_ONCE(is_special_task_state(state_value));\ 133 current->task_state_change = _THIS_IP_; \ 134 smp_store_mb(current->state, (state_value)); \ 135 } while (0) 136 137#define set_special_state(state_value) \ 138 do { \ 139 unsigned long flags; /* may shadow */ \ 140 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 141 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 142 current->task_state_change = _THIS_IP_; \ 143 current->state = (state_value); \ 144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 145 } while (0) 146#else 147/* 148 * set_current_state() includes a barrier so that the write of current->state 149 * is correctly serialised wrt the caller's subsequent test of whether to 150 * actually sleep: 151 * 152 * for (;;) { 153 * set_current_state(TASK_UNINTERRUPTIBLE); 154 * if (!need_sleep) 155 * break; 156 * 157 * schedule(); 158 * } 159 * __set_current_state(TASK_RUNNING); 160 * 161 * If the caller does not need such serialisation (because, for instance, the 162 * condition test and condition change and wakeup are under the same lock) then 163 * use __set_current_state(). 164 * 165 * The above is typically ordered against the wakeup, which does: 166 * 167 * need_sleep = false; 168 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 169 * 170 * where wake_up_state() executes a full memory barrier before accessing the 171 * task state. 172 * 173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 176 * 177 * However, with slightly different timing the wakeup TASK_RUNNING store can 178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not 179 * a problem either because that will result in one extra go around the loop 180 * and our @cond test will save the day. 181 * 182 * Also see the comments of try_to_wake_up(). 183 */ 184#define __set_current_state(state_value) \ 185 current->state = (state_value) 186 187#define set_current_state(state_value) \ 188 smp_store_mb(current->state, (state_value)) 189 190/* 191 * set_special_state() should be used for those states when the blocking task 192 * can not use the regular condition based wait-loop. In that case we must 193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 194 * will not collide with our state change. 195 */ 196#define set_special_state(state_value) \ 197 do { \ 198 unsigned long flags; /* may shadow */ \ 199 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 200 current->state = (state_value); \ 201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 202 } while (0) 203 204#endif 205 206/* Task command name length: */ 207#define TASK_COMM_LEN 16 208 209extern void scheduler_tick(void); 210 211#define MAX_SCHEDULE_TIMEOUT LONG_MAX 212 213extern long schedule_timeout(long timeout); 214extern long schedule_timeout_interruptible(long timeout); 215extern long schedule_timeout_killable(long timeout); 216extern long schedule_timeout_uninterruptible(long timeout); 217extern long schedule_timeout_idle(long timeout); 218asmlinkage void schedule(void); 219extern void schedule_preempt_disabled(void); 220 221extern int __must_check io_schedule_prepare(void); 222extern void io_schedule_finish(int token); 223extern long io_schedule_timeout(long timeout); 224extern void io_schedule(void); 225 226/** 227 * struct prev_cputime - snapshot of system and user cputime 228 * @utime: time spent in user mode 229 * @stime: time spent in system mode 230 * @lock: protects the above two fields 231 * 232 * Stores previous user/system time values such that we can guarantee 233 * monotonicity. 234 */ 235struct prev_cputime { 236#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 237 u64 utime; 238 u64 stime; 239 raw_spinlock_t lock; 240#endif 241}; 242 243/** 244 * struct task_cputime - collected CPU time counts 245 * @utime: time spent in user mode, in nanoseconds 246 * @stime: time spent in kernel mode, in nanoseconds 247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 248 * 249 * This structure groups together three kinds of CPU time that are tracked for 250 * threads and thread groups. Most things considering CPU time want to group 251 * these counts together and treat all three of them in parallel. 252 */ 253struct task_cputime { 254 u64 utime; 255 u64 stime; 256 unsigned long long sum_exec_runtime; 257}; 258 259/* Alternate field names when used on cache expirations: */ 260#define virt_exp utime 261#define prof_exp stime 262#define sched_exp sum_exec_runtime 263 264enum vtime_state { 265 /* Task is sleeping or running in a CPU with VTIME inactive: */ 266 VTIME_INACTIVE = 0, 267 /* Task runs in userspace in a CPU with VTIME active: */ 268 VTIME_USER, 269 /* Task runs in kernelspace in a CPU with VTIME active: */ 270 VTIME_SYS, 271}; 272 273struct vtime { 274 seqcount_t seqcount; 275 unsigned long long starttime; 276 enum vtime_state state; 277 u64 utime; 278 u64 stime; 279 u64 gtime; 280}; 281 282struct sched_info { 283#ifdef CONFIG_SCHED_INFO 284 /* Cumulative counters: */ 285 286 /* # of times we have run on this CPU: */ 287 unsigned long pcount; 288 289 /* Time spent waiting on a runqueue: */ 290 unsigned long long run_delay; 291 292 /* Timestamps: */ 293 294 /* When did we last run on a CPU? */ 295 unsigned long long last_arrival; 296 297 /* When were we last queued to run? */ 298 unsigned long long last_queued; 299 300#endif /* CONFIG_SCHED_INFO */ 301}; 302 303/* 304 * Integer metrics need fixed point arithmetic, e.g., sched/fair 305 * has a few: load, load_avg, util_avg, freq, and capacity. 306 * 307 * We define a basic fixed point arithmetic range, and then formalize 308 * all these metrics based on that basic range. 309 */ 310# define SCHED_FIXEDPOINT_SHIFT 10 311# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 312 313struct load_weight { 314 unsigned long weight; 315 u32 inv_weight; 316}; 317 318/** 319 * struct util_est - Estimation utilization of FAIR tasks 320 * @enqueued: instantaneous estimated utilization of a task/cpu 321 * @ewma: the Exponential Weighted Moving Average (EWMA) 322 * utilization of a task 323 * 324 * Support data structure to track an Exponential Weighted Moving Average 325 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 326 * average each time a task completes an activation. Sample's weight is chosen 327 * so that the EWMA will be relatively insensitive to transient changes to the 328 * task's workload. 329 * 330 * The enqueued attribute has a slightly different meaning for tasks and cpus: 331 * - task: the task's util_avg at last task dequeue time 332 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 333 * Thus, the util_est.enqueued of a task represents the contribution on the 334 * estimated utilization of the CPU where that task is currently enqueued. 335 * 336 * Only for tasks we track a moving average of the past instantaneous 337 * estimated utilization. This allows to absorb sporadic drops in utilization 338 * of an otherwise almost periodic task. 339 */ 340struct util_est { 341 unsigned int enqueued; 342 unsigned int ewma; 343#define UTIL_EST_WEIGHT_SHIFT 2 344} __attribute__((__aligned__(sizeof(u64)))); 345 346/* 347 * The load_avg/util_avg accumulates an infinite geometric series 348 * (see __update_load_avg() in kernel/sched/fair.c). 349 * 350 * [load_avg definition] 351 * 352 * load_avg = runnable% * scale_load_down(load) 353 * 354 * where runnable% is the time ratio that a sched_entity is runnable. 355 * For cfs_rq, it is the aggregated load_avg of all runnable and 356 * blocked sched_entities. 357 * 358 * load_avg may also take frequency scaling into account: 359 * 360 * load_avg = runnable% * scale_load_down(load) * freq% 361 * 362 * where freq% is the CPU frequency normalized to the highest frequency. 363 * 364 * [util_avg definition] 365 * 366 * util_avg = running% * SCHED_CAPACITY_SCALE 367 * 368 * where running% is the time ratio that a sched_entity is running on 369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 370 * and blocked sched_entities. 371 * 372 * util_avg may also factor frequency scaling and CPU capacity scaling: 373 * 374 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 375 * 376 * where freq% is the same as above, and capacity% is the CPU capacity 377 * normalized to the greatest capacity (due to uarch differences, etc). 378 * 379 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 380 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 381 * we therefore scale them to as large a range as necessary. This is for 382 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 383 * 384 * [Overflow issue] 385 * 386 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 387 * with the highest load (=88761), always runnable on a single cfs_rq, 388 * and should not overflow as the number already hits PID_MAX_LIMIT. 389 * 390 * For all other cases (including 32-bit kernels), struct load_weight's 391 * weight will overflow first before we do, because: 392 * 393 * Max(load_avg) <= Max(load.weight) 394 * 395 * Then it is the load_weight's responsibility to consider overflow 396 * issues. 397 */ 398struct sched_avg { 399 u64 last_update_time; 400 u64 load_sum; 401 u64 runnable_load_sum; 402 u32 util_sum; 403 u32 period_contrib; 404 unsigned long load_avg; 405 unsigned long runnable_load_avg; 406 unsigned long util_avg; 407 struct util_est util_est; 408} ____cacheline_aligned; 409 410struct sched_statistics { 411#ifdef CONFIG_SCHEDSTATS 412 u64 wait_start; 413 u64 wait_max; 414 u64 wait_count; 415 u64 wait_sum; 416 u64 iowait_count; 417 u64 iowait_sum; 418 419 u64 sleep_start; 420 u64 sleep_max; 421 s64 sum_sleep_runtime; 422 423 u64 block_start; 424 u64 block_max; 425 u64 exec_max; 426 u64 slice_max; 427 428 u64 nr_migrations_cold; 429 u64 nr_failed_migrations_affine; 430 u64 nr_failed_migrations_running; 431 u64 nr_failed_migrations_hot; 432 u64 nr_forced_migrations; 433 434 u64 nr_wakeups; 435 u64 nr_wakeups_sync; 436 u64 nr_wakeups_migrate; 437 u64 nr_wakeups_local; 438 u64 nr_wakeups_remote; 439 u64 nr_wakeups_affine; 440 u64 nr_wakeups_affine_attempts; 441 u64 nr_wakeups_passive; 442 u64 nr_wakeups_idle; 443#endif 444}; 445 446struct sched_entity { 447 /* For load-balancing: */ 448 struct load_weight load; 449 unsigned long runnable_weight; 450 struct rb_node run_node; 451 struct list_head group_node; 452 unsigned int on_rq; 453 454 u64 exec_start; 455 u64 sum_exec_runtime; 456 u64 vruntime; 457 u64 prev_sum_exec_runtime; 458 459 u64 nr_migrations; 460 461 struct sched_statistics statistics; 462 463#ifdef CONFIG_FAIR_GROUP_SCHED 464 int depth; 465 struct sched_entity *parent; 466 /* rq on which this entity is (to be) queued: */ 467 struct cfs_rq *cfs_rq; 468 /* rq "owned" by this entity/group: */ 469 struct cfs_rq *my_q; 470#endif 471 472#ifdef CONFIG_SMP 473 /* 474 * Per entity load average tracking. 475 * 476 * Put into separate cache line so it does not 477 * collide with read-mostly values above. 478 */ 479 struct sched_avg avg; 480#endif 481}; 482 483struct sched_rt_entity { 484 struct list_head run_list; 485 unsigned long timeout; 486 unsigned long watchdog_stamp; 487 unsigned int time_slice; 488 unsigned short on_rq; 489 unsigned short on_list; 490 491 struct sched_rt_entity *back; 492#ifdef CONFIG_RT_GROUP_SCHED 493 struct sched_rt_entity *parent; 494 /* rq on which this entity is (to be) queued: */ 495 struct rt_rq *rt_rq; 496 /* rq "owned" by this entity/group: */ 497 struct rt_rq *my_q; 498#endif 499} __randomize_layout; 500 501struct sched_dl_entity { 502 struct rb_node rb_node; 503 504 /* 505 * Original scheduling parameters. Copied here from sched_attr 506 * during sched_setattr(), they will remain the same until 507 * the next sched_setattr(). 508 */ 509 u64 dl_runtime; /* Maximum runtime for each instance */ 510 u64 dl_deadline; /* Relative deadline of each instance */ 511 u64 dl_period; /* Separation of two instances (period) */ 512 u64 dl_bw; /* dl_runtime / dl_period */ 513 u64 dl_density; /* dl_runtime / dl_deadline */ 514 515 /* 516 * Actual scheduling parameters. Initialized with the values above, 517 * they are continously updated during task execution. Note that 518 * the remaining runtime could be < 0 in case we are in overrun. 519 */ 520 s64 runtime; /* Remaining runtime for this instance */ 521 u64 deadline; /* Absolute deadline for this instance */ 522 unsigned int flags; /* Specifying the scheduler behaviour */ 523 524 /* 525 * Some bool flags: 526 * 527 * @dl_throttled tells if we exhausted the runtime. If so, the 528 * task has to wait for a replenishment to be performed at the 529 * next firing of dl_timer. 530 * 531 * @dl_boosted tells if we are boosted due to DI. If so we are 532 * outside bandwidth enforcement mechanism (but only until we 533 * exit the critical section); 534 * 535 * @dl_yielded tells if task gave up the CPU before consuming 536 * all its available runtime during the last job. 537 * 538 * @dl_non_contending tells if the task is inactive while still 539 * contributing to the active utilization. In other words, it 540 * indicates if the inactive timer has been armed and its handler 541 * has not been executed yet. This flag is useful to avoid race 542 * conditions between the inactive timer handler and the wakeup 543 * code. 544 * 545 * @dl_overrun tells if the task asked to be informed about runtime 546 * overruns. 547 */ 548 unsigned int dl_throttled : 1; 549 unsigned int dl_boosted : 1; 550 unsigned int dl_yielded : 1; 551 unsigned int dl_non_contending : 1; 552 unsigned int dl_overrun : 1; 553 554 /* 555 * Bandwidth enforcement timer. Each -deadline task has its 556 * own bandwidth to be enforced, thus we need one timer per task. 557 */ 558 struct hrtimer dl_timer; 559 560 /* 561 * Inactive timer, responsible for decreasing the active utilization 562 * at the "0-lag time". When a -deadline task blocks, it contributes 563 * to GRUB's active utilization until the "0-lag time", hence a 564 * timer is needed to decrease the active utilization at the correct 565 * time. 566 */ 567 struct hrtimer inactive_timer; 568}; 569 570union rcu_special { 571 struct { 572 u8 blocked; 573 u8 need_qs; 574 u8 exp_need_qs; 575 576 /* Otherwise the compiler can store garbage here: */ 577 u8 pad; 578 } b; /* Bits. */ 579 u32 s; /* Set of bits. */ 580}; 581 582enum perf_event_task_context { 583 perf_invalid_context = -1, 584 perf_hw_context = 0, 585 perf_sw_context, 586 perf_nr_task_contexts, 587}; 588 589struct wake_q_node { 590 struct wake_q_node *next; 591}; 592 593struct task_struct { 594#ifdef CONFIG_THREAD_INFO_IN_TASK 595 /* 596 * For reasons of header soup (see current_thread_info()), this 597 * must be the first element of task_struct. 598 */ 599 struct thread_info thread_info; 600#endif 601 /* -1 unrunnable, 0 runnable, >0 stopped: */ 602 volatile long state; 603 604 /* 605 * This begins the randomizable portion of task_struct. Only 606 * scheduling-critical items should be added above here. 607 */ 608 randomized_struct_fields_start 609 610 void *stack; 611 atomic_t usage; 612 /* Per task flags (PF_*), defined further below: */ 613 unsigned int flags; 614 unsigned int ptrace; 615 616#ifdef CONFIG_SMP 617 struct llist_node wake_entry; 618 int on_cpu; 619#ifdef CONFIG_THREAD_INFO_IN_TASK 620 /* Current CPU: */ 621 unsigned int cpu; 622#endif 623 unsigned int wakee_flips; 624 unsigned long wakee_flip_decay_ts; 625 struct task_struct *last_wakee; 626 627 /* 628 * recent_used_cpu is initially set as the last CPU used by a task 629 * that wakes affine another task. Waker/wakee relationships can 630 * push tasks around a CPU where each wakeup moves to the next one. 631 * Tracking a recently used CPU allows a quick search for a recently 632 * used CPU that may be idle. 633 */ 634 int recent_used_cpu; 635 int wake_cpu; 636#endif 637 int on_rq; 638 639 int prio; 640 int static_prio; 641 int normal_prio; 642 unsigned int rt_priority; 643 644 const struct sched_class *sched_class; 645 struct sched_entity se; 646 struct sched_rt_entity rt; 647#ifdef CONFIG_CGROUP_SCHED 648 struct task_group *sched_task_group; 649#endif 650 struct sched_dl_entity dl; 651 652#ifdef CONFIG_PREEMPT_NOTIFIERS 653 /* List of struct preempt_notifier: */ 654 struct hlist_head preempt_notifiers; 655#endif 656 657#ifdef CONFIG_BLK_DEV_IO_TRACE 658 unsigned int btrace_seq; 659#endif 660 661 unsigned int policy; 662 int nr_cpus_allowed; 663 cpumask_t cpus_allowed; 664 665#ifdef CONFIG_PREEMPT_RCU 666 int rcu_read_lock_nesting; 667 union rcu_special rcu_read_unlock_special; 668 struct list_head rcu_node_entry; 669 struct rcu_node *rcu_blocked_node; 670#endif /* #ifdef CONFIG_PREEMPT_RCU */ 671 672#ifdef CONFIG_TASKS_RCU 673 unsigned long rcu_tasks_nvcsw; 674 u8 rcu_tasks_holdout; 675 u8 rcu_tasks_idx; 676 int rcu_tasks_idle_cpu; 677 struct list_head rcu_tasks_holdout_list; 678#endif /* #ifdef CONFIG_TASKS_RCU */ 679 680 struct sched_info sched_info; 681 682 struct list_head tasks; 683#ifdef CONFIG_SMP 684 struct plist_node pushable_tasks; 685 struct rb_node pushable_dl_tasks; 686#endif 687 688 struct mm_struct *mm; 689 struct mm_struct *active_mm; 690 691 /* Per-thread vma caching: */ 692 struct vmacache vmacache; 693 694#ifdef SPLIT_RSS_COUNTING 695 struct task_rss_stat rss_stat; 696#endif 697 int exit_state; 698 int exit_code; 699 int exit_signal; 700 /* The signal sent when the parent dies: */ 701 int pdeath_signal; 702 /* JOBCTL_*, siglock protected: */ 703 unsigned long jobctl; 704 705 /* Used for emulating ABI behavior of previous Linux versions: */ 706 unsigned int personality; 707 708 /* Scheduler bits, serialized by scheduler locks: */ 709 unsigned sched_reset_on_fork:1; 710 unsigned sched_contributes_to_load:1; 711 unsigned sched_migrated:1; 712 unsigned sched_remote_wakeup:1; 713 /* Force alignment to the next boundary: */ 714 unsigned :0; 715 716 /* Unserialized, strictly 'current' */ 717 718 /* Bit to tell LSMs we're in execve(): */ 719 unsigned in_execve:1; 720 unsigned in_iowait:1; 721#ifndef TIF_RESTORE_SIGMASK 722 unsigned restore_sigmask:1; 723#endif 724#ifdef CONFIG_MEMCG 725 unsigned in_user_fault:1; 726#ifdef CONFIG_MEMCG_KMEM 727 unsigned memcg_kmem_skip_account:1; 728#endif 729#endif 730#ifdef CONFIG_COMPAT_BRK 731 unsigned brk_randomized:1; 732#endif 733#ifdef CONFIG_CGROUPS 734 /* disallow userland-initiated cgroup migration */ 735 unsigned no_cgroup_migration:1; 736#endif 737#ifdef CONFIG_BLK_CGROUP 738 /* to be used once the psi infrastructure lands upstream. */ 739 unsigned use_memdelay:1; 740#endif 741 742 unsigned long atomic_flags; /* Flags requiring atomic access. */ 743 744 struct restart_block restart_block; 745 746 pid_t pid; 747 pid_t tgid; 748 749#ifdef CONFIG_STACKPROTECTOR 750 /* Canary value for the -fstack-protector GCC feature: */ 751 unsigned long stack_canary; 752#endif 753 /* 754 * Pointers to the (original) parent process, youngest child, younger sibling, 755 * older sibling, respectively. (p->father can be replaced with 756 * p->real_parent->pid) 757 */ 758 759 /* Real parent process: */ 760 struct task_struct __rcu *real_parent; 761 762 /* Recipient of SIGCHLD, wait4() reports: */ 763 struct task_struct __rcu *parent; 764 765 /* 766 * Children/sibling form the list of natural children: 767 */ 768 struct list_head children; 769 struct list_head sibling; 770 struct task_struct *group_leader; 771 772 /* 773 * 'ptraced' is the list of tasks this task is using ptrace() on. 774 * 775 * This includes both natural children and PTRACE_ATTACH targets. 776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 777 */ 778 struct list_head ptraced; 779 struct list_head ptrace_entry; 780 781 /* PID/PID hash table linkage. */ 782 struct pid *thread_pid; 783 struct hlist_node pid_links[PIDTYPE_MAX]; 784 struct list_head thread_group; 785 struct list_head thread_node; 786 787 struct completion *vfork_done; 788 789 /* CLONE_CHILD_SETTID: */ 790 int __user *set_child_tid; 791 792 /* CLONE_CHILD_CLEARTID: */ 793 int __user *clear_child_tid; 794 795 u64 utime; 796 u64 stime; 797#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 798 u64 utimescaled; 799 u64 stimescaled; 800#endif 801 u64 gtime; 802 struct prev_cputime prev_cputime; 803#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 804 struct vtime vtime; 805#endif 806 807#ifdef CONFIG_NO_HZ_FULL 808 atomic_t tick_dep_mask; 809#endif 810 /* Context switch counts: */ 811 unsigned long nvcsw; 812 unsigned long nivcsw; 813 814 /* Monotonic time in nsecs: */ 815 u64 start_time; 816 817 /* Boot based time in nsecs: */ 818 u64 real_start_time; 819 820 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 821 unsigned long min_flt; 822 unsigned long maj_flt; 823 824#ifdef CONFIG_POSIX_TIMERS 825 struct task_cputime cputime_expires; 826 struct list_head cpu_timers[3]; 827#endif 828 829 /* Process credentials: */ 830 831 /* Tracer's credentials at attach: */ 832 const struct cred __rcu *ptracer_cred; 833 834 /* Objective and real subjective task credentials (COW): */ 835 const struct cred __rcu *real_cred; 836 837 /* Effective (overridable) subjective task credentials (COW): */ 838 const struct cred __rcu *cred; 839 840 /* 841 * executable name, excluding path. 842 * 843 * - normally initialized setup_new_exec() 844 * - access it with [gs]et_task_comm() 845 * - lock it with task_lock() 846 */ 847 char comm[TASK_COMM_LEN]; 848 849 struct nameidata *nameidata; 850 851#ifdef CONFIG_SYSVIPC 852 struct sysv_sem sysvsem; 853 struct sysv_shm sysvshm; 854#endif 855#ifdef CONFIG_DETECT_HUNG_TASK 856 unsigned long last_switch_count; 857 unsigned long last_switch_time; 858#endif 859 /* Filesystem information: */ 860 struct fs_struct *fs; 861 862 /* Open file information: */ 863 struct files_struct *files; 864 865 /* Namespaces: */ 866 struct nsproxy *nsproxy; 867 868 /* Signal handlers: */ 869 struct signal_struct *signal; 870 struct sighand_struct *sighand; 871 sigset_t blocked; 872 sigset_t real_blocked; 873 /* Restored if set_restore_sigmask() was used: */ 874 sigset_t saved_sigmask; 875 struct sigpending pending; 876 unsigned long sas_ss_sp; 877 size_t sas_ss_size; 878 unsigned int sas_ss_flags; 879 880 struct callback_head *task_works; 881 882 struct audit_context *audit_context; 883#ifdef CONFIG_AUDITSYSCALL 884 kuid_t loginuid; 885 unsigned int sessionid; 886#endif 887 struct seccomp seccomp; 888 889 /* Thread group tracking: */ 890 u32 parent_exec_id; 891 u32 self_exec_id; 892 893 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 894 spinlock_t alloc_lock; 895 896 /* Protection of the PI data structures: */ 897 raw_spinlock_t pi_lock; 898 899 struct wake_q_node wake_q; 900 901#ifdef CONFIG_RT_MUTEXES 902 /* PI waiters blocked on a rt_mutex held by this task: */ 903 struct rb_root_cached pi_waiters; 904 /* Updated under owner's pi_lock and rq lock */ 905 struct task_struct *pi_top_task; 906 /* Deadlock detection and priority inheritance handling: */ 907 struct rt_mutex_waiter *pi_blocked_on; 908#endif 909 910#ifdef CONFIG_DEBUG_MUTEXES 911 /* Mutex deadlock detection: */ 912 struct mutex_waiter *blocked_on; 913#endif 914 915#ifdef CONFIG_TRACE_IRQFLAGS 916 unsigned int irq_events; 917 unsigned long hardirq_enable_ip; 918 unsigned long hardirq_disable_ip; 919 unsigned int hardirq_enable_event; 920 unsigned int hardirq_disable_event; 921 int hardirqs_enabled; 922 int hardirq_context; 923 unsigned long softirq_disable_ip; 924 unsigned long softirq_enable_ip; 925 unsigned int softirq_disable_event; 926 unsigned int softirq_enable_event; 927 int softirqs_enabled; 928 int softirq_context; 929#endif 930 931#ifdef CONFIG_LOCKDEP 932# define MAX_LOCK_DEPTH 48UL 933 u64 curr_chain_key; 934 int lockdep_depth; 935 unsigned int lockdep_recursion; 936 struct held_lock held_locks[MAX_LOCK_DEPTH]; 937#endif 938 939#ifdef CONFIG_UBSAN 940 unsigned int in_ubsan; 941#endif 942 943 /* Journalling filesystem info: */ 944 void *journal_info; 945 946 /* Stacked block device info: */ 947 struct bio_list *bio_list; 948 949#ifdef CONFIG_BLOCK 950 /* Stack plugging: */ 951 struct blk_plug *plug; 952#endif 953 954 /* VM state: */ 955 struct reclaim_state *reclaim_state; 956 957 struct backing_dev_info *backing_dev_info; 958 959 struct io_context *io_context; 960 961 /* Ptrace state: */ 962 unsigned long ptrace_message; 963 siginfo_t *last_siginfo; 964 965 struct task_io_accounting ioac; 966#ifdef CONFIG_TASK_XACCT 967 /* Accumulated RSS usage: */ 968 u64 acct_rss_mem1; 969 /* Accumulated virtual memory usage: */ 970 u64 acct_vm_mem1; 971 /* stime + utime since last update: */ 972 u64 acct_timexpd; 973#endif 974#ifdef CONFIG_CPUSETS 975 /* Protected by ->alloc_lock: */ 976 nodemask_t mems_allowed; 977 /* Seqence number to catch updates: */ 978 seqcount_t mems_allowed_seq; 979 int cpuset_mem_spread_rotor; 980 int cpuset_slab_spread_rotor; 981#endif 982#ifdef CONFIG_CGROUPS 983 /* Control Group info protected by css_set_lock: */ 984 struct css_set __rcu *cgroups; 985 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 986 struct list_head cg_list; 987#endif 988#ifdef CONFIG_INTEL_RDT 989 u32 closid; 990 u32 rmid; 991#endif 992#ifdef CONFIG_FUTEX 993 struct robust_list_head __user *robust_list; 994#ifdef CONFIG_COMPAT 995 struct compat_robust_list_head __user *compat_robust_list; 996#endif 997 struct list_head pi_state_list; 998 struct futex_pi_state *pi_state_cache; 999#endif 1000#ifdef CONFIG_PERF_EVENTS 1001 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1002 struct mutex perf_event_mutex; 1003 struct list_head perf_event_list; 1004#endif 1005#ifdef CONFIG_DEBUG_PREEMPT 1006 unsigned long preempt_disable_ip; 1007#endif 1008#ifdef CONFIG_NUMA 1009 /* Protected by alloc_lock: */ 1010 struct mempolicy *mempolicy; 1011 short il_prev; 1012 short pref_node_fork; 1013#endif 1014#ifdef CONFIG_NUMA_BALANCING 1015 int numa_scan_seq; 1016 unsigned int numa_scan_period; 1017 unsigned int numa_scan_period_max; 1018 int numa_preferred_nid; 1019 unsigned long numa_migrate_retry; 1020 /* Migration stamp: */ 1021 u64 node_stamp; 1022 u64 last_task_numa_placement; 1023 u64 last_sum_exec_runtime; 1024 struct callback_head numa_work; 1025 1026 struct numa_group *numa_group; 1027 1028 /* 1029 * numa_faults is an array split into four regions: 1030 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1031 * in this precise order. 1032 * 1033 * faults_memory: Exponential decaying average of faults on a per-node 1034 * basis. Scheduling placement decisions are made based on these 1035 * counts. The values remain static for the duration of a PTE scan. 1036 * faults_cpu: Track the nodes the process was running on when a NUMA 1037 * hinting fault was incurred. 1038 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1039 * during the current scan window. When the scan completes, the counts 1040 * in faults_memory and faults_cpu decay and these values are copied. 1041 */ 1042 unsigned long *numa_faults; 1043 unsigned long total_numa_faults; 1044 1045 /* 1046 * numa_faults_locality tracks if faults recorded during the last 1047 * scan window were remote/local or failed to migrate. The task scan 1048 * period is adapted based on the locality of the faults with different 1049 * weights depending on whether they were shared or private faults 1050 */ 1051 unsigned long numa_faults_locality[3]; 1052 1053 unsigned long numa_pages_migrated; 1054#endif /* CONFIG_NUMA_BALANCING */ 1055 1056#ifdef CONFIG_RSEQ 1057 struct rseq __user *rseq; 1058 u32 rseq_len; 1059 u32 rseq_sig; 1060 /* 1061 * RmW on rseq_event_mask must be performed atomically 1062 * with respect to preemption. 1063 */ 1064 unsigned long rseq_event_mask; 1065#endif 1066 1067 struct tlbflush_unmap_batch tlb_ubc; 1068 1069 struct rcu_head rcu; 1070 1071 /* Cache last used pipe for splice(): */ 1072 struct pipe_inode_info *splice_pipe; 1073 1074 struct page_frag task_frag; 1075 1076#ifdef CONFIG_TASK_DELAY_ACCT 1077 struct task_delay_info *delays; 1078#endif 1079 1080#ifdef CONFIG_FAULT_INJECTION 1081 int make_it_fail; 1082 unsigned int fail_nth; 1083#endif 1084 /* 1085 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1086 * balance_dirty_pages() for a dirty throttling pause: 1087 */ 1088 int nr_dirtied; 1089 int nr_dirtied_pause; 1090 /* Start of a write-and-pause period: */ 1091 unsigned long dirty_paused_when; 1092 1093#ifdef CONFIG_LATENCYTOP 1094 int latency_record_count; 1095 struct latency_record latency_record[LT_SAVECOUNT]; 1096#endif 1097 /* 1098 * Time slack values; these are used to round up poll() and 1099 * select() etc timeout values. These are in nanoseconds. 1100 */ 1101 u64 timer_slack_ns; 1102 u64 default_timer_slack_ns; 1103 1104#ifdef CONFIG_KASAN 1105 unsigned int kasan_depth; 1106#endif 1107 1108#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1109 /* Index of current stored address in ret_stack: */ 1110 int curr_ret_stack; 1111 1112 /* Stack of return addresses for return function tracing: */ 1113 struct ftrace_ret_stack *ret_stack; 1114 1115 /* Timestamp for last schedule: */ 1116 unsigned long long ftrace_timestamp; 1117 1118 /* 1119 * Number of functions that haven't been traced 1120 * because of depth overrun: 1121 */ 1122 atomic_t trace_overrun; 1123 1124 /* Pause tracing: */ 1125 atomic_t tracing_graph_pause; 1126#endif 1127 1128#ifdef CONFIG_TRACING 1129 /* State flags for use by tracers: */ 1130 unsigned long trace; 1131 1132 /* Bitmask and counter of trace recursion: */ 1133 unsigned long trace_recursion; 1134#endif /* CONFIG_TRACING */ 1135 1136#ifdef CONFIG_KCOV 1137 /* Coverage collection mode enabled for this task (0 if disabled): */ 1138 unsigned int kcov_mode; 1139 1140 /* Size of the kcov_area: */ 1141 unsigned int kcov_size; 1142 1143 /* Buffer for coverage collection: */ 1144 void *kcov_area; 1145 1146 /* KCOV descriptor wired with this task or NULL: */ 1147 struct kcov *kcov; 1148#endif 1149 1150#ifdef CONFIG_MEMCG 1151 struct mem_cgroup *memcg_in_oom; 1152 gfp_t memcg_oom_gfp_mask; 1153 int memcg_oom_order; 1154 1155 /* Number of pages to reclaim on returning to userland: */ 1156 unsigned int memcg_nr_pages_over_high; 1157 1158 /* Used by memcontrol for targeted memcg charge: */ 1159 struct mem_cgroup *active_memcg; 1160#endif 1161 1162#ifdef CONFIG_BLK_CGROUP 1163 struct request_queue *throttle_queue; 1164#endif 1165 1166#ifdef CONFIG_UPROBES 1167 struct uprobe_task *utask; 1168#endif 1169#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1170 unsigned int sequential_io; 1171 unsigned int sequential_io_avg; 1172#endif 1173#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1174 unsigned long task_state_change; 1175#endif 1176 int pagefault_disabled; 1177#ifdef CONFIG_MMU 1178 struct task_struct *oom_reaper_list; 1179#endif 1180#ifdef CONFIG_VMAP_STACK 1181 struct vm_struct *stack_vm_area; 1182#endif 1183#ifdef CONFIG_THREAD_INFO_IN_TASK 1184 /* A live task holds one reference: */ 1185 atomic_t stack_refcount; 1186#endif 1187#ifdef CONFIG_LIVEPATCH 1188 int patch_state; 1189#endif 1190#ifdef CONFIG_SECURITY 1191 /* Used by LSM modules for access restriction: */ 1192 void *security; 1193#endif 1194 1195 /* 1196 * New fields for task_struct should be added above here, so that 1197 * they are included in the randomized portion of task_struct. 1198 */ 1199 randomized_struct_fields_end 1200 1201 /* CPU-specific state of this task: */ 1202 struct thread_struct thread; 1203 1204 /* 1205 * WARNING: on x86, 'thread_struct' contains a variable-sized 1206 * structure. It *MUST* be at the end of 'task_struct'. 1207 * 1208 * Do not put anything below here! 1209 */ 1210}; 1211 1212static inline struct pid *task_pid(struct task_struct *task) 1213{ 1214 return task->thread_pid; 1215} 1216 1217/* 1218 * the helpers to get the task's different pids as they are seen 1219 * from various namespaces 1220 * 1221 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1222 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1223 * current. 1224 * task_xid_nr_ns() : id seen from the ns specified; 1225 * 1226 * see also pid_nr() etc in include/linux/pid.h 1227 */ 1228pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1229 1230static inline pid_t task_pid_nr(struct task_struct *tsk) 1231{ 1232 return tsk->pid; 1233} 1234 1235static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1236{ 1237 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1238} 1239 1240static inline pid_t task_pid_vnr(struct task_struct *tsk) 1241{ 1242 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1243} 1244 1245 1246static inline pid_t task_tgid_nr(struct task_struct *tsk) 1247{ 1248 return tsk->tgid; 1249} 1250 1251/** 1252 * pid_alive - check that a task structure is not stale 1253 * @p: Task structure to be checked. 1254 * 1255 * Test if a process is not yet dead (at most zombie state) 1256 * If pid_alive fails, then pointers within the task structure 1257 * can be stale and must not be dereferenced. 1258 * 1259 * Return: 1 if the process is alive. 0 otherwise. 1260 */ 1261static inline int pid_alive(const struct task_struct *p) 1262{ 1263 return p->thread_pid != NULL; 1264} 1265 1266static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1267{ 1268 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1269} 1270 1271static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1272{ 1273 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1274} 1275 1276 1277static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1278{ 1279 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1280} 1281 1282static inline pid_t task_session_vnr(struct task_struct *tsk) 1283{ 1284 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1285} 1286 1287static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1288{ 1289 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1290} 1291 1292static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1293{ 1294 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1295} 1296 1297static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1298{ 1299 pid_t pid = 0; 1300 1301 rcu_read_lock(); 1302 if (pid_alive(tsk)) 1303 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1304 rcu_read_unlock(); 1305 1306 return pid; 1307} 1308 1309static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1310{ 1311 return task_ppid_nr_ns(tsk, &init_pid_ns); 1312} 1313 1314/* Obsolete, do not use: */ 1315static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1316{ 1317 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1318} 1319 1320#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1321#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1322 1323static inline unsigned int task_state_index(struct task_struct *tsk) 1324{ 1325 unsigned int tsk_state = READ_ONCE(tsk->state); 1326 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1327 1328 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1329 1330 if (tsk_state == TASK_IDLE) 1331 state = TASK_REPORT_IDLE; 1332 1333 return fls(state); 1334} 1335 1336static inline char task_index_to_char(unsigned int state) 1337{ 1338 static const char state_char[] = "RSDTtXZPI"; 1339 1340 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1341 1342 return state_char[state]; 1343} 1344 1345static inline char task_state_to_char(struct task_struct *tsk) 1346{ 1347 return task_index_to_char(task_state_index(tsk)); 1348} 1349 1350/** 1351 * is_global_init - check if a task structure is init. Since init 1352 * is free to have sub-threads we need to check tgid. 1353 * @tsk: Task structure to be checked. 1354 * 1355 * Check if a task structure is the first user space task the kernel created. 1356 * 1357 * Return: 1 if the task structure is init. 0 otherwise. 1358 */ 1359static inline int is_global_init(struct task_struct *tsk) 1360{ 1361 return task_tgid_nr(tsk) == 1; 1362} 1363 1364extern struct pid *cad_pid; 1365 1366/* 1367 * Per process flags 1368 */ 1369#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1370#define PF_EXITING 0x00000004 /* Getting shut down */ 1371#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1372#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1373#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1374#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1375#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1376#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1377#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1378#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1379#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1380#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1381#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1382#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1383#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1384#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1385#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1386#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1387#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1388#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1389#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1390#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1391#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1392#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1393#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1394#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1395#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1396#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1397 1398/* 1399 * Only the _current_ task can read/write to tsk->flags, but other 1400 * tasks can access tsk->flags in readonly mode for example 1401 * with tsk_used_math (like during threaded core dumping). 1402 * There is however an exception to this rule during ptrace 1403 * or during fork: the ptracer task is allowed to write to the 1404 * child->flags of its traced child (same goes for fork, the parent 1405 * can write to the child->flags), because we're guaranteed the 1406 * child is not running and in turn not changing child->flags 1407 * at the same time the parent does it. 1408 */ 1409#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1410#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1411#define clear_used_math() clear_stopped_child_used_math(current) 1412#define set_used_math() set_stopped_child_used_math(current) 1413 1414#define conditional_stopped_child_used_math(condition, child) \ 1415 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1416 1417#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1418 1419#define copy_to_stopped_child_used_math(child) \ 1420 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1421 1422/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1423#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1424#define used_math() tsk_used_math(current) 1425 1426static inline bool is_percpu_thread(void) 1427{ 1428#ifdef CONFIG_SMP 1429 return (current->flags & PF_NO_SETAFFINITY) && 1430 (current->nr_cpus_allowed == 1); 1431#else 1432 return true; 1433#endif 1434} 1435 1436/* Per-process atomic flags. */ 1437#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1438#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1439#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1440#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1441#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1442 1443#define TASK_PFA_TEST(name, func) \ 1444 static inline bool task_##func(struct task_struct *p) \ 1445 { return test_bit(PFA_##name, &p->atomic_flags); } 1446 1447#define TASK_PFA_SET(name, func) \ 1448 static inline void task_set_##func(struct task_struct *p) \ 1449 { set_bit(PFA_##name, &p->atomic_flags); } 1450 1451#define TASK_PFA_CLEAR(name, func) \ 1452 static inline void task_clear_##func(struct task_struct *p) \ 1453 { clear_bit(PFA_##name, &p->atomic_flags); } 1454 1455TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1456TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1457 1458TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1459TASK_PFA_SET(SPREAD_PAGE, spread_page) 1460TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1461 1462TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1463TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1464TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1465 1466TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1467TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1468TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1469 1470TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1471TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1472 1473static inline void 1474current_restore_flags(unsigned long orig_flags, unsigned long flags) 1475{ 1476 current->flags &= ~flags; 1477 current->flags |= orig_flags & flags; 1478} 1479 1480extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1481extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1482#ifdef CONFIG_SMP 1483extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1484extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1485#else 1486static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1487{ 1488} 1489static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1490{ 1491 if (!cpumask_test_cpu(0, new_mask)) 1492 return -EINVAL; 1493 return 0; 1494} 1495#endif 1496 1497#ifndef cpu_relax_yield 1498#define cpu_relax_yield() cpu_relax() 1499#endif 1500 1501extern int yield_to(struct task_struct *p, bool preempt); 1502extern void set_user_nice(struct task_struct *p, long nice); 1503extern int task_prio(const struct task_struct *p); 1504 1505/** 1506 * task_nice - return the nice value of a given task. 1507 * @p: the task in question. 1508 * 1509 * Return: The nice value [ -20 ... 0 ... 19 ]. 1510 */ 1511static inline int task_nice(const struct task_struct *p) 1512{ 1513 return PRIO_TO_NICE((p)->static_prio); 1514} 1515 1516extern int can_nice(const struct task_struct *p, const int nice); 1517extern int task_curr(const struct task_struct *p); 1518extern int idle_cpu(int cpu); 1519extern int available_idle_cpu(int cpu); 1520extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1521extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1522extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1523extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1524extern struct task_struct *idle_task(int cpu); 1525 1526/** 1527 * is_idle_task - is the specified task an idle task? 1528 * @p: the task in question. 1529 * 1530 * Return: 1 if @p is an idle task. 0 otherwise. 1531 */ 1532static inline bool is_idle_task(const struct task_struct *p) 1533{ 1534 return !!(p->flags & PF_IDLE); 1535} 1536 1537extern struct task_struct *curr_task(int cpu); 1538extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1539 1540void yield(void); 1541 1542union thread_union { 1543#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1544 struct task_struct task; 1545#endif 1546#ifndef CONFIG_THREAD_INFO_IN_TASK 1547 struct thread_info thread_info; 1548#endif 1549 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1550}; 1551 1552#ifndef CONFIG_THREAD_INFO_IN_TASK 1553extern struct thread_info init_thread_info; 1554#endif 1555 1556extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1557 1558#ifdef CONFIG_THREAD_INFO_IN_TASK 1559static inline struct thread_info *task_thread_info(struct task_struct *task) 1560{ 1561 return &task->thread_info; 1562} 1563#elif !defined(__HAVE_THREAD_FUNCTIONS) 1564# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1565#endif 1566 1567/* 1568 * find a task by one of its numerical ids 1569 * 1570 * find_task_by_pid_ns(): 1571 * finds a task by its pid in the specified namespace 1572 * find_task_by_vpid(): 1573 * finds a task by its virtual pid 1574 * 1575 * see also find_vpid() etc in include/linux/pid.h 1576 */ 1577 1578extern struct task_struct *find_task_by_vpid(pid_t nr); 1579extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1580 1581/* 1582 * find a task by its virtual pid and get the task struct 1583 */ 1584extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1585 1586extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1587extern int wake_up_process(struct task_struct *tsk); 1588extern void wake_up_new_task(struct task_struct *tsk); 1589 1590#ifdef CONFIG_SMP 1591extern void kick_process(struct task_struct *tsk); 1592#else 1593static inline void kick_process(struct task_struct *tsk) { } 1594#endif 1595 1596extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1597 1598static inline void set_task_comm(struct task_struct *tsk, const char *from) 1599{ 1600 __set_task_comm(tsk, from, false); 1601} 1602 1603extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1604#define get_task_comm(buf, tsk) ({ \ 1605 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1606 __get_task_comm(buf, sizeof(buf), tsk); \ 1607}) 1608 1609#ifdef CONFIG_SMP 1610void scheduler_ipi(void); 1611extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1612#else 1613static inline void scheduler_ipi(void) { } 1614static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1615{ 1616 return 1; 1617} 1618#endif 1619 1620/* 1621 * Set thread flags in other task's structures. 1622 * See asm/thread_info.h for TIF_xxxx flags available: 1623 */ 1624static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1625{ 1626 set_ti_thread_flag(task_thread_info(tsk), flag); 1627} 1628 1629static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1630{ 1631 clear_ti_thread_flag(task_thread_info(tsk), flag); 1632} 1633 1634static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1635 bool value) 1636{ 1637 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1638} 1639 1640static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1641{ 1642 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1643} 1644 1645static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1646{ 1647 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1648} 1649 1650static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1651{ 1652 return test_ti_thread_flag(task_thread_info(tsk), flag); 1653} 1654 1655static inline void set_tsk_need_resched(struct task_struct *tsk) 1656{ 1657 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1658} 1659 1660static inline void clear_tsk_need_resched(struct task_struct *tsk) 1661{ 1662 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1663} 1664 1665static inline int test_tsk_need_resched(struct task_struct *tsk) 1666{ 1667 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1668} 1669 1670/* 1671 * cond_resched() and cond_resched_lock(): latency reduction via 1672 * explicit rescheduling in places that are safe. The return 1673 * value indicates whether a reschedule was done in fact. 1674 * cond_resched_lock() will drop the spinlock before scheduling, 1675 */ 1676#ifndef CONFIG_PREEMPT 1677extern int _cond_resched(void); 1678#else 1679static inline int _cond_resched(void) { return 0; } 1680#endif 1681 1682#define cond_resched() ({ \ 1683 ___might_sleep(__FILE__, __LINE__, 0); \ 1684 _cond_resched(); \ 1685}) 1686 1687extern int __cond_resched_lock(spinlock_t *lock); 1688 1689#define cond_resched_lock(lock) ({ \ 1690 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1691 __cond_resched_lock(lock); \ 1692}) 1693 1694static inline void cond_resched_rcu(void) 1695{ 1696#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1697 rcu_read_unlock(); 1698 cond_resched(); 1699 rcu_read_lock(); 1700#endif 1701} 1702 1703/* 1704 * Does a critical section need to be broken due to another 1705 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1706 * but a general need for low latency) 1707 */ 1708static inline int spin_needbreak(spinlock_t *lock) 1709{ 1710#ifdef CONFIG_PREEMPT 1711 return spin_is_contended(lock); 1712#else 1713 return 0; 1714#endif 1715} 1716 1717static __always_inline bool need_resched(void) 1718{ 1719 return unlikely(tif_need_resched()); 1720} 1721 1722/* 1723 * Wrappers for p->thread_info->cpu access. No-op on UP. 1724 */ 1725#ifdef CONFIG_SMP 1726 1727static inline unsigned int task_cpu(const struct task_struct *p) 1728{ 1729#ifdef CONFIG_THREAD_INFO_IN_TASK 1730 return p->cpu; 1731#else 1732 return task_thread_info(p)->cpu; 1733#endif 1734} 1735 1736extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1737 1738#else 1739 1740static inline unsigned int task_cpu(const struct task_struct *p) 1741{ 1742 return 0; 1743} 1744 1745static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1746{ 1747} 1748 1749#endif /* CONFIG_SMP */ 1750 1751/* 1752 * In order to reduce various lock holder preemption latencies provide an 1753 * interface to see if a vCPU is currently running or not. 1754 * 1755 * This allows us to terminate optimistic spin loops and block, analogous to 1756 * the native optimistic spin heuristic of testing if the lock owner task is 1757 * running or not. 1758 */ 1759#ifndef vcpu_is_preempted 1760# define vcpu_is_preempted(cpu) false 1761#endif 1762 1763extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1764extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1765 1766#ifndef TASK_SIZE_OF 1767#define TASK_SIZE_OF(tsk) TASK_SIZE 1768#endif 1769 1770#ifdef CONFIG_RSEQ 1771 1772/* 1773 * Map the event mask on the user-space ABI enum rseq_cs_flags 1774 * for direct mask checks. 1775 */ 1776enum rseq_event_mask_bits { 1777 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1778 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1779 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1780}; 1781 1782enum rseq_event_mask { 1783 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1784 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1785 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1786}; 1787 1788static inline void rseq_set_notify_resume(struct task_struct *t) 1789{ 1790 if (t->rseq) 1791 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1792} 1793 1794void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1795 1796static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1797 struct pt_regs *regs) 1798{ 1799 if (current->rseq) 1800 __rseq_handle_notify_resume(ksig, regs); 1801} 1802 1803static inline void rseq_signal_deliver(struct ksignal *ksig, 1804 struct pt_regs *regs) 1805{ 1806 preempt_disable(); 1807 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 1808 preempt_enable(); 1809 rseq_handle_notify_resume(ksig, regs); 1810} 1811 1812/* rseq_preempt() requires preemption to be disabled. */ 1813static inline void rseq_preempt(struct task_struct *t) 1814{ 1815 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1816 rseq_set_notify_resume(t); 1817} 1818 1819/* rseq_migrate() requires preemption to be disabled. */ 1820static inline void rseq_migrate(struct task_struct *t) 1821{ 1822 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1823 rseq_set_notify_resume(t); 1824} 1825 1826/* 1827 * If parent process has a registered restartable sequences area, the 1828 * child inherits. Only applies when forking a process, not a thread. 1829 */ 1830static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1831{ 1832 if (clone_flags & CLONE_THREAD) { 1833 t->rseq = NULL; 1834 t->rseq_len = 0; 1835 t->rseq_sig = 0; 1836 t->rseq_event_mask = 0; 1837 } else { 1838 t->rseq = current->rseq; 1839 t->rseq_len = current->rseq_len; 1840 t->rseq_sig = current->rseq_sig; 1841 t->rseq_event_mask = current->rseq_event_mask; 1842 } 1843} 1844 1845static inline void rseq_execve(struct task_struct *t) 1846{ 1847 t->rseq = NULL; 1848 t->rseq_len = 0; 1849 t->rseq_sig = 0; 1850 t->rseq_event_mask = 0; 1851} 1852 1853#else 1854 1855static inline void rseq_set_notify_resume(struct task_struct *t) 1856{ 1857} 1858static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1859 struct pt_regs *regs) 1860{ 1861} 1862static inline void rseq_signal_deliver(struct ksignal *ksig, 1863 struct pt_regs *regs) 1864{ 1865} 1866static inline void rseq_preempt(struct task_struct *t) 1867{ 1868} 1869static inline void rseq_migrate(struct task_struct *t) 1870{ 1871} 1872static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1873{ 1874} 1875static inline void rseq_execve(struct task_struct *t) 1876{ 1877} 1878 1879#endif 1880 1881#ifdef CONFIG_DEBUG_RSEQ 1882 1883void rseq_syscall(struct pt_regs *regs); 1884 1885#else 1886 1887static inline void rseq_syscall(struct pt_regs *regs) 1888{ 1889} 1890 1891#endif 1892 1893#endif