at v4.19 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_LIST_H 3#define _LINUX_LIST_H 4 5#include <linux/types.h> 6#include <linux/stddef.h> 7#include <linux/poison.h> 8#include <linux/const.h> 9#include <linux/kernel.h> 10 11/* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21#define LIST_HEAD_INIT(name) { &(name), &(name) } 22 23#define LIST_HEAD(name) \ 24 struct list_head name = LIST_HEAD_INIT(name) 25 26static inline void INIT_LIST_HEAD(struct list_head *list) 27{ 28 WRITE_ONCE(list->next, list); 29 list->prev = list; 30} 31 32#ifdef CONFIG_DEBUG_LIST 33extern bool __list_add_valid(struct list_head *new, 34 struct list_head *prev, 35 struct list_head *next); 36extern bool __list_del_entry_valid(struct list_head *entry); 37#else 38static inline bool __list_add_valid(struct list_head *new, 39 struct list_head *prev, 40 struct list_head *next) 41{ 42 return true; 43} 44static inline bool __list_del_entry_valid(struct list_head *entry) 45{ 46 return true; 47} 48#endif 49 50/* 51 * Insert a new entry between two known consecutive entries. 52 * 53 * This is only for internal list manipulation where we know 54 * the prev/next entries already! 55 */ 56static inline void __list_add(struct list_head *new, 57 struct list_head *prev, 58 struct list_head *next) 59{ 60 if (!__list_add_valid(new, prev, next)) 61 return; 62 63 next->prev = new; 64 new->next = next; 65 new->prev = prev; 66 WRITE_ONCE(prev->next, new); 67} 68 69/** 70 * list_add - add a new entry 71 * @new: new entry to be added 72 * @head: list head to add it after 73 * 74 * Insert a new entry after the specified head. 75 * This is good for implementing stacks. 76 */ 77static inline void list_add(struct list_head *new, struct list_head *head) 78{ 79 __list_add(new, head, head->next); 80} 81 82 83/** 84 * list_add_tail - add a new entry 85 * @new: new entry to be added 86 * @head: list head to add it before 87 * 88 * Insert a new entry before the specified head. 89 * This is useful for implementing queues. 90 */ 91static inline void list_add_tail(struct list_head *new, struct list_head *head) 92{ 93 __list_add(new, head->prev, head); 94} 95 96/* 97 * Delete a list entry by making the prev/next entries 98 * point to each other. 99 * 100 * This is only for internal list manipulation where we know 101 * the prev/next entries already! 102 */ 103static inline void __list_del(struct list_head * prev, struct list_head * next) 104{ 105 next->prev = prev; 106 WRITE_ONCE(prev->next, next); 107} 108 109/** 110 * list_del - deletes entry from list. 111 * @entry: the element to delete from the list. 112 * Note: list_empty() on entry does not return true after this, the entry is 113 * in an undefined state. 114 */ 115static inline void __list_del_entry(struct list_head *entry) 116{ 117 if (!__list_del_entry_valid(entry)) 118 return; 119 120 __list_del(entry->prev, entry->next); 121} 122 123static inline void list_del(struct list_head *entry) 124{ 125 __list_del_entry(entry); 126 entry->next = LIST_POISON1; 127 entry->prev = LIST_POISON2; 128} 129 130/** 131 * list_replace - replace old entry by new one 132 * @old : the element to be replaced 133 * @new : the new element to insert 134 * 135 * If @old was empty, it will be overwritten. 136 */ 137static inline void list_replace(struct list_head *old, 138 struct list_head *new) 139{ 140 new->next = old->next; 141 new->next->prev = new; 142 new->prev = old->prev; 143 new->prev->next = new; 144} 145 146static inline void list_replace_init(struct list_head *old, 147 struct list_head *new) 148{ 149 list_replace(old, new); 150 INIT_LIST_HEAD(old); 151} 152 153/** 154 * list_del_init - deletes entry from list and reinitialize it. 155 * @entry: the element to delete from the list. 156 */ 157static inline void list_del_init(struct list_head *entry) 158{ 159 __list_del_entry(entry); 160 INIT_LIST_HEAD(entry); 161} 162 163/** 164 * list_move - delete from one list and add as another's head 165 * @list: the entry to move 166 * @head: the head that will precede our entry 167 */ 168static inline void list_move(struct list_head *list, struct list_head *head) 169{ 170 __list_del_entry(list); 171 list_add(list, head); 172} 173 174/** 175 * list_move_tail - delete from one list and add as another's tail 176 * @list: the entry to move 177 * @head: the head that will follow our entry 178 */ 179static inline void list_move_tail(struct list_head *list, 180 struct list_head *head) 181{ 182 __list_del_entry(list); 183 list_add_tail(list, head); 184} 185 186/** 187 * list_is_last - tests whether @list is the last entry in list @head 188 * @list: the entry to test 189 * @head: the head of the list 190 */ 191static inline int list_is_last(const struct list_head *list, 192 const struct list_head *head) 193{ 194 return list->next == head; 195} 196 197/** 198 * list_empty - tests whether a list is empty 199 * @head: the list to test. 200 */ 201static inline int list_empty(const struct list_head *head) 202{ 203 return READ_ONCE(head->next) == head; 204} 205 206/** 207 * list_empty_careful - tests whether a list is empty and not being modified 208 * @head: the list to test 209 * 210 * Description: 211 * tests whether a list is empty _and_ checks that no other CPU might be 212 * in the process of modifying either member (next or prev) 213 * 214 * NOTE: using list_empty_careful() without synchronization 215 * can only be safe if the only activity that can happen 216 * to the list entry is list_del_init(). Eg. it cannot be used 217 * if another CPU could re-list_add() it. 218 */ 219static inline int list_empty_careful(const struct list_head *head) 220{ 221 struct list_head *next = head->next; 222 return (next == head) && (next == head->prev); 223} 224 225/** 226 * list_rotate_left - rotate the list to the left 227 * @head: the head of the list 228 */ 229static inline void list_rotate_left(struct list_head *head) 230{ 231 struct list_head *first; 232 233 if (!list_empty(head)) { 234 first = head->next; 235 list_move_tail(first, head); 236 } 237} 238 239/** 240 * list_is_singular - tests whether a list has just one entry. 241 * @head: the list to test. 242 */ 243static inline int list_is_singular(const struct list_head *head) 244{ 245 return !list_empty(head) && (head->next == head->prev); 246} 247 248static inline void __list_cut_position(struct list_head *list, 249 struct list_head *head, struct list_head *entry) 250{ 251 struct list_head *new_first = entry->next; 252 list->next = head->next; 253 list->next->prev = list; 254 list->prev = entry; 255 entry->next = list; 256 head->next = new_first; 257 new_first->prev = head; 258} 259 260/** 261 * list_cut_position - cut a list into two 262 * @list: a new list to add all removed entries 263 * @head: a list with entries 264 * @entry: an entry within head, could be the head itself 265 * and if so we won't cut the list 266 * 267 * This helper moves the initial part of @head, up to and 268 * including @entry, from @head to @list. You should 269 * pass on @entry an element you know is on @head. @list 270 * should be an empty list or a list you do not care about 271 * losing its data. 272 * 273 */ 274static inline void list_cut_position(struct list_head *list, 275 struct list_head *head, struct list_head *entry) 276{ 277 if (list_empty(head)) 278 return; 279 if (list_is_singular(head) && 280 (head->next != entry && head != entry)) 281 return; 282 if (entry == head) 283 INIT_LIST_HEAD(list); 284 else 285 __list_cut_position(list, head, entry); 286} 287 288/** 289 * list_cut_before - cut a list into two, before given entry 290 * @list: a new list to add all removed entries 291 * @head: a list with entries 292 * @entry: an entry within head, could be the head itself 293 * 294 * This helper moves the initial part of @head, up to but 295 * excluding @entry, from @head to @list. You should pass 296 * in @entry an element you know is on @head. @list should 297 * be an empty list or a list you do not care about losing 298 * its data. 299 * If @entry == @head, all entries on @head are moved to 300 * @list. 301 */ 302static inline void list_cut_before(struct list_head *list, 303 struct list_head *head, 304 struct list_head *entry) 305{ 306 if (head->next == entry) { 307 INIT_LIST_HEAD(list); 308 return; 309 } 310 list->next = head->next; 311 list->next->prev = list; 312 list->prev = entry->prev; 313 list->prev->next = list; 314 head->next = entry; 315 entry->prev = head; 316} 317 318static inline void __list_splice(const struct list_head *list, 319 struct list_head *prev, 320 struct list_head *next) 321{ 322 struct list_head *first = list->next; 323 struct list_head *last = list->prev; 324 325 first->prev = prev; 326 prev->next = first; 327 328 last->next = next; 329 next->prev = last; 330} 331 332/** 333 * list_splice - join two lists, this is designed for stacks 334 * @list: the new list to add. 335 * @head: the place to add it in the first list. 336 */ 337static inline void list_splice(const struct list_head *list, 338 struct list_head *head) 339{ 340 if (!list_empty(list)) 341 __list_splice(list, head, head->next); 342} 343 344/** 345 * list_splice_tail - join two lists, each list being a queue 346 * @list: the new list to add. 347 * @head: the place to add it in the first list. 348 */ 349static inline void list_splice_tail(struct list_head *list, 350 struct list_head *head) 351{ 352 if (!list_empty(list)) 353 __list_splice(list, head->prev, head); 354} 355 356/** 357 * list_splice_init - join two lists and reinitialise the emptied list. 358 * @list: the new list to add. 359 * @head: the place to add it in the first list. 360 * 361 * The list at @list is reinitialised 362 */ 363static inline void list_splice_init(struct list_head *list, 364 struct list_head *head) 365{ 366 if (!list_empty(list)) { 367 __list_splice(list, head, head->next); 368 INIT_LIST_HEAD(list); 369 } 370} 371 372/** 373 * list_splice_tail_init - join two lists and reinitialise the emptied list 374 * @list: the new list to add. 375 * @head: the place to add it in the first list. 376 * 377 * Each of the lists is a queue. 378 * The list at @list is reinitialised 379 */ 380static inline void list_splice_tail_init(struct list_head *list, 381 struct list_head *head) 382{ 383 if (!list_empty(list)) { 384 __list_splice(list, head->prev, head); 385 INIT_LIST_HEAD(list); 386 } 387} 388 389/** 390 * list_entry - get the struct for this entry 391 * @ptr: the &struct list_head pointer. 392 * @type: the type of the struct this is embedded in. 393 * @member: the name of the list_head within the struct. 394 */ 395#define list_entry(ptr, type, member) \ 396 container_of(ptr, type, member) 397 398/** 399 * list_first_entry - get the first element from a list 400 * @ptr: the list head to take the element from. 401 * @type: the type of the struct this is embedded in. 402 * @member: the name of the list_head within the struct. 403 * 404 * Note, that list is expected to be not empty. 405 */ 406#define list_first_entry(ptr, type, member) \ 407 list_entry((ptr)->next, type, member) 408 409/** 410 * list_last_entry - get the last element from a list 411 * @ptr: the list head to take the element from. 412 * @type: the type of the struct this is embedded in. 413 * @member: the name of the list_head within the struct. 414 * 415 * Note, that list is expected to be not empty. 416 */ 417#define list_last_entry(ptr, type, member) \ 418 list_entry((ptr)->prev, type, member) 419 420/** 421 * list_first_entry_or_null - get the first element from a list 422 * @ptr: the list head to take the element from. 423 * @type: the type of the struct this is embedded in. 424 * @member: the name of the list_head within the struct. 425 * 426 * Note that if the list is empty, it returns NULL. 427 */ 428#define list_first_entry_or_null(ptr, type, member) ({ \ 429 struct list_head *head__ = (ptr); \ 430 struct list_head *pos__ = READ_ONCE(head__->next); \ 431 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ 432}) 433 434/** 435 * list_next_entry - get the next element in list 436 * @pos: the type * to cursor 437 * @member: the name of the list_head within the struct. 438 */ 439#define list_next_entry(pos, member) \ 440 list_entry((pos)->member.next, typeof(*(pos)), member) 441 442/** 443 * list_prev_entry - get the prev element in list 444 * @pos: the type * to cursor 445 * @member: the name of the list_head within the struct. 446 */ 447#define list_prev_entry(pos, member) \ 448 list_entry((pos)->member.prev, typeof(*(pos)), member) 449 450/** 451 * list_for_each - iterate over a list 452 * @pos: the &struct list_head to use as a loop cursor. 453 * @head: the head for your list. 454 */ 455#define list_for_each(pos, head) \ 456 for (pos = (head)->next; pos != (head); pos = pos->next) 457 458/** 459 * list_for_each_prev - iterate over a list backwards 460 * @pos: the &struct list_head to use as a loop cursor. 461 * @head: the head for your list. 462 */ 463#define list_for_each_prev(pos, head) \ 464 for (pos = (head)->prev; pos != (head); pos = pos->prev) 465 466/** 467 * list_for_each_safe - iterate over a list safe against removal of list entry 468 * @pos: the &struct list_head to use as a loop cursor. 469 * @n: another &struct list_head to use as temporary storage 470 * @head: the head for your list. 471 */ 472#define list_for_each_safe(pos, n, head) \ 473 for (pos = (head)->next, n = pos->next; pos != (head); \ 474 pos = n, n = pos->next) 475 476/** 477 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 478 * @pos: the &struct list_head to use as a loop cursor. 479 * @n: another &struct list_head to use as temporary storage 480 * @head: the head for your list. 481 */ 482#define list_for_each_prev_safe(pos, n, head) \ 483 for (pos = (head)->prev, n = pos->prev; \ 484 pos != (head); \ 485 pos = n, n = pos->prev) 486 487/** 488 * list_for_each_entry - iterate over list of given type 489 * @pos: the type * to use as a loop cursor. 490 * @head: the head for your list. 491 * @member: the name of the list_head within the struct. 492 */ 493#define list_for_each_entry(pos, head, member) \ 494 for (pos = list_first_entry(head, typeof(*pos), member); \ 495 &pos->member != (head); \ 496 pos = list_next_entry(pos, member)) 497 498/** 499 * list_for_each_entry_reverse - iterate backwards over list of given type. 500 * @pos: the type * to use as a loop cursor. 501 * @head: the head for your list. 502 * @member: the name of the list_head within the struct. 503 */ 504#define list_for_each_entry_reverse(pos, head, member) \ 505 for (pos = list_last_entry(head, typeof(*pos), member); \ 506 &pos->member != (head); \ 507 pos = list_prev_entry(pos, member)) 508 509/** 510 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 511 * @pos: the type * to use as a start point 512 * @head: the head of the list 513 * @member: the name of the list_head within the struct. 514 * 515 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 516 */ 517#define list_prepare_entry(pos, head, member) \ 518 ((pos) ? : list_entry(head, typeof(*pos), member)) 519 520/** 521 * list_for_each_entry_continue - continue iteration over list of given type 522 * @pos: the type * to use as a loop cursor. 523 * @head: the head for your list. 524 * @member: the name of the list_head within the struct. 525 * 526 * Continue to iterate over list of given type, continuing after 527 * the current position. 528 */ 529#define list_for_each_entry_continue(pos, head, member) \ 530 for (pos = list_next_entry(pos, member); \ 531 &pos->member != (head); \ 532 pos = list_next_entry(pos, member)) 533 534/** 535 * list_for_each_entry_continue_reverse - iterate backwards from the given point 536 * @pos: the type * to use as a loop cursor. 537 * @head: the head for your list. 538 * @member: the name of the list_head within the struct. 539 * 540 * Start to iterate over list of given type backwards, continuing after 541 * the current position. 542 */ 543#define list_for_each_entry_continue_reverse(pos, head, member) \ 544 for (pos = list_prev_entry(pos, member); \ 545 &pos->member != (head); \ 546 pos = list_prev_entry(pos, member)) 547 548/** 549 * list_for_each_entry_from - iterate over list of given type from the current point 550 * @pos: the type * to use as a loop cursor. 551 * @head: the head for your list. 552 * @member: the name of the list_head within the struct. 553 * 554 * Iterate over list of given type, continuing from current position. 555 */ 556#define list_for_each_entry_from(pos, head, member) \ 557 for (; &pos->member != (head); \ 558 pos = list_next_entry(pos, member)) 559 560/** 561 * list_for_each_entry_from_reverse - iterate backwards over list of given type 562 * from the current point 563 * @pos: the type * to use as a loop cursor. 564 * @head: the head for your list. 565 * @member: the name of the list_head within the struct. 566 * 567 * Iterate backwards over list of given type, continuing from current position. 568 */ 569#define list_for_each_entry_from_reverse(pos, head, member) \ 570 for (; &pos->member != (head); \ 571 pos = list_prev_entry(pos, member)) 572 573/** 574 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 575 * @pos: the type * to use as a loop cursor. 576 * @n: another type * to use as temporary storage 577 * @head: the head for your list. 578 * @member: the name of the list_head within the struct. 579 */ 580#define list_for_each_entry_safe(pos, n, head, member) \ 581 for (pos = list_first_entry(head, typeof(*pos), member), \ 582 n = list_next_entry(pos, member); \ 583 &pos->member != (head); \ 584 pos = n, n = list_next_entry(n, member)) 585 586/** 587 * list_for_each_entry_safe_continue - continue list iteration safe against removal 588 * @pos: the type * to use as a loop cursor. 589 * @n: another type * to use as temporary storage 590 * @head: the head for your list. 591 * @member: the name of the list_head within the struct. 592 * 593 * Iterate over list of given type, continuing after current point, 594 * safe against removal of list entry. 595 */ 596#define list_for_each_entry_safe_continue(pos, n, head, member) \ 597 for (pos = list_next_entry(pos, member), \ 598 n = list_next_entry(pos, member); \ 599 &pos->member != (head); \ 600 pos = n, n = list_next_entry(n, member)) 601 602/** 603 * list_for_each_entry_safe_from - iterate over list from current point safe against removal 604 * @pos: the type * to use as a loop cursor. 605 * @n: another type * to use as temporary storage 606 * @head: the head for your list. 607 * @member: the name of the list_head within the struct. 608 * 609 * Iterate over list of given type from current point, safe against 610 * removal of list entry. 611 */ 612#define list_for_each_entry_safe_from(pos, n, head, member) \ 613 for (n = list_next_entry(pos, member); \ 614 &pos->member != (head); \ 615 pos = n, n = list_next_entry(n, member)) 616 617/** 618 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal 619 * @pos: the type * to use as a loop cursor. 620 * @n: another type * to use as temporary storage 621 * @head: the head for your list. 622 * @member: the name of the list_head within the struct. 623 * 624 * Iterate backwards over list of given type, safe against removal 625 * of list entry. 626 */ 627#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 628 for (pos = list_last_entry(head, typeof(*pos), member), \ 629 n = list_prev_entry(pos, member); \ 630 &pos->member != (head); \ 631 pos = n, n = list_prev_entry(n, member)) 632 633/** 634 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop 635 * @pos: the loop cursor used in the list_for_each_entry_safe loop 636 * @n: temporary storage used in list_for_each_entry_safe 637 * @member: the name of the list_head within the struct. 638 * 639 * list_safe_reset_next is not safe to use in general if the list may be 640 * modified concurrently (eg. the lock is dropped in the loop body). An 641 * exception to this is if the cursor element (pos) is pinned in the list, 642 * and list_safe_reset_next is called after re-taking the lock and before 643 * completing the current iteration of the loop body. 644 */ 645#define list_safe_reset_next(pos, n, member) \ 646 n = list_next_entry(pos, member) 647 648/* 649 * Double linked lists with a single pointer list head. 650 * Mostly useful for hash tables where the two pointer list head is 651 * too wasteful. 652 * You lose the ability to access the tail in O(1). 653 */ 654 655#define HLIST_HEAD_INIT { .first = NULL } 656#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 657#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 658static inline void INIT_HLIST_NODE(struct hlist_node *h) 659{ 660 h->next = NULL; 661 h->pprev = NULL; 662} 663 664static inline int hlist_unhashed(const struct hlist_node *h) 665{ 666 return !h->pprev; 667} 668 669static inline int hlist_empty(const struct hlist_head *h) 670{ 671 return !READ_ONCE(h->first); 672} 673 674static inline void __hlist_del(struct hlist_node *n) 675{ 676 struct hlist_node *next = n->next; 677 struct hlist_node **pprev = n->pprev; 678 679 WRITE_ONCE(*pprev, next); 680 if (next) 681 next->pprev = pprev; 682} 683 684static inline void hlist_del(struct hlist_node *n) 685{ 686 __hlist_del(n); 687 n->next = LIST_POISON1; 688 n->pprev = LIST_POISON2; 689} 690 691static inline void hlist_del_init(struct hlist_node *n) 692{ 693 if (!hlist_unhashed(n)) { 694 __hlist_del(n); 695 INIT_HLIST_NODE(n); 696 } 697} 698 699static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 700{ 701 struct hlist_node *first = h->first; 702 n->next = first; 703 if (first) 704 first->pprev = &n->next; 705 WRITE_ONCE(h->first, n); 706 n->pprev = &h->first; 707} 708 709/* next must be != NULL */ 710static inline void hlist_add_before(struct hlist_node *n, 711 struct hlist_node *next) 712{ 713 n->pprev = next->pprev; 714 n->next = next; 715 next->pprev = &n->next; 716 WRITE_ONCE(*(n->pprev), n); 717} 718 719static inline void hlist_add_behind(struct hlist_node *n, 720 struct hlist_node *prev) 721{ 722 n->next = prev->next; 723 WRITE_ONCE(prev->next, n); 724 n->pprev = &prev->next; 725 726 if (n->next) 727 n->next->pprev = &n->next; 728} 729 730/* after that we'll appear to be on some hlist and hlist_del will work */ 731static inline void hlist_add_fake(struct hlist_node *n) 732{ 733 n->pprev = &n->next; 734} 735 736static inline bool hlist_fake(struct hlist_node *h) 737{ 738 return h->pprev == &h->next; 739} 740 741/* 742 * Check whether the node is the only node of the head without 743 * accessing head: 744 */ 745static inline bool 746hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) 747{ 748 return !n->next && n->pprev == &h->first; 749} 750 751/* 752 * Move a list from one list head to another. Fixup the pprev 753 * reference of the first entry if it exists. 754 */ 755static inline void hlist_move_list(struct hlist_head *old, 756 struct hlist_head *new) 757{ 758 new->first = old->first; 759 if (new->first) 760 new->first->pprev = &new->first; 761 old->first = NULL; 762} 763 764#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 765 766#define hlist_for_each(pos, head) \ 767 for (pos = (head)->first; pos ; pos = pos->next) 768 769#define hlist_for_each_safe(pos, n, head) \ 770 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 771 pos = n) 772 773#define hlist_entry_safe(ptr, type, member) \ 774 ({ typeof(ptr) ____ptr = (ptr); \ 775 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ 776 }) 777 778/** 779 * hlist_for_each_entry - iterate over list of given type 780 * @pos: the type * to use as a loop cursor. 781 * @head: the head for your list. 782 * @member: the name of the hlist_node within the struct. 783 */ 784#define hlist_for_each_entry(pos, head, member) \ 785 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ 786 pos; \ 787 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 788 789/** 790 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 791 * @pos: the type * to use as a loop cursor. 792 * @member: the name of the hlist_node within the struct. 793 */ 794#define hlist_for_each_entry_continue(pos, member) \ 795 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ 796 pos; \ 797 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 798 799/** 800 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 801 * @pos: the type * to use as a loop cursor. 802 * @member: the name of the hlist_node within the struct. 803 */ 804#define hlist_for_each_entry_from(pos, member) \ 805 for (; pos; \ 806 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 807 808/** 809 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 810 * @pos: the type * to use as a loop cursor. 811 * @n: another &struct hlist_node to use as temporary storage 812 * @head: the head for your list. 813 * @member: the name of the hlist_node within the struct. 814 */ 815#define hlist_for_each_entry_safe(pos, n, head, member) \ 816 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ 817 pos && ({ n = pos->member.next; 1; }); \ 818 pos = hlist_entry_safe(n, typeof(*pos), member)) 819 820#endif