at v4.19 21 kB view raw
1/* 2 * Generic EDAC defs 3 * 4 * Author: Dave Jiang <djiang@mvista.com> 5 * 6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 */ 12#ifndef _LINUX_EDAC_H_ 13#define _LINUX_EDAC_H_ 14 15#include <linux/atomic.h> 16#include <linux/device.h> 17#include <linux/completion.h> 18#include <linux/workqueue.h> 19#include <linux/debugfs.h> 20 21#define EDAC_DEVICE_NAME_LEN 31 22 23struct device; 24 25#define EDAC_OPSTATE_INVAL -1 26#define EDAC_OPSTATE_POLL 0 27#define EDAC_OPSTATE_NMI 1 28#define EDAC_OPSTATE_INT 2 29 30extern int edac_op_state; 31 32struct bus_type *edac_get_sysfs_subsys(void); 33int edac_get_report_status(void); 34void edac_set_report_status(int new); 35 36enum { 37 EDAC_REPORTING_ENABLED, 38 EDAC_REPORTING_DISABLED, 39 EDAC_REPORTING_FORCE 40}; 41 42static inline void opstate_init(void) 43{ 44 switch (edac_op_state) { 45 case EDAC_OPSTATE_POLL: 46 case EDAC_OPSTATE_NMI: 47 break; 48 default: 49 edac_op_state = EDAC_OPSTATE_POLL; 50 } 51 return; 52} 53 54/* Max length of a DIMM label*/ 55#define EDAC_MC_LABEL_LEN 31 56 57/* Maximum size of the location string */ 58#define LOCATION_SIZE 256 59 60/* Defines the maximum number of labels that can be reported */ 61#define EDAC_MAX_LABELS 8 62 63/* String used to join two or more labels */ 64#define OTHER_LABEL " or " 65 66/** 67 * enum dev_type - describe the type of memory DRAM chips used at the stick 68 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it 69 * @DEV_X1: 1 bit for data 70 * @DEV_X2: 2 bits for data 71 * @DEV_X4: 4 bits for data 72 * @DEV_X8: 8 bits for data 73 * @DEV_X16: 16 bits for data 74 * @DEV_X32: 32 bits for data 75 * @DEV_X64: 64 bits for data 76 * 77 * Typical values are x4 and x8. 78 */ 79enum dev_type { 80 DEV_UNKNOWN = 0, 81 DEV_X1, 82 DEV_X2, 83 DEV_X4, 84 DEV_X8, 85 DEV_X16, 86 DEV_X32, /* Do these parts exist? */ 87 DEV_X64 /* Do these parts exist? */ 88}; 89 90#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) 91#define DEV_FLAG_X1 BIT(DEV_X1) 92#define DEV_FLAG_X2 BIT(DEV_X2) 93#define DEV_FLAG_X4 BIT(DEV_X4) 94#define DEV_FLAG_X8 BIT(DEV_X8) 95#define DEV_FLAG_X16 BIT(DEV_X16) 96#define DEV_FLAG_X32 BIT(DEV_X32) 97#define DEV_FLAG_X64 BIT(DEV_X64) 98 99/** 100 * enum hw_event_mc_err_type - type of the detected error 101 * 102 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC 103 * corrected error was detected 104 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that 105 * can't be corrected by ECC, but it is not 106 * fatal (maybe it is on an unused memory area, 107 * or the memory controller could recover from 108 * it for example, by re-trying the operation). 109 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable 110 * error whose handling is not urgent. This could 111 * be due to hardware data poisoning where the 112 * system can continue operation until the poisoned 113 * data is consumed. Preemptive measures may also 114 * be taken, e.g. offlining pages, etc. 115 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not 116 * be recovered. 117 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth 118 * type of error: informational logs. 119 */ 120enum hw_event_mc_err_type { 121 HW_EVENT_ERR_CORRECTED, 122 HW_EVENT_ERR_UNCORRECTED, 123 HW_EVENT_ERR_DEFERRED, 124 HW_EVENT_ERR_FATAL, 125 HW_EVENT_ERR_INFO, 126}; 127 128static inline char *mc_event_error_type(const unsigned int err_type) 129{ 130 switch (err_type) { 131 case HW_EVENT_ERR_CORRECTED: 132 return "Corrected"; 133 case HW_EVENT_ERR_UNCORRECTED: 134 return "Uncorrected"; 135 case HW_EVENT_ERR_DEFERRED: 136 return "Deferred"; 137 case HW_EVENT_ERR_FATAL: 138 return "Fatal"; 139 default: 140 case HW_EVENT_ERR_INFO: 141 return "Info"; 142 } 143} 144 145/** 146 * enum mem_type - memory types. For a more detailed reference, please see 147 * http://en.wikipedia.org/wiki/DRAM 148 * 149 * @MEM_EMPTY: Empty csrow 150 * @MEM_RESERVED: Reserved csrow type 151 * @MEM_UNKNOWN: Unknown csrow type 152 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. 153 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. 154 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. 155 * @MEM_SDR: SDR - Single data rate SDRAM 156 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 157 * They use 3 pins for chip select: Pins 0 and 2 are 158 * for rank 0; pins 1 and 3 are for rank 1, if the memory 159 * is dual-rank. 160 * @MEM_RDR: Registered SDR SDRAM 161 * @MEM_DDR: Double data rate SDRAM 162 * http://en.wikipedia.org/wiki/DDR_SDRAM 163 * @MEM_RDDR: Registered Double data rate SDRAM 164 * This is a variant of the DDR memories. 165 * A registered memory has a buffer inside it, hiding 166 * part of the memory details to the memory controller. 167 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. 168 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. 169 * Those memories are labeled as "PC2-" instead of "PC" to 170 * differentiate from DDR. 171 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 172 * and JESD206. 173 * Those memories are accessed per DIMM slot, and not by 174 * a chip select signal. 175 * @MEM_RDDR2: Registered DDR2 RAM 176 * This is a variant of the DDR2 memories. 177 * @MEM_XDR: Rambus XDR 178 * It is an evolution of the original RAMBUS memories, 179 * created to compete with DDR2. Weren't used on any 180 * x86 arch, but cell_edac PPC memory controller uses it. 181 * @MEM_DDR3: DDR3 RAM 182 * @MEM_RDDR3: Registered DDR3 RAM 183 * This is a variant of the DDR3 memories. 184 * @MEM_LRDDR3: Load-Reduced DDR3 memory. 185 * @MEM_DDR4: Unbuffered DDR4 RAM 186 * @MEM_RDDR4: Registered DDR4 RAM 187 * This is a variant of the DDR4 memories. 188 * @MEM_LRDDR4: Load-Reduced DDR4 memory. 189 * @MEM_NVDIMM: Non-volatile RAM 190 */ 191enum mem_type { 192 MEM_EMPTY = 0, 193 MEM_RESERVED, 194 MEM_UNKNOWN, 195 MEM_FPM, 196 MEM_EDO, 197 MEM_BEDO, 198 MEM_SDR, 199 MEM_RDR, 200 MEM_DDR, 201 MEM_RDDR, 202 MEM_RMBS, 203 MEM_DDR2, 204 MEM_FB_DDR2, 205 MEM_RDDR2, 206 MEM_XDR, 207 MEM_DDR3, 208 MEM_RDDR3, 209 MEM_LRDDR3, 210 MEM_DDR4, 211 MEM_RDDR4, 212 MEM_LRDDR4, 213 MEM_NVDIMM, 214}; 215 216#define MEM_FLAG_EMPTY BIT(MEM_EMPTY) 217#define MEM_FLAG_RESERVED BIT(MEM_RESERVED) 218#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) 219#define MEM_FLAG_FPM BIT(MEM_FPM) 220#define MEM_FLAG_EDO BIT(MEM_EDO) 221#define MEM_FLAG_BEDO BIT(MEM_BEDO) 222#define MEM_FLAG_SDR BIT(MEM_SDR) 223#define MEM_FLAG_RDR BIT(MEM_RDR) 224#define MEM_FLAG_DDR BIT(MEM_DDR) 225#define MEM_FLAG_RDDR BIT(MEM_RDDR) 226#define MEM_FLAG_RMBS BIT(MEM_RMBS) 227#define MEM_FLAG_DDR2 BIT(MEM_DDR2) 228#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) 229#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) 230#define MEM_FLAG_XDR BIT(MEM_XDR) 231#define MEM_FLAG_DDR3 BIT(MEM_DDR3) 232#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) 233#define MEM_FLAG_DDR4 BIT(MEM_DDR4) 234#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) 235#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) 236#define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM) 237 238/** 239 * enum edac-type - Error Detection and Correction capabilities and mode 240 * @EDAC_UNKNOWN: Unknown if ECC is available 241 * @EDAC_NONE: Doesn't support ECC 242 * @EDAC_RESERVED: Reserved ECC type 243 * @EDAC_PARITY: Detects parity errors 244 * @EDAC_EC: Error Checking - no correction 245 * @EDAC_SECDED: Single bit error correction, Double detection 246 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist? 247 * @EDAC_S4ECD4ED: Chipkill x4 devices 248 * @EDAC_S8ECD8ED: Chipkill x8 devices 249 * @EDAC_S16ECD16ED: Chipkill x16 devices 250 */ 251enum edac_type { 252 EDAC_UNKNOWN = 0, 253 EDAC_NONE, 254 EDAC_RESERVED, 255 EDAC_PARITY, 256 EDAC_EC, 257 EDAC_SECDED, 258 EDAC_S2ECD2ED, 259 EDAC_S4ECD4ED, 260 EDAC_S8ECD8ED, 261 EDAC_S16ECD16ED, 262}; 263 264#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) 265#define EDAC_FLAG_NONE BIT(EDAC_NONE) 266#define EDAC_FLAG_PARITY BIT(EDAC_PARITY) 267#define EDAC_FLAG_EC BIT(EDAC_EC) 268#define EDAC_FLAG_SECDED BIT(EDAC_SECDED) 269#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) 270#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) 271#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) 272#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) 273 274/** 275 * enum scrub_type - scrubbing capabilities 276 * @SCRUB_UNKNOWN: Unknown if scrubber is available 277 * @SCRUB_NONE: No scrubber 278 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing 279 * @SCRUB_SW_SRC: Software scrub only errors 280 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error 281 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable 282 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing 283 * @SCRUB_HW_SRC: Hardware scrub only errors 284 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error 285 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable 286 */ 287enum scrub_type { 288 SCRUB_UNKNOWN = 0, 289 SCRUB_NONE, 290 SCRUB_SW_PROG, 291 SCRUB_SW_SRC, 292 SCRUB_SW_PROG_SRC, 293 SCRUB_SW_TUNABLE, 294 SCRUB_HW_PROG, 295 SCRUB_HW_SRC, 296 SCRUB_HW_PROG_SRC, 297 SCRUB_HW_TUNABLE 298}; 299 300#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) 301#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) 302#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) 303#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) 304#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) 305#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) 306#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) 307#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) 308 309/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ 310 311/* EDAC internal operation states */ 312#define OP_ALLOC 0x100 313#define OP_RUNNING_POLL 0x201 314#define OP_RUNNING_INTERRUPT 0x202 315#define OP_RUNNING_POLL_INTR 0x203 316#define OP_OFFLINE 0x300 317 318/** 319 * enum edac_mc_layer - memory controller hierarchy layer 320 * 321 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" 322 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" 323 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot" 324 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select" 325 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped 326 * as a single memory area. This is used when 327 * retrieving errors from a firmware driven driver. 328 * 329 * This enum is used by the drivers to tell edac_mc_sysfs what name should 330 * be used when describing a memory stick location. 331 */ 332enum edac_mc_layer_type { 333 EDAC_MC_LAYER_BRANCH, 334 EDAC_MC_LAYER_CHANNEL, 335 EDAC_MC_LAYER_SLOT, 336 EDAC_MC_LAYER_CHIP_SELECT, 337 EDAC_MC_LAYER_ALL_MEM, 338}; 339 340/** 341 * struct edac_mc_layer - describes the memory controller hierarchy 342 * @type: layer type 343 * @size: number of components per layer. For example, 344 * if the channel layer has two channels, size = 2 345 * @is_virt_csrow: This layer is part of the "csrow" when old API 346 * compatibility mode is enabled. Otherwise, it is 347 * a channel 348 */ 349struct edac_mc_layer { 350 enum edac_mc_layer_type type; 351 unsigned size; 352 bool is_virt_csrow; 353}; 354 355/* 356 * Maximum number of layers used by the memory controller to uniquely 357 * identify a single memory stick. 358 * NOTE: Changing this constant requires not only to change the constant 359 * below, but also to change the existing code at the core, as there are 360 * some code there that are optimized for 3 layers. 361 */ 362#define EDAC_MAX_LAYERS 3 363 364/** 365 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer 366 * array for the element given by [layer0,layer1,layer2] 367 * position 368 * 369 * @layers: a struct edac_mc_layer array, describing how many elements 370 * were allocated for each layer 371 * @nlayers: Number of layers at the @layers array 372 * @layer0: layer0 position 373 * @layer1: layer1 position. Unused if n_layers < 2 374 * @layer2: layer2 position. Unused if n_layers < 3 375 * 376 * For 1 layer, this macro returns "var[layer0] - var"; 377 * 378 * For 2 layers, this macro is similar to allocate a bi-dimensional array 379 * and to return "var[layer0][layer1] - var"; 380 * 381 * For 3 layers, this macro is similar to allocate a tri-dimensional array 382 * and to return "var[layer0][layer1][layer2] - var". 383 * 384 * A loop could be used here to make it more generic, but, as we only have 385 * 3 layers, this is a little faster. 386 * 387 * By design, layers can never be 0 or more than 3. If that ever happens, 388 * a NULL is returned, causing an OOPS during the memory allocation routine, 389 * with would point to the developer that he's doing something wrong. 390 */ 391#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \ 392 int __i; \ 393 if ((nlayers) == 1) \ 394 __i = layer0; \ 395 else if ((nlayers) == 2) \ 396 __i = (layer1) + ((layers[1]).size * (layer0)); \ 397 else if ((nlayers) == 3) \ 398 __i = (layer2) + ((layers[2]).size * ((layer1) + \ 399 ((layers[1]).size * (layer0)))); \ 400 else \ 401 __i = -EINVAL; \ 402 __i; \ 403}) 404 405/** 406 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array 407 * for the element given by [layer0,layer1,layer2] position 408 * 409 * @layers: a struct edac_mc_layer array, describing how many elements 410 * were allocated for each layer 411 * @var: name of the var where we want to get the pointer 412 * (like mci->dimms) 413 * @nlayers: Number of layers at the @layers array 414 * @layer0: layer0 position 415 * @layer1: layer1 position. Unused if n_layers < 2 416 * @layer2: layer2 position. Unused if n_layers < 3 417 * 418 * For 1 layer, this macro returns "var[layer0]"; 419 * 420 * For 2 layers, this macro is similar to allocate a bi-dimensional array 421 * and to return "var[layer0][layer1]"; 422 * 423 * For 3 layers, this macro is similar to allocate a tri-dimensional array 424 * and to return "var[layer0][layer1][layer2]"; 425 */ 426#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \ 427 typeof(*var) __p; \ 428 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \ 429 if (___i < 0) \ 430 __p = NULL; \ 431 else \ 432 __p = (var)[___i]; \ 433 __p; \ 434}) 435 436struct dimm_info { 437 struct device dev; 438 439 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 440 441 /* Memory location data */ 442 unsigned location[EDAC_MAX_LAYERS]; 443 444 struct mem_ctl_info *mci; /* the parent */ 445 446 u32 grain; /* granularity of reported error in bytes */ 447 enum dev_type dtype; /* memory device type */ 448 enum mem_type mtype; /* memory dimm type */ 449 enum edac_type edac_mode; /* EDAC mode for this dimm */ 450 451 u32 nr_pages; /* number of pages on this dimm */ 452 453 unsigned csrow, cschannel; /* Points to the old API data */ 454}; 455 456/** 457 * struct rank_info - contains the information for one DIMM rank 458 * 459 * @chan_idx: channel number where the rank is (typically, 0 or 1) 460 * @ce_count: number of correctable errors for this rank 461 * @csrow: A pointer to the chip select row structure (the parent 462 * structure). The location of the rank is given by 463 * the (csrow->csrow_idx, chan_idx) vector. 464 * @dimm: A pointer to the DIMM structure, where the DIMM label 465 * information is stored. 466 * 467 * FIXME: Currently, the EDAC core model will assume one DIMM per rank. 468 * This is a bad assumption, but it makes this patch easier. Later 469 * patches in this series will fix this issue. 470 */ 471struct rank_info { 472 int chan_idx; 473 struct csrow_info *csrow; 474 struct dimm_info *dimm; 475 476 u32 ce_count; /* Correctable Errors for this csrow */ 477}; 478 479struct csrow_info { 480 struct device dev; 481 482 /* Used only by edac_mc_find_csrow_by_page() */ 483 unsigned long first_page; /* first page number in csrow */ 484 unsigned long last_page; /* last page number in csrow */ 485 unsigned long page_mask; /* used for interleaving - 486 * 0UL for non intlv */ 487 488 int csrow_idx; /* the chip-select row */ 489 490 u32 ue_count; /* Uncorrectable Errors for this csrow */ 491 u32 ce_count; /* Correctable Errors for this csrow */ 492 493 struct mem_ctl_info *mci; /* the parent */ 494 495 /* channel information for this csrow */ 496 u32 nr_channels; 497 struct rank_info **channels; 498}; 499 500/* 501 * struct errcount_attribute - used to store the several error counts 502 */ 503struct errcount_attribute_data { 504 int n_layers; 505 int pos[EDAC_MAX_LAYERS]; 506 int layer0, layer1, layer2; 507}; 508 509/** 510 * struct edac_raw_error_desc - Raw error report structure 511 * @grain: minimum granularity for an error report, in bytes 512 * @error_count: number of errors of the same type 513 * @top_layer: top layer of the error (layer[0]) 514 * @mid_layer: middle layer of the error (layer[1]) 515 * @low_layer: low layer of the error (layer[2]) 516 * @page_frame_number: page where the error happened 517 * @offset_in_page: page offset 518 * @syndrome: syndrome of the error (or 0 if unknown or if 519 * the syndrome is not applicable) 520 * @msg: error message 521 * @location: location of the error 522 * @label: label of the affected DIMM(s) 523 * @other_detail: other driver-specific detail about the error 524 * @enable_per_layer_report: if false, the error affects all layers 525 * (typically, a memory controller error) 526 */ 527struct edac_raw_error_desc { 528 /* 529 * NOTE: everything before grain won't be cleaned by 530 * edac_raw_error_desc_clean() 531 */ 532 char location[LOCATION_SIZE]; 533 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; 534 long grain; 535 536 /* the vars below and grain will be cleaned on every new error report */ 537 u16 error_count; 538 int top_layer; 539 int mid_layer; 540 int low_layer; 541 unsigned long page_frame_number; 542 unsigned long offset_in_page; 543 unsigned long syndrome; 544 const char *msg; 545 const char *other_detail; 546 bool enable_per_layer_report; 547}; 548 549/* MEMORY controller information structure 550 */ 551struct mem_ctl_info { 552 struct device dev; 553 struct bus_type *bus; 554 555 struct list_head link; /* for global list of mem_ctl_info structs */ 556 557 struct module *owner; /* Module owner of this control struct */ 558 559 unsigned long mtype_cap; /* memory types supported by mc */ 560 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ 561 unsigned long edac_cap; /* configuration capabilities - this is 562 * closely related to edac_ctl_cap. The 563 * difference is that the controller may be 564 * capable of s4ecd4ed which would be listed 565 * in edac_ctl_cap, but if channels aren't 566 * capable of s4ecd4ed then the edac_cap would 567 * not have that capability. 568 */ 569 unsigned long scrub_cap; /* chipset scrub capabilities */ 570 enum scrub_type scrub_mode; /* current scrub mode */ 571 572 /* Translates sdram memory scrub rate given in bytes/sec to the 573 internal representation and configures whatever else needs 574 to be configured. 575 */ 576 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); 577 578 /* Get the current sdram memory scrub rate from the internal 579 representation and converts it to the closest matching 580 bandwidth in bytes/sec. 581 */ 582 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); 583 584 585 /* pointer to edac checking routine */ 586 void (*edac_check) (struct mem_ctl_info * mci); 587 588 /* 589 * Remaps memory pages: controller pages to physical pages. 590 * For most MC's, this will be NULL. 591 */ 592 /* FIXME - why not send the phys page to begin with? */ 593 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, 594 unsigned long page); 595 int mc_idx; 596 struct csrow_info **csrows; 597 unsigned nr_csrows, num_cschannel; 598 599 /* 600 * Memory Controller hierarchy 601 * 602 * There are basically two types of memory controller: the ones that 603 * sees memory sticks ("dimms"), and the ones that sees memory ranks. 604 * All old memory controllers enumerate memories per rank, but most 605 * of the recent drivers enumerate memories per DIMM, instead. 606 * When the memory controller is per rank, csbased is true. 607 */ 608 unsigned n_layers; 609 struct edac_mc_layer *layers; 610 bool csbased; 611 612 /* 613 * DIMM info. Will eventually remove the entire csrows_info some day 614 */ 615 unsigned tot_dimms; 616 struct dimm_info **dimms; 617 618 /* 619 * FIXME - what about controllers on other busses? - IDs must be 620 * unique. dev pointer should be sufficiently unique, but 621 * BUS:SLOT.FUNC numbers may not be unique. 622 */ 623 struct device *pdev; 624 const char *mod_name; 625 const char *ctl_name; 626 const char *dev_name; 627 void *pvt_info; 628 unsigned long start_time; /* mci load start time (in jiffies) */ 629 630 /* 631 * drivers shouldn't access those fields directly, as the core 632 * already handles that. 633 */ 634 u32 ce_noinfo_count, ue_noinfo_count; 635 u32 ue_mc, ce_mc; 636 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 637 638 struct completion complete; 639 640 /* Additional top controller level attributes, but specified 641 * by the low level driver. 642 * 643 * Set by the low level driver to provide attributes at the 644 * controller level. 645 * An array of structures, NULL terminated 646 * 647 * If attributes are desired, then set to array of attributes 648 * If no attributes are desired, leave NULL 649 */ 650 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; 651 652 /* work struct for this MC */ 653 struct delayed_work work; 654 655 /* 656 * Used to report an error - by being at the global struct 657 * makes the memory allocated by the EDAC core 658 */ 659 struct edac_raw_error_desc error_desc; 660 661 /* the internal state of this controller instance */ 662 int op_state; 663 664 struct dentry *debugfs; 665 u8 fake_inject_layer[EDAC_MAX_LAYERS]; 666 bool fake_inject_ue; 667 u16 fake_inject_count; 668}; 669 670/* 671 * Maximum number of memory controllers in the coherent fabric. 672 */ 673#define EDAC_MAX_MCS 16 674 675#endif