at v4.19 31 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_GENERIC_PGTABLE_H 3#define _ASM_GENERIC_PGTABLE_H 4 5#include <linux/pfn.h> 6 7#ifndef __ASSEMBLY__ 8#ifdef CONFIG_MMU 9 10#include <linux/mm_types.h> 11#include <linux/bug.h> 12#include <linux/errno.h> 13 14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 17#endif 18 19/* 20 * On almost all architectures and configurations, 0 can be used as the 21 * upper ceiling to free_pgtables(): on many architectures it has the same 22 * effect as using TASK_SIZE. However, there is one configuration which 23 * must impose a more careful limit, to avoid freeing kernel pgtables. 24 */ 25#ifndef USER_PGTABLES_CEILING 26#define USER_PGTABLES_CEILING 0UL 27#endif 28 29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 30extern int ptep_set_access_flags(struct vm_area_struct *vma, 31 unsigned long address, pte_t *ptep, 32 pte_t entry, int dirty); 33#endif 34 35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 36#ifdef CONFIG_TRANSPARENT_HUGEPAGE 37extern int pmdp_set_access_flags(struct vm_area_struct *vma, 38 unsigned long address, pmd_t *pmdp, 39 pmd_t entry, int dirty); 40extern int pudp_set_access_flags(struct vm_area_struct *vma, 41 unsigned long address, pud_t *pudp, 42 pud_t entry, int dirty); 43#else 44static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 45 unsigned long address, pmd_t *pmdp, 46 pmd_t entry, int dirty) 47{ 48 BUILD_BUG(); 49 return 0; 50} 51static inline int pudp_set_access_flags(struct vm_area_struct *vma, 52 unsigned long address, pud_t *pudp, 53 pud_t entry, int dirty) 54{ 55 BUILD_BUG(); 56 return 0; 57} 58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 59#endif 60 61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pte_t *ptep) 65{ 66 pte_t pte = *ptep; 67 int r = 1; 68 if (!pte_young(pte)) 69 r = 0; 70 else 71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 72 return r; 73} 74#endif 75 76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 77#ifdef CONFIG_TRANSPARENT_HUGEPAGE 78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 79 unsigned long address, 80 pmd_t *pmdp) 81{ 82 pmd_t pmd = *pmdp; 83 int r = 1; 84 if (!pmd_young(pmd)) 85 r = 0; 86 else 87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 88 return r; 89} 90#else 91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 92 unsigned long address, 93 pmd_t *pmdp) 94{ 95 BUILD_BUG(); 96 return 0; 97} 98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 99#endif 100 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 102int ptep_clear_flush_young(struct vm_area_struct *vma, 103 unsigned long address, pte_t *ptep); 104#endif 105 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 109 unsigned long address, pmd_t *pmdp); 110#else 111/* 112 * Despite relevant to THP only, this API is called from generic rmap code 113 * under PageTransHuge(), hence needs a dummy implementation for !THP 114 */ 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 116 unsigned long address, pmd_t *pmdp) 117{ 118 BUILD_BUG(); 119 return 0; 120} 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 122#endif 123 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 126 unsigned long address, 127 pte_t *ptep) 128{ 129 pte_t pte = *ptep; 130 pte_clear(mm, address, ptep); 131 return pte; 132} 133#endif 134 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 138 unsigned long address, 139 pmd_t *pmdp) 140{ 141 pmd_t pmd = *pmdp; 142 pmd_clear(pmdp); 143 return pmd; 144} 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 148 unsigned long address, 149 pud_t *pudp) 150{ 151 pud_t pud = *pudp; 152 153 pud_clear(pudp); 154 return pud; 155} 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 158 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 162 unsigned long address, pmd_t *pmdp, 163 int full) 164{ 165 return pmdp_huge_get_and_clear(mm, address, pmdp); 166} 167#endif 168 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 171 unsigned long address, pud_t *pudp, 172 int full) 173{ 174 return pudp_huge_get_and_clear(mm, address, pudp); 175} 176#endif 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 181 unsigned long address, pte_t *ptep, 182 int full) 183{ 184 pte_t pte; 185 pte = ptep_get_and_clear(mm, address, ptep); 186 return pte; 187} 188#endif 189 190/* 191 * Some architectures may be able to avoid expensive synchronization 192 * primitives when modifications are made to PTE's which are already 193 * not present, or in the process of an address space destruction. 194 */ 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 196static inline void pte_clear_not_present_full(struct mm_struct *mm, 197 unsigned long address, 198 pte_t *ptep, 199 int full) 200{ 201 pte_clear(mm, address, ptep); 202} 203#endif 204 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 207 unsigned long address, 208 pte_t *ptep); 209#endif 210 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 213 unsigned long address, 214 pmd_t *pmdp); 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 216 unsigned long address, 217 pud_t *pudp); 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 221struct mm_struct; 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 223{ 224 pte_t old_pte = *ptep; 225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 226} 227#endif 228 229#ifndef pte_savedwrite 230#define pte_savedwrite pte_write 231#endif 232 233#ifndef pte_mk_savedwrite 234#define pte_mk_savedwrite pte_mkwrite 235#endif 236 237#ifndef pte_clear_savedwrite 238#define pte_clear_savedwrite pte_wrprotect 239#endif 240 241#ifndef pmd_savedwrite 242#define pmd_savedwrite pmd_write 243#endif 244 245#ifndef pmd_mk_savedwrite 246#define pmd_mk_savedwrite pmd_mkwrite 247#endif 248 249#ifndef pmd_clear_savedwrite 250#define pmd_clear_savedwrite pmd_wrprotect 251#endif 252 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE 255static inline void pmdp_set_wrprotect(struct mm_struct *mm, 256 unsigned long address, pmd_t *pmdp) 257{ 258 pmd_t old_pmd = *pmdp; 259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 260} 261#else 262static inline void pmdp_set_wrprotect(struct mm_struct *mm, 263 unsigned long address, pmd_t *pmdp) 264{ 265 BUILD_BUG(); 266} 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 268#endif 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 271static inline void pudp_set_wrprotect(struct mm_struct *mm, 272 unsigned long address, pud_t *pudp) 273{ 274 pud_t old_pud = *pudp; 275 276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 277} 278#else 279static inline void pudp_set_wrprotect(struct mm_struct *mm, 280 unsigned long address, pud_t *pudp) 281{ 282 BUILD_BUG(); 283} 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 285#endif 286 287#ifndef pmdp_collapse_flush 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 290 unsigned long address, pmd_t *pmdp); 291#else 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 293 unsigned long address, 294 pmd_t *pmdp) 295{ 296 BUILD_BUG(); 297 return *pmdp; 298} 299#define pmdp_collapse_flush pmdp_collapse_flush 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301#endif 302 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 305 pgtable_t pgtable); 306#endif 307 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 310#endif 311 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE 313/* 314 * This is an implementation of pmdp_establish() that is only suitable for an 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we 316 * can't race with CPU which sets these bits and non-atomic aproach is fine. 317 */ 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 319 unsigned long address, pmd_t *pmdp, pmd_t pmd) 320{ 321 pmd_t old_pmd = *pmdp; 322 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 323 return old_pmd; 324} 325#endif 326 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 329 pmd_t *pmdp); 330#endif 331 332#ifndef __HAVE_ARCH_PTE_SAME 333static inline int pte_same(pte_t pte_a, pte_t pte_b) 334{ 335 return pte_val(pte_a) == pte_val(pte_b); 336} 337#endif 338 339#ifndef __HAVE_ARCH_PTE_UNUSED 340/* 341 * Some architectures provide facilities to virtualization guests 342 * so that they can flag allocated pages as unused. This allows the 343 * host to transparently reclaim unused pages. This function returns 344 * whether the pte's page is unused. 345 */ 346static inline int pte_unused(pte_t pte) 347{ 348 return 0; 349} 350#endif 351 352#ifndef pte_access_permitted 353#define pte_access_permitted(pte, write) \ 354 (pte_present(pte) && (!(write) || pte_write(pte))) 355#endif 356 357#ifndef pmd_access_permitted 358#define pmd_access_permitted(pmd, write) \ 359 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 360#endif 361 362#ifndef pud_access_permitted 363#define pud_access_permitted(pud, write) \ 364 (pud_present(pud) && (!(write) || pud_write(pud))) 365#endif 366 367#ifndef p4d_access_permitted 368#define p4d_access_permitted(p4d, write) \ 369 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 370#endif 371 372#ifndef pgd_access_permitted 373#define pgd_access_permitted(pgd, write) \ 374 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 375#endif 376 377#ifndef __HAVE_ARCH_PMD_SAME 378#ifdef CONFIG_TRANSPARENT_HUGEPAGE 379static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 380{ 381 return pmd_val(pmd_a) == pmd_val(pmd_b); 382} 383 384static inline int pud_same(pud_t pud_a, pud_t pud_b) 385{ 386 return pud_val(pud_a) == pud_val(pud_b); 387} 388#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 389static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 390{ 391 BUILD_BUG(); 392 return 0; 393} 394 395static inline int pud_same(pud_t pud_a, pud_t pud_b) 396{ 397 BUILD_BUG(); 398 return 0; 399} 400#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 401#endif 402 403#ifndef __HAVE_ARCH_DO_SWAP_PAGE 404/* 405 * Some architectures support metadata associated with a page. When a 406 * page is being swapped out, this metadata must be saved so it can be 407 * restored when the page is swapped back in. SPARC M7 and newer 408 * processors support an ADI (Application Data Integrity) tag for the 409 * page as metadata for the page. arch_do_swap_page() can restore this 410 * metadata when a page is swapped back in. 411 */ 412static inline void arch_do_swap_page(struct mm_struct *mm, 413 struct vm_area_struct *vma, 414 unsigned long addr, 415 pte_t pte, pte_t oldpte) 416{ 417 418} 419#endif 420 421#ifndef __HAVE_ARCH_UNMAP_ONE 422/* 423 * Some architectures support metadata associated with a page. When a 424 * page is being swapped out, this metadata must be saved so it can be 425 * restored when the page is swapped back in. SPARC M7 and newer 426 * processors support an ADI (Application Data Integrity) tag for the 427 * page as metadata for the page. arch_unmap_one() can save this 428 * metadata on a swap-out of a page. 429 */ 430static inline int arch_unmap_one(struct mm_struct *mm, 431 struct vm_area_struct *vma, 432 unsigned long addr, 433 pte_t orig_pte) 434{ 435 return 0; 436} 437#endif 438 439#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 440#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 441#endif 442 443#ifndef __HAVE_ARCH_MOVE_PTE 444#define move_pte(pte, prot, old_addr, new_addr) (pte) 445#endif 446 447#ifndef pte_accessible 448# define pte_accessible(mm, pte) ((void)(pte), 1) 449#endif 450 451#ifndef flush_tlb_fix_spurious_fault 452#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 453#endif 454 455#ifndef pgprot_noncached 456#define pgprot_noncached(prot) (prot) 457#endif 458 459#ifndef pgprot_writecombine 460#define pgprot_writecombine pgprot_noncached 461#endif 462 463#ifndef pgprot_writethrough 464#define pgprot_writethrough pgprot_noncached 465#endif 466 467#ifndef pgprot_device 468#define pgprot_device pgprot_noncached 469#endif 470 471#ifndef pgprot_modify 472#define pgprot_modify pgprot_modify 473static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 474{ 475 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 476 newprot = pgprot_noncached(newprot); 477 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 478 newprot = pgprot_writecombine(newprot); 479 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 480 newprot = pgprot_device(newprot); 481 return newprot; 482} 483#endif 484 485/* 486 * When walking page tables, get the address of the next boundary, 487 * or the end address of the range if that comes earlier. Although no 488 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 489 */ 490 491#define pgd_addr_end(addr, end) \ 492({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 493 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 494}) 495 496#ifndef p4d_addr_end 497#define p4d_addr_end(addr, end) \ 498({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 499 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 500}) 501#endif 502 503#ifndef pud_addr_end 504#define pud_addr_end(addr, end) \ 505({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 506 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 507}) 508#endif 509 510#ifndef pmd_addr_end 511#define pmd_addr_end(addr, end) \ 512({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 513 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 514}) 515#endif 516 517/* 518 * When walking page tables, we usually want to skip any p?d_none entries; 519 * and any p?d_bad entries - reporting the error before resetting to none. 520 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 521 */ 522void pgd_clear_bad(pgd_t *); 523void p4d_clear_bad(p4d_t *); 524void pud_clear_bad(pud_t *); 525void pmd_clear_bad(pmd_t *); 526 527static inline int pgd_none_or_clear_bad(pgd_t *pgd) 528{ 529 if (pgd_none(*pgd)) 530 return 1; 531 if (unlikely(pgd_bad(*pgd))) { 532 pgd_clear_bad(pgd); 533 return 1; 534 } 535 return 0; 536} 537 538static inline int p4d_none_or_clear_bad(p4d_t *p4d) 539{ 540 if (p4d_none(*p4d)) 541 return 1; 542 if (unlikely(p4d_bad(*p4d))) { 543 p4d_clear_bad(p4d); 544 return 1; 545 } 546 return 0; 547} 548 549static inline int pud_none_or_clear_bad(pud_t *pud) 550{ 551 if (pud_none(*pud)) 552 return 1; 553 if (unlikely(pud_bad(*pud))) { 554 pud_clear_bad(pud); 555 return 1; 556 } 557 return 0; 558} 559 560static inline int pmd_none_or_clear_bad(pmd_t *pmd) 561{ 562 if (pmd_none(*pmd)) 563 return 1; 564 if (unlikely(pmd_bad(*pmd))) { 565 pmd_clear_bad(pmd); 566 return 1; 567 } 568 return 0; 569} 570 571static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 572 unsigned long addr, 573 pte_t *ptep) 574{ 575 /* 576 * Get the current pte state, but zero it out to make it 577 * non-present, preventing the hardware from asynchronously 578 * updating it. 579 */ 580 return ptep_get_and_clear(mm, addr, ptep); 581} 582 583static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 584 unsigned long addr, 585 pte_t *ptep, pte_t pte) 586{ 587 /* 588 * The pte is non-present, so there's no hardware state to 589 * preserve. 590 */ 591 set_pte_at(mm, addr, ptep, pte); 592} 593 594#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 595/* 596 * Start a pte protection read-modify-write transaction, which 597 * protects against asynchronous hardware modifications to the pte. 598 * The intention is not to prevent the hardware from making pte 599 * updates, but to prevent any updates it may make from being lost. 600 * 601 * This does not protect against other software modifications of the 602 * pte; the appropriate pte lock must be held over the transation. 603 * 604 * Note that this interface is intended to be batchable, meaning that 605 * ptep_modify_prot_commit may not actually update the pte, but merely 606 * queue the update to be done at some later time. The update must be 607 * actually committed before the pte lock is released, however. 608 */ 609static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 610 unsigned long addr, 611 pte_t *ptep) 612{ 613 return __ptep_modify_prot_start(mm, addr, ptep); 614} 615 616/* 617 * Commit an update to a pte, leaving any hardware-controlled bits in 618 * the PTE unmodified. 619 */ 620static inline void ptep_modify_prot_commit(struct mm_struct *mm, 621 unsigned long addr, 622 pte_t *ptep, pte_t pte) 623{ 624 __ptep_modify_prot_commit(mm, addr, ptep, pte); 625} 626#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 627#endif /* CONFIG_MMU */ 628 629/* 630 * No-op macros that just return the current protection value. Defined here 631 * because these macros can be used used even if CONFIG_MMU is not defined. 632 */ 633#ifndef pgprot_encrypted 634#define pgprot_encrypted(prot) (prot) 635#endif 636 637#ifndef pgprot_decrypted 638#define pgprot_decrypted(prot) (prot) 639#endif 640 641/* 642 * A facility to provide lazy MMU batching. This allows PTE updates and 643 * page invalidations to be delayed until a call to leave lazy MMU mode 644 * is issued. Some architectures may benefit from doing this, and it is 645 * beneficial for both shadow and direct mode hypervisors, which may batch 646 * the PTE updates which happen during this window. Note that using this 647 * interface requires that read hazards be removed from the code. A read 648 * hazard could result in the direct mode hypervisor case, since the actual 649 * write to the page tables may not yet have taken place, so reads though 650 * a raw PTE pointer after it has been modified are not guaranteed to be 651 * up to date. This mode can only be entered and left under the protection of 652 * the page table locks for all page tables which may be modified. In the UP 653 * case, this is required so that preemption is disabled, and in the SMP case, 654 * it must synchronize the delayed page table writes properly on other CPUs. 655 */ 656#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 657#define arch_enter_lazy_mmu_mode() do {} while (0) 658#define arch_leave_lazy_mmu_mode() do {} while (0) 659#define arch_flush_lazy_mmu_mode() do {} while (0) 660#endif 661 662/* 663 * A facility to provide batching of the reload of page tables and 664 * other process state with the actual context switch code for 665 * paravirtualized guests. By convention, only one of the batched 666 * update (lazy) modes (CPU, MMU) should be active at any given time, 667 * entry should never be nested, and entry and exits should always be 668 * paired. This is for sanity of maintaining and reasoning about the 669 * kernel code. In this case, the exit (end of the context switch) is 670 * in architecture-specific code, and so doesn't need a generic 671 * definition. 672 */ 673#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 674#define arch_start_context_switch(prev) do {} while (0) 675#endif 676 677#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 678#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 679static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 680{ 681 return pmd; 682} 683 684static inline int pmd_swp_soft_dirty(pmd_t pmd) 685{ 686 return 0; 687} 688 689static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 690{ 691 return pmd; 692} 693#endif 694#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 695static inline int pte_soft_dirty(pte_t pte) 696{ 697 return 0; 698} 699 700static inline int pmd_soft_dirty(pmd_t pmd) 701{ 702 return 0; 703} 704 705static inline pte_t pte_mksoft_dirty(pte_t pte) 706{ 707 return pte; 708} 709 710static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 711{ 712 return pmd; 713} 714 715static inline pte_t pte_clear_soft_dirty(pte_t pte) 716{ 717 return pte; 718} 719 720static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 721{ 722 return pmd; 723} 724 725static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 726{ 727 return pte; 728} 729 730static inline int pte_swp_soft_dirty(pte_t pte) 731{ 732 return 0; 733} 734 735static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 736{ 737 return pte; 738} 739 740static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 741{ 742 return pmd; 743} 744 745static inline int pmd_swp_soft_dirty(pmd_t pmd) 746{ 747 return 0; 748} 749 750static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 751{ 752 return pmd; 753} 754#endif 755 756#ifndef __HAVE_PFNMAP_TRACKING 757/* 758 * Interfaces that can be used by architecture code to keep track of 759 * memory type of pfn mappings specified by the remap_pfn_range, 760 * vm_insert_pfn. 761 */ 762 763/* 764 * track_pfn_remap is called when a _new_ pfn mapping is being established 765 * by remap_pfn_range() for physical range indicated by pfn and size. 766 */ 767static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 768 unsigned long pfn, unsigned long addr, 769 unsigned long size) 770{ 771 return 0; 772} 773 774/* 775 * track_pfn_insert is called when a _new_ single pfn is established 776 * by vm_insert_pfn(). 777 */ 778static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 779 pfn_t pfn) 780{ 781} 782 783/* 784 * track_pfn_copy is called when vma that is covering the pfnmap gets 785 * copied through copy_page_range(). 786 */ 787static inline int track_pfn_copy(struct vm_area_struct *vma) 788{ 789 return 0; 790} 791 792/* 793 * untrack_pfn is called while unmapping a pfnmap for a region. 794 * untrack can be called for a specific region indicated by pfn and size or 795 * can be for the entire vma (in which case pfn, size are zero). 796 */ 797static inline void untrack_pfn(struct vm_area_struct *vma, 798 unsigned long pfn, unsigned long size) 799{ 800} 801 802/* 803 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 804 */ 805static inline void untrack_pfn_moved(struct vm_area_struct *vma) 806{ 807} 808#else 809extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 810 unsigned long pfn, unsigned long addr, 811 unsigned long size); 812extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 813 pfn_t pfn); 814extern int track_pfn_copy(struct vm_area_struct *vma); 815extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 816 unsigned long size); 817extern void untrack_pfn_moved(struct vm_area_struct *vma); 818#endif 819 820#ifdef __HAVE_COLOR_ZERO_PAGE 821static inline int is_zero_pfn(unsigned long pfn) 822{ 823 extern unsigned long zero_pfn; 824 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 825 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 826} 827 828#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 829 830#else 831static inline int is_zero_pfn(unsigned long pfn) 832{ 833 extern unsigned long zero_pfn; 834 return pfn == zero_pfn; 835} 836 837static inline unsigned long my_zero_pfn(unsigned long addr) 838{ 839 extern unsigned long zero_pfn; 840 return zero_pfn; 841} 842#endif 843 844#ifdef CONFIG_MMU 845 846#ifndef CONFIG_TRANSPARENT_HUGEPAGE 847static inline int pmd_trans_huge(pmd_t pmd) 848{ 849 return 0; 850} 851#ifndef pmd_write 852static inline int pmd_write(pmd_t pmd) 853{ 854 BUG(); 855 return 0; 856} 857#endif /* pmd_write */ 858#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 859 860#ifndef pud_write 861static inline int pud_write(pud_t pud) 862{ 863 BUG(); 864 return 0; 865} 866#endif /* pud_write */ 867 868#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 869 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 870 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 871static inline int pud_trans_huge(pud_t pud) 872{ 873 return 0; 874} 875#endif 876 877#ifndef pmd_read_atomic 878static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 879{ 880 /* 881 * Depend on compiler for an atomic pmd read. NOTE: this is 882 * only going to work, if the pmdval_t isn't larger than 883 * an unsigned long. 884 */ 885 return *pmdp; 886} 887#endif 888 889#ifndef arch_needs_pgtable_deposit 890#define arch_needs_pgtable_deposit() (false) 891#endif 892/* 893 * This function is meant to be used by sites walking pagetables with 894 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 895 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 896 * into a null pmd and the transhuge page fault can convert a null pmd 897 * into an hugepmd or into a regular pmd (if the hugepage allocation 898 * fails). While holding the mmap_sem in read mode the pmd becomes 899 * stable and stops changing under us only if it's not null and not a 900 * transhuge pmd. When those races occurs and this function makes a 901 * difference vs the standard pmd_none_or_clear_bad, the result is 902 * undefined so behaving like if the pmd was none is safe (because it 903 * can return none anyway). The compiler level barrier() is critically 904 * important to compute the two checks atomically on the same pmdval. 905 * 906 * For 32bit kernels with a 64bit large pmd_t this automatically takes 907 * care of reading the pmd atomically to avoid SMP race conditions 908 * against pmd_populate() when the mmap_sem is hold for reading by the 909 * caller (a special atomic read not done by "gcc" as in the generic 910 * version above, is also needed when THP is disabled because the page 911 * fault can populate the pmd from under us). 912 */ 913static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 914{ 915 pmd_t pmdval = pmd_read_atomic(pmd); 916 /* 917 * The barrier will stabilize the pmdval in a register or on 918 * the stack so that it will stop changing under the code. 919 * 920 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 921 * pmd_read_atomic is allowed to return a not atomic pmdval 922 * (for example pointing to an hugepage that has never been 923 * mapped in the pmd). The below checks will only care about 924 * the low part of the pmd with 32bit PAE x86 anyway, with the 925 * exception of pmd_none(). So the important thing is that if 926 * the low part of the pmd is found null, the high part will 927 * be also null or the pmd_none() check below would be 928 * confused. 929 */ 930#ifdef CONFIG_TRANSPARENT_HUGEPAGE 931 barrier(); 932#endif 933 /* 934 * !pmd_present() checks for pmd migration entries 935 * 936 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 937 * But using that requires moving current function and pmd_trans_unstable() 938 * to linux/swapops.h to resovle dependency, which is too much code move. 939 * 940 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 941 * because !pmd_present() pages can only be under migration not swapped 942 * out. 943 * 944 * pmd_none() is preseved for future condition checks on pmd migration 945 * entries and not confusing with this function name, although it is 946 * redundant with !pmd_present(). 947 */ 948 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 949 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 950 return 1; 951 if (unlikely(pmd_bad(pmdval))) { 952 pmd_clear_bad(pmd); 953 return 1; 954 } 955 return 0; 956} 957 958/* 959 * This is a noop if Transparent Hugepage Support is not built into 960 * the kernel. Otherwise it is equivalent to 961 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 962 * places that already verified the pmd is not none and they want to 963 * walk ptes while holding the mmap sem in read mode (write mode don't 964 * need this). If THP is not enabled, the pmd can't go away under the 965 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 966 * run a pmd_trans_unstable before walking the ptes after 967 * split_huge_page_pmd returns (because it may have run when the pmd 968 * become null, but then a page fault can map in a THP and not a 969 * regular page). 970 */ 971static inline int pmd_trans_unstable(pmd_t *pmd) 972{ 973#ifdef CONFIG_TRANSPARENT_HUGEPAGE 974 return pmd_none_or_trans_huge_or_clear_bad(pmd); 975#else 976 return 0; 977#endif 978} 979 980#ifndef CONFIG_NUMA_BALANCING 981/* 982 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 983 * the only case the kernel cares is for NUMA balancing and is only ever set 984 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 985 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 986 * is the responsibility of the caller to distinguish between PROT_NONE 987 * protections and NUMA hinting fault protections. 988 */ 989static inline int pte_protnone(pte_t pte) 990{ 991 return 0; 992} 993 994static inline int pmd_protnone(pmd_t pmd) 995{ 996 return 0; 997} 998#endif /* CONFIG_NUMA_BALANCING */ 999 1000#endif /* CONFIG_MMU */ 1001 1002#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1003 1004#ifndef __PAGETABLE_P4D_FOLDED 1005int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1006int p4d_clear_huge(p4d_t *p4d); 1007#else 1008static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1009{ 1010 return 0; 1011} 1012static inline int p4d_clear_huge(p4d_t *p4d) 1013{ 1014 return 0; 1015} 1016#endif /* !__PAGETABLE_P4D_FOLDED */ 1017 1018int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1019int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1020int pud_clear_huge(pud_t *pud); 1021int pmd_clear_huge(pmd_t *pmd); 1022int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1023int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1024#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1025static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1026{ 1027 return 0; 1028} 1029static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1030{ 1031 return 0; 1032} 1033static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1034{ 1035 return 0; 1036} 1037static inline int p4d_clear_huge(p4d_t *p4d) 1038{ 1039 return 0; 1040} 1041static inline int pud_clear_huge(pud_t *pud) 1042{ 1043 return 0; 1044} 1045static inline int pmd_clear_huge(pmd_t *pmd) 1046{ 1047 return 0; 1048} 1049static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1050{ 1051 return 0; 1052} 1053static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1054{ 1055 return 0; 1056} 1057#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1058 1059#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1060#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1061/* 1062 * ARCHes with special requirements for evicting THP backing TLB entries can 1063 * implement this. Otherwise also, it can help optimize normal TLB flush in 1064 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1065 * entire TLB TLB if flush span is greater than a threshold, which will 1066 * likely be true for a single huge page. Thus a single thp flush will 1067 * invalidate the entire TLB which is not desitable. 1068 * e.g. see arch/arc: flush_pmd_tlb_range 1069 */ 1070#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1071#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1072#else 1073#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1074#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1075#endif 1076#endif 1077 1078struct file; 1079int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1080 unsigned long size, pgprot_t *vma_prot); 1081 1082#ifndef CONFIG_X86_ESPFIX64 1083static inline void init_espfix_bsp(void) { } 1084#endif 1085 1086#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1087static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1088{ 1089 return true; 1090} 1091 1092static inline bool arch_has_pfn_modify_check(void) 1093{ 1094 return false; 1095} 1096#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1097 1098/* 1099 * Architecture PAGE_KERNEL_* fallbacks 1100 * 1101 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1102 * because they really don't support them, or the port needs to be updated to 1103 * reflect the required functionality. Below are a set of relatively safe 1104 * fallbacks, as best effort, which we can count on in lieu of the architectures 1105 * not defining them on their own yet. 1106 */ 1107 1108#ifndef PAGE_KERNEL_RO 1109# define PAGE_KERNEL_RO PAGE_KERNEL 1110#endif 1111 1112#ifndef PAGE_KERNEL_EXEC 1113# define PAGE_KERNEL_EXEC PAGE_KERNEL 1114#endif 1115 1116#endif /* !__ASSEMBLY__ */ 1117 1118#ifndef io_remap_pfn_range 1119#define io_remap_pfn_range remap_pfn_range 1120#endif 1121 1122#ifndef has_transparent_hugepage 1123#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1124#define has_transparent_hugepage() 1 1125#else 1126#define has_transparent_hugepage() 0 1127#endif 1128#endif 1129 1130#endif /* _ASM_GENERIC_PGTABLE_H */